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Miraculously, target-mass corrections for inclusive deep inelastic scattering can be calculated exactly.
On the contrary, there does not exist a consistent derivation of kinematic hadron mass corrections for semi-
inclusive deep inelastic scattering. Recently this has become of topical interest, since there is a significant
difference between the measured HERMES and COMPASS pion and kaon multiplicities, which cannot be
explained as a consequence of evolution in Q2, and it has been suggested that the difference can be
understood if kinematic hadron mass corrections are taken into account. We explain why this argument is
incorrect.
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I. INTRODUCTION

Historically, the derivations of target-mass corrections
(TMCs) for inclusive deep inelastic scattering (DIS) were
all based on the operator product expansion (OPE). The
results for unpolarized DIS were first derived by
Nachtmann [1] employing a very elegant mathematical
approach in which the power series expansion used in the
OPE was replaced by an expansion into a series of
hyperspherical functions (representation functions of the
homogeneous Lorentz group). Later, also within the con-
text of the OPE, Georgi and Politzer [2] rederived
Nachtmann’s results using what they called an alternative
analysis “for simple-minded souls like ourselves,” i.e.,
based on a straightforward power series expansion but,
in fact, requiring a very clever handling of the combinatoric
aspects of the problem.
The derivation of target-mass corrections for polarized

DIS turned out to be much more difficult. Several papers
[3,4] succeeded in expressing the reduced matrix elements
an, dn of the relevant operators in terms of combinations of
moments of the structure functions, but did not manage to
derive closed expressions for the structure functions g1;2
themselves. The latter was finally achieved in 1997 by
Piccione and Ridolfi [5] and later generalized to weak
interaction, charged current reactions, by Blümlein and
Tkabladze [6].
Semi-inclusive deep inelastic scattering reactions, where

a final-state hadron is monitored, are of great interest, since
they allow the extraction of information about individual
antiquark distributions, and there is a major experimental
effort underway to study them. However, much of the most
accurate data is, and will be for the foreseeable future, in the
kinematic region of relatively low Q2, and it is thus of

importance to know the kinematic hadron mass corrections
(HMCs) resulting from taking into account the target mass
and produced hadron mass in these reactions.
The problem faced in deriving HMCs for semi-inclusive

deep inelastic scattering (SIDIS) is that the OPE does not
apply. For this reason, D’Alesio, Leader, and Murgia
searched for a method which does not rely on the use of
the OPE and showed how the exact TMC for DIS, both
unpolarized and polarized, could be derived in a totally
different approach [7]. Theymade the crucial observation that
TMCs, by definition, are kinematic corrections, and therefore
cannot depend on the numerical value of the strong inter-
action coupling g. Thus, they can be calculated exactly with
g ¼ 0, i.e., using the “handbag” diagram as shown in Fig. 1.
Christova and Leader (CL) thus attempted to apply this

approach to calculate the exact HMC, to order 1=Q2, for
unpolarized SIDIS [8]. Unfortunately they found that there
are serious problems and that the results break gauge
invariance at the level of ðmassÞ2=Q2.1 Moreover, as will
be explained, it seems clear that this problem is not linked
to the use of g ¼ 0 and is of a more fundamental nature.
Recently Guerrero, Ethier, Accardi, Casper, and

Melnitchouk (GEACM) [9] presented a derivation of
HMC for SIDIS and suggested that taking into account
the HMC reduces, to a large extent, the difference between
the HERMES and COMPASS pion and kaon multiplicities
[10]. Unfortunately, as we shall show, the GEACM
derivation is inconsistent.

II. NOTATION AND CONVENTIONS

We shall largely follow the conventions of the classic
paper of Levelt and Mulders (LM) [11]. We consider the
SIDIS reaction
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eðkeÞ þ NðPÞ → eðk0eÞ þ hðPhÞ þ X ð1Þ

where N is the nucleon of massM, h is the detected hadron
of mass Mh, and X is the remainder of the final state. We
use the standard DIS variables with E and E0 the initial and
final lepton energies in the target rest frame.

Q2 ¼ −q2 ν ¼ P · q
M

¼ E − E0

xB ¼ Q2

2Mν
y ¼ P · q

P · ke
¼ ν

E
ð2Þ

and the usual fragmentation variable zh defined as

zh ¼
P · Ph

P · q
¼ Eh

ν
; ð3Þ

where Eh is the energy of the produced hadron in the target
rest fame. The hadronic tensor for semi-inclusive DIS is
denoted by Wμν

h , and for semi-inclusive DIS by Wμν
h . The

particle label h will occasionally be left out for typographi-
cal clarity.
The unpolarized SIDIS cross section is given by

2Ehdσ
d3PhdxBdy

¼ πα2y
Q4

LμνW
μν
h ð4Þ

and the spin-averaged leptonic tensor is

Lμν ¼ 2kμek0νe þ 2kνek
0μ
e −Q2gμν: ð5Þ

III. EXPRESSION FOR SIDIS HADRONIC TENSOR
Wμν

h IN TERMS OF QUARK CORRELATORS

From Fig. 2, for a quark of charge eq, for the unpolarized
case we have

Wμν
unðP;Ph;qÞ ¼ e2q

Z
d4kd4k0δ4ðkþq− k0ÞTr½γμΦqγ

νΔh
q�;

ð6Þ

where Φq
ijðP; kÞ is the spin-independent quark production

correlator, with kμ the four-momentum of the active quark,

and i, j Dirac indices, and Δh
qðPh; k0Þ is the spin-indepen-

dent quark fragmentation correlator, with k0 ¼ kþ q the
momentum of the fragmenting quark. It is important, as
will become clear presently, to keep separate the virtualities
of the active quark and the fragmenting quark. We shall
label these virtualities m2

q and m02
q , i.e., we take

k2 ≡ ðmqÞ2 and k02 ≡ ðm0
qÞ2: ð7Þ

In the usual treatment, where all hadron masses are
ignored, one takes mq ¼ m0

q ¼ 0, and finds that, at leading
order in QCD, the leading twist expression for SIDIS
differential cross section takes the form, for each flavor,

dσ
dxBdydzh

∝ qðxBÞDh
qðzhÞ ð8Þ

where qðxBÞ is the usual quark-parton density and Dh
qðzhÞ

the standard fragmentation function.
This result follows upon utilizing the leading twist

expressions, which we shall refer to as “order 1,” i.e.,
Oð1Þ, namely,

ΦqðxBÞ≡
Z

dk−d2k⊥ΦqðP; kÞ ¼
1

2
qðxBÞn̄ ð9Þ

Δh
qðzhÞ≡

Z
dk0þd2k0⊥Δh

qðPh; k0Þ ¼
1

2
Dh

qðzhÞn; ð10Þ

where the GEACM null vectors are defined as2

n̄μ ¼ 1ffiffiffi
2

p ð1; 0; 0; 1Þ and nμ ¼ 1ffiffiffi
2

p ð1; 0; 0;−1Þ; ð11Þ

and neglecting terms of OðM=QÞ and OðM2=Q2Þ, where
M2 generically stands for M2, M2

h, or MMh, when
evaluating Wμν

unðP;Ph; qÞ in Eq. (6).

FIG. 2. The conventional partonic diagram for semi-inclusive
lepton-nucleon reactions.

FIG. 1. The DIS “handbag” diagram involving the qq corre-
lator.

2These null vectors are almost universally labeled nþ and n− in
the literature.
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IV. THE APPROACH OF GEACM
AND ITS PROBLEMS

In their treatment of the HMC, GEACM utilize Eqs. (9)
and (10) in Eq. (6), but assume collinear production, i.e.,
put Ph⊥ ¼ 0, arguing that the transverse momentum should
be generated by interactions, and then treat the kinematics
in Eq. (6) more carefully, keeping all terms of OðM2=Q2Þ.
Their key result is that Eq. (8) is then replaced by

dσ
dxBdydzh

∝ qðξhÞDh
qðζhÞ; ð12Þ

where

ξh ¼ ξ

�
1þ ðm0

qÞ2
Q2

�
ð13Þ

and

ζh ¼
zhξ
2xB

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4x2BM
2M2

h

z2hQ
4

s �
: ð14Þ

Here ξ is the usual Nachtmann variable:

ξ ¼ 2xB
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4x2BM

2=Q2
p : ð15Þ

It is clear that the GEACM result differs from the
conventional massless result by terms of order
OðM2=Q2Þ. Thus, to be consistent and believable the
GEACM evaluation of Wμν

unðP; Ph; qÞ in Eq. (6) must be
correct to OðM2=Q2Þ. Now Wμν

unðP;Ph; qÞ involves a
product of Φq and Δh

q so that to achieve the desired
accuracy, each of Φq and Δh

q must be given correct to
OðM2=Q2Þ. But this is not done. Eqs. (9) and (10) are only
correct to O(1). Hence, the GEACM result is not consistent.
We shall now indicate the seemingly insurmountable

difficulties that arise if we try to remedy this problem in a
straightforward way.
Correct to OðM2=Q2Þ, the quark production correlator

involves three scalar functions and has the form:

ΦqðxÞ ¼
M
2Pþ

eðxÞ þ qðxÞ
2

n̄þ M2

2ðPþÞ2
bðxÞn ð16Þ

where, in what GEACM call the Breit Frame, Pþ ¼ OðQÞ.
It might be thought that the extra functions appearing in
Eq. (16) are a consequence of interactions and therefore can
be ignored in a purely kinematic analysis; but, according to
Mulders and Tangerman [12], this is incorrect. They show
that, e.g.,

eðxÞ ¼ ekinðxÞ þ eintðxÞ; ð17Þ
where

ekinðxÞ ¼
mq

xM
qðxÞ: ð18Þ

A completely analogous development holds for the frag-
mentation correlator Δh

q, which then also contains three
terms, parts of which are definitely not due to interaction.
The most serious consequence of using ΦqðxÞ and Δh

q,
correct to OðM2=Q2Þ, is the breakdown of gauge invari-
ance for Wμν

unðP;Ph; qÞ, which we will now explain.

V. THE BREAKDOWN OF GAUGE INVARIANCE:
A SIMPLE DEMONSTRATION

We are only interested in kinematical corrections. A
simple trick to isolate these is thus to switch off the strong
interaction, i.e., to take αs ¼ 0. Then, according to [7], the
expressions for the corrected correlators become

ΦqðxÞ ∝ qðxÞ½mq þ k� ð19Þ
Δh

qðzÞ ∝ Dh
qðzÞ½m0

q þ k0� ð20Þ
which lead to

Wμν
un ∝ ðmqm0

q − k · k0Þgμν þ ðkμk0ν þ kνk0μÞ: ð21Þ
Gauge invariance requires that

qμW
μν
un ¼ 0: ð22Þ

Using Eq. (21) we find

qμW
μν
un ∝ ðm0

q −mqÞ½mqqν þ ðm0
q þmqÞkν�: ð23Þ

In other words, gauge invariance demands thatmq ¼ m0
q.

Is this possible?
In the standard treatment, ignoring hadron masses, one

conventionally takes mq ¼ m0
q ¼ 0 and gauge invariance is

fine. When hadron masses are included there are compel-
ling reasons to still choosemq ¼ 0, as GEACM do, but it is
certainly incorrect to take m0

q ¼ 0. Indeed, kinematical
considerations imply a lower bound for m02

q . For the
collinear case CL have it:

m02
q ≥ M2

h=zh ð24Þ
which is compatible with the CEACM lower bound
m02

q ≥ M2
h=ζh.

3 This immediately implies that we cannot
take mq ¼ m0

q and we are forced to conclude that when
terms of OðM2=Q2Þ are included consistently in the
GEACM approach, the result is not gauge invariant. (In
addition to this problem, there is another worrying matter.
In their paper GEACM choose the particular value M2

h=ζh

3The GEACM result assumes that the target remnant jet has
ðmassÞ2 ≡ ðP − kÞ2 ≥ M2, an assumption which we do not think
can be justified, given that the remnant jet has baryon number 2=3
and is colored, and which disagrees with the condition
ðP − kÞ2 ≥ 0 used by Ellis, Furmanski, and Petronzio [13].
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for m02
q . But any value larger than this would be acceptable.

Hence, there is effectively an arbitrary parameter in the
GEACM treatment.)
Consider now the implications of the lower bound in

Eq. (24). As stressed by Mulders and Tangerman [12] the
validity of the parton model in QCD depends on the
assumption that all the quark correlators cut off rapidly
with increasing quark virtuality, implying that the frag-
mentation correlator should cut off rapidly with increasing
k02 ≡m02

q . But use of Eq. (24) to describe experimental
multiplicity values which are not small for small values of
zh would imply that the correlator is large for virtualities
much greater than a ðhadrom massÞ2.

VI. POSSIBLE RESOLUTIONS OF THE PROBLEM

The above discussion suggests that there is no way to
accommodate nonzero hadron masses in the conventional
treatment of SIDIS reactions. We list here, with some lack
of conviction, a couple of unconventional ways to over-
come the difficulties.
(1) Since the virtuality of the fragmenting quark is

considerably larger than the square of a typical
hadron mass, it is neither a typical partonic quark
nor a constituent quark. It is therefore some kind of
effective quark and as such one might introduce an
effective electromagnetic coupling, e.g.,

γμ → γμ −
q
q2

qμ: ð25Þ

It would then be possible to achieve a gauge
invariant result, while keeping m0

q ≠ mq.
(2) By analogy with the treatment of π0 photoproduc-

tion on a quark, one can restore gauge invariance by
including the crossed Feynman diagram shown in

Fig. 3, in which, in the pion-quark coupling gπγ5, the
constant gπ is replaced by a phenomenological scalar
function. This was tried by CL [8], but they were
unable to reproduce the standard result in the
limit Q2 → ∞.

VII. CONCLUSIONS

Guerrero, Ethier, Accardi, Casper, and Melnitchouk have
produced a study of semi-inclusive deep inelastic scatter-
ing, which attempts to take into account the masses of the
target and produced hadron, contrary to the conventional
treatment which ignores all hadronic masses. They then
argue that such effects might reduce the apparent discrep-
ancy between the HERMES and COMPASS pion and kaon
multiplicity measurements.
Unfortunately it turns out that the GEACM analysis is

inconsistent, in that terms of the same order of magnitude
as those they are concerned about, are neglected. Moreover,
when such terms are included the resulting hadronic tensor
is no longer gauge invariant.
We have, regrettably, been forced to conclude, that in

contradistinction to inclusive DIS, where it is possible to
calculate exact target-mass corrections, attempts to include
kinematic hadron mass corrections in semi-inclusive DIS
run into insurmountable difficulties. It seems that the
standard formulation of a semi-inclusive event, as a product
of a parton density times an independent fragmentation
function, does not work if hadron masses are taken into
account.
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