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Identifying signatures of dark matter at indirect-detection experiments is generally more challenging for
scenarios involving nonminimal dark sectors such as Dynamical Dark Matter (DDM) than for scenarios
involving a single dark particle. This additional difficulty arises because the partitioning of the total
dark-matter abundance across an ensemble of different constituent particles with different masses tends to
“smear” the injection spectra of photons and other cosmic-ray particles that are produced via dark-matter
annihilation or decay. As a result, the imprints of the dark sector on these cosmic-ray flux spectra typically
take the form of continuum features rather than sharp peaks or lines. In this paper, however, we identify an
unambiguous signature of nonminimal dark sectors such as DDM which can overcome these issues and
potentially be observed at gamma-ray telescopes operating in the MeV range. We discuss the specific
situations in which this signature can arise, and demonstrate that this signature can be exploited in order to
significantly enhance our ability to resolve the unique spectral features of DDM and other nonminimal
dark sectors at future gamma-ray facilities.

DOI: 10.1103/PhysRevD.94.095027

I. INTRODUCTION

Understanding the properties of the dark sector repre-
sents one of the great experimental and theoretical
challenges facing physics today. Indeed, we even lack
insight into such fundamental questions as whether the
dark sector is minimal (e.g., consisting of only one or a
few dark particle species) or nonminimal (e.g., consisting
of many particle species). A pressing phenomenological
question, therefore, is to determine how—and to what
degree it is even possible—to experimentally distinguish
nonminimal dark sectors from their more traditional,
minimal counterparts. This is especially true for scenarios
within the Dynamical Dark Matter (DDM) [1,2] frame-
work—a framework for dark-matter physics in which
the dark-matter “candidate” is an ensemble consisting
of a potentially vast number of individual constituent
particle species exhibiting a variety of masses, decay
widths, and cosmological abundances. Such DDM
dark sectors give rise to collective phenomena that
transcend expectations based on traditional dark-matter

frameworks. For example, the phenomenological viabil-
ity of such a DDM ensemble as a representation of
the dark sector rests not on the stability of each of these
species individually, but rather on a subtle balancing
between decay widths and cosmological abundances
across the ensemble as a whole.
In many DDM scenarios, the ensemble constituents share

the same or similar quantum numbers. In such cases, the
detection channels through which one might hope to find
evidence of such an ensemble are essentially identical to
those inwhich onewould seek evidence of a traditional dark-
matter candidate with the identical quantum numbers.
However, even if the ensemble constituents share similar
quantum numbers, they generically differ in their masses and
couplings.As a result, it is often possible to distinguishDDM
ensembles and other nonminimal dark sectors experimen-
tally by analyzing the distributions of relevant kinematic
variables. At direct-detection experiments, for example, the
relevant distribution is the recoil-energy spectrum of the
recoiling nucleus [3]. Likewise, at indirect-detection experi-
ments, the relevant kinematic distributions are the differential
flux spectra of the SM particles which can be produced via
dark-matter annihilation or decay [4]. Finally, at colliders, the
relevant distributions are those corresponding to a number of
well-chosen kinematic variables formed from the momenta
of Standard Model (SM) particles produced alongside the
dark-matter particles. The information contained in the full
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shapes of these distributions can be used to distinguish DDM
from traditional dark-matter scenarios [5,6], and indeed can
be used to distinguish a variety of other nonminimal dark-
matter scenarios as well [7–10].
A variety of cosmic-ray particles—among them elec-

trons, positrons, photons, antiprotons, neutrinos, and anti-
deuterons—can potentially yield information about the
nature of the dark matter. For example, it has been shown
that DDM ensembles can give rise to characteristic sig-
natures [4] in the flux spectra of electrons and positrons
which can account for the positron excess observed by
PAMELA [11], AMS-02 [12], and a host of other experi-
ments—most notably without predicting an abrupt down-
turn in the positron fraction at high energies. However, of
all cosmic-ray particles whose flux spectra we have the
ability to measure, photons are the particles that afford the
greatest potential for probing the structure of the dark
sector. This is true primarily for two reasons. First, the
spectrum of photons injected by a particular source is
deformed far less by interactions with the interstellar
medium (ISM) than are the spectra associated with most
other cosmic-ray particles. Thus, features imprinted on the
photon spectrum at injection—features which might be
indicative of dark-sector nonminimality—are not washed
out as a result of their propagation through this medium.
Second, unlike neutrinos (which are also largely unaffected
by propagation through the ISM), photons are easy to
detect and their energies and directions can be measured
with great precision.
It nevertheless remains true that identifying such sig-

natures at indirect-detection experiments is generally more
challenging for DDM scenarios than for other, more
traditional dark-matter scenarios. This is because the
injection spectra of photons and other cosmic-ray particles
from dark-matter annihilation or decay within DDM
scenarios are subject to an additional “smearing” effect
due to the partitioning of the total dark-matter abundance
across an ensemble of constituent particles with a range of
masses. Thus, the characteristic imprints which these
ensembles leave in the corresponding flux spectra typically
take the form of continuum features rather than sharp peaks
or lines. This is especially true for cases in which the
splittings between the masses of the ensemble constituents
are small. Disentangling continuum features from astro-
physical backgrounds is generally significantly more chal-
lenging than disentangling sharp peaks or lines. Moreover,
even in situations in which such features can be robustly
identified, it is often impossible to conclusively determine
whether dark matter or some more mundane astrophysical
process is responsible.
In this paper, we identify an unambiguous signature of

DDM (and of nonminimal dark sectors more generally)
which can serve to overcome these issues and potentially be
observed at gamma-ray telescopes sensitive to photons with
energies in theOð1–100Þ MeV range. This signature arises

in cases in which each of the ensemble constituents
annihilates or decays predominately into a primary photon
and a neutral pion [13], the latter subsequently decaying
into a pair of secondary photons.
In general, the primary photons give rise to a linelike

feature, while the secondary photons give rise to a
characteristic boxlike feature whose width is related to
the energy (or boost) of the decaying pion. (We review the
kinematics of these processes in the Appendix.) In the case
of a single dark-matter species, this combination of a
linelike feature and a boxlike feature is notable and
distinctive. Such features have previously been studied,
e.g., in Refs. [13–15]. In the case of a DDM ensemble, by
contrast, the primary photons give rise to a set of linelike
features while the secondary photons give rise to a set of
boxlike features. In this paper, we are particularly interested
in the regime in which the splitting between constituent
masses is small compared to the energy resolution of the
telescope. In such cases, the set of linelike features will
appear a single effective continuum spectral feature.
Likewise, the pion energies will also form an effective
continuum which then produces a continuum of boxlike
features. Note that in this context the pion energies will
form an effective continuum because these pions are
produced via the direct annihilation or decay of the
different DDM ensemble components which themselves
exhibit an effective continuum of masses. This is therefore
somewhat different than the continuous pion spectra that
might emerge through multiple sequential decays, as in
Refs. [16,17], or via n-body decays with n ≥ 3.
Taken in isolation, each of these two spectral features

reveals information about the properties of the DDM
ensemble. However, what makes this signature particularly
advantageous from the perspective of distinguishing
between minimal and nonminimal DDM dark sectors is
that the spectral shapes of these two features are correlated.
Thus, a comparison between the information independently
extracted from these two continuum features can provide a
powerful consistency check that they indeed have a
common underlying origin in terms of a DDM ensemble.
Indeed, it was shown in Ref. [13] that for a single-particle
dark-matter candidate which decays into this same final
state, correlations between the properties of the line and
box features in the gamma-ray spectrum could be used to
reconstruct the mass of the dark-matter particle. By con-
trast, in a DDM context, we shall see that the correlations
between the corresponding continuum features can be used
to reconstruct the fundamental relations which describe
how the the masses, abundances, and lifetimes of the
ensemble constituents scale across the ensemble as a whole.
This paper is organized as follows. In Sec. II, we discuss

the circumstances under which the constituents of a DDM
ensemble annihilate or decay predominately to a γπ0

final state. We also establish the conventions we shall
use for parametrizing such an ensemble. In Sec. III, we then
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calculate the contribution to the differential photon flux
which arises from dark-matter annihilation or decay in such
scenarios. We also discuss the two distinctive features
which arise in the flux spectrum and examine how the
spectral shapes of these features, and the degree to which
they overlap, vary as a function of the parameters which
characterize the ensemble. In Sec. IV, we investigate the
prospects of identifying these spectral features in the
diffuse galactic gamma-ray spectrum and in the gamma-
ray spectra of dwarf spheroidal galaxies at the next
generation of gamma-ray telescopes, and in Sec. V we
examine the degree to which the underlying parameters
which characterize the DDM ensemble can be extracted
from the spectral shapes of these features. Finally, in
Sec. VI, we summarize our conclusions and provide an
outlook for future work, while in the Appendix we review
the kinematics leading to linelike and boxlike features in
the photon spectrum.

II. DDM ENSEMBLES AND THEIR DECAYS
TO PHOTONS AND PIONS

Within the context of DDM framework [1,2], the dark
sector comprises a potentially vast ensemble of individual
particle species ϕn whose cosmological abundances Ωn are
balanced against their decay widths Γn in such a way as to
ensure consistency with observational data. It turns out that
DDM ensembles arise naturally in a variety of well-
motivated extensions of the SM; these include scenarios
which involve extra spacetime dimensions [1,2,18], large
spontaneously broken symmetry groups [19], confining
hidden-sector gauge groups [20], or bulk physics in open
string theories [20,21]. In what follows, we adopt the
convention that the index n ¼ 0; 1; 2;…; N labels the
particles in order of increasing mass.
Our principal aim in this paper is to study the astrophysical

gamma-ray signatures associated with DDM ensembles in
which the ensemble constituents annihilate or decay pre-
dominately into a γπ0 final state (with a subsequent pion
decay π0 → γγ), and to determine the degree to which
information about the ensemble can be extracted from these
signatures. Such final states can arise in DDM scenarios in
which the ϕn couple directly to quarks via an effective
contact operator [13]. The structure of this operator can be
inferred from the fact that the final state γπ0 is odd under
charge-conjugation. Under the assumption that the SUð2Þ
weak interaction can be neglected and that the fundamental
interactions between the ensemble constituents and the
SM fields are C-invariant, the initial state must therefore
be C-odd as well. One possible operator structure which
possesses the appropriate symmetry properties is

On ¼ cnB
μ
nqγμq ð2:1Þ

where cn is an operator coefficient and where B
μ
n is a C-odd

quantity involving theϕn fields alone. One situation inwhich

an operator of this sort arises is that inwhich theϕn are spin-1
fieldsϕμ

n and corresponds to the case inwhichB
μ
n is identified

with the field ϕμ
n itself. In this case, the operator gives rise to

decay processes of the form ϕn → γπ0. Another situation in
which such an operator arises is that in which Bμ

n ¼ J μ
n=Λ2,

where J μ
n is an approximately conserved current associated

with the particle number of the ensemble constituent ϕn. In
this case, the operator gives rise to annihilation processes of
the form ϕ†

nϕn → γπ0. In both of these cases, the funda-
mental interaction between the dark ensemble constituents
ϕn and SM quarks gives rise to an effective operator of the
form [13]

On;eff ¼
ecn

16π2fπ
Bμ;nFνρð∂σπ

0Þϵμνρσ ð2:2Þ

in the low-energy confined phase of the theory.
We have shown that there exists a self-consistent

mechanism through which the constituents of a DDM
ensemble can be coupled to the photon and neutral-pion
fields. However, whether or not processes resulting in a γπ0

final state dominate the decay width or annihilation cross
section of a given ϕn also depends on the center-of-mass
(CM) energy

ffiffiffiffiffi
sn

p
associated with those processes.

Since a number of considerations imply that the velocities
of dark-matter particles within the halos of galaxies are
nonrelativistic, the CM energy for the annihilation or
decay of an ensemble constituent with mass mn is well
approximated by

ffiffiffiffiffi
sn

p
≈
�
2mn for annihilation

mn for decay:
ð2:3Þ

Moreover, the assumption that the dark matter is non-
relativistic also implies that the CM frame for annihilating/
decaying dark-matter particles is effectively equivalent to
the rest frame of the instrument which detects the annihi-
lation/decay products.
In the regime in which

ffiffiffiffiffi
sn

p
< mπ0 , annihilation/decay to

a photon and an on-shell π0 is kinematically forbidden.
Annihilation/decay to a three-photon final state can still
proceed in this regime via an off-shell π0, but processes of
this sort do not give rise to the same characteristic features
in the photon spectrum. On the other hand, in the regime in
which

ffiffiffiffiffi
sn

p
> 2mπ� , the annihilation/decay of ϕn to πþπ−

is kinematically allowed, but the photons produced as final-
state radiation in conjunction with charged-pion production
can contribute significantly to the photon flux and over-
whelm the contribution from γπ0. Thus, the range of CM
energies for which the γπ0 channel provides the dominant
contribution to the photon flux is given by

mπ0 <
ffiffiffiffiffi
sn

p
< 2mπ� ; ð2:4Þ

corresponding to the dark-matter mass ranges
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� 1
2
mπ0 < mn < mπ� for annihilation

mπ0 < mn < 2mπ� for decay:
ð2:5Þ

For simplicity, in what follows we shall focus on DDM
ensembles in which the masses of all of the ensemble
constituents lie within this range. We are therefore inter-
ested in DDM ensembles in which the mass scale of the ϕn
is of order mn ∼Oð100Þ MeV. Indeed, the collective
contribution to the photon flux from the annihilation/decay
of any lighter constituents in the DDM ensemble is
typically negligible unless the density of such states is
enormous.
For an ensemble constituent within our chosen mass

range, the γπ0 channel generically yields the dominant
contribution to the photon flux. The only other two-body
final states which are consistent with the symmetries of the
theory and kinematically accessible within the range in
Eq. (2.4) are νν, eþe−, and μþμ−. The first of these is
irrelevant for photoproduction, while the contribution to the
photon flux from the other two are necessarily suppressed
by additional factors of either α or snGF, where GF is the
Fermi constant. Consequently these processes will be
comparatively insignificant whenever the γπ0 state is
accessible. The contributions associated with final states
involving three or more SM particles are likewise
suppressed.
In general, the underlying mass spectrum of our DDM

ensemble depends on the type of ensemble under study, and
as such it can be arbitrary. For concreteness, however, we
shall focus on the case in which the mass spectrum of our
DDM ensemble takes the generic form

mn ¼ m0 þ nδΔm ð2:6Þ

where m0 is the mass of ϕ0 (the lightest of the ϕn) and
where the mass splitting Δm and scaling exponent δ are
free parameters describing our underlying DDM ensemble.
Indeed, many realistic DDM ensembles have mass spectra
which follow exactly this generic form. Thus, the spectrum
of corresponding CM energies takes the form

ffiffiffiffiffi
sn

p ¼ ffiffiffiffiffi
s0

p þ nδΔð ffiffiffi
s

p Þ ð2:7Þ

where Δð ffiffiffi
s

p Þ ¼ Δm for decay and Δð ffiffiffi
s

p Þ ¼ 2Δm for
annihilation. The splittings Δð ffiffiffiffiffi

sn
p Þ≡ ffiffiffiffiffiffiffiffiffi

snþ1
p − ffiffiffiffiffi

sn
p

between the CM energies for the annihilation/decay of
adjacent ensemble states are therefore given by

Δð ffiffiffiffiffi
sn

p Þ ¼ ½ðnþ 1Þδ − nδ�Δð ffiffiffi
s

p Þ: ð2:8Þ

The case with δ ¼ 1 is particularly interesting, occurring
when ϕn are the modes in a Kaluza-Klein tower. We shall
therefore focus on this case in what follows. For this value
of δ, the mass splitting mnþ1 −mn is uniform across the
ensemble, and Δð ffiffiffiffiffi

sn
p Þ≡ Δð ffiffiffi

s
p Þ for all n.

III. GAMMA-RAY SPECTRUM FROM DDM
ANNIHILATIONS/DECAYS

In this section, we examine the signal contribution to the
differential photon flux dΦ=dEγ which arises in DDM
scenarios in which the ensemble constituents annihilate/
decay to a γπ0 final state (thereby producing a single
“primary” photon), followed by a subsequent decay
ϕ0 → γγ (thereby producing two “secondary” photons).
We begin with a derivation of the general expression for
this signal contribution, followed by a discussion of the
distinctive qualitative features in the flux spectrum which
arise in these scenarios. Note that the kinematics of the
ϕn → γπ0 → γγγ process is reviewed in the Appendix.

A. Differential photon flux: Quantitative results

In order to derive an expression for the total differential
photon flux dΦn=dEγ coming from anniliation and/or
decay of the DDM ensemble, we begin by deriving an
expression for the photon flux Φn coming from each
individual ensemble constituent. This is not particularly
difficult, as there are only two primary ingredients that
enter into such a calculation. The first is the integrated
energy density ρn (or squared energy density ρ2n) of the ϕn
component along the line of sight:

Jn ≡
Z

dΩ
Z
LOS

dl ×

�
ρ2n for annihilation

ρn for decay;
ð3:1Þ

where the differential solid angle dΩ corresponds to our
region of interest on the sky. The second ingredient, by
contrast, is the annihilation/decay rateRn of this component
into photons: the decay rate for the ϕn component is
nothing but Γn, while the annihilation rate is given by
hσnvi=4mn where hσnvi is the thermally-averaged cross
section for the annihilation process ϕ†

nϕn → γπ0. Putting
the pieces together, the resulting photon flux is then

given by Φn ¼ N nðJn=4πÞðRn=mnÞ, where N n ≡N ðpÞ
n þ

N ðsÞ
n ¼ 3 is the total number of primary plus secondary

photons produced via the annihilation/decay of each ϕn.
A priori, it is difficult to determine the individual line-of-

sight integrals Jn. However, it is natural to suppose that the
energy densities ρn of the individual ϕn within the galactic
halo and within the halos of other galaxies are proportional
to their overall cosmological abundances. In other words,
we shall assume that ρn=ρtot ¼ Ωn=Ωtot, where ρtot ¼P

N
n¼0 ρn. Under this assumption, we can then define an

overall n-independent “J-factor” which represents the total
energy density integrated along the line of sight,

J ≡
Z

dΩ
Z
LOS

dl ×

�
ρ2tot for annihilation

ρtot for decay;
ð3:2Þ

whereupon our resulting photon flux Φn takes the general
form
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Φn ¼ N n
J
4π

Ωn

Ωtot

λn
mn

ð3:3Þ

with

λn ≡
� Ωn

Ωtot

hσnvi
4mn

for annihilation

Γn for decay:
ð3:4Þ

For simplicity, we assume that the cross section for co-
annihilation processes of the form ϕ†

mϕn → γπ0 withm ≠ n
is negligible.
Given the result for the individual flux Φn in Eq. (3.3),

we can now derive the collective contribution to the
differential photon flux from the annihilation/decay of
the entire DDM ensemble. Indeed, this is nothing but
the sum over the individual contributions dΦn=dEγ from
each of the ϕn:

dΦ
dEγ

¼
XN
n¼0

dΦn

dEγ
¼

XN
n¼0

J
4π

Ωn

Ωtot

λn
mn

dN n

dEγ

¼ Φ0

3

XN
n¼0

Ωn

Ω0

m0

mn

λn
λ0

dN n

dEγ
; ð3:5Þ

where

dN n

dEγ
¼ dN ðpÞ

n

dEγ
þ dN ðsÞ

n

dEγ
ð3:6Þ

represents the differential number of photons per unit Eγ

produced via a single annihilation/decay event involving
the constituent ϕn.
Given the expression in Eq. (3.5), our next step is to

understand how Ωn, λn, and mn depend on n. For an
arbitrary collection of dark-sector species, these quantities
might not exhibit any regular behavior as functions of n. In
a DDM ensemble, however, the abundances, decay widths,
and cross sections of the different components all exhibit
specific scaling relations as functions of mn across the
DDM ensemble. Indeed, such scaling relations (whether
exact or approximate) tend to emerge naturally as a result of
the various theoretical structures underlying these ensem-
bles. Of course, since a gamma-ray telescope is at best only
capable of measuring the differential photon flux dΦ=dEγ ,
we see from Eq. (3.5) that such an instrument is not
sensitive to the individual scaling behaviors of these
different quantities; rather, it is only sensitive to the scaling
behavior of the particular combination Φn ∝ Ωnλn=mn.
Accordingly, for concreteness, we shall assume that the
fluxes Φn scale with mn according to a single power law of
the form

Φn ¼ Φ0

�
mn

m0

�
ξ

¼ Φ0

� ffiffiffiffiffi
sn

pffiffiffiffiffi
s0

p
�

ξ

ð3:7Þ

where the masses/CM energies follow Eqs. (2.6) and (2.7)
and where the exponent ξ is taken to be a free parameter.
Indeed, this is tantamount to assuming that

Ωn

Ω0

λn
λ0

¼
�
mn

m0

�
ξþ1

¼
� ffiffiffiffiffi

sn
pffiffiffiffiffi
s0

p
�

ξþ1

: ð3:8Þ

As such, the exponent ξ reflects the internal theoretical
structure of the DDM ensemble under study. Note that this
parametrization is applicable to both annihilation and
decay, although in general we expect the actual value of
ξ for the case of annihilation to differ from that for decay.
This parametrization allows us to recast our expression

for the differential photon flux in Eq. (3.5) into the
relatively simpler form

dΦ
dEγ

¼ Φ0

3

XN
n¼0

� ffiffiffiffiffi
sn

pffiffiffiffiffi
s0

p
�

ξ dN n

dEγ
: ð3:9Þ

Moreover, as discussed in the Introduction, we are pri-
marily interested in the regime for which Δm ≪ ΔEγ over
the energy range of interest, where ΔEγ is the energy
resolution of the detector. Thus, since we expect
ΔEγ ≲ Eγ ≤

ffiffiffiffiffi
sN

p
, we shall focus on the case in which

Δm ≪ m0 and the sum over n in Eq. (3.9) is well
approximated by an integral over the continuous variableffiffiffi
s

p
. We then obtain

dΦ
dEγ

≈
Φ0

3Δð ffiffiffi
s

p Þ
Z ffiffiffiffi

sN
p

ffiffiffi
s0

p d
ffiffiffi
s

p � ffiffiffi
s

pffiffiffiffiffi
s0

p
�

ξ dN
dEγ

; ð3:10Þ

where Δð ffiffiffi
s

p Þ is defined in Eq. (2.7) and where dN =dEγ is
the differential number of photons per unit Eγ resulting
from an ensemble constituent annihilating or decaying with
CM energy

ffiffiffi
s

p
into a γπ0 final state, followed by a

subsequent decay π0 → γγ. Note that the integral in
Eq. (3.10) continues to represent a sum over ensemble
constituents, with the contribution from any

ffiffiffi
s

p
represent-

ing the contribution from that ensemble constituent which
annihilates or decays with CM energy

ffiffiffi
s

p
.

Proceeding further requires knowledge of dN =dEγ .
However, this quantity includes contributions from both
primary and secondary photons, and these two classes of
photons have very different kinematic features. We shall
therefore consider each of these classes separately.
As discussed in the Appendix, the primary photons are

all monochromatic, occupying a “line” with energy

Eline ¼
s −m2

π0

2
ffiffiffi
s

p : ð3:11Þ

There is also only one such photon per constituent decay/
annihilation. Thus the primary photon contribution to
dN =dEγ is simply
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dN ðpÞ

dEγ
¼ δðEγ − ElineÞ; ð3:12Þ

whereupon the corresponding contribution to the flux in
Eq. (3.10) is given by

dΦðpÞ

dEγ
≈

Φ0

3Δð ffiffiffi
s

p Þ
� ffiffiffiffiffi

s�
pffiffiffiffiffi
s0

p
�

ξ 2s�
s� þm2

π0

× Θð ffiffiffiffiffi
s�

p
−

ffiffiffiffiffi
s0

p ÞΘð ffiffiffiffiffi
sN

p
−

ffiffiffiffiffi
s�

p Þ ð3:13Þ

where ΘðxÞ is the Heaviside function and where

ffiffiffiffiffi
s�

p ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
γ þm2

π0

q
þ Eγ: ð3:14Þ

Physically, this means that there is only one DM constituent
whose decay or annihilation contributes to the primary
photon flux at any energy Eγ: this is the constituent whose
decay or annihilation occurs with the CM energy

ffiffiffiffiffi
s�

p
given

in Eq. (3.14).
The secondary photons have a different kinematics,

however. As discussed in the Appendix, the secondary
photons emerging from an ensemble constituent decaying
or annihilating with CM energy

ffiffiffi
s

p
have energies which

uniformly populate a “box” whose lower and upper limits
are respectively given by

E−
box ¼

m2
π0

2
ffiffiffi
s

p ; Eþ
box ¼

ffiffiffi
s

p
2

: ð3:15Þ

Moreover, there are two secondary photons from each such
event. Thus, the normalized contribution from the secon-
dary photons to the differential photon number per unit Eγ

is given by

dN ðsÞ

dEγ
¼ 2

ΘðEγ − E−
boxÞΘðEþ

box − EγÞ
Eþ
box − E−

box

¼ 4
ffiffiffi
s

p
s −m2

π0
ΘðEγ − E−

boxÞΘðEþ
box − EγÞ; ð3:16Þ

whereupon the corresponding secondary photon flux
becomes

dΦðsÞ

dEγ
≈

4Φ0

3Δð ffiffiffi
s

p Þ
Z ffiffiffiffi

sN
p

ffiffiffiffiffiffi
smin

p d
ffiffiffi
s

p � ffiffiffi
s

pffiffiffiffiffi
s0

p
�

ξ
ffiffiffi
s

p
s −m2

π0
ð3:17Þ

with

ffiffiffiffiffiffiffiffi
smin

p ≡min

� ffiffiffiffiffi
sN

p
;max

� ffiffiffiffiffi
s0

p
; 2Eγ;

m2
π0

2Eγ

��
: ð3:18Þ

Indeed, for any given value of Eγ, the Heaviside theta-
functions in Eq. (3.16) restrict the values of

ffiffiffi
s

p
which

contribute in Eq. (3.17) to those which are compatible not
only with our original constraints

ffiffiffiffiffi
s0

p ≤
ffiffiffi
s

p
≤ ffiffiffiffiffi

sN
p

but
also with the simultaneous constraints Eγ < Eþ

box (which
requires

ffiffiffi
s

p
> 2Eγ) and Eγ > E−

box (which requiresffiffiffi
s

p
> m2

π0
=2Eγ). The result in Eq. (3.17) can then be

integrated in closed form, yielding

dΦðsÞ

dEγ
≈

2Φ0

3Δð ffiffiffi
s

p Þ
�
mπ0ffiffiffiffiffi
s0

p
�

ξ

× ½Bz1ð−ξ=2; 0Þ − Bz2ð−ξ=2; 0Þ� ð3:19Þ

where Bzða; bÞ is the incomplete Euler beta function, with
z1 ≡m2

π0
=smin and z2 ≡m2

π0
=sN .

In summary, the overall signal contribution to the
differential photon flux in DDM scenarios of this sort is
the sum of the two individual contributions from primary
and secondary photons given in Eqs. (3.13) and (3.19),
respectively.

B. Differential photon flux: Qualitative features

The spectral feature associated with primary photons,
which is described by Eq. (3.13), extends between
Elineð ffiffiffiffiffi

s0
p Þ and Elineð ffiffiffiffiffi

sN
p Þ. The shape of this feature is

in large part dictated by the value of the index ξ. However,
since we are focusing on ensembles in which the CM
energy for the annihilation/decay of each of the ϕn falls
within the range mπ0 <

ffiffiffiffiffi
sn

p
< 2mπ� , this feature typically

appears reasonably flat (unless the value of ξ is extreme)
and exhibits a sharp cutoff at Eγ ¼ Elineð ffiffiffiffiffi

sN
p Þ.

By contrast, the spectral feature associated with secon-
dary photons, which is described by Eq. (3.19), has a
markedly different shape. As discussed above, the individ-
ual contribution to dΦðsÞ=dEγ from each ϕn consists of a
flat, boxlike feature centered at Eγ ¼ mπ0=2 on a loga-
rithmic scale. Thus, the total contribution to the secondary
photon flux consists of a “tower” of such boxes centered at
this same value of Eγ . Since the width of each box is given
by ðsn −m2

π0
Þ=2 ffiffiffiffiffi

sn
p

, the narrowest box is associated with
the lightest ensemble constituent participating in the
relevant annihilation/decay process, and has a width
ðs0 −m2

π0
Þ=2 ffiffiffiffiffi

s0
p

if ϕ0 is indeed that constituent. This
implies that in cases in which

ffiffiffiffiffi
s0

p ≈mπ0 , a sharp peak or
spike appears at the center of the tower [22,23]. By contrast,
in cases in which the difference between

ffiffiffiffiffi
s0

p
and mπ0 is

larger—even by a few MeV—the top of the tower appears
flat and forms a plateau [17,22–24]. We thus have

� ffiffiffiffiffi
s0

p ≈mπ0 spikeffiffiffiffiffi
s0

p
> mπ0 plateau:

ð3:20Þ

Another important consideration is whether and to
what extent the spectral features associated with primary
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and secondary photons in this scenario overlap. Indeed, as
we shall see in Sec. V, the degree of overlap between these
spectral features determines the fitting procedure which
must be used in extracting information about the funda-
mental parameters governing the DDM ensemble. In
particular, in cases in which the two features are well
separated, a parametric fit can be performed for each in
isolation. By contrast, in cases in which the overlap
between the two features is significant, a single fit must
be performed on the combined spectrum in order to extract
the underlying parameters governing the DDM ensemble.
In either case, however, we shall find that it is often possible
to measure most of the underlying parameters which
characterize the DDM ensemble with reasonable precision.
In order to assess the degree of overlap between the

primary and secondary photon spectra for any particular
choice of parameters, we compare the maximum possible
energy for a primary photon to the minimum possible
energy for a secondary photon. The former is given by
Elineð ffiffiffiffiffi

sN
p Þ while the latter is given by E−

boxð
ffiffiffiffiffi
sN

p Þ. The
spectral features associated with the primary and secondary
photons will thus overlap only if E−

boxð
ffiffiffiffiffi
sN

p Þ < Elineð ffiffiffiffiffi
sN

p Þ,
or equivalently if

ffiffiffiffiffi
sN

p
>

ffiffiffi
2

p
mπ0 . We thus have

( ffiffiffiffiffi
sN

p
<

ffiffiffi
2

p
mπ0 no overlapffiffiffiffiffi

sN
p

>
ffiffiffi
2

p
mπ0 overlap:

ð3:21Þ

In order to illustrate the range of different combinations of
spectral shapes which can arise in scenarios of this sort, we
introduce a set of benchmark parameter choices which
exemplify four qualitatively different kinds of spectra. The
values of

ffiffiffiffiffi
s0

p
and

ffiffiffiffiffi
sN

p
for these benchmarks are given in

Table I. For each benchmark we have takenΔ
ffiffiffi
s

p ¼ 2 MeV;
in this connectionwe recall thatmπ0 ≈ 135 MeV,whereuponffiffiffi
2

p
mπ0 ≈ 191 MeV. Note that when discussing fluxes, we

shall describe our DDM ensembles in terms of the CM
energies

ffiffiffiffiffi
sn

p
characterizing the annihilations/decays of their

constituents rather than in terms of their corresponding
masses mn. We do this in recognition of the fact that under

the assumption given in Eq. (3.7), the photon fluxes that
result from such annihilations or decays depend on these CM
energies rather than on the underlying masses. In particular,
by describing our ensembles in terms of CM energies rather
than masses, we retain maximal generality and need not
specifywhether our ensemble constituents are annihilating or
decaying. Indeed, this information cannot be gleaned from
photon fluxes alone, and it is only in mapping our CM
energies

ffiffiffiffiffi
sn

p
back to underlying masses mn that this

information would be required.
The gamma-ray spectra corresponding to the bench-

marks in Table I are displayed in Fig. 1, where we have
further assumed ξ ¼ 1. Note that these plots include the
contributions from both primary and secondary photons.
Each of the spectra shown in the figure has been normalized
so that they all share a common total flux when integrated
over all energies Eγ . The black curve in each panel
represents the spectrum obtained by superposing the
analytic expressions given in Eqs. (3.13) and (3.19). By
contrast, the blue histogram represents the results of a
Monte Carlo simulation of the corresponding gamma-ray
spectrum as they might be observed by a physical detector.
We account for the nonzero energy resolution of the
detector by smearing of the initial photon energies obtained
in the simulation using a Gaussian smearing function. In
particular, we take the probability Rϵ for the detector to
register an energy Eγ, given an actual incoming photon
energy E0

γ, to be

RϵðEγ − E0
γÞ ¼

1ffiffiffiffiffiffi
2π

p
ϵE0

γ

exp
�
−
ðEγ − E0

γÞ2
2ðϵE0

γÞ2
�
; ð3:22Þ

where ϵ is a dimensionless parameter which sets the overall
scale of the E0

γ-dependent standard deviation σEðE0
γÞ ¼ ϵE0

γ

of the Gaussian. The results in Fig. 1 correspond to a 1%
Gaussian smearing—i.e., to the choice ϵ ¼ 0.01.
Benchmark A (top left panel of Fig. 1) is representative

of the regime in which
ffiffiffiffiffi
s0

p ≈mπ0 and
ffiffiffiffiffi
sN

p
<

ffiffiffi
2

p
mπ0 . In

this regime, there is no overlap between the features
associated with the contributions from primary and secon-
dary photons, while the feature associated with the secon-
dary photons appears as a spike or peak rather than a
plateau. By contrast, Benchmark B (top right panel) is
representative of the regime in which

ffiffiffiffiffi
s0

p ≈mπ0 andffiffiffiffiffi
sN

p
>

ffiffiffi
2

p
mπ0 : the feature associated with the secondary

photons likewise appears as a spike, but there is a
significant overlap between this feature and the feature
associated with the primary photons. Benchmark C (bottom
left panel) is representative of the regime in which

ffiffiffiffiffi
s0

p
is

significantly larger than mπ0 and
ffiffiffiffiffi
sN

p
<

ffiffiffi
2

p
mπ0 : in this

regime the features associated with primary and secondary
photons do not overlap, but the feature from secondary
photons exhibits a plateau rather than a spike. Finally,
Benchmark D (bottom right panel) is representative of the

TABLE I. Four benchmark DDM ensembles—each corre-
sponding to a different choice of the parameters

ffiffiffiffiffi
s0

p
andffiffiffiffiffi

sN
p

—which illustrate the range of spectral signatures which
arise in this scenario. For each of these benchmarks, we have
taken Δð ffiffiffi

s
p Þ ¼ 2 MeV. The resulting features (spike versus

plateau at Eγ ¼ mπ0=2 and the degree of spectral overlap) are
governed by the criteria in Eqs. (3.20) and (3.21).

Benchmark

ffiffiffiffiffi
s0

p
(MeV)

ffiffiffiffiffi
sN

p
(MeV) N

Behavior at
Eγ ¼ mπ0=2

Spectral
overlap

A 135 181 23 spike negligible
B 135 231 48 spike significant
C 164 180 8 plateau negligible
D 164 230 33 plateau significant
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regime in which
ffiffiffiffiffi
s0

p
is significantly larger than mπ0 andffiffiffiffiffi

sN
p

>
ffiffiffi
2

p
mπ0 : in this regime the feature associated with

the secondary photons likewise appears as a plateau, but
there is a significant overlap between this feature and the
feature associated with the primary photons.

IV. DISCOVERY REACH OF FUTURE
EXPERIMENTS

We now turn to examine the projected sensitivity of future
gamma-ray experiments to DDM ensembles which annihi-
late/decay primarily to γπ0, followed by a subsequent decay
π0 → γγ. Indeed, a variety of proposals have recently been
advanced for experiments that would significantly improve
the sensitivity to photon signals in the relevant energy range.
These include the Advanced Compton Telescope (ACT)
[25], the Advanced Pair Telescope (APT) [26], the
Gamma-Ray Imaging, Polarimetry and Spectroscopy
(GRIPS) detector [27], the Advanced Energetic Pair
Telescope (AdEPT) [28], the Pair-Production Gamma-
Ray Unit (PANGU) [29], the Compton Spectrometer and
Imager (COSI) [30], and the ASTROGAM detector [31].

In our analysis, for concreteness, we consider a hypo-
thetical space-based detector with attributes similar to
those of ASTROGAM. In particular, we assume that our
detector is sensitive in the energy range 0.3 MeV≲ Eγ≲
3000 MeV, and we account for the energy resolution of the
detector using a Gaussian smearing function of the form
given in Eq. (3.22). For simplicity, we take the energy
resolution to be 1% (i.e., we take ϵ ¼ 0.01) and we take the
effective area to be 500 cm2 throughout this entire Eγ range.
These assumptions represent optimistic projections from the
ASTROGAM design specifications, and the actual detector
response will be different. In particular, since ASTROGAM
will utilize two detector technologies in order to cover
different portions of this sameEγ range, its energy resolution
and effective area will depend nontrivially on Eγ.
Our goal is to assess the discovery reach of our

hypothetical detector as a function of the parameters
governing our underlying DDM model. We shall assess
this discovery reach as follows. First, we define the quantity

~Φ
J
¼ 4π

3J

X
n

Φn ¼
X
n

Ωn

Ωtot

λn
mn

≡ hλ=mi ð4:1Þ

FIG. 1. The differential photon energy spectra associated with the four benchmark parameter choices A through D defined in Table I,
where we have taken ξ ¼ 1. The black curve in each panel represents the analytic result obtained by superposing the contributions to the
photon spectrum given in Eqs. (3.13) and (3.19), while the blue histogram represents the results of a simulated data set smeared
according to the Gaussian smearing function in Eq. (3.22).
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where ~Φ≡ ð4π=3ÞΦ is the normalized total flux that we
would expect to see from a given DDM model. In some
sense this quantity represents the “particle-physics” con-
tribution to the total flux, with the astrophysical factor J
divided out. In order to assess the reach of our hypothetical
detector, we therefore seek the critical (minimal) value of
~Φ=J for which an excess might become apparent after one
year of continuous observation. Or, phrased conversely, we
seek to determine the maximum value of ~Φ=J for which no
appreciable signal can be resolved after one year of
continuous observation. If this maximum value of ~Φ=J
is relatively small for a given set of underlying DDM
parameters, our telescope is extremely sensitive to the
corresponding DDM photon flux and our discovery reach is
enhanced. By contrast, if this maximum value of ~Φ=J is
relatively large, the corresponding discovery reach of our
hypothetical telescope is suppressed.
In our analysis, we shall consider two different regions of

interest on the sky which correspond to two of the most
promising search strategies for gamma-ray signals of dark-
matter annihilation/decay: searches in dwarf spheroidal
galaxies and searches in the diffuse galactic gamma-ray
spectrum. We do not consider signals from the Galactic
Center, as the astrophysical backgrounds in this region are
not well understood and systematic uncertainties are there-
fore expected to be large.

A. Dwarf-spheroidal search

Dwarf spheroidal galaxies provide a particularly auspi-
cious environment in which to search for signals of
annihilating/decaying dark matter. Observations of stellar
kinematics within these galaxies suggest that they are
highly dark-matter dominated [32,33]. In addition, since
the solid angle on the sky subtended by many of these
galaxies is small, reasonably reliable empirical estimates of
the astrophysical foregrounds and backgrounds can be
obtained from measurements of the differential gamma-
ray flux in the surrounding region. Moreover, since most
known dwarf spheroidals lie at significant distances from
the galactic plane of the Milky Way, these astrophysical
foregrounds are small.
For concreteness, we focus our analysis on one particular

dwarf galaxy, Draco, which subtends a solid angle of
approximately 1.6 × 10−3 sr on the sky. For a region of
interest defined by this solid angle, an empirical
reconstruction of the dark-matter halo profile of this
galaxy from stellar-kinematic data [34] yields a J-factor
log10ðJ=GeV2 cm−5Þ ¼ 19.05þ0.22

−0.21 for annihilation and
log10ðJ=GeV cm−2Þ ¼ 18.97þ0.17

−0.24 for decay. For simplic-
ity, we assume that the main source of foreground/back-
ground photons is diffuse emission and assume that
contributions from nearby extragalactic sources are negli-
gible. We model the diffuse contribution to the differential
gamma-ray flux using a single power law, with a

normalization coefficient and scaling index derived from
a fit to COMPTEL [35] and EGRET [36] data:

d2Φb

dEdΩ
¼ 2.74 × 10−3

�
E

MeV

�
−2.0

cm−2 s−1 sr−1 MeV−1:

ð4:2Þ

In general, the DDM discovery reach of our hypothetical
detector depends on the underlying DDM parameters

ffiffiffiffiffi
s0

p
,ffiffiffiffiffi

sN
p

, and ξ. (As usual, we are assuming δ ¼ 1 and
Δ

ffiffiffi
s

p ¼ 2 MeV.) For each choice of parameters, our results
in Eqs. (3.13) and (3.19) make a prediction concerning the
signal differential fluxes dΦðs;pÞ=dEγ of primary and
secondary photons, respectively. In particular, for any
given values of ð ffiffiffiffiffi

s0
p

;
ffiffiffiffiffi
sN

p Þ, these signal fluxes stretch
over only a finite range of energies Eγ . Thus, for any given
ð ffiffiffiffiffi

s0
p

;
ffiffiffiffiffi
sN

p Þ, we shall restrict our analysis to those energy
bins lying within this range.
The choice of ð ffiffiffiffiffi

s0
p

;
ffiffiffiffiffi
sN

p
; ξÞ determines the overall shape

of the signal differential flux as a function of photon energy
Eγ , while the overall magnitude of this differential flux is
determined by the normalization Φ0. Thus, for any given
choice of ð ffiffiffiffiffi

s0
p

;
ffiffiffiffiffi
sN

p
; ξÞ, we then seek to find the critical

(minimal) value of Φ0 for which an excess signal just
becomes observable. Equivalently, we seek the largest value
ofΦ0 for which no signal can be discerned. This largest value
of Φ0 then leads to a corresponding largest value of ~Φ=J,
where the numerical value of J is given above.
In general, there are two different paths we might follow

in order to determine this critical value of Φ0. One possible
procedure is to find the critical value of Φ0 for which an
excess in any single bin just becomes observable (or
equivalently, the largest value of Φ0 for which no signal
can be discerned in any single bin). Within each bin,
observability would be assessed as follows. In general, the
expected number of events within a given bin includes a
signal contribution from DDM annihilation/decay within
the halo of Draco as well as a background contribution
given by Eq. (4.2). We would then seek the maximum value
ofΦ0 for which this observed number of events in every bin
is consistent with the contribution from background alone
within 95% C.L., assuming Poisson statistics.
The above procedure describes a “binned” approach to

determining the critical value of ~Φ=J which is sensitive to
the overall shape of the differential flux—i.e., an approach
which is based on an analysis of the counts within
individual energy bins. However, an alternative path is
to simply focus instead on the total integrated flux across all
energy bins, and to determine the critical value of ~Φ=J for
which this integrated flux exceeds the integrated contribu-
tion from background alone within 95% C.L., assuming
Poisson statistics.
In order to assess the greatest (maximum) discovery

reach, we shall employ whichever method (binned or
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integrated) yields the smallest value for ~Φ=J. It turns out
that if

ffiffiffiffiffi
s0

p ≈mπ0 , the primary photon spectrum extends
down to very low photon energies where the diffuse
background is quite large. Incorporating these high-back-
ground bins into a total (integrated) counting analysis
significantly weakens the estimate of the discovery reach.
Consequently, for

ffiffiffiffiffi
s0

p ≈mπ0, it turns out that the binned
analysis yields a greater discovery reach. For larger values
of

ffiffiffiffiffi
s0

p
, by contrast, it turns out that an analysis based on the

total integrated flux is superior.

B. Diffuse-background search

The total diffuse gamma-ray background consists of a
contribution from unresolved astrophysical sources as well
as both a galactic and an extragalactic contribution from
dark-matter annihilation/decay. The extragalactic dark-
matter contribution is assumed to be isotropic, while the
galactic contribution depends (through the J-factor) on the
dark-matter halo profile of the Milky Way. However, this
latter contribution is not particularly sensitive to the form of
the inner halo profile in situations in which the region of
interest includes only areas of the sky far from the Galactic
Center. Moreover, the diffuse extragalactic contribution to
the photon flux from any particular location on the sky is
typically subleading in comparison with the diffuse galactic
contribution, except for cases in which that location lies
near either of the galactic poles (where the latter contri-
bution is presumably at its minimum). Accordingly, we
adopt as our region of interest the region in which the
galactic latitude b lies within the range 20° < jbj < 60°. In
the following, we calculate the J-factors from their differ-
ential forms for an NFW profile, for which numerical
evaluations are given in Ref. [37].
Disentangling the dark-matter contribution to the diffuse

gamma-ray flux from the astrophysical background
requires detailed knowledge of that background.
However, the astrophysical contribution to the diffuse
gamma-ray flux is not well measured or understood.
Given this uncertainty, we evaluate the discovery reach
for this diffuse search using two different methods. The first
of these involves no assumptions about the astrophysical
background and yields a more conservative estimate of the
discovery reach, while the second assumes a particular
functional form for the background and thereby yields a
more optimistic estimate.
In deriving our more conservative estimate of the

discovery reach, we compare the gamma-ray flux spectrum
observed by our hypothetical detector to the expected
signal contribution from dark-matter annihilation/decay
alone. More specifically, we compare the number of events
observed in each energy bin to the corresponding number
of expected events, given a particular choice of DDM
model parameters. Under the assumption that the observed
number of events in each bin is given by the background
spectrum in Eq. (4.2), we derive an upper limit on ~Φ=J for

which this observed number of events N obs
i in each bin is

consistent with the theoretical expectation N exp
i to within

2σi, where the index i labels the bin and where σi denotes
the corresponding uncertainty. In particular, σi is domi-
nated by systematic uncertainty in the expression for the
differential flux in Eq. (4.2), which we take to be 15% of
the flux itself.
In deriving our more optimistic estimate of the discovery

reach, we follow a procedure which is similar to that
followed for the dwarf-spheroidal search. However, rather
than neglecting the background contribution to the
expected number of events in each bin, in this case we
assume that this background contribution is given by
Eq. (4.2). Once again, we derive an upper limit on ~Φ=J
by assuming that the observed number of events in each bin
is likewise given by the background spectrum in Eq. (4.2)
and requiring consistency betweenN obs

i andN exp
i to within

2σi in each bin.

C. Results

The discovery reaches for both the dwarf-spheroidal
search and the diffuse-background search are shown in
Fig. 2. In this figure, the bounds on ~Φ=J from each search
are shown as a function of the parameter

ffiffiffiffiffi
sN

p
for the four

different reference values of
ffiffiffiffiffi
s0

p
labelled within each panel,

with Δ
ffiffiffi
s

p ¼ 2 MeV and
ffiffiffiffiffi
s0

p þ 10Δ
ffiffiffi
s

p
≤ ffiffiffiffiffi

sN
p ≤ 2mπ� .

This lower bound on
ffiffiffiffiffi
sN

p
ensures that we are including

the contributions of at least 10 ensemble constituents ϕn in
addition to ϕ0 for each chosen value of

ffiffiffiffiffi
s0

p
, while the upper

bound ensures that we do not exceed the threshold 2mπ� for
charged-pion pair-production, beyond which additional flux
contributions must be included. Results for ξ ¼ −1; 0;þ1
are shown along the top, middle, and bottom rows of Fig. 2,
while the panels within the left and right columns of Fig. 2
show the results for annihilating and decaying dark-matter
scenarios respectively. The solid colored bands indicate the
results of the dwarf-spheroidal search, with thewidth of each
band reflecting a 1σ uncertainty in the J-factor for the dwarf.
By contrast, the dashed and dot-dashed lines correspond to
the results of a diffuse-background search using the opti-
mistic and conservative analysis methods outlined in
Sec. IV B, respectively.
For the dwarf-spheroidal search, the results shown in

Fig. 2 indicate that the discovery reach for our hypothetical
telescope tends to be relatively insensitive to

ffiffiffiffiffi
sN

p
for largeffiffiffiffiffi

s0
p

, but more sensitive to
ffiffiffiffiffi
sN

p
for smaller

ffiffiffiffiffi
s0

p
. When

scanned over possible values of
ffiffiffiffiffi
s0

p
, however, the discov-

ery reach tends to be relatively insensitive to
ffiffiffiffiffi
sN

p
: cases

with large
ffiffiffiffiffi
s0

p
provide the greatest reach when

ffiffiffiffiffi
sN

p
is

large but cases with smaller
ffiffiffiffiffi
s0

p
provide the greatest reach

when
ffiffiffiffiffi
sN

p
is smaller.

It is also noteworthy that when
ffiffiffiffiffi
s0

p ≈mπ0 , it is the
binned analysis which provides the greater discovery reach;
the opposite is true when

ffiffiffiffiffi
s0

p
is larger. However, this can
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be understood as follows. When
ffiffiffiffiffi
s0

p ≈mπ0 , the primary
photon spectrum extends down to very low gamma-ray
energies where the diffuse background is quite large.
Incorporating these high-background bins into an analysis
based on total counts then significantly weakens the

estimate of the discovery reach. However, this feature does
not affect the individually binned analysis where the effects
from such low-energy bins no longer dominate the analysis.
Thus, in such cases, the results of the binned analysis are
stronger than those of an integrated analysis. Indeed, this is

FIG. 2. The projected discovery reach for a representative next-generation MeV-range gamma-ray telescope, plotted as functions offfiffiffiffiffi
sN

p
for different values of

ffiffiffiffiffi
s0

p
and ξ, with Δð ffiffiffi

s
p Þ ¼ 2 MeV. The results are shown as an upper limit on the quantity ~Φ=J for which a

statistically significant signal is not observed within one year of continuous observation. Panels in the top, middle, and bottom rows
correspond to ξ ¼ −1; 0;þ1, respectively, while those in the left and right columns correspond respectively to annihilating and decaying
dark-matter scenarios. Within each panel, four benchmark choices of

ffiffiffiffiffi
s0

p
are shown:

ffiffiffiffiffi
s0

p ¼ 135 MeV (red curves), 149 MeV (green
curves),

ffiffiffiffiffi
s0

p ¼ 191 MeV (blue curves), and
ffiffiffiffiffi
s0

p ¼ 230 MeV (orange curves). In each case we then show results for
ffiffiffiffiffi
sN

p
within the

range
ffiffiffiffiffi
s0

p þ 10Δ
ffiffiffi
s

p
≤ ffiffiffiffiffi

sN
p ≤ 2mπ� . The solid bands shown in each panel correspond to the results of the dwarf-spheroidal search, as

outlined in Sec. IVA, with the results for
ffiffiffiffiffi
s0

p ¼ 135 MeV obtained through a binned approach and the others obtained through an
approach based on the total integrated flux. The width of each band reflects a 1σ uncertainty in the J-factor for the dwarf. The dashed and
dot-dashed lines correspond to the results of a diffuse-background search using the optimistic and conservative analysis methods
outlined in Sec. IV B, respectively.
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ultimately why the overall discovery reach for small
ð ffiffiffiffiffi

s0
p

;
ffiffiffiffiffi
sN

p Þ remains competitive with that for larger values
of ð ffiffiffiffiffi

s0
p

;
ffiffiffiffiffi
sN

p Þ, as shown in Fig. 2. Indeed, we see from
Fig. 2 that this remains true for all of the values of ξ
surveyed.
For the diffuse-background search, by contrast, the

discovery reach depends more strikingly on both
ffiffiffiffiffi
s0

p
and

ffiffiffiffiffi
sN

p
. Moreover, the reach is sensitive to the spectral

shapes of both the primary and secondary photon contri-
butions to the gamma-ray spectrum. Overall, the secondary
photon contribution has a more significant impact on the
discovery potential. The reason is that in the regime in
which

ffiffiffiffiffi
sN

p
is reasonably small and

ffiffiffiffiffi
s0

p ≈mπ0 , the
secondary photon spectrum is sharply peaked around
Eγ ¼ mπ0=2. As a result, the potential for observing an
excess in the corresponding energy bin has a profound
positive effect on the overall discovery reach. Indeed, it is
evident from Fig. 2 that the reach is greatest in the regime in
which

ffiffiffiffiffi
sN

p
is relatively small and

ffiffiffiffiffi
s0

p ≈mπ0 . As
ffiffiffiffiffi
s0

p
increases away from mπ0 and the peak becomes a plateau,
the potential for observing an excess in this bin decreases.
Increasing

ffiffiffiffiffi
sN

p
for fixed

ffiffiffiffiffi
s0

p
has the effect of broadening

the secondary photon spectrum. On the one hand, this
broadening reduces the significance of the peak at
Eγ ¼ mπ0=2; on the other hand, it also extends the upper
edge of the secondary photon spectrum to higher Eγ, where
the astrophysical background is smaller and a signal is
more readily observable. As a result of the interplay
between these two effects, the discovery reach initially
falls with increasing

ffiffiffiffiffi
sN

p
because the energy bin corre-

sponding to the peak provides the best prospects for
observing an excess in signal events. However, as

ffiffiffiffiffi
sN

p
increases further and the higher-energy bins become the
most relevant for observing an excess, the discovery
potential stabilizes.
While the role played by the primary photon spectrum in

determining the discovery reach for the diffuse-background
search is less pronounced than that played by the secondary
photon spectrum, the primary photon spectrum still has a
demonstrable effect on the discovery reach. In particular, asffiffiffiffiffi
s0

p
increases, the primary photon spectrum is shifted to

higher values of Eγ where astrophysical backgrounds are
small. For sufficiently large

ffiffiffiffiffi
s0

p
, this effect more than

compensates for the corresponding broadening of the
secondary photon spectrum and yields an overall increase
in the discovery reach.
Comparing the cases of dark-matter annihilation and

decay, we see that the dwarf search has an order-of-
magnitude greater discovery reach than the diffuse search
for annihilation, while both searches have comparable
discovery reaches for decay. Since the J-factor in
Eq. (3.2) depends on ρ2 for annihilation, we expect the
dense environment of the dwarf to be a more advantageous
system in which to search for annihilating dark matter than

the diffuse background. For decay, however, the J-factor
involves only a single power of ρ, and thus the dwarf search
does not possess the same upper hand as it has for
annihilation.

V. EXTRACTION OF DARK-SECTOR
PARAMETERS

As discussed in the Introduction, our primary motivation
for studying DDM ensembles whose constituents annihi-
late/decay primarily into a γπ0 final state, followed by the
subsequent decay π0 → γγ, is that the shapes of the spectral
features associated with primary and secondary photons are
correlated. A comparison between the information
extracted from these two features can therefore provide a
powerful consistency check on the DDM interpretation of
such a gamma-ray excess. However, we are not merely
interested in the prospects for observing a signal of a DDM
ensemble with this annihilation/decay phenomenology, as
in Sec. IV; we are also interested in determining the degree
to which we might then extract the values of the underlying
parameters which characterize the DDM ensemble. This is
the subject to which we now turn.
Towards this end, we shall focus on the four benchmarks

outlined in Table I and illustrated in Fig. 1 with ξ ¼ 1. For
each benchmark, we shall investigate the prospects for
extracting the corresponding underlying DDM model
parameters ð ffiffiffiffiffi

s0
p

;
ffiffiffiffiffi
sN

p
; ξÞ by generating and then analyzing

corresponding sets of simulated detector data. We begin our
discussion by outlining how these data sets are generated
and analyzed. We then discuss the extent to which our
underlying DDM parameters can be meaningfully extracted
in each case. Specifically, using the simulated detector data
for each benchmark, we shall focus on two critical but
somewhat distinct questions:

(i) To what extent can we extract evidence of a
correlation between primary and secondary photon
flux spectra?

(ii) To what extent does the assumption of such a
correlation enhance our ability to extract the corre-
sponding underlying DDM model parameters?

Note that a positive outcome to the first question implicitly
strengthens our interpretation of a measured photon flux as
resulting from annihilating/decaying dark matter (as
opposed to, say, other astrophysical sources). By contrast,
once we are assured that such a photon flux has a dark-
matter origin, such a correlation between the primary and
secondary photon fluxes is automatic. It is then the second
question above which becomes critical for extracting the
underlying physics of the dark sector.

A. Generating and analyzing simulated data sets

In order to generate our simulated data sets, we begin by
determining the total expected number NB of background
events observed by our hypothetical detector within our
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region of interest during one year of continuous observa-
tion. This number NB is therefore evaluated across the
entire energy range 0.3 MeV < Eγ < 3000 MeV to
which the detector is sensitive, yielding the result
NB ≈ 2.32 × 105. Likewise, we determine a number NS
of signal events by assuming the minimum necessary in
order to claim a 5σ discovery based on a simple counting
analysis in which the statistical significance is estimated
using NS=

ffiffiffiffiffiffiffi
NB

p
. This yields NS ≈ 5

ffiffiffiffiffiffiffi
NB

p
≈ 2.41 × 103. In

principle, one might argue that the values of NB and NS
should depend on the energy range over which the
particular benchmark can be expected to provide data
and thereby be sensitive to background. However, since
there are relatively few background events in the high-
energy regime, it turns out that the above values of NB and
NS, as calculated for our hypothetical detector as a whole,
are not significantly different from those that would
correspond to Benchmark B, which has the largest energy
range. In the following, we will take the above values of NB
and NS to be fixed across all benchmarks. This allows us to
make a meaningful comparison across benchmarks by
considering our fixed quantity to be the number of signal
events itself (rather than, say, a corresponding statistical
significance). This procedure for calculating signals and
backgrounds across the entire energy range to which our
hypothetical detector is sensitive also reflects what one
would actually do upon faced with an experimental
signal—namely, analyze this signal over the entire energy
range available, without any foreknowledge or assumptions
regarding the particular underlying spectral features
involved.
Given the above values of NB and NS, the generation of

our simulated data set for each benchmark proceeds as
follows. The signal contribution associated with each
ensemble constituent is determined by partitioning the
NS signal events among the ϕn in proportion to the
contribution Φn that each makes toward the total photon
flux Φ. Photon energies for background events are gen-
erated randomly from the relevant probability distribution
function over the entire range mentioned above. Photon
energies for the set of signal events associated with a given
ϕn are also generated randomly, with one third of the events
assigned the primary photon energy Eline given in
Eq. (3.11) and the other two thirds distributed according
to a normalized probability distribution function derived
from Eq. (3.16). Finally, the raw Eγ values for both signal
and background events are smeared according to Eq. (3.22)
with ϵ ¼ 0.01 in order to account for the energy resolution
of the detector.
The net result of this procedure is a set of four simulated

energy spectra that might emerge from the decays/annihi-
lations of our four DDM “benchmark” ensembles. Our
analysis of these data sets then proceeds as follows. First,
recognizing that these data sets represent the total
“observed” differential photon fluxes, we begin by

disentangling our “signal” contribution from astrophysical
backgrounds. For this reason, we focus exclusively on
dwarf-spheroidal searches, as the corresponding back-
grounds can be estimated directly from measurements.
For concreteness, we consider the same region of interest
which characterized the dwarf-spheroidal search in
Sec. IVA and adopt the same set of parameters for our
hypothetical detector. To isolate the signal contribution, we
employ a minimal background-subtraction procedure in
which an expected number of background events N BG

i in
each energy bin is derived using the background model in
Eq. (4.2) and is subtracted from the corresponding total
number of observed events N Data

i . Again, we emphasize
that we can follow this procedure because experimentalists
will actually be able to measure the background, unlike the
situation in the case of a diffuse search. The resulting
number of events

N Sig
i ≡N Data

i −N BG
i ð5:1Þ

is thus our “signal” contribution, to be interpreted as
coming from the decays/annihilations of the constituents
of the DDM ensemble.
Given this signal contribution, we determine the corre-

sponding values of the underlying DDM shape parameters
ð ffiffiffiffiffi

s0
p

;
ffiffiffiffiffi
sN

p
; ξÞ by fitting the template functions in

Eqs. (3.13) and (3.19) to this residual spectrum.
However, the specific fit we perform will depend on which
of the fundamental questions itemized above we are
attempting to answer.
To address the first question, we perform independent

fits of the primary and secondary flux spectra, extracting
independent best-fit values ð ffiffiffiffiffiffiffiffis0;p

p ; ffiffiffiffiffiffiffiffisN;p
p ; ξpÞ for the

primary flux spectra and ð ffiffiffiffiffiffiffi
s0;s

p
;

ffiffiffiffiffiffiffiffi
sN;s

p
; ξsÞ for the secon-

dary flux spectra. Comparing these sets of parameters with
each other thus provides a test of our purported correlations
between these two spectra. Likewise, comparing each
independent set of parameters against our corresponding
original benchmark values provides a measure of our
ability to extract our underlying DDM parameters without
assuming a correlation between the two spectra. By
contrast, to address the second question, we perform a
constrained fit of both spectra simultaneously with only a
single set of free parameters ð ffiffiffiffiffi

s0
p

;
ffiffiffiffiffi
sN

p
; ξÞ. Comparing the

results thus obtained with those previously obtained with
independent fits for each spectrum then provides a measure
of the extent to which the existence of a correlation between
the two spectra enhances our ability to extract the under-
lying DDM model parameters.
In practice, it is important to recognize that there is

actually another variable beyond the shape variables
ð ffiffiffiffiffi

s0
p

;
ffiffiffiffiffi
sN

p
; ξÞ which must also be fit when extracting

our underlying DDM parameters: this is the overall
normalization factor Φ0. In fact, strictly speaking, the
overall normalization factor for both the primary photon
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spectrum in Eq. (3.13) and the secondary photon spectrum
in Eq. (3.19) is not Φ0 alone, but rather the parameter
combination

Ψ≡ Ξð ffiffiffiffiffi
s0

p Þ−ξ; ð5:2Þ

where

Ξ≡ Φ0

Δð ffiffiffi
s

p Þ : ð5:3Þ

We shall therefore fit the aggregate quantity Ψ directly, and
only subsequently extract a value for Ξ using the results of
our overall fits for

ffiffiffiffiffi
s0

p
and ξ. Unfortunately, without

a priori knowledge of Δð ffiffiffi
s

p Þ, we see that the parameter
combination Ξ cannot be disentangled further and thus
represents the irreducible limit of our ability to extract the
underlying DDM flux normalization using these methods.
As briefly discussed in Sec. III B, the procedure that we

shall use in performing these parametric fits to the signal
spectrum depends on the degree of overlap between the
spectral features associated with primary and secondary
photons. In the regime in which

ffiffiffiffiffi
sN

p
<

ffiffiffi
2

p
mπ0 , these two

features arewell separated and a fit can be performed for each
feature independently. Indeed, this will be our procedure for
Benchmarks A and C. By contrast, in the regime in whichffiffiffiffiffi
sN

p
>

ffiffiffi
2

p
mπ0 , the overlap is significant anda single fitmust

be performed for both features simultaneously. This will be
our procedure for Benchmarks B and D.
Thus, summarizing, the specific types of fits we shall

perform depend not only on which of the questions
itemized above we are seeking to address, but also on
which benchmark we are studying. To address the first
question for Benchmark A, we shall perform two inde-
pendent four-parameter fits, extracting independent values
ð ffiffiffiffiffiffiffiffis0;p
p ; ffiffiffiffiffiffiffiffisN;p

p ; ξp;ΨpÞ and ð ffiffiffiffiffiffiffi
s0;s

p
;

ffiffiffiffiffiffiffiffi
sN;s

p
; ξs;ΨsÞ using our

data sets for the primary and secondary spectra respec-
tively. We also follow an identical procedure in order to
address the first question for Benchmark C. Indeed, it is
only because these two spectra are nonoverlapping for
Benchmarks A and C that we allow each fit to have its own
independent normalization in these cases. By contrast, in
order to address the first question for Benchmark B or
Benchmark D, we perform a single seven-parameter fit
to the parameters ð ffiffiffiffiffiffiffiffis0;p

p ; ffiffiffiffiffiffiffiffisN;p
p ; ξp;

ffiffiffiffiffiffiffi
s0;s

p
;

ffiffiffiffiffiffiffiffi
sN;s

p
; ξs;ΨÞ.

Indeed, in these cases, the overlapping nature of the
primary and secondary photon spectra requires that we
impose a common normalization Ψ during the fitting
process. Of course, the results of this fit then yield
independent values for Ξp ¼ Ψð ffiffiffiffiffiffiffiffis0;p

p Þξp and Ξs ¼
Ψð ffiffiffiffiffiffiffi

s0;s
p Þξs . Finally, in order to address the second question

for each benchmark, we compare the above results with
those obtained through a single four-parameter fit to the
underlying DDM parameters ð ffiffiffiffiffi

s0
p

;
ffiffiffiffiffi
sN

p
; ξ;ΨÞ.

Note that this analysis applies equally well for either
annihilation or decay, as the only difference between these
two cases lies not in the extracted values of the

ffiffiffiffiffi
sn

p
parameters but rather in the subsequent mapping between
these parameters and the original DDM mass variables mn,
as already discussed in Secs. II and III [especially Eq. (2.3)]
and at the end of the Appendix.

B. Results

The results of our analysis are as follows. For each of the
benchmarks listed in Table I, our corresponding simulated
data set is shown in Fig. 3 (black dots with error bars).
Specifically, these dots represent the residual populations of
events N Sig

i in the relevant energy bins, with error bars
corresponding to statistical uncertainties. Also superim-
posed on these data sets are the results of parametric fits to
the spectral features associated with primary and secondary
photons (solid red lines). Recall that in these plots, the
spectral features associated with the primary and secondary
flux spectra are fit independently. As discussed above,
these are the fits which are designed to address the first
question itemized above.
The results for Benchmark A are shown in the upper left

panel of Fig. 3. For Benchmark A, our value of NS
translates into the result

Ξ ¼ 5.4 × 10−9 cm−2 s−1 MeV−1; ð5:4Þ

which we take as our input value for this benchmark. We
perform our fit to the primary photon spectrum for
Benchmark A within the energy range 20 MeV ≤ Eγ ≤
45 MeV—indeed, the region Eγ < 20 MeV is background-
dominated, leaving the corresponding bin counts less
reliable, given our signal statistics. We find that the best-
fit values for ξp and ffiffiffiffiffiffiffiffisN;p

p are those indicated in the upper
left panel of Fig. 3. It is immediately evident that these
extracted values are consistent with the corresponding input
values to within 1σ. Note that no meaningful information
can be extracted for ffiffiffiffiffiffiffiffis0;p

p , as large uncertainties in the
event counts in bins with Eγ ≲ 20 MeV completely obscure
all meaningful information about the low-energy cutoff in
the primary photon spectrum. Thus, a best-fit value for Ξ is
not available from the primary photon spectrum, as this
would require the value for ffiffiffiffiffiffiffiffis0;p

p .
By contrast, a fit to the secondary photon spectrum for

Benchmark A provides far more reliable information about
the properties of the underlying DDM ensemble.
Performing such a fit within the energy range 50 MeV ≤
Eγ ≤ 90 MeV where the residual bin counts are greater
than ∼10, we find the results shown in the upper left panel
of Fig. 3. Once again, each of these extracted values is in
good agreement with the corresponding input value to
within 1σ. Since we are able to meaningfully extract

ffiffiffiffiffi
s0

p
for the secondary photon spectrum, we are also able to
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report the best-fit value for Ξ in this case. We find that the
best-fit value for the normalization parameter is

Ψs ¼ 4.8þ275.9
−4.8 × 10−11 cm−2 s−1 MeV−1−ξ; ð5:5Þ

from which we obtain the value of Ξ for the secondary
photon spectrum:

Ξs ¼ 3.0þ169.0
−12.3 × 10−9 cm−2 s−1 MeV−1: ð5:6Þ

Although this extracted value is consistent with the input
value in Eq. (5.4) to within 1σ, the corresponding uncer-
tainty is too large to infer any useful information.

Thus, for Benchmark A, we conclude that it is difficult to
obtain meaningful information concerning the normaliza-
tion parameter Ξ from either the primary or secondary
photon spectrum. By contrast, we see that reasonable
estimates of the parameters which govern the shapes of
the primary and secondary photon spectra can indeed
potentially be obtained from future gamma-ray detectors.
Moreover, the fact that the values of DDM parameters such
as

ffiffiffiffiffi
sN

p
and ξ extracted from the primary photon spectrum

match those extracted from the secondary photon spectrum
implies that we can indeed perform a successful test of the
underlying correlations between these two spectra, and
indicates that our primary and secondary spectra together

FIG. 3. Sample photon-energy spectra (black dots with corresponding statistical error bars) for Benchmarks A (upper left panel), B
(upper right panel), C (lower left panel), and D (lower right panel) after background subtraction, along with the corresponding best fits
for the primary and secondary photon spectra (solid red curves). For each benchmark, the numbers of background and signal events are
taken to be NB ¼ 2.32 × 105 and NS ¼ 2.41 × 103, as discussed in the text. Note that we plot the quotient ðNData − NBGÞ=ΔEbin on the
vertical axis (where the numerator tabulates the signal counts within each bin and the denominator indicates the corresponding bin size),
as this quotient is invariant under changes in the specific choice of bin size when the bin size is sufficiently small. The corresponding
error bars, by contrast, depend on bin size, and we have chosen ΔEbin ¼ 2 MeV for the curves in these plots. The best-fit parameters are
also indicated within each panel, along with the corresponding goodness-of-fit χ2 per degree of freedom, while the upper and lower
uncertainties quoted for each best-fit parameter indicate the limits of the corresponding range within which χ2 varies by less than one
unit. Note that the fits performed here are unconstrained, in the sense that the primary and secondary photon spectra are fit
independently. These fits thus provide a test of the extent to which the correlations between these two spectra can be discerned from data.
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contain consistent information regarding the underlying
DDM model.
We now turn to Benchmark B, for which results are

shown in the upper right panel of Fig. 3. For this bench-
mark, the signal events are produced within the energy
range 135 MeV <

ffiffiffi
s

p
< 231 MeV, requiring us to take

Ξ ¼ 2.3 × 10−9 cm−2 s−1 MeV−1 ð5:7Þ

as an input value. Since the primary and secondary photon
spectra overlap significantly for this benchmark, we per-
form a combined fit to both features in the manner
discussed above, taking our fitting range to be
20 MeV ≤ Eγ ≤ 100 MeV. We then obtain the best-fit
values for the shape parameters given in Fig. 3. Once
again, we observe that the parameters ξ and

ffiffiffiffiffi
sN

p
extracted

for both spectra agree reasonably well with each other, thus
providing a rough test of their correlation. Moreover, each
of the extracted shape parameters listed in the upper right
panel of Fig. 3 is consistent with the corresponding input
value to within ð1 − 2Þσ.
Thus, for Benchmark B, we conclude that our fitting

procedure yields reasonable estimates for the shape param-
eters which characterize the photon spectrum associated
with our DDM ensemble. The best-fit value of Ψ, by
contrast, comes with large uncertainties. Indeed, we shall
find that this is a characteristic of all of the benchmarks we
shall be examining. We shall therefore refrain from quoting
further best-fit values for Ψ and Ξ in what follows.
However, we stress that in all cases this is strictly only
an artifact of the parametrization and does not represent a
corresponding uncertainty in actual signal flux or in the
number of signal events (the uncertainty for which is
indeed small).
Note that Benchmark B provides a better handle for

measuring the DDM scaling parameter ξ accurately, espe-
cially when compared to ξp in Benchmark A. This is
ultimately because more signal events in Benchmark B are
populated in the higher-energy regime where the back-
ground contribution is relatively small. Therefore, even
after background subtraction, the residual spectrum for
Benchmark B better preserves the original shape informa-
tion than it does for Benchmark A.
For the remaining two benchmarks, even the primary

photon spectrum has a reasonable sensitivity to
ffiffiffiffiffi
s0

p
because

it starts from Eγ > 20 MeV where uncertainties in the event
counts in bins are fairly decent. Our results for Benchmark C
are shown in the lower left panel of Fig. 3. The signal events
are generated with 164 MeV <

ffiffiffi
s

p
< 180 MeV, from

which we find that

Ξ ¼ 1.6 × 10−8 cm−2 s−1 MeV−1: ð5:8Þ

As with Benchmark A, the two photon spectra are well
separated, and thus two individual fits are possible.We adopt

the same energy ranges as for Benchmark A, namely
20 MeV ≤ Eγ ≤ 45 MeV and 50 MeV ≤ Eγ ≤ 90 MeV,
respectively, for our fits to the primary and secondary photon
spectra, and obtain the best-fit results for the shape param-
eters as shown in the figure. The parameters for the primary
and secondary photon spectra are generally consistent with
each other, thus indicating the possibility of testing corre-
lations between them, and they are also in a good agreement
with the corresponding input values to within ð1 − 2Þσ. It
turns out that the overall shape of the secondary photon
spectrum does not change much for this benchmark, even
with substantial variations of the scaling parameter.
Results for Benchmark D are shown in the lower right

panel of Fig. 3. The signal events are generated with
164 MeV <

ffiffiffi
s

p
< 230 MeV, from which we find

Ξ ¼ 3.7 × 10−9 cm−2 s−1 MeV−1: ð5:9Þ

We then perform a single combined fit to both photon
spectra, again adopting the same fitting range 20 MeV ≤
Eγ ≤ 100 MeV as for Benchmark B. The best-fit values for
all shape parameters are listed in Fig. 3. We can easily see
that the parameters measured from both spectral features
are consistent with each other, as expected. The extracted
values also all agree with the corresponding input values to
within ð1 − 2Þσ.
In general, scanning the results in Fig. 3 for all four

benchmarks simultaneously, we see that our best-fit
results for

ffiffiffiffiffi
s0

p
and

ffiffiffiffiffi
sN

p
are generally quite accurate.

Unfortunately, we also observe that these fits generally do a
poor job of extracting the true underlying values of the
DDM scaling parameter ξ. While certain benchmarks (such
as Benchmark B) lead to relatively accurate best-fit values
for ξ, particularly for the primary photon spectrum, these
predictions become significantly worse for those bench-
marks (such as Benchmarks A and C) in which the spectral
features associated with the primary and secondary photons
are relatively well-separated in energy, with minimal over-
lap. The case of Benchmark C is particularly poor, with
negative central values of ξ extracted from both the primary
and secondary spectra! Indeed, the negative central value
for ξp is reflected in the negative slope of the red best-fit
line along the primary plateau in the lower left panel
of Fig. 3.
All of the fits performed thus far treat our primary and

secondary photon spectra independently. As discussed
above, they are therefore suitable for addressing the first
bulleted question at the beginning of this section concern-
ing the extent to which correlations between the two photon
fluxes might be discernible in realistic data samples.
However, in order to address the second of our bulleted
questions, we need to assume the existence of such
correlations and perform constrained fits to both spectra
simultaneously. Indeed, it is only by performing such
constrained fits and comparing the results thus obtained
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with those of the unconstrained fits we have already
performed that we can determine the extent to which these
correlations enhance our ability to extract the underlying
DDM parameters from data.
The results of such constrained fits are shown in Fig. 4.

Upon comparison with the corresponding results in Fig. 3,
we immediately see that while our extracted best-fit values
of

ffiffiffiffiffi
s0

p
and

ffiffiffiffiffi
sN

p
continue to be as accurate as they were

before, our extracted best-fit values for the DDM scaling
parameter ξ are significantly improved. Indeed, in all cases
the true value ξ ¼ 1 is within the errors quoted. The case of
Benchmark C is particularly noteworthy. Where previously
our unconstrained fits had yielded negative values for both
ξp and ξs, the simple act of changing to a constrained fit has
pushed the corresponding best-fit result to a central value
ξ ¼ 1.01, which is remarkably close to the true value! In
general, we see that it is Benchmarks A and C—i.e.,
benchmarks in which our two spectral features are well
separated in energy—for which the switch from an uncon-
strained fit to constrained fit produces the greatest

improvement. It is thus these benchmarks for which the
assumption of a correlation between the primary and
secondary photon spectra is of greatest value. Indeed, as
evident from Fig. 4, the assumption of a correlation
between the primary and secondary flux spectra leads to
a significant improvement in our ability to extract the
underlying DDM parameters regardless of the particular
benchmark under study.
Of course, our comparison between the fits in Fig. 3 and

those in Fig. 4 amounts to analyzing the results of only a
single pseudoexperiment. In principle, one could rerun this
experiment with many different random data sets, and repeat
this analysis in each case. However, we shall refrain from this
exercise because the main points that we have aimed to
demonstrate are already evident. Indeed, the results illus-
trated in Figs. 3 and 4 prove to be both typical and robust.
We conclude, then, that it will indeed be possible to

extract evidence of a correlation between primary and
secondary photon spectra at future gamma-ray facilities.
Moreover, we see that the assumption of such a correlation

FIG. 4. Same as Fig. 3, except that we now perform constrained fits in which the primary and secondary photon spectra are assumed to
be correlated. A comparison with the results of Fig. 3 demonstrates that the assumption of such correlations can significantly enhance
our ability to accurately extract the underlying DDM parameters governing the dark sector.
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will indeed significantly sharpen our ability to extract the
corresponding underlying dark-sector parameters. Thus,
through this correlation, we see that our ability to indirectly
probe the physics of the dark sector through emitted gamma
rays can be greatly enhanced.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have identified an unambiguous
indirect-detection signature of Dynamical Dark Matter
which arises in cases in which the constituents of the
DDM ensemble annihilate or decay primarily into a final
state involving a primary photon and a neutral pion, the
latter subsequently decaying into a pair of secondary
photons. When the mass gap between DDM constituents
is sufficiently small that particle detectors are unable to
resolve the contributions of individual constituents in the
photon energy spectra, this signature involves a pair of
characteristic continuum features in the gamma-ray spec-
trum in the Oð1–100Þ MeV range—one feature associated
with the primary photons, and the other feature associated
with the secondary photons. Since the spectral shapes of
these two features are correlated, a comparison between the
information extracted from the two continuum features
provides a powerful consistency check that they indeed
have a common origin in terms of an underlying DDM
ensemble. We have examined the prospects for observing a
signal of this sort at the next generation of MeV-range
gamma-ray telescopes and investigated the extent to which
the parameters which govern the DDM ensemble can be
extracted from spectral data once such a signal is unam-
biguously identified. As we have seen, it should be possible
not only to extract evidence of this correlation in future
photon spectral data, but also to exploit this correlation in
order to significantly enhance our ability to extract these
underlying DDM parameters.
A few comments are in order. First, in order to maintain

maximum generality, we emphasize that we have estimated
both the discovery reach and the potential for measuring the
DDM model parameters at the next generation of gamma-
ray detectors by defining a simplified, hypothetical detector
whose attributes have been chosen not to be identical to
those of any particular such instrument, but rather to be
representative of this class of experiments in general.
However, for a realistic detector, the corresponding analysis
would typically involve additional subtleties and compli-
cations. For example, the energy resolution for such a
detector is typically not described by a Gaussian smearing
function with a constant value of ϵ. Moreover, the effective
area for a realistic detector is typically not independent of
photon energy throughout the range of Eγ to which the
instrument is sensitive.
In addition to these experimental simplifications, there

are also a number of theoretical approximations which we
have employed in our analysis. For example, we have taken
the branching fraction for the annihilation/decay of all

ensemble constituents to the γπ0 final state to be effectively
unity. However, there are situations in which this is not
necessarily true for the lightest ensemble constituents. The
reason is that a fundamental interaction between the ϕn and
SM quarks of the sort which leads to dark-matter annihi-
lation/decay to γπ0 also generically leads to annihilation/
decay to eþe− and/or μþμ−, via loop-level processes
involving a virtual photon. The branching fraction into
such leptonic final states is typically negligible for most of
the ϕn. However, it can become significant for processes in
which the CM energy is only slightly above the kinematic
threshold

ffiffiffi
s

p
n ≈mπ0 for γπ0 production. As a result, the

sharpness of the peak in the secondary photon spectrum at
Eγ ≈mπ0=2 depends both on

ffiffiffiffiffi
s0

p
and on the energy

resolution of the detector. Incorporating these consider-
ations into a more detailed analysis would inevitably lead to
a modification of our quantitative results in DDM scenarios
of this sort.
On a related note, we remark that our focus in this paper

has been on the case in which the dominant signal
contribution to the photon flux arises from ensemble
constituents whose CM energy for annihilation/decay lies
within the range mπ0 ≤

ffiffiffi
s

p
≤ 2mπ� . However, it is also

useful to consider how our results would be affected if
nontrivial contributions to the photon flux were also to arise
from constituents with

ffiffiffi
s

p
outside this range, and thus from

photoproduction processes with different kinematics. For
example, it is important to examine whether such contri-
butions might obscure the spectral features which we have
discussed in this paper.
We begin by considering the contribution from constitu-

ents with
ffiffiffi
s

p
slightly above the 2mπ� threshold, for which

the dominant C-odd final state will be πþπ−. The principal
contribution from the photon flux in this case arises from
final-state radiation. Photons produced in this way tend to
be quite soft, and as a result, any contamination of our
signal spectrum from such photons would primarily affect
the region where Eγ is low and statistical power is already
poor. By contrast, for the γπ0 final state which has been the
focus of our paper, at least one of the two salient spectral
features always appears at a relatively high energy. For
constituents with even larger

ffiffiffi
s

p
, for which final states

involving three or more pions are accessible, the shape of
the resulting photon spectrum becomes highly model-
dependent. However, one generally expects these spectra
to be relatively smooth and featureless over the range of Eγ

relevant for our analysis.
Now let us turn to the contribution from constituents

with
ffiffiffi
s

p
< mπ0 . For

ffiffiffi
s

p
in this regime, the dominant

contribution to the photon flux arises from the final state
3γ, and from final-state radiation produced in conjunction
with the final state eþe−. The former contribution is
associated with processes involving an off-shell π0, while
the latter is associated with processes involving an off-shell
photon attached to a quark loop. Photons produced in
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conjunction with the eþe− final state will once again be
quite soft and consequently have little impact on our
results. By contrast, the contribution from the 3γ final
state could potentially distort the shape of the secondary-
photon spectrum at energies slightly below its peak.
In this paper, we have applied our analysis to a DDM

ensemble in which the photon flux scales with the center-
of-mass energy as a power law. Examples of explicit DDM
models in which such behavior is exhibited include those in
Refs. [1,2]. Indeed, as noted above Eq. (3.7), scaling
relations of this form tend to emerge naturally for a variety
of theoretical structures underlying these ensembles.
However, there do exist DDM constructions in which such
scaling relations are given not by simple power laws but by
other functional forms [19,20]. These situations can never-
theless be addressed in a manner similar to that which we
have employed in this paper. In general, the photon flux is
determined by the scaling of the abundance and annihila-
tion/decay rate as in Eq. (3.3). Thus, for any other DDM
construction, one can similarly determine the primary and
secondary photon fluxes. In fact, it is not even necessary for
the dark sector to constitute a DDM ensemble at all. Even if
the dark sector consists of multiple particles whose life-
times and abundances are not determined by any unified
organizing principle, those lifetimes and annihilation/decay
rates completely determine the primary and secondary
differential photon fluxes.
The lynchpin of this paper has been the correlation

between the spectral shapes of the primary and secondary
photon fluxes. Fortunately, this correlation is robust and
survives even if the dark sector lacks a unified organizing
principle. To see this most directly, we recall that each dark-
sector constituent of a given mass makes only a single
monochromatic contribution to the primary photon flux.
Thus, the relation between the primary flux and the
underlying dark-sector component masses is easily invert-
ible: if the primary flux is known, then one can easily
determine the spectrum of particles and annihilation/decay
rates which generated that primary spectrum. This in turn
then provides a prediction for the secondary photon flux.
Using the primary photon flux to predict the secondary

photon flux is a strategy that is likely to be most useful in
the case where

ffiffiffiffiffi
sN

p
<

ffiffiffi
2

p
mπ0 , for which the primary and

secondary photon features can be cleanly separated.
Indeed, after subtracting the estimated background from
the data in the region of the primary feature, the residuals
constitute a measurement of the primary photon flux, up to
statistical fluctuations and the smearing due to the energy
resolution. One could then use this primary photon flux to
generate a prediction for the secondary flux, and test the
goodness of fit for this prediction to the actual data in
the region of the secondary feature. However, since the
determination of the primary photon flux is distorted by the
statistical fluctuations and the effects of a finite energy
resolution, the implementation of this strategy is likely to

be nontrivial. This would therefore be an interesting
direction for future study.
In cases for which

ffiffiffiffiffi
sN

p
>

ffiffiffi
2

p
mπ0 , by contrast, the

primary and secondary photon features are expected to
overlap significantly. As a result, it may be more prob-
lematic to cleanly separate them. Despite this fact, we have
already seen that these two features remain correlated and
in the case of a DDM ensemble we have seen that this
correlation can significantly enhance our ability to extract
the underlying DDM parameters—even when these fea-
tures overlap significantly. In general, however, performing
an a priori separation of the primary and secondary photon
features will undoubtedly be a more complicated task in the
cases where these features overlap. One useful tool in this
regard may be to exploit the so-called “log-symmetry” of
the secondary photon flux—i.e., the invariance of this flux
under the energy-inversion symmetry E → m2

π0
=4E, as

discussed in the Appendix. Any contributions to the total
flux which violate this symmetry are necessarily those from
the primary photons.
Finally, in closing, we remark that correlations between

continuum features which arise in the gamma-ray spectra of
annihilating/decaying DDM ensembles arise not only for
the γπ0 final state which has been the focus of this paper,
but for other final states as well. For example, in DDM
scenarios in which each of the ensemble constituents can
annihilate into both γγ and γZ, similar correlations between
the shapes of the two resulting spectral features can
likewise be exploited in order to corroborate the DDM
origin of the excess and to extract information about the
parameters governing the underlying ensemble. Thus, such
correlations could likewise be used in order to extract
information about this alternative class of DDM ensembles.
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APPENDIX: THE LINE AND THE BOX:
DECAY KINEMATICS FOR THE

PROCESS ϕn → γπ0 → γγγ

This appendix is dedicated to a quick review of the
decay kinematics [13,22,23] associated with the primary
decay process ϕn → γπ0, followed by the secondary decay
process π0 → γγ. Our goal is to calculate the spectrum of
energies of the photons produced through these processes,
as measured in the lab (detector) frame, assuming that our
initial ensemble constituent ϕn with mass mn decays from
rest in this frame.
Understanding the primary decay process ϕn → γπ0 is

relatively straightforward. With ϕn taken to be at rest at the
time of its decay, conservation of energy and momentum
immediately lead to the two constraint equations

mn ¼ Eð1Þ
γ þmπ0γπ

Eð1Þ
γ ¼ mπ0γπβπ ¼ mπ0γπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=γ2π

q
ðA1Þ

where Eð1Þ
γ is the energy of the primary photon and

where (γπ , βπ) denote the boost factor and corresponding
velocity of the emitted on-shell pion. Solving these

equations, we find that the energy Eð1Þ
γ of the primary

photon is given by

Eð1Þ
γ ¼ m2

n −m2
π0

2mn
ðA2Þ

while ðγπ; βπÞ are given by

γπ ¼
m2

n þm2
π0

2mnmπ0
; βπ ¼

m2
n −m2

π0

m2
n þm2

π0
: ðA3Þ

Thus the lab-frame energy of the emitted pion is
given by

Eπ ¼ mπ0γπ ¼
m2

n þm2
π0

2mn
: ðA4Þ

The second step is to determine the energies of the
secondary photons. In the rest frame of the emitted pion,
these energies are nothing butmπ0=2. However our goal is to
determine these energies as measured in the lab frame. To do
this, we need to account for the boost of the emitted pion. Let
us assume that one of the secondary photons is emitted at an
angle θ, as measured in the rest frame of the pion, relative to
the boost direction of the pion. We then find that lab-frame
energy of this secondary photon is given by

Eð2Þ
γ ¼ mπ0

2
γπð1þ βπ cos θÞ

¼ 1

4mn
½m2

n þm2
π0
þ ðm2

n −m2
π0
Þ cos θ�: ðA5Þ

The lab-frame energy of the other secondary photon is
given by the same expression, but with θ → θ þ π, or
cos θ → − cos θ.
The interpretation of these results is clear. When many

such ϕn decays occur, the primary photons always have

the energy Eð1Þ
γ given in Eq. (A2). They are thus mono-

chromatic, forming a spectral line (i.e., occupying a
discrete point in energy space). By contrast, the secondary
photons can populate any of the energies given in
Eq. (A5), depending on the angle θ. Since the probability
distribution for photon emission is isotropic in the
rest frame of the pion, all values of cos θ are sampled
with equal probability. As a result, with enough
decays, the secondary photons fill out a spectral
“box” in energy space. This spectral box stretches over
the range ½m2

π0
=2mn;mn=2� and is centered at Eγ ¼

ðm2
n þm2

π0
Þ=4mn with width ΔEγ ¼ ðm2

n −m2
π0
Þ=2mn.

Interestingly, it turns out that the energy of the line
always happens to be equal to the width of the box!
Formn <

ffiffiffi
2

p
mπ0, the line is to the left of the box, while for

mn >
ffiffiffi
2

p
mπ0 , the line is inside the box. As mn → ∞, the

line approaches the right edge of the box but never passes
beyond it.
It is worth noting that there is only one value for the

energy which always finds itself within this box, regardless
of the width of the box (i.e., regardless of the boost of the
pion or the value ofmn): this is Eγ ¼ mπ0=2, corresponding
to the energy of the secondary photons in the pion rest
frame [22,23]. This is indeed nothing but the location of the
line to which the box collapses as mn → mπ0 . This is also
the geometric mean of the energies encompassed within
the box. Indeed, since the box is otherwise flat as a function
of the energy, the energy spectrum of the secondary
photons is actually “log-symmetric” [i.e., invariant under
the mapping E → m2

π0
=4E, or equivalently y → −y where

y≡ logð2E=mπ0Þ]. While these assertions are somewhat
trivial for the spectrum corresponding to the secondary
photons from the decays of a single field ϕn, the fact that
these features are independent of mn guarantees that they
will be preserved even for the accumulated spectra of
secondary photons emitted via the decays of multiple ϕn
with different massesmn. Indeed, this holds true regardless
of the particular structure of the underlying DDM ensemble
to which the ϕn belong. Note that these assertions form the
centerpiece of Ref. [23], where they were exploited in a
collider-based context.
Our analysis above has focused on the kinematics of the

decay process ϕn → γπ0 → γγγ. However, in this paper we
are also interested in the corresponding annihilation process
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ϕ†
nϕn → γπ0 → γγγ. Fortunately, given the analysis above, it

is not difficult to extract the corresponding results for the case
of annihilation rather than decay: under the assumption that
the ϕn are extremely nonrelativistic with respect to the lab
frame, the only required change in the above analysis is the

global replacementmn → 2mn. Thus, given the definition offfiffiffiffiffi
sn

p
in Eq. (2.3), we see that the replacement mn →

ffiffiffiffiffi
sn

p
everywhere in the above analysis will generalize our results
to apply to ϕn annihilations as well as decays. This is the
procedure followed in the main text.
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