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It has recently been shown that if the dark matter is in thermal equilibrium with a sector that is highly
decoupled from the Standard Model, it can freeze out with an acceptable relic abundance, even if the dark
matter is as heavy as ∼1–100 PeV. In such scenarios, both the dark and visible sectors are populated after
inflation, but with independent temperatures. The lightest particle in the dark sector will be generically
long-lived and can come to dominate the energy density of the Universe. Upon decaying, these particles can
significantly reheat the visible sector, diluting the abundance of dark matter and thus allowing for dark
matter particles that are much heavier than conventional WIMPs. In this paper, we present a systematic and
pedagogical treatment of the cosmological history in this class of models, emphasizing the simplest
scenarios in which a dark matter candidate annihilates into hidden sector particles which then decay into
visible matter through the vector, Higgs, or lepton portals. In each case, we find ample parameter space in
which very heavy dark matter particles can provide an acceptable thermal relic abundance. We also discuss
possible extensions of models featuring these dynamics.
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I. INTRODUCTION

Over the past several decades, weakly interacting mas-
sive particles (WIMPs) have been the leading class of
candidates for our Universe’s dark matter. This paradigm
has been motivated primarily by the fact that a stable
particle species with a weak-scale mass and interaction
strength is predicted to freeze out of thermal equilibrium in
the early Universe with a relic abundance that is compa-
rable to the measured cosmological density of dark matter.
As such, particles are also often found within frameworks
that address the electroweak hierarchy problem (including,
but not limited to, weak-scale supersymmetry), and this
connection has become commonly known as the “WIMP
miracle” [1].
The WIMP paradigm has motivated an expansive exper-

imental program, consisting of direct detection, indirect
detection, and collider searches. As these efforts have
progressed, however, no conclusive detections have been
made, and increasingly powerful bounds have been placed
on dark matter’s nongravitational interactions with the
Standard Model (SM). Over the traditional range of
WIMP masses (∼10–1000 GeV), direct detection experi-
ments now strongly constrain the dark matter’s elastic
scattering cross section with nuclei [2–5], and astrophysical
observations by gamma-ray telescopes [6,7] and cosmic ray
detectors [8–10] have also begun to constrain the WIMP
parameter space. Although many WIMP models remain

viable, it is perhaps surprising that no definitive detection of
particle dark matter has yet been made.
In light of this experimental situation, it has become

increasingly interesting to consider dark matter scenarios
beyond the conventional WIMP paradigm. In this paper, we
focus on dark matter candidates with negligible couplings
to the SM and that reside within a sector that is thermally
decoupled from the visible matter in the early Universe.
In doing so, we build upon our previous recent work [11]
by considering a wider range of models and discussing their
phenomenology in greater detail.
Throughout this study, we assume that the visible sector,

which contains the SM, is supplemented by a decoupled
hidden sector, which contains the dark matter. We further
assume that both sectors are thermally populated during
postinflation reheating and maintain separate temperatures
throughout cosmological evolution [12,13]. Although
sequestered from the SM, the hidden sector may consist
of many new additional particle species with sizable mutual
interaction rates. In particular, it is possible that the lightest
stable hidden species, X, freezes out via XX → YY anni-
hilation, where Y is a lighter hidden sector species that
ultimately decays into SM particles. Being stable, we take
X to be our dark matter candidate.
If the Y is short-lived, it will never dominate the energy

density of the Universe and will have little effect on
cosmological evolution. In this regime, X will freeze out
with the observed darkmatter abundance only if its mass and
couplings are similar to those of traditional WIMPs.
Although, in principle, such a scenario can be viable for a
wide range of masses, constraints from perturbative unitarity
typically require mX ≲Oð100Þ TeV [14] (see, however,
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Ref. [15]). This bound can be circumvented, however, if the
entropy of the visible sector increases appreciably after the
freeze-out ofX [16–26]. For instance, a heavy and long-lived
species in the hidden sector could come to dominate the
energy density of the Universe before decaying to SM
particles, thereby diluting all relic abundances, including
that ofX. As wewill see in Sec. IV, the increase in the visible
sector entropy from Y decay scales as∝ τ1=2Y , where τY is the
lifetime of the unstable species. Thus, for sufficiently large
τY , it is possible to significantly dilute the abundance of X,
thereby achieving an acceptable density of dark matter, even
for masses well above the conventional limit from perturba-
tive unitarity, mX ≫ 100 TeV.
Long lifetimes are straightforwardly realized if the

decaying particle is the lightest hidden sector state. In fact,
if the hidden and visible sectors are highly decoupled, the
lightest hidden sector state will automatically be long-lived,
since its width relies on a coupling that is too small to
sustain thermal equilibrium between the two sectors. We
emphasize that this picture is relatively universal and can be
found within any model in which the dark matter freezes
out through annihilations in a heavy and highly decoupled
hidden sector that is populated after inflation. In contrast to
scenarios in which an additional out-of-equilibrium decay
is invoked solely to dilute the initial cosmological abun-
dances of various species, dilutions of the type considered
in this paper are an inevitable consequence of thermal
decoupling.
The remainder of this paper is structured as follows.

In Sec. II, we review the early Universe thermodynamics of
scenarios with a decoupled hidden sector. We then discuss
in detail the processes of thermal freeze-out and out-of-
equilibrium decay in Secs. III and IV, respectively. In
Sec. V, we discuss possible contributions to the effective
number of neutrino species within this class of scenarios. In
Sec. VI, we describe three concrete realizations of dark
matter in a decoupled hidden sector, in which the hidden
and visible sectors interact through the vector portal, Higgs
portal, or lepton portal. Finally, we briefly summarize our
results and conclusions in Sec. VII.

II. HIDDEN SECTOR THERMODYNAMICS

In this section, we review the thermodynamic evolution
of a generic hidden sector, whose constituents interact very
feebly with the visible sector. In the decoupled limit, these
sectors influence each other’s evolution only indirectly by
either modifying the cosmic expansion rate, or by injecting
energy through any decays of hidden sector particles into
the visible sector. We begin by considering two particle
species within the hidden sector: the lightest hidden sector
particle, Y, and the lightest stable hidden sector particle, X.
The stable species will annihilate through processes such as
XX → YY until its abundance freezes out of equilibrium, in
analogy with conventional WIMP freeze-out. Since Y is
the lightest particle in the hidden sector, Y can only decay

to the SM, either directly or through a multistep cascade,
e.g., Y → � � � → SM; this setup is depicted schematically in
Fig. 1. For simplicity, we will assume for the moment that
the interactions between these two sectors are too feeble
to reach equilibrium. Such feeble interactions could arise,
e.g., through mass-mixing, loop-induced effects, or sup-
pressed tree-level interactions and may be sufficiently small
such that Y will be relatively long-lived, with a lifetime as
long as τY ∼Oð1Þ second.
If kinetically decoupled, the hidden and visible sectors

will each be described by distinct thermal distributions
whose respective temperatures evolve differently over time.
It is useful to define the ratio of the hidden and visible
sector temperatures, ξ≡ Th=T. Here and throughout this
paper, quantities pertaining to hidden sector dynamics are
labeled with a subscript or superscript “h,” while those
without such a label denote visible sector quantities.
For our initial conditions, we take ξ ¼ ξinf , where the

subscript denotes the value immediately following post-
inflation reheating. At early times, significantly before the
decay of Y, entropy is approximately conserved independ-
ently in both sectors. Hence, the evolution of ξ can be
tracked using the forms for the entropy densities, s ¼
ð2π2=45Þg�ðTÞT3 and sh ¼ ð2π2=45Þgh�ðThÞT3

h, where g�
and gh� correspond to the effective relativistic degrees
of freedom in equilibrium with the visible and hidden
sectors, respectively. Conservation of entropy implies that
sh=s ¼ sh=sjinf , from which it follows that ξ evolves as

ξ ¼
�
g�ðTÞ
g� inf

�
1=3

�
gh� inf
gh�ðThÞ

�
1=3

ξinf : ð1Þ

For the most part, we will be interested in T ≫
Oð100Þ GeV, for which g� ≃ g� inf ≈ 106.75. For the case
of mY ≪ Th ≪ mX, gh� inf ¼ cYgY þ cXgX and gh� ¼ cYgY ,

FIG. 1. A schematic diagram of the processes that we will
consider in this study. Here X, the dark matter candidate,
annihilates into pairs of metastable hidden sector Y particles.
If the hidden sector is heavy and extremely decoupled from the
visible sector (which contains the Standard Model), then Y will be
long-lived and may eventually dominate the Universe’s energy
density. Upon its decay into Standard Model particles, Y reheats
the visible Universe and dilutes all particle abundances, including
the relic density of X.
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where cX;Y ¼ 1ð7=8Þ for bosonic (fermionic) X, Y, and gX;Y
are the number of internal degrees of freedom of X, Y,
respectively. Under these assumptions, Eq. (1) reduces to

ξ ¼
�
1þ cXgX

cYgY

�
1=3

ξinf : ð2Þ

This behavior is exhibited in the solid orange line of
Fig. 2, corresponding to the case of mY ≪ mX, for which
ξ=ξinf is nearly constant when Th ≪ mX.
The ratio ξ=ξinf can evolve quite differently, however, if

the conditions described above are not met; for example, if
we relax the assumption that Th ≫ mY . In this case, if Y is
in equilibrium for temperatures Th ≪ mY , then its entropy
density is given by

sh ¼
mYnY
Th

¼ gY

�
m5

YTh

8π3

�
1=2

e−mY=Th ; ð3Þ

causing the hidden sector to enter into a state of “cannibal-
ism,” (see, e.g., Refs. [27–30]). In this case, conservation of
hidden sector entropy, shR3, implies that

R3T1=2
h e−mY=Th ¼ constant; ð4Þ

where R is the scale factor. In the limit that Th ≪ mY ,
the variation of the exponential dominates, and the
above expression can be approximated as emY=Th ∝ R3,
or Th ∝ mY= lnR. As a result, ξ increases rapidly as a
function of the scale factor, such that

ξ ∝
R
lnR

: ð5Þ

This behavior is exhibited by the solid blue, dashed red, and
dashed yellow lines in Fig. 2, each of which depict periods
of cannibalism in the hidden sector.
Alternatively, if Y freezes out of chemical equilibrium

while still relativistic, the value of ξ will be held to that
described in Eq. (2) until Y becomes nonrelativistic, at
which point ξ ∝ 1=R. This can be seen from the phase-
space density of Y. Once a relativistic species has frozen
out in the hidden sector, its comoving number density is
conserved and, as a result, the phase-space density, f (or
equivalently ðE − μÞ=Th), is held constant,

f ∼ e−ðE−μÞ=Th ∼ dn=d3p ∼ R−3=R−3 ¼ constant: ð6Þ

Imagine that Y freezes out at Ti, Ti
h ≫ mY , and Ei

Y≈
pi
Y ≫ mY , and consider later times before Y becomes

nonrelativistic. Assuming that EY ≫ μY and using the fact
that EY=Th is fixed, the temperature of Y evolves as

Th ¼ Ti
h
EY

Ei
Y
≈ Ti

h
pY

pi
Y
≈ Ti

h
Ri

R
≈ Ti

h
T
Ti ; ð7Þ

and, hence, ξ ¼ ξi. Alternatively, imagine that while Y is
nonrelativistic, its comoving number density becomes or is
already fixed. In this case, its kinetic energy scales as
EY;kin ∝ 1=R2, and hence so does Th. From this it follows
that ξ ¼ ξiRi=R ¼ ξiT=Ti. Furthermore, through a similar
argument as above, in the nonrelativistic limit,

Th ¼ Ti
h
mY − μY
mY − μiY

; ð8Þ

which gives μY ¼ mY þ ðμiY −mYÞTh=Ti
h.

In Fig. 2, we illustrate the behavior of ξ for a number of
possible scenarios. Although we have assumed in generat-
ing this figure that X is a Dirac fermion and Y is a neutral
vector boson, the discussion in this section is more general,
and applies to X and Y of any spin. In evaluating ξ, we have
numerically solved the equation shðξTÞ=shðξinfT infÞ ¼
sðTÞ=sðT infÞ, along with s ¼ ðρþ PÞ=T and sh ¼
ðρh þ PhÞ=Th, and the general forms for energy density
and pressure of a species, i [31]

FIG. 2. Temperature dependence of ξ≡ Th=T, for the case that
X is a Dirac fermion and Y is a massive neutral vector boson.
RFO (NRFO) denotes that Y freezes out while (non)relativistic.
Otherwise, Y is assumed to be in chemical equilibrium. Canna-
bilism occurs indefinitely if Y remains in chemical equilibrium
once Th ≲mY , as seen by the sharp rise in ξ for the blue
and dashed-red lines, corresponding to mY ¼ mX=10 and
mY ¼ mX=50, respectively. Similarly, for the yellow-dashed line,
we once again takemY ¼ mX=10, but assume that once Th ≲mY ,
Y only remains in chemical equilibrium up until it freezes out at
Th ∼mY=5, at which point ξ ∼ 1=R. Also, as illustrated by the
dashed light-blue line, we fix mY ¼ mX=50 and assume that Y
freezes out while still relativistic. In this case, ξ is truncated
by Eq. (2), up until Th ≲mY , at which point ξ ∼ 1=R. Finally, we
show the limiting case of mY ≪ mX as depicted by the solid
orange line.
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ρi ¼
gi
2π2

Z
∞

mi

ðE2 −m2
i Þ1=2

exp½ðE − μiÞ=Th� � 1
E2dE;

Pi ¼
gi
6π2

Z
∞

mi

ðE2 −m2
i Þ3=2

exp½ðE − μiÞ=Th� � 1
dE; ð9Þ

where μi denotes the chemical potential and the �1 in the
demoninators is positive in the case of fermions and
negative for bosons.

III. HIDDEN SECTOR FREEZE-OUT

Chemical equilibrium in the hidden sector is governed

by processes such as YY � � �
zfflffl}|fflffl{n

↔ YY � � �
zfflffl}|fflffl{n−1

, XX ↔ YY, and
XYY ↔ XY. When the rate of these reactions is overtaken
by Hubble expansion, the corresponding comoving number
densities become fixed (until the time at which Y begins to
decay). In this section, we review this process of chemical
freeze-out for the case of a hidden sector that is thermally
decoupled from the SM [32–34].
The coupled system of Boltzmann equations for the

number densities of X and Y is given by

_nX þ 3HnX ¼ −hσviX
�
n2X −

n2Y
neq2Y

neq2X

�
þ � � �

_nY þ 3HnY ¼ þhσviX
�
n2X −

n2Y
neq2Y

neq2X

�
− ΓYnY − hσv2iXðnXn2Y − neqY nXnYÞ
− hσv2iYðn3Y − neqY n

2
YÞ

− hσv3iYðn4Y − neq2Y n2YÞ þ � � � ; ð10Þ

where neqX;Y denotes an equilibrium number density, hσviX
is the thermally averaged cross section for XX → YY, and
ΓY is the decay rate for Y into SM particles. The quantities
hσv2iX, hσv2iY , and hσv3iY are the thermally averaged
“cross sections" for XYY → XY, YYY → YY, and
YYYY → YY, respectively. For brevity, we have not
included symmetry factors; for example, if X is not self-
conjugate, then hσviX should be replaced with hσviX=2.
The ellipses denote higher-order processes that are
subdominant.
The Boltzmann equations in Eq. (10) are greatly sim-

plified in the case of entropy conservation. This is valid at
times significantly before the decay of Y, or in cases in
which Y never dominates the energy density. In particular,
we will recast the above equations in terms of the yield or
comoving number densities, YX;Y ≡ nX;Y=s (not to be
confused with the species Y). Taking the time derivative
of YX;Y gives

s _YX;Y ¼ _nX;Y − nX;Y
_s
s
: ð11Þ

Conservation of visible sector entropy, sR3 ¼ constant,
implies that

_s
s
¼ −3H: ð12Þ

Then, substituting Eq. (12) into Eq. (11) gives

s _YX;Y ¼ _nX;Y þ 3HnX;Y: ð13Þ

Invoking entropy conservation once again, S ∝ T3R3 ¼
constant, gives _T=T ¼ −H, which can be rewritten in terms
of x≡mX=T,

_x ¼ Hx: ð14Þ

Using the chain rule and Eq. (14), we then have

_YX;Y ¼ Hx
dYX;Y

dx
: ð15Þ

By substituting Eqs. (13) and (15) into Eq. (10), we find

dYX

dx
¼ −shσviX

Hx

�
Y2
X −

Y2
Y

Yeq2
Y

Yeq 2
X

�
þ � � �

dYY

dx
¼ 1

Hx

�
shσviX

�
Y2
X −

Y2
Y

Yeq 2
Y

Yeq 2
X

�
− ΓYYY − s2hσv2iXðYXY2

Y − Yeq
Y YXYYÞ

− s2hσv2iYðY3
Y − Yeq

Y Y
2
YÞ

− s3hσv3iYðY4
Y − Yeq 2

Y Y2
YÞ þ � � �

�
: ð16Þ

The Hubble parameter, H, is given in terms of the visible
and hidden sector energy densities

H2 ¼ 8π

3m2
pl

ðρþ ρhÞ ¼
8π

3m2
pl

π2

30
ðg�T4 þ gh�T4

hÞ

≡ 4π3

45

m4
X

m2
pl

geff�
x4

; ð17Þ

where mpl ¼ 1.22 × 1019 GeV, and we have defined
geff� ≡ g� þ gh�ξ4.
The final abundances of X and Y can be found by

numerically solving either Eq. (10) or (16). However, it is
often the case that processes responsible for depleting the
number density of Y at temperatures Th ≲mY are sup-
pressed relative to those governing the freeze-out of X. If
there also exists the hierarchy, mX ≫ mY ≫ Oð100Þ GeV,
it is sensible to assume that Y freezes out when it is
relativistic at temperatures significantly above the weak
scale. Approximating nY with the relativistic expression
nY ≈ c0Yζð3ÞgYT3

h=π
3, where c0Y ¼ 1ð3=4Þ for bosonic

ASHER BERLIN, DAN HOOPER, and GORDAN KRNJAIC PHYSICAL REVIEW D 94, 095019 (2016)

095019-4



(fermionic) Y, and g� ¼ 106.75, we have YY ¼ Yeq
Y ≈

0.0026c0YðgY þ gXcX=cYÞξ3inf , where we have also used
Eq. (2). Changing variables once again to Δ ¼ YX − Yeq

X ,
the first line of Eq. (16) can be rewritten as

dΔ
dx

¼ −
dYeq

X

dx
− fðxÞΔ½Δþ 2Yeq

X �; ð18Þ

where we have defined

fðxÞ≡ shσviX
Hx

¼
ffiffiffiffiffi
π

45

r
g�ffiffiffiffiffiffiffi
geff�

p mXmpl
aþ 6ξb=x

x2
; ð19Þ

and where σvX ≡ aþ bv2 is the cross section forXX → YY
prior to thermal averaging.
It will suffice to solve Eq. (18) semianalytically. To do

so, first consider its form before X departs from chemical
equilibrium. At this point, YX tracks Yeq

X very closely and,
hence, dΔ=dx is negligible, giving

Δ ¼ −
dYeq

X

dx
1

fðxÞ½Δþ 2Yeq
X �

: ð20Þ

Freeze-out occurs when YX no longer tracks Yeq
X , or in other

words, when Δ is comparable to Yeq
X . Specifically, freeze-

out is defined by Δ ¼ cYeq
X , where c is some order-one

number chosen to match numerical solutions. We will take
c ≈ 0.4 for s-wave annihilation [31]. Assuming that X
freezes out when nonrelativistic at x ¼ xf, Eq. (20), along
with neqX ≈ gXðm2

X=2πxfÞ3=2e−xf and Δ ¼ cYeq
X , then imply

that

xf ¼ ξ ln

�
cðcþ 2Þ

4π3

ffiffiffiffiffi
45

2

r
gXffiffiffiffiffiffiffi
geff�

p mXmpl
ξ5=2ðaþ 6ξb=xfÞffiffiffiffiffixfp ð1 − 3ξ=2xfÞ

�
;

ð21Þ

where geff� and ξ are evaluated at freeze-out. In practice, the
above equation may be solved numerically for xf.
Now, consider the form of Eq. (18) after X departs from

chemical equilibrium. At this point, Yeq
X is negligible due to

Boltzmann suppression and, hence, dΔ
dx Δ

−2 ¼ −fðxÞ.
Integrating this from x ¼ xf to x ¼ ∞, and using the fact
that Δðx ¼ ∞Þ ≪ Δðx ¼ xfÞ, we find

YXðx ¼ ∞Þ−1 ¼
Z

∞

xf

dxfðxÞ

≈
ffiffiffiffiffi
π

45

r
g�ffiffiffiffiffiffiffi
geff�

p mXmpl
aþ 3ξb=xf

xf
; ð22Þ

where g� and geff� are evaluated at freeze-out. Note that in
Eq. (22), we have ignored variation of geff� from x ¼ xf to
x ¼ ∞. For ξinf ≫ 1, it is possible that geff� varies

significantly over this domain, in which case we will
instead use the more general form:

YXðx ¼ ∞Þ−1 ≈
ffiffiffiffiffi
π

45

r
g�mXmpl

Z
∞

xf

dx
aþ 6ξb=x

x2
ffiffiffiffiffiffiffi
geff�

p : ð23Þ

The relic abundance today is evaluated as ΩX ¼
mXs0YXðx ¼ ∞Þ=ρc, where s0 ¼ 2891.2 cm−3 is the vis-
ible sector entropy density today and ρc ¼ 1.05375 ×
10−5h2 GeVcm−3 is the critical energy density [35].
When Eq. (22) applies, this leads to

ΩXh2 ¼ 8.5 × 10−11
xf

ffiffiffiffiffiffiffi
geff⋆

p
g�

�
aþ 3ξb=xf
GeV−2

�
−1
: ð24Þ

This will constitute the final abundance of X, provided that
no entropy is transferred into the visible sector. If instead
the SM entropy increases by a factor Sf=Si, ΩXh2 is
effectively reduced by the same factor. This is simple to
see from the following argument. Imagine that the visible
sector has an initial entropy of Si, which is later raised to Sf
through some unspecified process. Before this entropy
increase, X has an energy density ρiX ¼ mXsiYX, where
si ¼ Si=R3

i . Expansion of the Universe dilutes the energy
density such that

ρfX ¼ ρiX
R3
i

R3
¼ mXYX

siR3
i

R3
¼ mXYX

Si
R3

¼ mXYX
Si
R3

Sf
Sf

¼ mXsfYX

Sf=Si
; ð25Þ

where sf ¼ Sf=R3. Therefore, the dark matter energy
density today is ρX ¼ mXs0YX=ðSf=SiÞ. Hence, ΩXh2, as
written in Eq. (24), is diluted by the factor Sf=Si. As we
will show in the next section, the radiation coming from the
late-time out-of-equilibrium decay of Y naturally generates
such an increase in entropy.

IV. OUT-OF-EQUILIBRIUM DECAY

In the previous section, we described the thermal freeze-
out of a dark matter candidate, X, which resides in a sector
that is highly decoupled from the SM. We now turn our
attention to the lightest particle species in the hidden sector,
Y, which is assumed to be unstable and will eventually
decay into SM particles. Due to the highly decoupled
nature of the hidden sector, however, we expect such
decays to be highly suppressed, leading Y to be long-lived.
Furthermore, upon becoming nonrelativistic, the energy
density of Y scales as ρY ∝ R−3, while the visible bath
instead evolves as ρSM ∝ R−4. As a result, ρY=ρSM scales
linearly with R, thus making it possible for the Y population
to come to dominate the energy density of the early
Universe, and significantly reheating the SM bath upon
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its eventual decay. In this section, we investigate the
consequences arising from this out-of-equilibrium decay,
closely following the approach described in Ref. [31].
Using the sudden-decay approximation, it is simple to

work out an estimate for the reheating of the visible sector.
Imagine that Y, which is nonrelativistic, comes to dominate
the energy density of the Universe up until time t ¼ τY , at
which point it decays into SM particles which quickly
thermalize with the visible bath. Using conservation of
energy, the energy density of the Universe immediately
prior to the decay, ρY , should equal the energy density in
radiation immediately after the decay. We will denote these
two snapshots in time as t ¼ τY − ϵt and t ¼ τY þ ϵt,
respectively, where ϵt is some small positive time-scale
relative to τY . We will also use notation such that the label
“i” corresponds to t ¼ τY − ϵt, while “f” corresponds to
t ¼ τY þ ϵt. Immediately prior to decay, the Friedmann
equation gives

H2ðt ¼ τY − ϵtÞ ¼
4

9τ2Y
¼ 8π

3m2
pl

ρY ¼ 8π

3m2
pl

simYYY

¼ 16π3

135m2
pl

g�T3
i mYYY; ð26Þ

or, equivalently,

T3
i ¼

15m2
pl

4π3g�mYYYτ
2
Y
: ð27Þ

Solving for ρY in terms of τY in Eq. (26) and enforcing
energy conservation leads to

ρY ¼ m2
pl

6πτ2Y
¼ π2

30
g�T4

f; ð28Þ

or, equivalently, for the reheat temperature,

T3
f ¼

�
5m2

pl

g�π3τ2Y

�3=4

: ð29Þ

The increase in SM entropy, in the sudden-decay approxi-
mation, is then found by taking the ratio of T3

f=T
3
i ,

Sf
Si

¼ T3
f

T3
i
≈ 2.1g1=4�

mYYYτ
1=2
Y

m1=2
pl

: ð30Þ

We will now derive the change in entropy more sys-
tematically, no longer relying on the sudden-decay approxi-
mation. From the definition of τY , NY ∝ e−t=τY , we obtain
the differential equation,

dðR3nYÞ
dt

¼ −
1

τY
R3nY; ð31Þ

which when expanded and divided by R3 gives

_nY þ 3HnY ¼ −nY=τY: ð32Þ

Since Y is assumed to be nonrelativistic, ρY ¼ mYnY , and
the above equation is equivalent to

_ρY þ 3HρY ¼ −ρY=τY; ð33Þ

which has the general solution

ρYðRÞ ¼ ρYðRiÞ
�
Ri

R

�
3

e−ðt−tiÞ=τY : ð34Þ

Now, imagine that as Y decays, the energy deposited is
rapidly converted into relativistic thermalized particles.
It follows from the second law of thermodynamics that

dS ¼ dQ
T

¼ −dðR3ρYÞ
T

¼ −R3

T
dtð_ρY þ 3HρYÞ

¼ R3ρY
T

ðdt=τYÞ; ð35Þ

where in the last equality we have used Eq. (33). Solving
S ¼ ð2π2=45Þg�T3R3 for T and substituting into the
equation above,

S1=3 _S ¼ S1=3
R3

T
ρY
τY

¼
�
2π2

45
g�

�
1=3 R4ρY

τY

¼
�
2π2

45
g�

�
1=3 RR3

i

τY
ρYðRiÞe−ðt−tiÞ=τY ; ð36Þ

where in the last equality we used Eq. (34). A formal
solution to Eq. (36) is

S4=3 ¼ S4=3i þ 4

3
ρYðRiÞR4

i τ
−1
Y

×
Z

t

ti

dt0
�
2π2

45
g�

�
1=3 Rðt0Þ

Ri
e−ðt0−tiÞ=τY

≡ S4=3i þ 4

3
ρYðRiÞR4

i I: ð37Þ

To simplify Eq. (37), we take note of two important
relations involving the energy density of SM radiation,
ρR, and the visible sector entropy, s:

sT ¼ 4

3
ρR; ð38Þ

and

ρR ¼ 3

4

�
45

2π2g�

�
1=3

S4=3R−4: ð39Þ
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We then have

ρYðRiÞR4
i S

−4=3
i ¼ mYRiYYS

−1=3
i

¼ mYRiYYS
−1=3
i ×

4ρRðRiÞ=3
SiTi=R3

i

¼ mYRiYYS
−1=3
i ×

1

SiTi=R3
i

×

�
45

2π2g�ðTiÞ
�

1=3
ðS4=3i =R4

i Þ

¼ mYYY

Ti

�
45

2π2g�ðTiÞ
�

1=3
; ð40Þ

where we used Eq. (38) and Eq. (39) in the second and third
lines, respectively. Taking ti ≪ τY , tf ≫ τY and substitut-
ing Eq. (40) into Eq. (37) then implies

Sf
Si

¼
�
1þ 4

3

�
45

2π2g�ðTiÞ
�

1=3mYYY

Ti
I

�
3=4

; ð41Þ

where now I is defined to be

I ≡ τ−1Y

Z
∞

0

dt

�
2π2

45
g�

�
1=3 RðtÞ

Rð0Þ e
−t=τY : ð42Þ

In the limit that Y dominates the energy density before its
decay, a numerical form of I is sufficient and Eq. (41) can
be approximated as

Sf
Si

≈ 1.83hg1=3� i3=4 mYYYτ
1=2
Y

m1=2
pl

; ð43Þ

where the brackets indicate time-averaging over the decay
[31]. Note that the difference between this numerical
solution and that found using the sudden-decay approxi-
mation is at most Oð1Þ. In practice, throughout this study,
we will numerically solve the system of equations, con-
sisting of Eqs. (36), (41), and (42), and the Friedmann
equation,

H2 ¼ 8π

3m2
pl

ðρX þ ρY þ ρRÞ; ð44Þ

where ρY is determined from Eq. (34), ρR ¼ π2g�T4=30,
ρX ∝ R−3, and S ¼ ð2π2=45Þg�T3R3.

V. THE EFFECTIVE NUMBER
OF NEUTRINO SPECIES

In models with a decoupled sector, there may be addi-
tional relativistic particles present during or after big bang
nucleosynthesis (BBN), with the potential to impact the
measured expansion history of the Universe. In this section,

we briefly discuss this possibility within the context of the
class of models under consideration here.
In generality, the effective number of neutrino species,

Neff , is defined in terms of the energy density of the
Universe, or equivalently in terms of geff� . Allowing the
neutrino temperature to be different than that of the SM
plasma, we have

geff� ¼ gSM−ν� þ gν�ξ4ν þ gh�ξ4h

≡ gSM−ν� þ 7

8
× 2 × Neff × ðξ0νÞ4; ð45Þ

where SM − ν denotes the SM omitting the three species of
neutrinos, ξν ≡ Tν=T, ξh ≡ Th=T (we have restored the h
subscript for clarity), and ξ0ν is Tν=T in the SM when
neutrino reheating from electron-positron annihilations is
neglected, i.e., ξ0ν ¼ ð4=11Þ1=3 ≈ 0.714 for T ≲me and
ξ0ν ¼ 1 for T ≳me.
For nν flavors of neutrinos, we have

7

8
× 2 × Neff × ðξ0νÞ4 ¼

7

8
× 2 × nν × ξ4ν þ gh�ξ4h: ð46Þ

Solving for Neff yields

Neff ¼ nν

�
ξν
ξ0ν

�
4

þ 4

7
gh�

�
ξh
ξ0ν

�
4

: ð47Þ

In the SM, gh� ¼ 0, nν ¼ 3, and when T ≲me, ξν is slightly
larger than ξ0ν, so that Neff ≈ 3.046.
Consider the case of three neutrino flavors and standard

cosmology (ξν ¼ ξ0ν) with an additional decoupled hidden
sector. At early times, around BBN, for example, Tν ¼ Tγ

and so the analogous calculation yields

Neff ≈ 3þ 4

7
gh�ξ4h ðBBNÞ: ð48Þ

Alternatively, after neutrino decoupling, for instance at
recombination,

Neff ≈ 3.046þ 4

7

�
11

4

�
4=3

gh�ξ4h ðCMBÞ; ð49Þ

in agreement with Ref. [32].
Alternatively, we can also consider contributions to Neff

that arise from the decay products of the long-lived particle
species, Y. More specifically, consider a scenario in which
Y has a finite branching fraction, Ba, to a light and
decoupled state, a. For as long as this population of decay
products remains relativistic, they will continue to con-
tribute to Neff (after which they will behave like matter).
This will be the case so long as T ≫ Tfma=famY , where
Tf is the temperature of the Universe following the decays
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of Y and fa is fraction of mY that goes into an individual a
(for example, for Y → aa, fa ¼ 0.5).
Including the contribution from these decay products,

the effective number of neutrino species is given by

Neff ≈ 3.046þ 43

7

�
Ba

1 − Ba

��
g⋆ðTν;decÞ
g⋆ðTfÞ

�
1=3

; ð50Þ

where g⋆ðTν;decÞ ≈ 10.75 and Tν;dec is the temperature at
neutrino decoupling. Comparing this expression to
constraints on Neff from measurements of the CMB
(Neff ¼ 3.15� 0.23) [36], we conclude that Ba≲
0.1½g⋆ðTfÞ=100�1=3. Next generation CMB experiments
are anticipated to improve significantly upon this constraint
[37–39].

VI. MODELS OF DARK MATTER
IN A DECOUPLED SECTOR

The scenario described above is generic and can be
applied to several different classes of models. If the hidden
sector is composed of SM gauge singlets, it is natural for it
to be very weakly coupled to the visible bath. However, in
order to facilitate the decay of the metastable state, Y, into
SM particles, some portal between the two sectors must be
introduced. At the renormalizable level, such decays can
proceed through the following three operators: Bμν, jHj2,
and HL, known as the vector, Higgs, and lepton portals,
respectively.
In this section, we will investigate models utilizing each

of these portals in turn, focusing on the phenomenology
outlined in Secs. II–IV. Each model contains unique
features and introduces complications beyond the simplest
possible realization. We will proceed in order of increasing
complexity. In particular, in Sec. VI A, we explore the
vector portal, which serves as a simple and concrete
manifestation of the generic scenario described in the
previous sections. In Sec. VI B, we proceed to the Higgs
portal, which necessitates a careful treatment of the freeze-
out process, due to the fact that the singlet-like scalar
mediator may remain in chemical equilibrium while non-
relativistic. Section VI C presents the lepton portal model,
whose ultraviolet structure incorporates a heavy right-
handed neutrino which may have potential implications
for leptogenesis.

A. Vector portal

In the vector portal scenario [40,41], a new spontane-
ously broken Uð1ÞX gauge symmetry is introduced, along
with a corresponding massive neutral gauge boson, Z0. As
our dark matter candidate, we add to this model a complex
scalar, ϕ, which has a unit charge under Uð1ÞX and couples
to the Z0 through the gauge coupling gZ0 . ϕ does not acquire
a vacuum expectation value (VEV) and is independent of

the breaking of Uð1ÞX. Alternatively, one could also
consider dark matter in the form of a Dirac fermion, as
we explored previously in Ref. [11]. If there exist particles
charged under Uð1ÞX ×Uð1ÞY, a small degree of kinetic
mixing between the Z0 and the SM hypercharge gauge
boson can be radiatively generated. The hidden sector
Lagrangian then contains the following interactions:

L ⊃ −
ϵ

2
BμνZ0

μν þ igZ0Z0
μðϕ�∂μϕ − ϕ∂μϕ

�Þ þ g2Z0Z0μZ0
μjϕj2:
ð51Þ

There may also exist direct couplings between ϕ and the
SMHiggs through the interaction, jϕj2jHj2. However, since
the hidden and visible sectors are thermally decoupled, this
interaction must be significantly suppressed. In this section,
we take the kinetic mixing parameter, ϵ, to be the only
relevant coupling between the two sectors.
In the limit that mZ0 ≫ mZ, mixing through ϵ generates

an effective interaction between the Z0 and SM fermions,

L ⊃ −ϵg1
X
f

YfZ0
μfγμf þOðmZ=mZ0 Þ; ð52Þ

where g1 is the hypercharge gauge coupling and Yf is the
hypercharge of the SM fermion, f [42]. This allows the Z0
to decay to SM fermions with a width given by

ΓZ0 ¼ 5

3
α1ϵ

2mZ0 þOðmZ=mZ0 Þ: ð53Þ

Similarly, ϕ couples to the SM Z through the terms

−L ⊃
igZ0ϵswm2

Z

m2
Z0

Zμðϕ�∂μϕ − ϕ∂μϕ
�Þ

þ 2g2Z0ϵswm2
Z

m2
Z0

Z0μZμjϕj2 þOðϵ2Þ; ð54Þ

where sw is sine of the Weinberg angle. Through Z and Z0
exchange, these interactions allow ϕ to scatter off protons
in underground direct detection experiments, leading to a
spin-independent cross section given by

σp ¼ 4g21c
4
wαXϵ

2
μ2

m4
Z0
; ð55Þ

where αX ≡ g2Z0=4π, μ is the reduced mass of the proton and
ϕ, and cw is the cosine of the Weinberg angle.
Before any large increase in entropy occurs from Z0

decays, ϕ freezes out through the process ϕϕ → ZZ0, with
an initial abundance given by Eq. (24). In particular,
1
2
σvðϕϕ → ZZ0Þ ¼ aþ bv2, where
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a ¼ πα2X
2m2

ϕ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p �
2þ r4

ð2 − r2Þ2
�
≈
πα2X
m2

ϕ

þOðr2Þ;

b ¼ πα2X
48m2

ϕ

�
27r10 − 254r8 þ 900r6 − 1528r4 þ 1312r2 − 448

ð1 − r2Þ1=2ð2 − r2Þ4
�
≈ −

7πα2X
12m2

ϕ

þOðr2Þ; ð56Þ

where v is the relative ϕ velocity, and r≡mZ0=mϕ.
The dilution of the ϕ density from late-time Z0 decays

directly follows the discussion in Sec. IV. As seen from
Eq. (30), the required inputs are τZ0 and YZ0 , the former of
which is given by the inverse of Eq. (53). Various processes
may keep Z0 in chemical equilibrium (with respect to the
rest of the hidden sector) as the hidden sector cools.
Representative diagrams that deplete the Z0 number density
are shown in Fig. 3. In the discussion preceding Eq. (18),
we noted that solving the Boltzmann equation is immensely
simplified if the Z0 departs from chemical equilibrium
while it is still relativistic. Alternatively, in order for the Z0
to remain in chemical equilibrium while nonrelativistic, the
rate, Γ, for a process that depletes the Z0 number density
must overcome Hubble expansion at or before the critical
temperature, Th ¼ mZ0 . Therefore, the quantity of interest
is Γ=H, as evaluated at Th ¼ mZ0 . If Γ=H ≪ 1, it is safe to
assume that the Z0 population freezes out while still
relativistic.

We first consider the process Z0Z0Z0Z0 → Z0Z0 mediated
by a ϕ loop. Gauge invariance and dimensional analysis
suggest that the rate for this process will scale as follows:

ΓðZ0Z0Z0Z0 → Z0Z0Þ ∼ n3Z0
α6Xm

8
Z0

m16
ϕ

: ð57Þ

Similarly, the rates for the tree-level processes Z0Z0ϕϕ →
ϕϕ and Z0Z0Z0ϕ → Z0ϕ can be written as

ΓðZ0Z0ϕϕ → ϕϕÞ ∼ nZ0n2ϕ
α4X
m8

ϕ

;

ΓðZ0Z0Z0ϕ → Z0ϕÞ ∼ n2Z0nϕ
α4X
m8

ϕ

: ð58Þ

In Fig. 4, we plot the quantity Γ=H, evaluated at Th ¼ mZ0 ,
as a function of αX for each of these three interactions. As
illustrated in this figure, for αX ≲ 0.5 and mϕ=mZ0 ≳ 10,

FIG. 3. Representative Feynman diagrams for processes that could potentially maintain the chemical equilibrium of the Z0 population
for Th ≲mZ0.

FIG. 4. Γ=H evaluated at Th ¼ mZ0 as a function of the coupling αX, for the processes Z0Z0Z0Z0 → Z0Z0 (red), Z0Z0ϕϕ → ϕϕ (orange),
and Z0Z0Z0ϕ → Z0ϕ (blue), assuming that the hidden and visible sectors are thermally decoupled. We have taken mϕ ¼ 1 PeV, and
mZ0 ¼ 50ð100Þ TeV in the left (right) panels. The width of the bands corresponds to ξinf ¼ 0.1–10. Larger values of ξinf lead to larger
rates relative to that of Hubble expansion. For mZ0 ¼ 50 TeV, corresponding to the left panel above, Γ=H ≪ 1 and hence the Z0
population departs from chemical equilibrium while still relativistic. For smaller ratios of mϕ=mZ0 , corresponding to the right panel,
processes that deplete the Z0 number density allow the Z0 to remain in chemical equilibrium while nonrelativistic for αX ≳ 0.5.
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Γ=H ≲ 10−1, and the Z0 population is not maintained in
chemical equilibrium. For the remainder of our analysis, we
will therefore assume that the Z0 freezes out while it is
relativistic. Following the discussion above Eq. (18),
this implies that the Z0 comoving number density is
YZ0 ≈ 0.013ξ3inf . Assuming that Z0 freezes out while rela-
tivistic allows us to focus solely on the first line of Eq. (16).
Despite this simplification, the term proportional to
ðYZ0=Yeq

Z0 Þ2 deviates from unity when Th ≲mZ0 and the
equilibrium comoving number density becomes Boltzmann
suppressed. By numerically solving the Boltzmann equa-
tion, we find that the inclusion of this effect alters our
results by Oð5%Þ for mϕ=mZ0 ≈ 5 and by only Oð1%Þ for
mϕ=mZ0 ≈ 20, relative to that obtained using the semi-
analytic approximation.
Throughout, we have assumed that ϵ is sufficiently small

such that ϕ and Z0 are thermally decoupled from the SM
bath. We now revisit this assumption and consider scatter-
ing processes that could potentially equilibrate the two
sectors for sufficiently large values of ϵ. The dominant
interactions are Z0f → ðγ=gÞf and ðγ=gÞf → Z0f, where f
is some SM fermion. At leading order in mf=mZ0 , we find

σvðZ0f → γfÞ ≈ αemQ2
fðg2v þ g2aÞ

6ðs −m2
Z0 Þ2

�
sþ 6m2

Z0 −
7m4

Z0

s

þ 2

�
s − 2m2

Z0 þ 2m4
Z0

s

�

× log
sð1 −m2

Z0=sÞ2
m2

f

�
; ð59Þ

while for the reverse process,

σvðγf → Z0fÞ ¼ 3ðs −m2
Z0 Þ2

2s2
σvðZ0f → γfÞ: ð60Þ

Here
ffiffiffi
s

p
≈ 4T is the center-of-mass energy,1 Qf is the

electric charge of f, and gv;a ¼ −ϵg1ðYfR � YfLÞ, where
YfL=R is the hypercharge of SM fermion fL=R. For processes
involving gluons instead of photons, one simply replaces
the quantity αemQ2

f with 4αs. If nfσv ≲H at T ¼ mϕ=xf,
then the hidden and visible sectors do not equilibrate before
the freeze-out of the dark matter abundance.
For our numerical results, we include contributions from

all SM fermions, f, and all gauge interactions involving
gluons and electroweak gauge bosons. We safely neglect
contributions from pure gauge boson external states (i.e.
Z0γ → ff) since, forT ≫ v, these are highly subdominant to
the total contribution from Z0f initiated rates and the
corresponding reverse processes on account of g�ðTÞ≃ 100.

We illustrate the phenomenologyof thismodel in Fig. 5, as
a function of the dark matter mass, mϕ, and kinetic mixing
parameter, ϵ, for various values of αX, mϕ=mZ0 , and ξinf .
The abundance of dark matter in the vector portal scenario
diverges from the typical WIMP estimate for sufficiently
small values of ϵ. In this case, ϕ can be as heavy as
Oð10Þ PeV before running afoul of constraints from big
bang nucleosynthesis (BBN). Along the black contours, the
final abundance of ϕ matches the observed dark matter
density,Ωϕh2 ∼ 0.12. For longer lifetimes of the Z0 (smaller
values of ϵ), Z0 can come to dominate the energy density of
theUniverse, corresponding to theparameter space below the
brown shaded region. In this case, the entropy dump from the
Z0 decay significantly dilutes the ϕ abundance, allowing for
large values of mϕ which would otherwise be inconsistent
with the observed density of darkmatter. For lifetimes longer
than Oð1Þ second, however, the reheating temperature after
the Z0 decay is significantly less than 10 MeV, leading to
potential tension with the successful predictions of BBN
(shaded blue). For a sufficient degree of kinetic mixing, the
hidden sector and SM bath are maintained in kinetic
equilibrium in the early Universe (shaded orange), and
may potentially fall within the reach of direct detection
experiments, such as LUX [3,4] and PandaX [2] (shaded
red). We also highlight the parameter space in which the Z0
population dominates the energy density and decays before
the freeze-out of ϕ (shaded yellow). In this case, the hidden
and visible sector entropies are no longer conserved during
the freeze-out ofϕ, invalidating the assumption that led to the
derivation of Eqs. (16) and (24). Since, in most cases, the Z0
abundance does not dominate the energy density of the
Universe when it decays before the freeze-out of ϕ, we
expect the resulting correction to be small.
For ξinf ≪ 1, as considered in the bottom-left panel of

Fig. 5, the hidden sector is only modestly populated
(relative to the SM) after inflation. As a result, the effects
of the Z0 decay are reduced, and only for much longer
lifetimes does the Z0 population come to dominate the
energy density of the Universe. Regardless, compared to
the standard thermal WIMP calculation, thermal decou-
pling in this scenario results in the underproduction of the
hidden sector and thus allows for larger dark matter masses,
without exceeding the observed dark matter density.
Although we have focused on scalar dark matter in this

section, fermionic dark matter is also a viable possibility
within the context of vector portal scenarios [11].
Qualitatively, very similar conclusions are reached in these
two cases. In particular, Fig. 2 of Ref. [11] can be directly
compared to the results shown in Fig. 5 of this paper.

B. Higgs portal

In the Higgs portal scenario, a real scalar singlet, ϕ,
couples to the SM Higgs at tree level [40,43–59]. Working
in the basis where ϕ does not acquire a VEV, the general
scalar potential is given by

1For thermal distributions of bosons and fermions, the average
energy per particle is approximately ρ=n ¼ 2.70 and 3.15T,
respectively, so for fermion-boson scattering, the angle averaged
s ¼ ðp1 þ p2Þ2 → 2E1E2 ≈ ð4TÞ2.
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Vðϕ; HÞ ¼ −μ2jHj2 þ λjHj4 þ δ1
2
jHj2ϕþ δ2

2
jHj2ϕ2

−
δ1v2

4
ϕþ κ2

2
ϕ2 þ κ3

3!
ϕ3 þ κ4

4!
ϕ4; ð61Þ

where v≡ μ=
ffiffiffi
λ

p
≈ 246 GeV and the tadpole coefficient is

chosen to prevent ϕ from getting a VEV. After electroweak
symmetry breaking, mass mixing between the SM Higgs,
h, and ϕ is controlled solely by the dimensionful parameter
δ1. In the limit that mϕ ≈

ffiffiffiffiffi
κ2

p ≫ mh, the mixing angle, ϵ,
is approximated as

ϵ ¼ −
vδ1
2m2

ϕ

þOðmh=mϕÞ; ð62Þ

so wewill therefore focus on the phenomenology that arises
from the following simplified scalar potential,

Vðϕ; HÞ ¼ VSMðHÞ þ δ1
2
jHj2ϕ −

δ1μ
2

4
ϕþ κ2

2
ϕ2; ð63Þ

where VSMðHÞ is the SM Higgs potential. Note that it is
technically natural for δ1 to be very small. In particular, the
quantum correction to δ1 via a SM Higgs loop scales as
Δδ1 ∼ δ1λ log ðΛUV=mϕÞ=16π2, where ΛUV is the high-
energy cutoff of the theory. Since we will be most interested
in regions of small mixing, ϵ ≪ 1, LHC constraints on SM
Higgs couplings are negligible [60,61].
In this model, we assume that ϕ is odd under an

approximate Z2 symmetry, which is softly broken only
by the super-renormalizable portal coupling, δ1, in the
simplified potential of Eq. (63). For sufficiently long ϕ
lifetimes, corresponding to small values of ϵ, we typically
need δ1 to be in the neighborhood of

FIG. 5. Selected regions of parameter space in the vector portal model. The black contours (Ωϕh2 ¼ 0.12) correspond to regions in the
mϕ − ϵ plane where the final ϕ abundance matches the observed dark matter density for three different values of the Z0 coupling,
αX ¼ 0.03, 0.1, and 0.3. For larger values of ϵ, and for the same three values of αX, the red regions (LUX) are currently ruled out by
direct detection constraints from LUX and/or PandaX [2,3]. On the other hand, in the shaded blue region (BBN) the Z0 decays reheat the
SM plasma to a temperature below 10 MeV, in potential tension with the successful predictions of BBN. In and above the brown region
(ρZ0 < ρSM), the Z0 population never comes to dominate the energy density of the Universe, while in and above the yellow region
(τZ0 < H−1

FO) Z
0 dominates the energy density but decays before the freeze-out of ϕ. The shaded orange region (KE) corresponds to

values of ϵ for which kinetic equilibrium between the hidden and visible sectors is established. In the top-left and top-right panels, we
have fixed ξinf ¼ 1 and mϕ=mZ0 ¼ 20 and 10, respectively. The bottom-left and bottom-right panels illustrate the effect of varying ξinf
while fixing mϕ=mZ0 ¼ 20.
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δ1 ≃ GeV

�
ϵ

10−10

��
mϕ

PeV

�
2

; ð64Þ

in the general vicinity of the weak scale. In the full potential
of Eq. (61), there is an additional Z2 breaking coupling, κ3,
which renormalizes the value of δ1 at the one-loop level. To
ensure that this does not significantly increase the ϕ width,
this correction must not exceed ∼δ1, which implies

κ3 ≲ 16π2

log ΛUV
mϕ

δ1
δ2

: ð65Þ

As our dark matter candidate, we introduce a singlet
Majorana fermion, χ, which couples to ϕ through the
interactions

L ⊃ ϕχðλs þ λpiγ5Þχ: ð66Þ

After EWSB, mass mixing leads to the substitution
ϕ → ϕ − ϵh, which generates an effective dark matter
coupling to the SM Higgs, allowing direct detection
experiments to constrain the quantity λs. In particular, χ
scatters off nucleons through SM Higgs exchange with a
spin-independent cross section of

σSI ≈ 2 × 10−46 cm2 ×

�
ϵ

0.1

�
2
�
λs
0.1

�
2

: ð67Þ

Similarly, ϕ couples directly to the SM through

L⊃−
δ1
4
ϕh2−

ϵ

v

X
f

mfϕffþ
2ϵ

v

�
m2

WW
þμW−

μ þ
1

2
m2

ZZ
μZμ

�

×

�
ϕþ1

v
hϕ

�
þOðϵ2Þ: ð68Þ

At leading order in ϵ, ϕ decays to pairs of Higgs bosons,
SM fermions, and gauge bosons, with partial widths
given by

Γðϕ → hhÞ ¼ m3
ϕϵ

2

32πv2
þOðmh=mϕÞ

Γðϕ → ffÞ ¼ ncmϕm2
fϵ

2

8πv2
þOðmf=mϕÞ

Γðϕ → VVÞ ¼ m3
ϕϵ

2

16πð1þ δVZÞv2
þOðmV=mϕÞ; ð69Þ

where nc is the number of colors of the SM fermion, f,
and δVZ ¼ 1ð0Þ for Z (W�) final states. As seen from the
limiting forms above, Γðϕ → hhÞ=Γðϕ → ffÞ ∼
ðmϕ=mfÞ2 and Γðϕ → hhÞ=Γðϕ → VVÞ ∼ ðmϕ=mVÞ4.
Since we will focus here on cases in which mϕ ≫
100 GeV, the dominant decay channel is to pairs of
SM Higgs bosons.
Prior to the decay of ϕ, χ freezes out through its

annihilations within the hidden sector, χχ → ϕϕ. In par-
ticular, σvðχχ → ϕϕÞ ¼ aþ bv2, where

a ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
λ2pλ

2
s

m2
χπðr2 − 2Þ2 ≈

λ2pλ
2
s

2πm2
χ
þOðr2Þ

b ¼ −2ðr2 − 1Þ3λ4p þ 3ðr6 − 8r4 þ 20r2 − 12Þλ2sλ2p þ 2ð−2r6 þ 10r4 − 17r2 þ 9Þλ4s
12m2

χπ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
ðr2 − 2Þ4

≈
λ4p − 18λ2pλ

2
s þ 9λ4s

96πm2
χ

þOðr2Þ; ð70Þ

where v is the relative χ velocity, and r≡mϕ=mχ . If ϕ
departs from chemical equilibrium while relativistic, the
initial abundance of χ is given by Eq. (24).
For the case of the vector portal, as discussed in

Sec. VI A, Z0 depleting processes were suppressed. As
we shall see below, however, ϕ is able to maintain
chemical equilibrium in the Higgs portal case when
Th ≲mϕ for sufficiently large values of λs or λp. This is
directly tied to the fact that these interactions involve
scalars and correspond to operators of lower dimension.
Similar to as in the previous subsection, we consider
the process ϕϕϕ → ϕϕ mediated by a χ loop. Following
the approach described in Appendix, we find by explicit

calculation the rate for this process in the nonrelativistic
limit,

Γðϕϕϕ → ϕϕÞ ¼ n2ϕ
784

ffiffiffi
5

p

3π5
λ10

m2
χm3

ϕ

; ð71Þ

where, for simplicity, we have taken mχ ≫ mϕ and
λs ¼ λp ¼ λ. In Fig. 6, we show Γðϕϕϕ → ϕϕÞ=H
evaluated at Th ¼ mϕ as a function of λs ¼ λp. It is
apparent that if λs;p ≳Oð0.1Þ, then Γ=H ≳ 1, indicating
that ϕ freezes out while nonrelativistic. In this case,
instead of using Eq. (24), we numerically solve the
coupled Boltzmann system in Eq. (16).
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If χ and ϕ are to remain thermally decoupled from the
SM during dark matter freeze-out, the scattering processes,
ϕh ↔ tt and ϕt ↔ ht, must not exceed the rate of Hubble
expansion before T ¼ mχ=xf. At temperatures significantly
above 100 GeV, the SM Higgs VEV, v, is suppressed and,
hence, we will consider processes that do not depend
explicitly on electroweak symmetry breaking, such as the
ϕ − h − h cubic term in Eq. (63) which is controlled by the
dimensionful coupling, δ1. In the limit mϕ ≫ mt, mh, we
find that the scattering processes are approximated as

σvðϕh → ttÞ ≈ 3δ21m
2
t

32πv2sðs −m2
ϕÞ

;

σvðtt → ϕhÞ ≈ δ21m
2
t ðs −m2

ϕÞ
128πv2s3

;

σvðϕt → htÞ ≈ δ21m
2
t

64πv2ðs −m2
ϕÞ

� ð4 − x2hÞs
m4

ϕ þ x2hsðs −m2
ϕÞ

þ 1

s −m2
ϕ

log

�
sðs −m2

ϕÞ2
m2

t ðm4
ϕ þ x2hsðs −m2

ϕÞÞ
�	

;

σvðht → ϕtÞ ≈ δ21m
2
t

64πv2s

� ð4 − x2hÞðs −m2
ϕÞ

m4
ϕ þ x2hsðs −m2

ϕÞ

þ 1

s
log

�
sðs −m2

ϕÞ2
m2

t ðm4
ϕ þ x2hsðs −m2

ϕÞÞ
�	

; ð72Þ

where xh ≡mh=mt, and the “v” on the right-hand side
denotes the SM Higgs VEV. If nh;tσv ≲H at T ¼ mχ=xf,
then the hidden sector and the SM do not equilibrate before
the freeze-out of the dark matter abundance.
Similar to the previous section, Fig. 7 illustrates the

phenomenology of this model as a function of the dark
matter mass,mχ , and singlet-SMHiggs mixing parameter, ϵ,
for representative values of the quantities mχ=mϕ, ξinf ,
and λs;p. For simplicity, we consider the case that λs ¼ λp.
As discussed above, for λs;p ≳Oð0.1Þ, the abundances of χ
and ϕ (prior to the decay of ϕ) are calculated by numerically
solving the coupled Boltzmann equations, Eq. (16), incor-
porating the dominant processes (χχ → ϕϕ andϕϕϕ → ϕϕ)
that are responsible for the depletion of both species. As in
Sec. VI A, for sufficiently suppressed values of the singlet-
SMHiggs mixing parameter, ϵ, ϕ is long-lived and comes to
dominate the energy density of the Universe, diluting the
relic abundance of χ upon its decay. However, compared to
the vector portal scenario, this effect is suppressed, largely
due to the enhanced strength of the process ϕϕϕ → ϕϕ.
In particular, although larger values of λs;p deplete the initial
freeze-out abundance of χ through the annihilations
χχ → ϕϕ, such couplings also enhance the 3 → 2 self-
annihilation for ϕ, effectively depleting the comoving
number density, Yϕ, and softening the dilution from its
decay, as seen from Eq. (30). As a result, for λs;p ∼Oð1Þ,
Ωχh2 matches the observed dark matter abundance without
running afoul of constraints from BBN only for
mχ ≲Oð100Þ TeV, when ξinf ¼ 1 and mχ=mϕ ¼ 20.

C. Lepton Portal

The gauge singlet operator, LH, allows for the simple
construction of a model that links the hidden and visible
sectors through the lepton portal [40,62]. This same
operator is often invoked in seesaw models as an explan-
ation for the smallness of the SM neutrino masses [63–67].
For realistic models of neutrino masses and mixing angles,
there must be at least two right-handed SM singlet
neutrinos, N1;2, with Yukawa couplings to the SM lepton
and Higgs doublets. As a result, models of neutrino masses
often involve adding several new parameters to the SM
Lagrangian, most of which are irrelevant to the dark matter
phenomenology. Therefore, we will choose to focus on a
simplified model involving only a single sterile neutrino,N,
which couples to a single lepton doublet, L, where L is one
of the SM leptons, Le, Lμ, Lτ [68]. Additionally, as our dark
matter candidate, wewill add a SM singlet Weyl fermion, χ,
and a real scalar, ϕ, which will allow χ to annihilate through
the process χχ → NN.
The relevant terms in the simplified Lagrangian take the

form

−L ⊃ yνNLH þ 1

2
MNN2 þ λϕχN þ H:c:; ð73Þ

FIG. 6. Γ=H evaluated at Th ¼ mϕ, as a function of λs ¼ λp, for
the process ϕϕϕ → ϕϕ, assuming that the hidden and visible
sectors are thermally decoupled. We have taken mχ ¼ 1 PeV
throughout and mϕ ¼ 200 TeV (blue) and 10 TeV (red). The
width of the bands corresponds to ξinf ¼ 0.1–10. Larger values of
ξinf lead to larger rates relative to Hubble expansion. Γ=H ≲ 1
only for λs;p ≲Oð0.1Þ. For larger values of λs;p, ϕ departs
chemical equilibrium after becoming nonrelativistic, and one
must numerically solve the coupled Boltzmann equations for χ
and ϕ.
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where the 2-component Weyl and SUð2ÞL indices are
implied. For generality, and in light of the necessity of
CP violation for leptogenesis, we will allow for yν andMN
to be complex, but for simplicity take λ to be real.
In particular, the phases are parametrized as

yν ¼ jyνjeiϕν ; MN ¼ jMN jeiϕN : ð74Þ

Although only one of these two phases is physical, we
will allow for the presence of both explicitly in our
calculation. We will also assume that mϕ > mχ þ jMN j
so that the ϕ decays promptly through ϕ → χN and,
hence, does not repopulate the dark matter, χ, out of
equilibrium.
After electroweak symmetry breaking, the neutrino mass

matrix is given by

−L ⊃
1

2
ð ν N Þ

�
0 yνv=

ffiffiffi
2

p

yνv=
ffiffiffi
2

p
MN

��
ν

N

�
þ H:c::

ð75Þ
The physical masses are given by the square roots of the
eigenvalues of M⋆M, where M is the mass matrix in
Eq. (75). In the limit that jMN j ≫ jyνjv, the physical
masses are

mνSM ≈
jyνj2v2
2jMN j

; mνs ≈ jMN j: ð76Þ

The mass eigenstate basis is defined by

ν ≈ −eiðϕN=2−ϕνÞðiνSM − ϵνsÞ;
N ≈ e−iϕN=2ðνs þ iϵνSMÞ; ð77Þ

FIG. 7. Selected regions of parameter space in the Higgs portal model. The black contours (Ωϕh2 ¼ 0.12) correspond to regions in the
mϕ − ϵ plane where the final ϕ abundance matches the observed dark matter density for three different values of the χ − ϕ couplings,
λs ¼ λp ¼ 0.25, 0.5, and 1. The cross section for dark matter-nucleon scattering is beyond the reach of LUX or PandaX throughout the
parameter space shown. In the shaded blue region (BBN) the ϕ decays reheat the SM plasma to a temperature below 10MeV, in potential
tension with the successful predictions of BBN. In and above the brown region (ρϕ < ρSM), the ϕ population never comes to dominate
the energy density of the Universe, while in and above the yellow region (τϕ < H−1

FO) ϕ dominates the energy density but decays before
the freeze-out of χ. The shaded orange region (KE) corresponds to values of ϵ for which kinetic equilibrium between the hidden and
visible sectors is established. In the top-left and top-right panels, we have fixed ξinf ¼ 1 and mχ=mϕ ¼ 20 and 10, respectively. The
bottom-left and bottom-right panels illustrate the effect of varying ξinf while fixing mχ=mϕ ¼ 20. The jagged features depicted in some
of these curves are the result of kinematic thresholds for ϕ decay, which predominantly proceed to heavy SM states.
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where

ϵ≡ jyνjvffiffiffi
2

p jMN j
≈
�
mνSM

mνs

�
1=2

; ð78Þ

and νSM and νs are predominantly SM-like and singletlike,
respectively.
Now, let us rewrite the relevant Lagrangian interactions

(to leading order in ϵ) in 4-component notation, taking into
account all of the necessary field redefinitions to a basis in
which νSM, νs, and χ are now Majorana spinors. We find

L ⊃ −
jyνjffiffiffi
2

p hνSMiγ5νs − λϕνs

�
cos

ϕN

2
þ sin

ϕN

2
iγ5

�
χ

− ϵλϕνSM

�
sin

ϕN

2
− cos

ϕN

2
iγ5

�
χ

þ ϵg2
2cw

ZμνSMiγμνs

þ ϵg2
2

ffiffiffi
2

p ½eiðϕν−ϕN=2ÞWþ
μ νsγ

μð1 − γ5Þlþ H:c:�: ð79Þ

For the moment, we will ignore aspects relevant to lepto-
genesis, e.g., CP violation, so that the phases ϕν;N are set to
zero, and the Lagrangian takes a more simplified form:

L ⊃ −
jyνjffiffiffi
2

p hνSMiγ5νs − λϕνsχ þ ϵλϕνSMiγ5χ

þ ϵg2
2cw

ZμνSMiγμνs þ
ϵg2
2

ffiffiffi
2

p ½Wþ
μ νsγ

μð1 − γ5Þlþ H:c:�:

ð80Þ

Before the decay of νs, χ freezes out via χχ → νsνs
through the t-channel exchange of ϕ with an initial
abundance that is dictated by σvðχχ → νsνsÞ ¼
aþ bv2, where

a ¼ λ2m2
χðrþ 1Þ2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p

16πðm2
χðr2 − 1Þ −m2

ϕÞ2
≈

λ2m2
χ

16πðm2
χ þm2

ϕÞ2
þOðr2Þ;

b ¼ λ2m2
χðrþ 1Þ3=2ðm4

χðr2 − 1Þ2ðrð23r − 8Þ þ 4Þ − 2m2
χm2

ϕðr − 1Þðrþ 1Þðrð23r − 24Þ − 8Þ þm4
ϕðrð23r − 40Þ þ 20ÞÞ

384π
ffiffiffiffiffiffiffiffiffiffi
1 − r

p ðm2
ϕ −m2

χðr2 − 1ÞÞ4

≈
λ2m2

χðm4
χ − 4m2

χm2
ϕ þ 5m4

ϕÞ
96πðm2

χ þm2
ϕÞ4

þOðr2Þ; ð81Þ

v is the relative χ velocity, and r≡mνs=mχ . If νs departs
from chemical equilibrium while still relativistic, the initial
abundance of χ is well approximated by the semianalytic
form in Eq. (24).
The interactions in Eq. (79) allow νs to decay to electro-

weak Higgs/gauge bosons and SM leptons. To leading order
in mh=mνs , the corresponding rates are given by

Γðνs → hνSMÞ ≈ Γðνs → ZνSMÞ

≈ Γðνs → W�l�Þ ≈ ϵ2m3
νs

16πv2
: ð82Þ

Hence, in the case that mνs ≫ mh, the total width is
approximated as

Γνs ≈
3ϵ2m3

νs

16πv2
: ð83Þ

The elastic scattering of χwith nuclei proceeds through loops
involving ϕ and νs at leading order, resulting in rates that are
well below the irreducible neutrino background.
After the freeze-out of χ, νs remains in chemical

equilibrium until the rate for processes that deplete its

FIG. 8. Γ=H evaluated at Th ¼ mνs as a function of the
coupling λ for the processes νsνsνsνs → νsνs (red), and ϕνsνs →
χνs (blue), assuming that the hidden and visible sectors are
thermally decoupled. We have taken mϕ ¼ 2 PeV, and
mχ ¼ 1 PeV, and mνs ¼ 100 TeV. The width of the bands
corresponds to ξinf ¼ 0.1–10. Larger values of ξinf lead to larger
rates relative to Hubble expansion. For λ ≲Oð1Þ, Γ=H ≪ 1 and
hence νs departs chemical equilibrium while it is still relativistic.
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number density falls below that of Hubble expansion.
The process νsνsνsνs → νsνs is mediated by a χ − ϕ loop,
similar to the left-most diagram of Fig. 3. Assuming that
mϕ ≫ mχ , the rate for this process scales as

Γðνsνsνsνs → νsνsÞ ∼ n3νs
λ12m2

νs

m10
ϕ

: ð84Þ

Similarly, ϕνsνs → χνs may proceed, e.g., through an
s-channel ϕ, analogous to the center and right-most
diagrams of Fig. 3. By dimensional analysis, we estimate
the corresponding rate as

Γðϕνsνs → χνsÞ ¼ nνsnϕ
λ6

m5
ϕ

: ð85Þ

In Fig. 8, we plot the quantity Γ=H, evaluated at
Th ¼ mνs , as a function of λ for these two processes.
As illustrated in this figure, for λ≲Oð1Þ, Γ=H ≲ 10−2,
and νs is not maintained in chemical equilibrium. For the
remainder of our analysis, we will therefore assume
that νs freezes out while relativistic. Following the
discussion above Eq. (18), this implies that the νs
comoving number density is fixed as Yνs ≈ 0.01ξ3inf
and, as in Sec. VI A, this justifies calculating the initial
freeze-out abundance of χ through the use of the semi-
analytic form in Eq. (24).
The hidden sector will remain thermally decoupled

from the SM during the dark matter freeze-out
process if the scattering processes νsνSM ↔ tt and

FIG. 9. Selected regions of parameter space in the lepton portal model. The black contours (Ωχh2 ¼ 0.12) correspond to regions in the
mχ − ϵ plane where the final χ abundance matches the observed dark matter energy density for three different values of the χ − νs
coupling, λ ¼ 0.1, 0.5, and 1. The cross section for dark matter-nucleon scattering is beyond the reach of LUX or PandaX throughout the
parameter space shown. In the shaded blue region (BBN) the νs decays reheat the SM plasma to a temperature below 10 MeV, in
potential tension with the successful predictions of BBN. In and above the brown region (ρνs < ρSM), the νs population never comes to
dominate the energy density of the Universe, while in and above the yellow region (τνs < H−1

FO) νs dominates the energy density but
decays before the freeze-out of χ. The shaded orange region (KE) corresponds to values of ϵ for which kinetic equilibrium between the
hidden and visible sectors is established. The green dotted line (TðτνsÞ > 100 GeV) corresponds to the boundary of the parameter space
in which the temperature of the SM plasma is above 100 GeVat the time of νs decay, representing a favorable condition for leptogenesis.
In the top-left and top-right panels, we have fixed ξinf ¼ 1 andmχ=mνs ¼ 20 and 10, respectively, while the bottom-left and bottom-right
panels illustrate the effect of varying ξinf while fixing mχ=mνs ¼ 20. The mass ratio, mϕ=mχ ¼ 1.1, is fixed throughout all panels.
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νst ↔ νSMt do not exceed Hubble expansion before
T ¼ mχ=xf. For temperatures significantly above the
electroweak scale, νs − νSM mixing is suppressed, and
hence, we will refrain from considering processes

that depend explicitly on such mixing. In the limit that
mνs ≫ mt, we find that the scattering cross sections for
νsνSM ↔ tt and νst ↔ νSMt are approximated as

σvðνsνSM → ttÞ ≈ 3jyνj2m2
t s

32πv2ðs −m2
hÞ2

; σvðtt → νsνSMÞ ≈
jyνj2m2

t ðs −m2
νsÞ2

32πv2sðs −m2
hÞ2

;

σvðνst → νSMtÞ ≈
m2

t jyνj2
32πv2ðs −m2

νsÞ
�
m4

νs − 2m2
νssðx2h − 2Þ þ s2x2h

m4
νs þ sx2hðs −m2

νsÞ
þ m2

νs

s −m2
νs

log

�
sðs −m2

νsÞ2
m2

t ðm4
νs þ sx2hðs −m2

νsÞÞ
�	

;

σvðνSMt → νstÞ ≈
ðs −m2

νsÞ2
s2

σvðνst → νSMtÞ; ð86Þ

where xh ≡mh=mt, and the “v” on the right-hand side is
the SM Higgs VEV. If nνSMσv≲H at T ¼ mχ=xf, then the
hidden sector and the SM do not equilibrate before the
freeze-out of the dark matter abundance.
In Fig. 9, we plot some of the phenomenological features

of this model as a function of mχ and ϵ, fixing mϕ ¼ 1.1mχ

and for various choices of mχ=mνS and ξinf . In most
respects, this resembles the results shown in the previous
two subsections. In this case, however, we also show as a
green dotted line the boundary of the region in which the
temperature of the SM plasma is reheated to above
100 GeV through νs decays. Above this approximate
temperature, electroweak sphalarons are in thermal equi-
librium with the SM plasma, and are thus potentially able
to convert a lepton-antilepton asymmetry (such as one
generated through νs decays) into a baryon asymmetry.

VII. SUMMARY AND CONCLUSIONS

Motivated by the increasingly stringent constraints that
have been placed in recent years on dark matter in the form
of WIMPs, we consider in this study dark matter candidates
that are part of a larger sector with no sizable interactions
with the Standard Model. Such a hidden sector could very
plausibly be populated after inflation, and will undergo a
thermodynamic history that is independent of the visible
sector (which contains the Standard Model). As the hidden
sector cools, its lightest particles will become nonrelativ-
istic and may come to dominate the energy density of the
Universe. When these particles ultimately decay, they
reheat the Universe and dilute the abundances of any
previously frozen-out relics, including that of the dark
matter itself. This sequence of events is a generic conse-
quence of the hidden sector’s highly decoupled nature, and
phenomenology of this type can be found within a wide
range of theoretical frameworks.
In this study, we have described in some detail the

thermodynamics and cosmological evolution of models
that feature a highly decoupled hidden sector. After
presenting a more general discussion, we have considered

three simple, representative models, in which the hidden
and visible sectors interact through what are known as the
vector, Higgs, and lepton portals. In each of these cases, we
identify significant parameter space in which the decoupled
cosmological history considered here is viably realized.
Furthermore, due to the dilution that results from the
decays of long-lived hidden sector particles, the dark
matter can be as heavy as ∼1–100 PeV in these scenarios,
without generating a dark matter abundance in excess of the
measured value.
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APPENDIX: 3 → 2 SCATTERING RATES

In this appendix, we will derive a general form for 3 → 2

scattering rates, σv2ðX1X2X3 → X0
1X

0
2Þ. Let jii and jfi

abbreviate the initial and final states, respectively.
The relevant matrix element is related to the amplitude,
iM, by

hfjii ¼ ð2πÞ4δ4ðkin − koutÞiM; ðA1Þ

where kμin;out is the total incoming or outgoing 4-momenta.
The probability, P, for this process to occur is then
given by

P ¼ jhfjiij2
hfjfihijii : ðA2Þ

Imagining that the scattering occurs in a spacetime box of
spatial volume V and time T, the numerator above can then
be written as
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jhfjiij2 ¼ ½ð2πÞ4δ4ðkin − koutÞ�2jMj2
¼ ð2πÞ4δ4ðkin − koutÞð2πÞ4δ4ð0ÞjMj2
¼ ð2πÞ4δ4ðkin − koutÞVTjMj2: ðA3Þ

The single-particle states are normalized as

hkjki ¼ ð2πÞ32Ekδ
3ð0Þ ¼ 2EkV: ðA4Þ

Therefore, _P≡ P=T can be expressed as

_P ¼ ð2πÞ4δ4ðkin − koutÞjMj2
8E1E2E3 × 4E0

1E
0
2 × V4

: ðA5Þ

Summing over the outgoing momenta results in a factor of
V × d3k0i=ð2πÞ3 for each outgoing particle. This gives

_P ¼ ð2πÞ4δ4ðkin − koutÞjMj2
8E1E2E3 × V2

fdk01 fdk02; ðA6Þ

where ~dki ≡ d3ki=ð2πÞ32Ei. “σ” is defined such that
σ ≡ _P=flux. Therefore,

σ ¼
_P

ðv1=VÞðv2=VÞ
; ðA7Þ

and hence

σv2 ¼ _PV2 ¼ ð2πÞ4δ4ðkin − koutÞjMj2
8E1E2E3

fdk01 fdk02 : ðA8Þ

In the nonrelativistic limit, Ei ≈mi,

σv2 ¼ 1

8m1m2m3

Z
dLIPS2jMj2; ðA9Þ

where dLIPS2 ≡ ð2πÞ4δ4ðkin − koutÞfdk01 fdk02. Also in the
nonrelativistic limit, the phase space integral is evaluated
to be

dLIPS2 ¼
d cos θ

16πðm1 þm2 þm3Þ2
× ½ðm1 þm2 þm3Þ4
− 2ðm1 þm2 þm3Þ2ðm2

10 þm2
20 Þ

þ ðm2
10 −m2

20 Þ2�1=2: ðA10Þ

Therefore, we find

σv2 ¼ ½ðm1 þm2 þm3Þ4 − 2ðm1 þm2 þm3Þ2ðm2
10 þm2

20 Þ þ ðm2
10 −m2

20 Þ2�1=2
S × 128πm1m2m3ðm1 þm2 þm3Þ2

Z
1

−1
d cos θjMj2; ðA11Þ

where S is a symmetry factor for identical outgoing states. In the limit that all incoming and outgoing particles are mass
degenerate, m1;2;3 ¼ m10;20 ¼ m, this reduces to

ffiffiffi
5

p

S × 384πm3

Z
1

−1
d cos θjMj2; ðA12Þ

in agreement with that presented in Ref. [69].
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