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We show that natural supersymmetry can be embedded in a five-dimensional theory with supersymmetry
breaking à la Scherk-Schwarz (SS). There is no “gluino-sucks” problem for stops localized in the four-
dimensional brane and gluinos propagating in the full five-dimensional bulk, and sub-TeV stops are easily
accommodated. The μ=Bμ problem is absent as well; the SS breaking generates a Higgsino Dirac mass, and
no bilinear Higgs mass parameter in the superpotential is required. Moreover, for nonmaximal SS twists
leading to tan β≃ 1, the Higgs spectrum is naturally split, in agreement with LHC data. The 125 GeV
Higgs mass and radiative electroweak symmetry breaking can be accommodated by minimally extending
the Higgs sector with Y ¼ 0 SUð2ÞL triplets.
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I. INTRODUCTION

In the past decades the hierarchy problem of the Standard
Model (SM) has guided most of the particle physics com-
munity in the search for a UV completion able to describe
nature up to the Planck (or Grand Unified Theory) cutoff
scale. In this task, supersymmetry and compositeness have
been, and still are, the most promising lighthouses to follow.
Their most appealing feature is that their Higgs sectors are
insensitive to the Planckmass cutoff, and are only sensitive to
the scale of new physics which should, therefore, be close to
the electroweak scale in order to avoid an (unnatural) little
hierarchy problem. Despite this expectation, there is no sign
of new physics in the LHC data. The situation is thus
threatening: if the tendency in the data does not change,
we might lose our trust in the naturalness criterion (and the
subsequent loss of confidence on any deduction based on
dimensional arguments), which would make our future way
up to the Planck scale very hard. In order to avoid this threat, it
is crucial to understand whether, and in casewhy, naturalness
is hiding in the present LHC data.
In supersymmetry, several experimental observations

seem to invoke a tuning in the electroweak sector. Indeed,
if one does not rely on the low-energy corners of the
parameter space still compatible with the experimental
searches, a large gap between the soft-supersymmetry
breaking and electroweak scales is required [1,2]. The
tension between data and naturalness is, however,
reduced and may be avoided, if there is a symmetry
imposing some cancellations at both tree level and
(at least) one loop.
The naturalness problem is manifest in the minimal

supersymmetric extension of the SM (MSSM). In the

MSSM the squared-mass term of the lighter CP-even
(and SM-like) eigenstate h has the magnitude of the lighter
eigenvalue in the matrix

M2
H1;H2

¼
�
m2

1 m2
3

m2
3 m2

2

�
; ð1:1Þ

where m2
i ¼ ðm2

i Þ0 þ Δm2
i contains radiative corrections

Δm2
i to the desired order. The lightest eigenvalue ofM

2
H1;H2

thus needs to beOðm2
ZÞ and negative to have agreement with

the experimentally observed electroweak symmetry break-
ing (EWSB) pattern. The other Higgses, instead, with a
squared mass of the order of the larger eigenvalue of
M2

H1;H2
, have to be hierarchically larger to avoid any tension

with the extra-Higgs searches [3,4]. Two parameter regions
seem promising for fulfilling these features:

(i) The so-called focus point solution [5–9], based on
the fact that, for m2

1 ≫ m2
3, or equivalently

tan β ≫ 1, M2
H1;H2

is essentially diagonal. In this
case no tree-level tuning is required ifm2

2∼Oð−m2
ZÞ.

(ii) The parameter region m2
1 ≃m2

2 ≃m2
3 ≫ Oðm2

ZÞ
(equivalent to tan β≃ 1) which, if justified by a
symmetry, naturally leads to a vanishing eigenvalue
in M2

H1;H2
.

However, several issues jeopardize the naturalness
of these two options. In particular, the supersym-
metric parameter μ1 cannot be below the electroweak

1This parameter provides a supersymmetric contribution to the
tree-level Higgs masses ðm2

1;2Þ0 ¼ m2
H1;2

þ μ2.
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scale because of the lightest chargino mass bound,
m~χ� ≳ 105 GeV [10]. Moreover, even if μ is above
this bound, it can be in tension with the general elec-
troweakino searches, depending on the gaugino mass
spectrum [11,12]. Finally if all these constraints are
circumvented, still, explaining theoretically why the
electroweak scale appears naturally in the superpotential
is challenging.
The radiative corrections Δm2

i should also lift concerns.
They should be small in order not to introduce a tuning at
one loop. In this sense, the charged sleptons and bottom
squarks that must be heavy to fulfill the flavor constraints
[13] are innocuous when tan β is not huge. Stop contri-
butions are instead dangerous. Thus, naturalness requires
light stops, which are in agreement with top squark
searches and 125 GeV Higgs mass constraints only in
the presence of heavy gluinos and sizable stop mixing
[14–16]. Unfortunately, the latter also generate large
radiative corrections that need to be tuned, while the
former tend to be inconsistent with light stops in top-down
approaches. In fact, heavy gluinos pull the stop soft
masses above the TeV scale along the running from the
scale at which they are generated (if this scale is large
enough) to the electroweak scale [17].
In view of the above issues, an appropriate strategy to

resurrect naturalness in the present LHC data may consist
in looking for UV embeddings where

(i) The tree-level Higgs mass is higher than in the
(“vanilla”) MSSM in such a way that rather light
stops with negligible mixing are viable.

(ii) Gluinos are heavy, but the scale at which the soft
stop masses are generated, and below which the
renormalization-group (RG) evolution applies, is
rather low (i.e. stop masses remain small while
running down to the electroweak scale).

(iii) In the superpotential no mass term is required, so
that the Dirac mass of the Higgsinos does not have a
superpotential origin.

Remarkably, the five-dimensional (5D) N ¼ 1 super-
symmetry embeddings of Refs. [18,19] can fulfill
these requirements [20,21]. When the fifth dimension
is compactified on the circle orbifold S1=Z2 of radius R,
the N ¼ 1 chiral superfields propagating in the bulk
receive soft supersymmetry-breaking scalar masses and/
or Dirac fermionic masses, depending on some global
charge assignments technically called Scherk-Schwarz
(SS) twists [22,23]. It is then possible to arrange the 5D
Higgs sector in bulk chiral superfields in such a way
that, below the compactification scale, the four-
dimensional (4D) effective theory is equivalent to the
MSSM with either tan β ¼ 1 [with m2

1 ¼ m2
2 ¼

m2
3 ∼Oð1=R2Þ exact at tree level] for nonmaximal twists

[19–21] or tan β ¼ ∞ for maximal twists [24,25].
Crucially, no contribution mimicking a superpotential
squared mass μ2 arises, although the Higgsinos do

receive an Oð1=RÞ Dirac mass, as required by con-
dition (iii).2

This supersymmetry breaking mechanism, dubbed the
SS mechanism [22], also works on vector superfields. It
naturally leads to a spectrum where all gauge bosons are
massless (prior to EWSB) and all gauginos have Oð1=RÞ
Majorana masses. On the other hand, at tree level, it does
not induce any supersymmetry breaking for superfields
localized at a brane of the orbifold. Therefore, by assuming
a localized third generation of squarks, the stop soft squared
masses are generated with a suppression of a one-loop
factor.3 Moreover, since the logarithmic ratio between the
electroweak scale and the compactification scale (at which
the SS mechanism induces supersymmetry breaking) is
small, the stop masses are not drastically modified by their
RG evolution and remain Oð0.1=RÞ, as required by con-
dition (ii). Finally, also the requirement (i) can be fulfilled.
In (maximally twisted) SS scenarios leading to tan β ¼ ∞,
5D nonminimal supersymmetric extensions with one sin-
glet on the brane, or two pairs of vectorlike fermions on the
brane, or an extra Uð1Þ0 vector superfield in the bulk, boost
the tree-level mass of the SM-like Higgs [24,25].4

The 5D SS scenarios then contain all the ingredients
guaranteeing the SM-like Higgs squared-mass term to be
Oðm2

ZÞ, provided by gauge interactions without an unnatu-
ral tuning. The last obstacle is the sign of this term. In fact,
in the above SS scenarios solving the issue (i), EWSB
(namely with a negative sign in the Higgs squared mass
term) can be achieved only by means of higher-dimensional
operators whose magnitude and origin are hard to identify.
It is then worth proving that there exist SS scenarios where
these operators are not necessary for a successful EWSB,
and where, at the same time, the requirements (i), (ii), and
(iii) are fulfilled. We achieve this result by focusing on
minimal extensions of the chiral superfield sector (for a
study where the EWSB is obtained in nonminimal chiral
extensions violating condition (iii); see Ref. [26]). We also
restrict ourselves to the orbifold charge assignments cor-
responding to the tan β ¼ 1 case, for which the F terms
contributions to the Higgs tree-level mass are enhanced.
Our proof of principle is developed in several steps. In

Sec. II we review how to embed the MSSM in a 5D SS
scenario and why the 125 GeV Higgs mass and the EWSB
are problematic. Since the former problem should be

2Notice that also the chiral superfields associated with the first
and second generations of squarks and sleptons will benefit from
the same supersymmetry breaking if these superfields propagate
in the bulk. There exist charge assignments for which their
fermions are massless (prior to EWSB) but their superpartners are
at the Oð1=RÞ scale. This makes the SS mechanism naturally
compatible with the flavor constraints [13].

3The stop mixing is also suppressed by a loop factor and is far
away from the maximal mixing value as discussed in Sec. II.

4At a quantitative level, the singlet case might be problematic
as its F-term contribution to the Higgs quartic coupling is
suppressed at large tan β.
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trivially avoidable in aMSSM5D scenario supplemented by
a singlet, we consider in Sec. III the case where there is an
extra singlet chiral superfield localized at the brane. As
expected, the Higgs mass bound can be accommodated, but
the radiative corrections to the SM-like squared-mass term
are not sufficient to trigger the EWSB, analogously to the
tan β ¼ ∞ case [24,25]. In addition, and surprisingly pre-
viously unnoticed, as the singlet is not protected by any
symmetry of the theory, it develops a large tadpole (prior to
the EWSB) inducing a Oð1=RÞ vacuum expectation value
(VEV) to the singlet. This jeopardizes the treatment of the
Higgs Kaluza-Klein (KK) towers and the possibility of
achieving Higgs-singlet mixings compatible with the LHC
constraints [27]. ThisVEV could of course be suppressed by
introducing a (huge) singlet mass term in the superpoten-
tial.5 Since this possibility would violate the criterion (iii),
andmoving the singlet to the bulk should not circumvent the
problem, in Sec. IV we pursue the analysis with the Y ¼ 0
SUð2ÞL-triplet extension of the MSSM, in which case the
gauge symmetry itself forbids the large tadpole. This case,
with the 5D N ¼ 1 triplet superfield being in the bulk—
triplet charginos would be too light if the superfield were
localized on the brane—turns out to be the example of SS
scenario that satisfies all the requests of our proof. Finally, in
Sec. IV E we discuss some further phenomenological
bounds and the need for localizing on the brane the third
family of the leptonic superfield to overcome the darkmatter
bound, and in Sec. V we present our conclusions.

II. 5D MSSM

We embed the MSSM in a 5D space-time setup where
the extra dimension is the orbifold S1=Z2 with two 4D
branes at the fixed points y ¼ 0 and y ¼ πR (R is the radius
of the circle S1). The gauge and Higgs sectors, as well as
the first and second generations of matter (and the right-
handed stau6), propagate in the bulk while the rest of the
third generation matter is localized at the y ¼ 0 brane. The
boundary conditions of the bulk fields are twisted by
introducing SS parameters associated with the available
global symmetries we are allowed to break. In this section
we present a summary of the formalism and results in the
MSSM (nonminimal extensions are considered in Secs. III
and IV). The original calculations were performed mainly
in Refs. [19–21] to which we will refer for more details. To
simplify the notation, hereby, unless explicitly stated, we
use units where R≡ 1.
In 5D supersymmetry the Higgs doublets in the bulk

belong to the N ¼ 2 hypermultiplets Ha ¼ ðHa;Hc
a;Ψa;

Fa; Fc
aÞ (with a ¼ 1, 2), where Ha and Hc

a are complex

SUð2ÞL doublets with hypercharge 1=2 and Ψa ¼
ðψa; ψ̄c

aÞT ≡ ðψaL;ψaRÞT are SUð2ÞL-doublet Dirac spin-
ors with ψa (ψ̄a) and ψc

a (ψ̄c
a) being undotted (dotted) Weyl

spinors. The two hypermultiplets Ha have the same
quantum numbers and can then be arranged to form a
doublet of a global symmetry, SUð2ÞH, acting on the index
a. The doublet of N ¼ 2 hypermultiplets can also be split
into Z2 even and odd N ¼ 1 chiral multiplets according to
the Z2 parity assignment

Z2 ¼ σ3jSUð2ÞH ⊗ γ5; ð2:1Þ

where σ3 acts on the SUð2ÞH indices and γ5 over Dirac
indices. For H1 and H2, we take ðH2;ψ2L; F2Þ and
ðH1;ψ1R; F1Þ to be even and ðHc

2;ψ2R; Fc
2Þ and

ðHc
1;ψ1L; Fc

1Þ to be odd.
The gauge sector in the bulk is instead described by

N ¼ 2 vector supermultiplets. For a SUðNÞ gauge group
each of the supermultiplets is given by V ¼ ðVM; λiL;ϒÞ,
which contains the vector bosons VM (with M ¼ 1;…; 5),
the real scalar ϒ, and the two bispinors λiL (with i ¼ 1, 2).
All these fields are in the adjoint representation of SUðNÞ.
As customary we assume Vμ and λ1L (V5,ϒ, and λ2L) to be
even (odd) with respect to the Z2 symmetry.
The SS twists ðqR; qHÞ associated with the global

symmetries SUð2ÞR × SUð2ÞH impose the relation

�
H1ðx;yÞ Hc

1ðx;yÞ
Hc

2ðx;yÞ H2ðx;yÞ
�

¼eiqHσ2y
X∞
n¼0

ffiffiffi
2

π

r �
cosnyHðnÞ

1 ðxÞ sinnyHcðnÞ
1 ðxÞ

sinnyHcðnÞ
2 ðxÞ cosnyHðnÞ

2 ðxÞ

�
e−iqRσ2y;

ð2:2Þ

where HðnÞ
1;2ðxÞ (with n ≥ 0) and HcðnÞ

1;2 ðxÞ (with n ≥ 1) are
the KK modes of the corresponding doublets (their x
dependence is omitted hereafter) and have mass dimension
equal to one. The

ffiffiffiffiffiffiffiffi
2=π

p
factor comes from the normali-

zation of the nonzero modes in the interval ½0; π�. The zero
modes Hð0Þ

a are then not canonically normalized as they are
missing a prefactor 1=

ffiffiffi
2

p
. The mass doublet eigenstates

hðnÞ and HðnÞ, with masses qR − qH þ n and qR þ qH þ n,
respectively (with n from −∞ to þ∞), are computed in
Ref. [19]. They are given by

HðnÞ
1 ¼ ðhðnÞ þ hð−nÞ þHðnÞ þHð−nÞÞ=2;

HðnÞ
2 ¼ ðhðnÞ þ hð−nÞ −HðnÞ −Hð−nÞÞ=2;

HcðnÞ
1 ¼ ðhð−nÞ − hðnÞ þHð−nÞ −HðnÞÞ=2;

HcðnÞ
2 ¼ ðhðnÞ − hð−nÞ þHð−nÞ −HðnÞÞ=2; ð2:3Þ

for n ≥ 1, and by

5This term was considered in e.g. Ref. [26] to suppress the
effect of the tadpole estimated to be of the order of the
electroweak scale.

6We are considering ~τR propagating in the bulk in order to
avoid bounds on heavy stable charged particles [28].

NATURAL SUPERSYMMETRY FROM EXTRA DIMENSIONS PHYSICAL REVIEW D 94, 095017 (2016)

095017-3



Hð0Þ
1 ¼ ðhð0Þ þHð0ÞÞ=2;

Hð0Þ
2 ¼ ðhð0Þ −Hð0ÞÞ=2; ð2:4Þ

for n ¼ 0. Notice that although Hð0Þ
a are noncanonically

normalized, the zero modes hð0Þ and Hð0Þ are canonically
normalized, which has enforced the introduction of an extra
factor of 1=

ffiffiffi
2

p
in Eq. (2.4). In this way, even though the

zero modes are differently normalized than the nonzero
ones, it is straightforward to reconstruct full KK towers
(with n from −∞ to þ∞) of fields when coupled to the
brane. As for the Higgsino components in Ha, the mass
eigenstates are (for n > 0)

~Hð−nÞ ¼ 1ffiffiffi
2

p ðψ ðnÞ
2 − γ5ψ

ðnÞ
1 Þ; with massðqH − nÞ;

~HðþnÞ ¼ 1ffiffiffi
2

p ðγ5ψ ðnÞ
2 þ ψ ðnÞ

1 Þ; with massðqH þ nÞ;

~Hð0Þ ¼ ðψ ð0Þ
2L ;ψ

ð0Þ
1R ÞT; with massðqHÞ: ð2:5Þ

The SUð2ÞR twist also acts on all bulk gauginos, which
are embedded in V j. The KK tower of these fields have
Majorana masses nþ qR. Moreover, any field in the bulk
coupled to these charginos is sensitive to the twist qR. All
bulk matter fields have, in fact, a KK tower with tree-level
masses nþ qR for scalars and n for fermions. Bulk fields
that are SUð2ÞR singlets (e.g. the gauge vector bosons and
scalars of V j), or fields in the brane, are instead insensitive to
qR and their spectrum is not affected by the SS mechanism.7

The scenario with charges qR ¼ qH ≡ ω is particularly
interesting. The doublet hð0Þ is massless while the doublet
Hð0Þ has mass 2ω. The corresponding KK modes, hðnÞ and
HðnÞ, have masses n and 2ωþ n, respectively. Higgsinos and
charginoshavemassesωþ n. The first and secondgeneration
sfermions and right-handed staus, which we assume in the
bulk, also have mass eigenstates ωþ n, while their super-
symmetric partners have masses n. In the rest of the paper we
focus on this scenario and some minimal extensions of it.
The main features of this scenario are the following:
(i) The Higgsino zero mode has a Dirac mass equal to

ω=R, by which there is no need to introduce a
superpotential μ-like term as in the MSSM. The μ-
problem is thus naturally solved by this formalism.

(ii) At tree level the theory predicts a 4D massless Higgs
doublet with a flat potential [19]. The rest of the
Higgs sector is heavy. In the MSSM language this
amounts to equations of electroweak minimum with
tan β ¼ 1 and invariant under the global scale change
ω=R → λω=R. Such an invariance reminds some of
the properties of the focus point solution [5–8].

(iii) States localized in the brane, i.e. third generation of
squarks and third generation of slepton doublet, are
naturally light as their tree-level masses are vanish-
ing. Their one-loop radiative masses from KK
modes are finite [21] and can be interpreted as finite
threshold effects after integrating out the heavy
modes. Moreover, left-handed and right-handed
squarks do not mix much as their mixings are
generated only at one loop as well. The values of
the stop mixing At and the one-loop masses of the
fields localized in the brane are displayed in Fig. 1
(their explicit expressions are given in Ref. [21]).

(iv) The lightest (n ¼ 0) modes of the fields in the bulk
have tree-level masses that are zero, ω=R, 2ω=R, or
1=R. Those with vanishing masses correspond to
SM-like fields. The new-physics spectrum thus
exhibits very compressed sectors, with a large gap
between new-physics bulk and brane states. In this
way the first and second generation sfermions, and
the right-handed staus as well, are naturally much
heavier than the stops, sbottoms, and left-handed
staus and tau sneutrinos, in agreement with flavor
constraints. The explicit values of the lightest new-
physics modes are presented in Fig. 2.

(v) The EWSB has to proceed by radiative corrections
as discussed here below.

The minimal picture suffers then from two drawbacks:
(i) EWSB: In this theory the radiative corrections to the

mass terms are known [19–21]. They are finite and
can be considered as threshold effects at the com-
pactification scale Oð1=RÞ at which all heavy bulk
fields are integrated out. In particular, at one loop,
there are gauge corrections to the squared mass of the
SM Higgs (m2) and the brane fields ~Q3L; ~U3R;
~D3R; ~E3R ðm2

Q;m
2
U;m

2
D;m

2
EÞ, which are positive, thus

preventing EWSB. As stops are localized, and
massless at tree level, they do not produce any
one-loop correction to the Higgs mass proportional
to h2t which could trigger EWSB as in the 4DMSSM.
Of course,when they are integrated out, they generate
a (logarithmic) radiative correction depending on
their own (one-loop)masses: a two-loop effect. In the
MS scheme this correction is given by [9]

Δm2 ¼ 6h2t
32π2

½Gðm2
QÞ þ Gðm2

UÞ�

þ 6h2t A2
t
Gðm2

QÞ − Gðm2
UÞ

m2
Q −m2

U
;

GðxÞ≡ x2
�
log

x2

Q2
− 1

�
: ð2:6Þ

To leading order in α3 it turns out that
mQðωÞ ¼ mUðωÞ, and Eq. (2.6) becomes

7For our twist assignments, each bosonic component
Vj
μ; V

j
5;ϒ

j of V j exhibits a KK spectrum with masses n, and
both V5 and ϒ have vanishing zero modes.
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Δm2 ¼ −
3h2t
8π2

m2
QðωÞ

�
log

Q2

m2
Q
þ 1

�
: ð2:7Þ

In Eq. (2.7) we can set the renormalization scale Q
at the scale where the boundary conditions are

imposed, i.e. where the theory becomes 4D. In
Ref. [19] it was taken as Q≃ ω=R, whereas in
Ref. [24] it was fixed as Q≃ 1=ðπRÞ. In both cases
the two-loop correction coming from m2

Q, m
2
U, and

A2
t , which are generated only at one loop, are too

FIG. 2. Contour plots of the tree-level masses of the bulk fields sensitive to the SS mechanism. Labels are in TeVunits. Left panel: First
and second generation sfermions, right-handed stau, gauginos, and Higgsinos. Right panel: Charged and neutral heavy doublet Higgses.
Blue areas are as in Fig. 1.

FIG. 1. Contour plots of the most relevant loop-induced parameters. In light blue the region with gluino mass m~g < 1.8 TeV, in
tension with LHC bounds (see Sec. IV E). Mass labels are in TeV units. Upper left panel: Stop trilinear parameter normalized as
Xt ¼ At=mQ. Upper right panel: Masses of the scalar left-handed tau ~τL and the scalar left-handed tau neutrino ~ντ. Lower left panel:

Masses of the lightest states of the stop ~t1 and sbottom ~b1 (red and blue lines, respectively). Lower right panel: Masses of the heaviest
states of the stop ~t2 and sbottom ~b2 (red and blue lines, respectively).
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small to drive m2 < 0. On the other hand, the
choice of Q in Eq. (2.7) only concerns the scale
dependence in the three-loop contribution.8 Since
we are not calculating all consistent two-loop
effects (e.g. we integrate out the heavy KK modes
only at one loop), our EWSB analysis should not
rely on just the few two-loop pieces that are
known, and which do not change either qualita-
tively or quantitatively the EWSB picture, as we
have checked. Thus, to be consistent, we consider
the EWSB at one loop, and hereafter we will then
ignore all two-loop EWSB contributions as the one
in Eq. (2.7).

(ii) Higgs mass: As both stop soft masses and trilinear
stop mixing parameter are one-loop suppressed,
their radiative correction to the Higgs quartic cou-
pling is too small to reproduce the experimental
value mh ≃ 125 GeV. This problem was already
recognized in the early papers [19–21] and has been
more recently revamped [24,25].

In Ref. [24] problem (i) was solved by the introduction
of higher dimensional operators, while problem (ii) was
milder; as for the maximal SS breaking case ω ¼ 1=2 the
equations of motion lead to tan β ¼ ∞, and are solved by
introducing an extra Uð1Þ factor. In Ref. [26] both
problems were addressed by adding a singlet plus a
folded sector (i.e. a copy of the matter superfields) at
the expense of bilinear mass term parameters in the
superpotential. In the present paper we will see that an
extended Higgs sector can solve both problems without
violating the requirements (i), (ii), and (iii) of Sec. I. As an
extra singlet is appropriate to add tree-level corrections (an
F-term contribution) to the Higgs mass in the case of
tan β ¼ 1, we will first start considering the case of a
localized singlet.

III. 5D MSSM PLUS A SINGLET

Our setup in this section will be identical to that of Sec. II
but with the addition of a singlet. For simplicity we will
first consider the case of a singlet field S localized on the
y ¼ 0 brane.

A. Embedding and 4D Lagrangian

A singlet localized on the y ¼ 0 brane admits a super-
potential interaction with the (bulk) Higgs multiplets that
can be derived from the brane superpotential

W ¼ λ̂H1 ·H2SδðyÞ; ð3:1Þ

where λ̂ is a 5D Yukawa coupling with mass dimension
equal to −1. Specifically, only the even Higgs components
couple to the fields on the y ¼ 0 brane, so that the
corresponding N ¼ 1 superfields H1 and H2 are given
by [29]

H2 ¼ ðH2;ψ2L; F2 − ∂5Hc
2Þ;

H1 ¼ ð ~H1; ~ψ1R; ~F1 − ∂5
~Hc
1Þ; ð3:2Þ

where, for a doublet A with hypercharge 1=2, ~A ¼ −iσ2A⋆
stands for a doublet with hypercharge −1=2. In particular,
the fermionic components of H1;2 interact with the singlet
as a Dirac fermion Ψ defined as [cf. Eq. (2.5)]

Ψ ¼
X∞
n¼0

ψ ðnÞ ≡X∞
n¼0

�
ψ ðnÞ
2L

ψ ðnÞ
1R

�

¼ ~Hð0Þ þ 1ffiffiffi
2

p
X∞
n¼1

ð ~HðnÞ þ ~Hð−nÞÞ≡ 1ffiffiffi
2

p ~H: ð3:3Þ

In fact, from Eqs. (3.1) and (3.2) one can determine the
4D Lagrangian. After integrating out the auxiliary fields, its
bosonic part reads

L4 ¼ −λ̂Sf∂5H
c†
1 ð0ÞH2ð0Þ þH†

1ð0Þ∂5Hc
2ð0Þ þ H:c:g

− λ̂2fjH1ð0Þ†H2ð0Þj2 þ jSj2ðjH1ð0Þj2
þ jH2ð0Þj2Þπδð0Þg; ð3:4Þ

with

δð0Þ≡ 1

π

X∞
n¼−∞

1: ð3:5Þ

Moreover, using the notation

h ¼
X∞
n¼−∞

hðnÞ; ĥ ¼
X∞
n¼−∞

ðqR − qH þ nÞhðnÞ; ð3:6Þ

H ¼
X∞
n¼−∞

HðnÞ; Ĥ ¼
X∞
n¼−∞

ðqR þ qH þ nÞHðnÞ; ð3:7Þ

then

∂5Hc
1ð0Þ ¼

−1ffiffiffiffiffiffi
2π

p ðĥþ ĤÞ; H1ð0Þ ¼
1ffiffiffiffiffiffi
2π

p ðhþHÞ;

∂5Hc
2ð0Þ ¼

1ffiffiffiffiffiffi
2π

p ðĥ − ĤÞ; H2ð0Þ ¼
1ffiffiffiffiffiffi
2π

p ðh −HÞ;

ð3:8Þ

and Eq. (3.4) reads

8Note that the EWSB could be determined by means of the
RG-improved effective potential. In that case the resulting EWSB
condition is independent of Q at a given perturbative order [9].
The choice of Q is then only aimed to minimize the corrections
coming at the next perturbative order.
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L4¼−
λ

2
fSðh†þH†Þðĥ− ĤÞ−S†ðh†−H†Þðĥþ ĤÞþH:c:g

−λ2
�
1

4
jjhj2− jHj2−h†HþH†hj2

þjSj2ðjhj2þjHj2Þπδð0Þ
�
; ð3:9Þ

where λ≡ λ̂=π is the (dimensionless) 4DYukawa coupling.

B. Quartic and quadratic terms of the lightest Higgs

As we can see from Eq. (3.9), the coupling λ is the tree-
level source of the hð0Þ quartic coupling. The hð0Þ potential
is then given by

VSM ¼ ðm2 þ Δhm2Þjhð0Þj2 þ
�
λ2

4
þ Δλ

�
jhð0Þj4 þ…;

ð3:10Þ

where m2 is the tree-level Higgs squared mass term while
Δhm2 and Δλ are the radiative contributions to the Higgs
mass and quartic coupling, respectively.
We determine the total hð0Þ quartic coupling at leading

order in λ and ht. Since the λ dependence already appears at
tree level, Δλ is the usual MSSM radiative correction [30]

Δλ ¼ 3m4
t

8π2v4

�
log

m2
~t

m2
t
þ A2

t

m2
~t

�
1 −

A2
t

12m2
~t

��
; ð3:11Þ

in which v ¼ 174 GeV (i.e. where the observed EWSB is
assumed). Notice that as both m2

~t ≃m2
U ≃m2

Q and At are
generated at one loop by exchange of KK modes (see e.g.
Ref. [19]), Δλ is a two-loop effect. Moreover, if we assume
m2 þ Δhm2 ≃−ð88 GeVÞ2, in agreement with the EWSB
observations, Eqs. (3.10) and (3.11) can be used to translate
the constraint on the hð0Þ scalar mass, mh, into λ. This is
quantified in Fig. 3 (left panel) where the explicit values of
λ providing mh ¼ 125 GeV are displayed as a function of
1=R and ω, with the correction Δλ being included.
On the other hand, it is not obvious that the EWSB

condition m2 þ Δhm2 ≃−ð88 GeVÞ2 can be fulfilled. As
discussed in Sec. II,m2 is vanishing. The EWSB then relies
only on the loop-induced quantity Δhm2. This can be split
as Δhm2 ¼ Δgm2 þ Δλm2, where Δgm2 and Δλm2 are the
contributions depending, respectively, on the SUð2ÞL
gauge coupling g and on the superpotential parameter λ.9

The quantity Δgm2 amounts to [19]

Δgm2 ¼ g2

64π4
½9Ωð0Þ þ 3Ωð2ωÞ − 12ΩðωÞ� ð3:12Þ

FIG. 4. Diagrams contributing to the correction Δλm2 to the squared-mass term of hð0Þ.

FIG. 3. Left panel: Contour plot of values of λ leading to the experimental value mh ¼ 125 GeV if the observed EWSB is achieved.
Blue area is as in Fig. 1. Right panel: Plot of 103R2Δgm2 (red dotted line), 103R2Δλm2 (blue dashed line), and its sum 103R2Δhm2

(black solid line), for 1=R ¼ 2 TeV and λ fixed from the plot on the left panel, as a function of ω.

9For simplicity we are neglecting here the subleading con-
tribution corresponding to the Uð1ÞY gauge interactions.
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with

ΩðωÞ ¼ 1

2
½Li3ðe2iπωÞ þ Li3ðe−2iπωÞ�ð1=RÞ2: ð3:13Þ

The contribution Δλm2 is generated by the diagrams in
Fig. 4 and turns out to be

Δλm2ðωÞ ¼ λ2

32π4
½Ωð0Þ þΩð2ωÞ − 2ΩðωÞ�: ð3:14Þ

Plots of Δgm2, Δλm2, and Δhm2 as a function of ω are
shown in the right panel of Fig. 3. In the plots the value of λ
is adjusted to reproduce the Higgs mass constraint (cf. left
panel of Fig. 3) assuming that EWSB occurs. A represen-
tative value of R is assumed, namely 1=R ¼ 2 TeV. For this
illustrative case it results that Δλm2, although negative for
0≲ ω≲ 0.2, is insufficient to overcome the positive con-
tribution Δgm2 and drive Δhm2 to negative values. We
check that this negative result is generic.
We conclude that in the 5D MSSM plus a localized

singlet, the extra field content helps in reproducing the
experimental value of the Higgs mass but does not seem to
improve the scenario from the EWSB problem. A possible
solution is to introduce higher-dimensional operators as in
Ref. [24]. However, a subtlety in the analysis might be
exploited to circumvent the problem: if there is sizable
mixing between the singlet and Higgs scalars, Δhm2 is not
the unique quantity playing a role in the EWSB. We sketch
the features of this possibility in the following section.

C. Tadpole and VEV of the singlet

The interaction between the singlet and the fermions of
H1;2 allows the Feynman diagram of Fig. 5 (left panel) to
generate the linear term in the Lagrangian proportional to S,
as it is not protected by any symmetry of the theory. Then
there exists a tadpole term in the localized Lagrangian as

L4 ¼ −ξðω; 1=RÞðSþ S†Þ þ � � � : ð3:15Þ

The coefficient of this interaction is expected to be
sizable.10 Indeed, the sum of the contributions of each
KK mode ψ ðnÞ yields

ξðω; 1=RÞ ¼ 3i
32π5

½Li4ðe−2iπωÞ − Li4ðe2iπωÞ�ð1=RÞ3;
ð3:16Þ

and its numerical value can be deduced from the right
panel of Fig. 5. The size Oð0.1=RÞ is then expected to be
the natural scale of the dimensionful parameters involved
in the singlet potential, so that the VEV that is eventually
acquired by the singlet should be parametrically
Oð1 TeVÞ for 1=R ∼ 10 TeV. The fields hð0Þ and S can
thus have a non-negligible mixing. In principle the mixing
could help the implementation of the EWSB at the
expense of some tension with the Higgs signal strengths
measured at the LHC [27].11 Determining whether these
possibilities are not ruled out by the present LHC data
would need a dedicated analysis that goes beyond the
scope of the present paper, and in any case we do not
expect the surviving parameter region to be really prom-
ising concerning naturalness. On the other hand, the
situation would not radically change by considering
singlets in the bulk, as bulk singlets still acquire a large
VEV. We thus focus the rest of our analysis on the 5D
MSSM extended by hyperchargeless SUð2ÞL triplets for
which tadpoles prior to the EWSB are forbidden by the
gauge symmetry.

IV. 5D MSSM PLUS BULK TRIPLETS

We consider the scenario where the Higgs sector is
extended by hyperchargeless SUð2ÞL triplets. In the context
of 4D supersymmetry the model is somewhat well known
(see e.g. Refs. [31–38]), but its implementation in a 5D
framework has not been attempted yet. In this section we
implement it in a SS scenario. As we refrain from
introducing any dimensionful parameter in the 4D super-
potential, we do not consider the option of triplets localized
on the brane (in which case the fermionic triplet compo-
nents would be too light to overcome the chargino mass
bound m~χ� ≳ 104 GeV [10]). We thus consider the 5D
MSSM extensions with triplets propagating in the bulk.

FIG. 5. Left panel: Diagrams contributing to the tadpole of S.
Right panel: Contour plot of the triplet trilinear parameter
ξ1=3ðω; 1=RÞ with λ adjusted to reproduce the observed Higgs
mass. Labels are in TeV units.

10This contribution has not been noticed in the previous
literature. The recent proposals [25,26] might be affected by
this tadpole term.

11Although hð0Þ and S have positive (one-loop) squared-mass
terms, there may be a linear combination developing a negative
quadratic term thanks to the mixing.
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A. Embedding and 4D Lagrangian

Similar to the case of bulk doublets (see Sec. II), the bulk
triplets can be arranged in Y ¼ 0 SUð2ÞL-triplet hyper-
multiplets Tb ¼ ðΣb;Σc

b;ΨΣb
; FΣb

; FΣb
Þ with b ¼ 1, 2,

which transform as a doublet under the global bulk group
SUð2ÞΣ acting on the index b. The fermionic component
ΨΣb

¼ ðψΣb
; ψ̄c

Σb
ÞT is a Dirac spinor while ψΣb

(ψ̄Σb
) and

ψc
Σb

(ψ̄c
Σb
) are undotted (dotted) Weyl spinors. Concerning

the Z2 symmetry, we assume the multiplets ðΣ2;ψΣ2
; FΣ2

Þ
and ðΣ1; ψ̄c

Σ1
; FΣ1Þ to be even and ðΣc

1;ψΣ1
; Fc

Σ1
Þ and

ðΣc
2; ψ̄

c
Σ2
; Fc

2Þ to be odd, according to the orbifold action

Z2 ¼ σ3jSUð2ÞΣ ⊗ γ5; ð4:1Þ

where σ3 is acting over SUð2ÞΣ indices and γ5 over Dirac

indices. We denote their scalar KK modes as ΣðnÞ
1;2 (n ≥ 0)

and ΣcðnÞ
1;2 (n ≥ 1).

This allows one to introduce the SS twists ðqR; qΣÞ that
establish the transformation

�Σ1ðx;yÞ Σc
1ðx;yÞ

Σc
2ðx;yÞ Σ2ðx;yÞ

�

¼ eiqΣσ2y
X∞
n¼0

ffiffiffi
2

π

r �
cosnyΣðnÞ

1 ðxÞ sinnyΣcðnÞ
1 ðxÞ

sinnyΣcðnÞ
2 ðxÞ cosnyΣðnÞ

2 ðxÞ

�
e−iqRσ2y;

ð4:2Þ

whose mode normalization is in analogy with Eq. (2.2).
The pattern of the mass eigenvalues and the spectrum
of the triplet is also similar to the ones in Eqs. (2.3) and
(2.4). Indeed, applying the same normalization conven-
tions, it turns out that the mass eigenstates σðnÞ and ΣðnÞ,

with mass qR − qΣ þ n and qR þ qΣ þ n, respectively, are
given by

ΣðnÞ
1 ¼ ðσðnÞ þ σð−nÞ þ ΣðnÞ þ Σð−nÞÞ=2;

ΣðnÞ
2 ¼ ðσðnÞ þ σð−nÞ − ΣðnÞ − Σð−nÞÞ=2;

ΣcðnÞ
1 ¼ ðσð−nÞ − σðnÞ þ Σð−nÞ − ΣðnÞÞ=2;

ΣcðnÞ
2 ¼ ðσðnÞ − σð−nÞ þ Σð−nÞ − ΣðnÞÞ=2; ð4:3Þ

for n ≥ 1, and by

Σð0Þ
1 ¼ ðσð0Þ þ Σð0ÞÞ=2;

Σð0Þ
2 ¼ ðσð0Þ − Σð0ÞÞ=2; ð4:4Þ

for n ¼ 0. The analogy also applies to the fermionic
components of the triplet. Their tree-level mass spectrum
is then similar to the one of the Higgsinos.
Only the even multiplets can have interactions on the

y ¼ 0 brane, and theN ¼ 1 triplet supermultiplets that have
such interactions are

T 2 ¼ ðΣ2;ψΣ2
; FΣ2

− ∂5Σc
2Þ;

T 1 ¼ ðΣ†
1;ψ

c
Σ1
; F†

Σ1
− ∂5Σ

c†
1 Þ: ð4:5Þ

The generic brane superpotential involving these fields is

W ¼ ðλ̂1H1 · T 1H2 þ λ̂2H1 · T 2H2ÞδðyÞ; ð4:6Þ

where λ̂b are 5D Yukawa couplings with mass dimension
equal to −3=2. In particular, in the superpotential no triplet
tadpole or cubic terms are allowed by the gauge symmetry.
After integrating out the auxiliary fields we obtain the

bosonic 4D Lagrangian

L4 ¼ −fH†
1ð0Þðλ̂1∂5Σ

c†
1 ð0Þ þ λ̂2∂5Σc

2ð0ÞÞH2ð0Þ þ ∂5H
c†
1 ð0Þðλ̂1Σ†

1ð0Þ þ λ̂2Σ2ð0ÞÞH2ð0Þ
þH†

1ð0Þðλ̂1Σ†
1ð0Þ þ λ̂2Σ2ð0ÞÞ∂5Hc

2ð0Þ þ H:c:g

−
�
1

2
ðλ̂21 þ λ̂22Þ

X
A

jH†
1ð0ÞτAH2ð0Þj2 þ jðλ̂1Σ†

1ð0Þ þ λ̂2Σ2ð0ÞÞH2ð0Þj2 þ jH†
1ð0Þðλ̂1Σ†

1ð0Þ þ λ̂2Σ2ð0ÞÞj2
�
πδð0Þ; ð4:7Þ

where τA are the Pauli matrices used in the definition Σb ≡ 1ffiffi
2

p Tb
AτA. By means of the notation

σ ¼
X∞
n¼−∞

σðnÞ; σ̂ ¼
X∞
n¼−∞

ðqR − qΣ þ nÞσðnÞ; ð4:8Þ

Σ ¼
X∞
n¼−∞

ΣðnÞ; Σ̂ ¼
X∞
n¼−∞

ðqR þ qΣ þ nÞΣðnÞ; ð4:9Þ

and the identities of Eq. (3.8) (with obvious replacements h → σ and H → Σ), Eq. (4.7) reads
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L4 ¼
�

1

2
ffiffiffi
2

p ðλ1 − λ2Þ½h†σ̂h −H†σ̂H þ h†Σ̂H −H†Σ̂h − Ĥ†ðσ − σ†Þhþ ĥ†ðΣþ Σ†Þhþ ĥ†ðσ − σ†ÞH − Ĥ†ðΣþ Σ†ÞH�

þ 1

2
ffiffiffi
2

p ðλ1 þ λ2Þ½h†Σ̂h −H†Σ̂H þ h†σ̂H −H†σ̂h

þ Ĥ†ðσ þ σ†ÞH − ĥ†ðΣ − Σ†ÞH þ ĥ†ðσ þ σ†Þh − Ĥ†ðΣ − Σ†Þh� þ H:c:

�

−
1

4
½h†FþhþH†FþH þ h†F−H þH†F−h�πδð0Þ

−
λ21 þ λ22

8
ðjhj4 þ jHj4 þ 6jhj2jHj2 − 6jh†Hj2 − ðh†HÞ2 − ðH†hÞ2Þπδð0Þ; ð4:10Þ

where λb ≡ λ̂b=
ffiffiffiffiffi
π3

p
are the dimensionless 4D Yukawa

coupling and F� is given by

F� ¼ λ21½σ† þ Σ†; σ þ Σ�� þ λ22½σ − Σ; σ† − Σ†��
þ λ1λ2f½σ − Σ; σ þ Σ�� þ H:c:g; ð4:11Þ

with ½x; y�− and ½x; y�þ standing for the commutator and
anticommutator operator, respectively. The decomposition

σ ≡X
A

tAτA=
ffiffiffi
2

p
ð4:12Þ

and the identity τAijτ
A
kl ¼ 2δilδjk − δijδkl have also been

used.

B. Quartic and quadratic terms of the lightest Higgs

From Eq. (4.10) we can determine the potential of hð0Þ at
low energy. On top of the contribution πδð0Þðλ21 þ λ22Þ=8,
the low-energy quadratic coupling includes the threshold
correction due to the heavy modes that are integrated out
(for a didactic calculation of threshold effects see e.g.
[39,40]). This relation is provided by the tree-level match-
ing condition depicted in Fig. 6 where the identity (3.5) has
been used pictorially. For qR ¼ qH the relation amounts to

lim
p→0

Xþ∞

n¼−∞

ðλ1 þ λ2Þ2
16

�
1þ ðqR þ qΣ þ nÞ2

p2 − ðqR þ qΣ þ nÞ2
�
jhð0Þj4

þ lim
p→0

Xþ∞

n¼−∞

ðλ1 − λ2Þ2
16

�
1þ ðqR − qΣ þ nÞ2

p2 − ðqR − qΣ þ nÞ2
�
jhð0Þj4

¼
�ðλ1 þ λ2Þ2

16
δqRþqΣ;0 þ

ðλ1 − λ2Þ2
16

δqR−qΣ;0

�
jhð0Þj4:

ð4:13Þ

For nonmaximal (and positive) twists the result is not
vanishing only if qR ¼ qΣ and the whole contribution is
due to the n ¼ 0 mode. Therefore, in order to achieve a
sizable boost to the tree-level Higgs mass, we focus on the

case qH ¼ qR ¼ qΣ ≡ ω hereafter. The low-energy poten-
tial of hð0Þ is then given by

VSM ¼ ðm2 þ Δhm2Þjhð0Þj2

þ
�ðλ1 − λ2Þ2

16
þ Δλ

�
jhð0Þj4 þ � � � : ð4:14Þ

We then determine the hð0Þ quartic coupling at leading
order in λ1;2 and ht, as in previous sections. The contri-
bution depending on λ1;2 appears at tree level while the
latter appears at two loop and is given by Eq. (3.11) (see
comments in Sec. III B). Once the observed EWSB is
assumed, which in practice is equivalent to impose
m2 þ Δhm2 ≃−ð88 GeVÞ2, the experimental measure-
ment of the Higgs mass constrains jλ1 − λ2j, R, and ω as
shown in Fig. 7.12

The EWSB is actually achievable in the present scenario.
For our choice of twists the tree-level squared mass m2 is
zero (see Sec. II). The radiative correction Δhm2 can be
split as

Δhm2 ¼ Δgm2 þ Δλm2; ð4:15Þ

with Δgm2 provided in Eq. (3.12). The contribution Δλm2

comes from the interactions depending on the superpoten-
tial couplings λ1;2. It is produced via the diagrams in Fig. 8
and results in

Δλm2 ¼ ðλ1 − λ2Þ2 þ ðλ1 þ λ2Þ2
2ð4πÞ4

~ΩðωÞ; ð4:16Þ

with

12As we will discuss in Section IV D, hð0Þ mixes very mildly
with the scalar triplet. The field hð0Þ is then the mass eigenstate
that plays the role of the SM-like Higgs. In addition, because of
the small mixing, only the squared-mass term of hð0Þ is relevant in
the EWSB.
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~ΩðωÞ ¼
�
2ζð3Þ − 4Li3ðe2iπωÞ þ 4i cotð2πωÞLi4ðe2iπωÞ

þ Li3ðe4iπωÞ − i
2þ 3 cosð4πωÞ

sinð4πωÞ Li4ðe4iπωÞ

þ H:c:

�
ð1=RÞ2: ð4:17Þ

Figure 9 (left panel) displays the values of Δhm2 (solid
line) and its contributions Δgm2 (dotted line) and Δλm2

(dashed line) in units of 103R2. The plot highlights the
illustrative case 1=R ¼ 2 TeV. It assumes jλ1 − λ2j fixed to
reproduce the observed Higgs mass (cf. Fig. 7) and λ1 þ λ2
set to zero to conservatively minimize the effect of Δλm2

[see Eq. (4.16)]. We see that Δgm2 is positive for all values
of ω, whereas Δλm2 can be negative and sizable. In
particular, at ω≲ 1=5, Δhm2 is negative and the EWSB
is achieved. Of course, the larger the value of jλ1 þ λ2j the
more easily the EWSB is obtained. This is highlighted in
the central panel of Fig. 9 presenting the contour lines of
R2Δhm2 in the ðω; jλ1 þ λ2jÞ plane with still 1=R ¼ 2 TeV
and jλ1 − λ2j fulfilling the Higgs mass constraint. Along the
(red) dotted line the condition Δhm2 ≈ −ð88 GeVÞ2 for the
observed EWSB is satisfied. The finding is generalized to
any value of R in the right panel of Fig. 9 where the yellow
area highlights the region of ðω; 1=RÞ providing Δhm2 ¼
−ð88 GeVÞ2 with jλ1 þ λ2j ≤ 2 (the inner border corre-
sponding to λ1 þ λ2 ¼ 0, the outer to λ1 þ λ2 ¼ 2). Also in
this panel jλ1 − λ2j is adjusted to reproduce the exper-
imental Higgs mass.
We conclude that in this 5D embedding the presence of

triplets
(i) Enhances the tree-level Higgs quartic coupling in the

effective theory and thus makes it easy to accom-
modate the 125 GeV Higgs mass constraint. This is
essential for the naturalness of the model.

(ii) Triggers the EWSB by providing a sizable negative
contribution to the squared-mass term of the SM-like

FIG. 8. Diagrams contributing to the mass term Δλm2.

FIG. 6. Matching of the low-energy and high-energy hð0Þ four-point diagrams.

FIG. 7. Contour plot of values of jλ1 − λ2j fixing the Higgs
mass to its experimental value mh ¼ 125 GeV. Blue area is as
in Fig. 1.
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Higgs and, in a somewhat wide parameter region,
generates the observed electroweak scale.

C. Triplet trilinear term and Higgs-triplet
quartic coupling

Besides the squared mass of the triplet, there are other
interactions that are important for the phenomenology of
the model. In this section we focus on the triplet trilinear
parameter and the Higgs-triplet quartic coupling by which
we can determine the VEV and masses of the triplets (see
Sec. IV D).
The trilinear Aλ term

L4 ¼ � � � − Aλh†σhþ H:c: ð4:18Þ

is generated by a loop of Higgsinos and gauginos. It can be
evaluated following the method employed for the stop
mixing At in Ref. [21]. The result is given by

Aλ ¼
3ðλ1 þ λ2Þα2
16

ffiffiffi
2

p
π2

Ch
2½iLi2ðe−2iπωÞ þ H:c:� 1

R
; ð4:19Þ

where Ch
2 ¼ 3=4 is the quadratic Casimir of the Higgs

doublet.
In order to calculate the quartic coupling between the

light Higgs hð0Þ and the light triplet σð0Þ, we follow the

procedure used in Sec. IV B. Specifically, we determine the
tree-level matching of the Higgs-triplet interaction between
the high-energy theory described in Eq. (4.10) and the low-
energy one where only the (tree-level massless) zero modes
exist. As previously stated, we focus on the case
ω ¼ qR ¼ qH ¼ qΣ. The nontrivial contributions are those
corresponding to the vertices jhð0Þj2jðσ þ σ†Þð0Þj2, mediated
by the propagation of ĥ, and jhð0Þj2jðσ − σ†Þð0Þj2, mediated
by the propagation of Ĥ, depicted in Fig. 10. They can be
evaluated by means of the identities

lim
p→0

X
n

ðλ1 � λ2Þ2
16

�
1þ ðqR ∓ qH þ nÞ2

p2 − ðqR ∓ qH þ nÞ2
�

¼ ðλ1 � λ2Þ2
16

δqR∓qH;0; ð4:20Þ

and they lead to the following quartic interaction term:

L4D ¼−
ðλ1þ λ2Þ2

16
hð0Þ†½σð0Þ þ σð0Þ†;σð0Þ þ σð0Þ†�þhð0Þ þ � � �

¼−
ðλ1þ λ2Þ2

8
hð0Þ†hð0Þ

X
A

½ðtARÞð0Þ�2þ�� � ; ð4:21Þ

with ðtARÞð0Þ defined as

FIG. 10. High-energy diagrams leading to the low-energy quartic interactions between hð0Þ and ðσ � σ†Þð0Þ, mediated by the
propagation of ĥ or Ĥ, respectively.

FIG. 9. Left panel: Plots ofΔgm2 (red dotted line),Δλm2 (blue dashed line), and their sumΔhm2 ¼ Δgm2 þ Δλm2 (black solid line) as
functions of ω in units of 103R2 with 1=R ¼ 2 TeV and λ1 þ λ2 ¼ 0. Central panel: Contour plot of R2Δhm2 in the ðω; jλ1 þ λ2jÞ plane
for 1=R ¼ 2 TeV. The correct EWSB with the experimentally observed 125 GeV Higgs mass happens along the dashed red line. Right
panel: The parameter space of the ðω; 1=RÞ plane (yellow area) where the experimental EWSB with the correct Higgs mass is
successfully achieved. Blue area is as in Fig. 1. In all panels jλ1 − λ2j is fixed as in Fig. 7.
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σð0Þ ¼ ðtARÞð0Þ þ iðtAI Þð0Þ
2

τA: ð4:22Þ

D. Triplet VEV and mass spectrum

The presence of the triplets has practically no effect on
the mass spectrum of the 5D MSSM-like states but hð0Þ. In
fact, all modes of Ha except hð0Þ have large tree-level
masses due to the SS mechanism, and the remaining
MSSM-like fields do not have contact interaction with
the triplets. The mass spectra shown in Figs. 1 and 2 then
hold correct also in the present scenario [although only the
(yellow) subregion highlighted in the right panel of Fig. 9 is
consistent with the observed EWSB and 125 GeV hð0Þ mass
for jλ1 þ λ2j ≤ 2]. The relevant difference between the
spectra of the 5D MSSM and the triplet extension is then
the masses of the additional fields.

With respect to the SS twists, the fermionic components
of the triplets behave as the Higgsinos, and they are hence
degenerate in mass with such fields. The scalar triplet σð0Þ is
instead insensitive to the SS mechanism at tree level (for
qR ¼ qH ¼ qΣ), and only its real part τAðtARÞð0Þ=2 receives a
mass by means of the Higgs EWSB [cf. Eq. (4.21)].
However, this mass tends to be subdominant with respect
to the one coming from the one-loop mass term
Δm2

σðωÞjσð0Þj2 that is produced by the diagrams in
Fig. 11. This correction amounts to

Δm2
σ ¼

3ðλ1 þ λ2Þ2
ð4πÞ4 Ωþ

σ ðωÞ þ
6ðλ1 − λ2Þ2

ð4πÞ4 Ω−
σ ðωÞ; ð4:23Þ

with

Ω−
σ ðωÞ ¼ f−Li3ðe2iπωÞ þ i cotð2πωÞ½−Li4ðe2iπωÞ þ Li4ðe4iπωÞ� þ H:c:gð1=RÞ2;

Ωþ
σ ðωÞ ¼ f2ζð3Þ − 2Li3ðe2iπωÞ þ Li3ðe4iπωÞ þ 2i cotð2πωÞLi4ðe2iπωÞ

− i cotð4πωÞLi4ðe4iπωÞ þ H:c:gð1=RÞ2: ð4:24Þ

Therefore, after the EWSB, the squared masses of the zero
modes of the real and imaginary parts of the complex
triplets are, respectively, given by

ðmR
σ Þ2 ¼

ðλ1 þ λ2Þ2
4

v2 þ Δm2
σ; ð4:25Þ

ðmI
σÞ2 ¼ Δm2

σ: ð4:26Þ

The values of these masses as a function of ω and 1=R are
displayed in the left panel of Fig. 12 where in the yellow
area λ1 and λ2 are fixed as usual to satisfy the EWSB and
Higgs mass constraints.
We now study the triplet VEV. When the Higgs breaks

the electroweak symmetry, the trilinear interaction in
Eq. (4.18) induces a tadpole term ∼Aλv2ðt3RÞð0Þ. This in
turn induces the VEV ht3Ri≡ hðt3RÞð0Þi which breaks cus-
todial symmetry and affects the electroweak precision
observable ρ as [41]

Δρ ¼ 4ht3Ri2
v2

; ð4:27Þ

which, using the (1σ) bound Δρ≲ 6 × 10−4, provides the
corresponding bound ht3Ri ≲ 3 GeV. Notice also the rela-
tion between the observables Δρ and T as given
by Δρ ¼ αT.13

The size of ht3Ri is now obtained by considering the
scalar potential involving the tadpole term and the squared
mass in Eqs. (4.18) and (4.25). Its order of magnitude is
OðAλv2=ðmR

σ Þ2Þ [34], and its precise value is shown in the
right panel of Fig. 12 where we plot ht3Ri as a function of ω
and 1=R for λ1 − λ2 fixed by the experimental Higgs mass
(cf. Fig. 7). The finding is displayed only in the (yellow)

FIG. 11. Diagrams contributing to the mass term Δm2
σ jσð0Þj2.

13A more complete description will require other observables
correlated with T, as S and U [42]. They will also be consistent
with our model parameters as we will analyze at the end of
Sec. IV E.
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region where the observed EWSB can be achieved for
jλ1 þ λ2j ≤ 2. The measurement of the ρ parameter, which
imposes ht3Ri ≲ 2 GeV [34,41], provides no constraint on
the model besides in the corner with ω≳ 0.21 and
1=R≲ 10 TeV. In particular, along the left border of the
yellow area, which corresponds to ðλ1 þ λ2Þ ¼ 0, no tri-
linear term and thus no VEV of ðtR3 Þð0Þ is generated. This
border, although fine-tuned, is technically natural as λ1 and
λ2 are supersymmetric parameters.
Finally, as a consistency check, we verify that the mixing

between the hð0Þ and ðtR3 Þð0Þ is tiny. Otherwise our criteria
Δhm2 ≃ −ð88 GeVÞ2 andmh ¼ 125 GeV to accomplish the
observed EWSB andHiggsmass constraints would bewrong.
The mixing is sourced by the trilinear term in Eq. (4.18) after
the EWSB. The mixing angle γ can be estimated as

tanð2γÞ ∼ Aλv
ðmR

σ Þ2 −m2
h

∼
htR3 i
v

; ð4:28Þ

where in the last step the Higgs squared mass has been
neglected in front of ðmR

σ Þ2. The mixing is therefore fully
negligible in the whole area compatible with the electroweak
precision observables for which htR3 i≲ 3 GeV.
To conclude, we provide some explicit values for an

illustrative parameter scenario. We consider the benchmark
point with ω ¼ 3=14 and 1=R ¼ 14 TeV. In this case the
EWSB and Higgs mass constraints can be overcome with
λ1 ≃ 1.1 and λ2 ≃ 0.0. The triplet VEV, which turns out to
be htR3 i≃ 1 GeV, is compatible with the above ρ-parameter
bound. The masses of the lightest modes corresponding to
new physics are quoted in Table I. Some of them are within
the reach of the LHC although they can be elusive to the
standard searches as discussed in the next section.

E. The low-energy phenomenology

Below the energy scale of the bulk fields with masses
Oðω=RÞ, the theory is described by the SM degrees of

freedom plus the scalar triplet σð0Þ, and the third-generation
squarks and slepton doublets.
In this setup the tau sneutrino (~ντ) is the Light

Supersymmetric Particle (LSP). The ~ντ is not a good dark
matter candidate as it would provide the observed relic
abundance for a (small) mass range that is nevertheless
ruled out by direct detection experiments [43]. In the
remaining mass region, its relic density has to be somehow
reduced. This is possible if the sneutrinos do not reach
thermal equilibrium before their freeze-out, or an entropy
injection occurs at late times (see e.g. [44,45]).
Alternatively, decays such as ~ντ → ττ̄ can provide the
desired dilution. These could in principle be generated
by operators like LLE that introduce a small R-parity
violation.
The collider phenomenology of the left-handed stau (~τL)

depends on its mass splitting with ~ντ. At tree level these
fields are degenerate in mass, and only QED one-loop
corrections break the degeneracy [46]. For the part of the
parameter space that we are interested in, this splitting is at
leastOð100 MeVÞ and the lifetime of the stau isOð0.1 nsÞ
or smaller, for which the ATLAS and CMS constraints on
disappearing tracks can be interpreted as ruling out m~τ <
150 GeV [47,48]. This low-mass range is also ruled out by
other constraints, as we now see.
Even though the gluino is not part of the low-energy

theory, the most robust constraint to the parameter space of

FIG. 12. Left panel: Contour plot of the realmR
σ (blue curves) and imaginary mI

σ (red curves) triplet masses. Right panel: Contour plot
of the VEV (in GeV) that the triplet acquires due to the loop-induced trilinear term. In both panels it is assumed jλ1 þ λ2j < 2 and the
correct EWSB with a 125 GeV Higgs mass is achieved inside the yellow region. Blue areas are as in Fig. 1.

TABLE I. A sample of new-physics masses (in GeV) for 1=R ¼
14 TeV and ω=R ¼ 3 corresponding to ω≃ 0.21. The symbol
m ~f1;2

represents the mass of all sfermions of the first and second

generations. The radiative corrections are included only for the
masses of the last five columns.

m ~f1;2
¼ m~τR ¼ Ma

¼ m ~H ¼ m ~Σ mH ¼ mΣ m~tL m~tR m~τL ¼ m~ντ mR
σ mI

σ

3000 6000 970 900 420 450 440
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the model is provided by the gluino direct searches. From
early 13 TeV data, ATLAS and CMS set the bound m~g ≳
1.8 TeV [14,15]. Since the whole spectrum mostly depends
on just two parameters, ω and 1=R, and in particular
m~g ¼ ω=R, the gluino mass bound constrains the low
energy theory. The excluded region corresponds to the
blue areas in Figs. 1, 2, 3, 7, 9, and 12. In particular, as
highlighted in Figs. 1 and 12, the gluino bound forces the
mass of the stops and sbottoms to be roughly above
550 GeV and the scalar triplet, stau, and tau sneutrino to
be heavier than around 250 GeV. Of course, by excluding
heavier gluino masses we will also be able to set stronger
bounds on third-generation squarks, the triplet, and the stau
doublet. However, the way in which the tree-level gen-
erated gaugino masses scale with 1=R is different from how
the radiatively generated light states do. Even a 3 TeV
bound on gluino masses will not be able to exclude stops at
around 1 TeV nor stau and triplet masses around 500 GeV
(see Table I). Hence it is worth studying also the phenom-
enology of these particles.
As we are dealing with a heavy LSP with a mass

typically above 300 GeV, the LHC bounds from stop
searches are very mild or even absent [49]. In addition,
considering usual bounds is a conservative assumption; in
this model the topology of the stop decays is different from
what is expected in MSSM-like scenarios. Because the stop
is lighter than all neutralinos and charginos, it decays to off-
shell states such that the final signature is a multibody
decay for which the current stop bounds can be very much
softened [50]. Bounds on sbottoms are more severe than
those on stops (for LSP masses below 400 GeV, ATLAS
and CMS exclude sbottom masses up to 900 GeV [51,52])
but they suffer from the same softening mentioned above
for stops. In this sense, in the present model the phenom-
enology of the third-generation squark is similar to the one
analyzed in Ref. [25].
Direct detection of the scalar triplet is challenging. The

triplet does notmixwith theHiggs, is fermiophobic, and gets
a very small VEV; thus, production mechanisms such as
gluon fusion or vector boson fusion are of no use.
Multilepton searches can be employed, but these are able
to constrain only the parameter spacewhere the triplet is very
light (≲200 GeV) and acquires a VEV close to the ρ-
parameter bound [38]. Alternatively, by using Drell-Yan
double production one can constrain fermiophobic scalars
that do not acquire a sizable VEVand have no other way to
be produced [53]. Because of kinematics, the Drell-Yan
process gets weaker for larger triplet masses, and to rule out
masses above 250GeVonewould need a 100TeV collider in
which the Drell-Yan production cross section is enhanced.
Finally, modifications to the loop-induced decay rates

Γðg → γγÞ and Γðh → ZγÞ could be generated by the new
charged scalars of the triplet or the stau. These can result in
deviations of the Higgs signal strengths; however, they will
be very suppressed as very light masses (≲200 GeV) or

large couplings, Oð1Þ, are needed to produce a significant
enhancement in the Higgs decay rates. Similarly, the loop
level contributions to the S and T parameters are very small
as the gluino bound already forbids the new low-energy
states to be below 300 GeV, where significant modifica-
tions could be generated. We have explicitly calculated
these using the results from Ref. [54] and found no
significant contributions in the parts of the ðω; 1=RÞ plane
which are not already excluded by other measurements. In
particular, we find that T1−loop < 0.02 and S1−loop < 0.002,
well inside their experimental bounds [41].

V. CONCLUSIONS

In the present paper we have explored extra dimensions
as a way to minimize the fine-tuning triggered by the LHC
constraints on minimal supersymmetric extensions of the
Standard Model. We have performed our study focusing on
five-dimensional supersymmetric embeddings, with the
fifth dimension compactified on an orbifold and N ¼ 1
supersymmetry breaking of the Scherk-Schwarz type.
The Scherk-Schwarz paradigm for SUSY breaking has

been extensively explored in the literature and is able to
provide interesting ways out for some of the shortcomings
of conventional scenarios of softly broken supersymmetry.
For instance, the μ=Bμ problem is avoided as a large
Higgsino mass arises without any dimensional parameter in
the superpotential. The spectrum exhibits a pattern made of
compressed sectors, each one hierarchically separated in
mass from the others by multiples of ω=R or 1=R (with ω
and R being, respectively, the Scherk-Schwarz twist and the
size of the extra dimension). In this way the first- and
second-generation sfermions are naturally much heavier
than the third-generation ones, in agreement with flavor
constraints. Moreover, due to the absence of large effects in
the renormalization-group evolution of the parameters, the
framework is also free of the gluino-sucks problem and
sub-TeV third-generation squarks are easily accommo-
dated. The two main drawbacks of the paradigm come
when considering the electroweak symmetry breaking and
the experimentally measured Higgs mass, both not achiev-
able in minimal realizations of Scherk-Schwarz supersym-
metry breaking.
The present paper proves that these two problems are not

generic obstacles in Scherk-Schwarz scenarios. It shows
that, for instance, both issues can be solved in an extension
with Y ¼ 0 SUð2ÞL triplets propagating in the bulk. It turns
out that such triplets both provide radiative corrections
triggering the electroweak symmetry breaking and enhance
the tree-level Higgs mass, so that the 125 GeV mass is
adjusted more naturally.
Because of the mass hierarchy between fields that

propagate in the bulk and fields localized in the brane,
most of the new-physics sector is decoupled from electro-
weak-scale processes, in agreement with experiments.
However, some superpartners, tightly linked to naturalness
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and/or properties of the Scherk-Schwarz twists, have to be
light and populate the low-energy particle content of the
theory, which eventually consists of the Standard Model
degrees of freedom plus a scalar triplet, the third-generation
of squarks, and the doublet of sleptons. The presence of the
right-handed staus in the light spectrum that we have
avoided in the paper is really optional. Depending on
the choice, the LSP can be the right-handed stau or the tau
sneutrino. The latter is preferable to avoid the strong
constraints on charged LSPs.
Since gluino bounds are robust and quite generic, the

most stringent constraint to the model comes from gluino
searches. Nevertheless, other experimental signals could be
used to test it. In the short term, searches for disappearing
tracks or fermiophobic scalars are the most promising for
probing part of the parameter space. Searches for the third
generation of squarks are also important, but it is chal-
lenging to apply their bounds to the present scenario where
squarks have multibody decays [50]. We leave for the

future the reinterpretation of these bounds in terms of the
parameter space of the model.
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