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We reexamine the discovery potential at hadron colliders of high-mass right-handed (RH) gauge bosons
WR—an inherent ingredient of left-right symmetric models (LRSM). We focus on the regimewhere theWR

is very heavy compared to the heavy Majorana neutrino N, and we investigate an alternative signature for
WR → N decays. The produced neutrinos are highly boosted in this mass regime. Subsequently, their
decays via off-shell WR bosons to jets, i.e., N → l�jj, are highly collimated, forming a single neutrino jet
ðjNÞ. The final-state collider signature is then l�jN , instead of the widely studied l�l�jj. Present search
strategies are not sensitive to this hierarchical mass regime due to the breakdown of the collider signature
definition. We take into account QCD corrections beyond next-to-leading order (NLO) that are important
for high-mass Drell-Yan processes at the 13 TeV Large Hadron Collider (LHC). For the first time, we
evaluate WR production at NLO with threshold resummation at next-to-next-to-leading logarithm (NNLL)
matched to the threshold-improved parton distributions. With these improvements, we find that a WR of
mass MWR

¼ 3ð4Þ½5� TeV and mass ratio of ðmN=MWR
Þ < 0.1 can be discovered with a 5–6σ statistical

significance at 13 TeVafter 10ð100Þ½2000� fb−1 of data. Extending the analysis to the hypothetical 100 TeV
Very Large Hadron Collider (VLHC), 5σ can be obtained for WR masses up to MWR

¼ 15ð30Þ with

approximately 100 fb−1 (10 ab−1). Conversely, with 0.9ð10Þ½150� fb−1 of 13 TeV data,MWR
< 3ð4Þ½5� TeV

and ðmN=MWR
Þ < 0.1 can be excluded at 95% C.L.; with 100 fb−1 (2.5 ab−1) of 100 TeV data,

MWR
< 22ð33Þ TeV can be excluded.

DOI: 10.1103/PhysRevD.94.095016

I. INTRODUCTION

The observation of nonzero neutrino masses mν, which
have hierarchically smaller masses than all other elemen-
tary fermions in the Standard Model of Particle Physics
(SM), and their nontrivial mixing provide unambiguous
experimental evidence of physics beyond the SM (BSM).
The natural explanation for such tiny masses is the so-
called seesaw mechanism, where eV neutrino masses are
generated from the (B − L)-violating operators at dimen-
sion 5 [1,2]. At tree level, these operators can be generated
by minimally extending [3] the SM field contents by right-
handed (RH) neutrinos NR (type I) [4–9], scalar SUð2ÞL
triplets ΔL (type II) [10–13], or fermionic SUð2ÞL triplets Σ
(type III) [14]. If kinematically accessible, these states can
be observed at the 13 TeV Large Hadron Collider (LHC)
or a hypothetical 100 TeV Very Large Hadron Collider
(VLHC) [15,16], thus giving conclusive evidence of the
mass generation mechanism. For reviews of TeV-scale
seesaw models and their phenomenology, see Ref. [17].

An appealing renormalizable framework in which both
types I and II seesaw models can be embedded is the left-
right symmetry model (LRSM) [18–21]. This is based on
the gauge group

SUð3Þc ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L ð1Þ

and postulates the restoration of parity symmetry at high
energies. In addition to the SM particle content, the model
consists of three generations of NR, one ΔL, and an SUð2ÞR
triplet scalarΔR, all with nontrivial charges under the B − L
symmetry. After ΔR acquires a vacuum expectation value
(VEV) vR, much larger than the electroweak (EW) scale,
vSM ≈ 246 GeV, the SUð2ÞR ×Uð1ÞB−L symmetry breaks
down to the Uð1ÞY of the SM. Subsequently, the neutrinos
NR and gauge bosonsWR and ZR acquire massesMR,MWR

and MZR
, respectively, that are proportional to vR. While

the masses of the gauge bosons depend on the weak gauge
coupling gR ¼ g, the masses of NR are dependent on
the Yukawa coupling fR of the ΔR and lepton doublet
interaction. The RH neutrino also interacts with the SM
neutrino via its Yukawa interaction, generating Dirac
masses MD after EW symmetry breaking (EWSB). For
the Majorana mass MR much heavier than the Dirac mass
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MD, a type I seesaw mechanism is triggered [4–9], giving
rise to Majorana masses for light neutrinos νm with
mν ∼M2

D=MR and heavy neutrinos N with mN ∼MR. As
no symmetry relates the RH gauge and triplet Yukawa
couplings, the WR and heavy neutrino may have widely
separated masses, and this offers a wide parameter space to
test the LRSM.
The LRSMmodel can be tested either indirectly, through

low energy experiments [22–36], or directly, through
searches at high energy colliders [16,30,37–53] (and
references therein). In this work, we focus on the direct
detection of the WR and N. For MWR

> mN, the hallmark
hadron collider test of the LRSM is the spectacular lepton
number (L) violating process [37]

q1q̄2 → W�
R → NRl�

1 → l�
1 l

�
2 W

∓�
R → l�

1 l
�
2 q

0
1q̄

0
2: ð2Þ

The process, shown in Fig. 1, has been studied extensively.
Searches by the ATLAS [54] and CMS [55] collaborations
have excluded regions of the ðMWR

;mNÞ parameter space
for MWR

ðmNÞ up to several TeV (hundred GeV) [56,57].
However, for hierarchical masses, i.e., ðmN=MWR

Þ < 0.1,
the present search strategy is no longer sensitive.
Complementary dijet searches have similarly excluded
MWR

below 2.5 − 3.5TeV [58–60].
In light of such stringent bounds, we reexamine the

discovery potential of high-mass WR at hadron colliders.
We focus on the situation where N are hierarchically
lighter than WR, i.e., ðmN=MWR

Þ < 0.1. In the process
pp → WR → Nl, this leads to boosted N with transverse
momentum pN

T ∼MWR
=2. The decay products of N, which

proceed dominantly through far off-shellWR to quarks, i.e.,
N → W�

Rl → qq̄0l, are subsequently collimated with par-
ton separations scaling as ΔRij ∼ 2mN=pN

T ∼ 4mN=MWR
.

Hence, formN=MWR
≲ 0.1, one hasΔRij ≲ 0.4, which falls

below the electron isolation threshold in standard high-pT
lepton searches at the 13 TeV LHC [62]. Indeed, the LHC
sensitivity of Eq. (2) for such ðMWR

;mNÞ is considerably
weaker, particularly in the electron channel [54]. This
deficiency has been noted before, e.g., Refs. [38,41,
51,63], but never explored in substantial detail.

After hadronization, the decay products of N do not
appear as individual, isolated objects, but instead as a single
neutrino jet jN . This is akin to the formation of top jets
from boosted top quarks [64–68]. Thus, for mN ≪ MWR

,
WR − N production and decay appear in pp collisions as
the distinctive

pp → W�
R → l�jN: ð3Þ

Despite the inclusive channel’s simplified topology, and
hence larger SM backgrounds, it inherits much of the
strong discriminating power of Eq. (2), including a fully
reconstructible final state and no missing pT (MET), other
than the hadronization and detector effects. We consider a
search strategy for WR − N production and decay when
MWR

> 3 TeV and ðmN=MWR
Þ < 0.1, while using a simple

set of kinematical cuts on the effective two-body final state.
We explore the discovery potential of observing Eq. (3) for
the c.m. energies

ffiffiffi
s

p ¼ 13 and 100 TeV, relevant for the
LHC and VLHC.
Furthermore, determining if the WR gauge coupling gR

equals the SM weak coupling g, a postulate of Eq. (1),
requires precision knowledge of WR production rates.
However, for such large WR masses, QCD corrections
beyond next-to-leading order (NLO) are important at
13 TeV because of soft gluon radiation off initial-state
partons. In light of this, we also calculate, for the first time,
WR production at NLO with threshold resummation at
next-to-next-to-leading logarithm (NNLL) matched to
threshold-improved parton distributions functions (PDFs)
[69,70]. Previous predictions [60,71,72] have considered
threshold resummation up to next-to-leading logarithm
(NLL) [60] but never matched to resummed PDFs. NLOþ
NNLL contributions improve the Born (NLO)-level pre-
dictions for MWR

¼ 4–5 TeV by 40–140ð4–72Þ% at
13 TeV LHC.
With these improvements, we find that a WR of mass

MWR
¼ 3ð4Þ½5� TeV and ðmN=MWR

Þ < 0.1 can be discov-
ered with a 5–6σ statistical significance at 13 TeV after
10ð100Þ½2000� fb−1. At 100 TeV with 0.1ð10Þ ab−1, the 5σ
reach extends to MWR

¼ 15ð30Þ TeV. Conversely, with
0.9ð10Þ½150� fb−1 of 13 TeV data,MWR

< 3ð4Þ½5� TeV and
ðmN=MWR

Þ < 0.1 can be excluded at 95% confidence
level (C.L.); with 100 fb−1 (2.5 ab−1) of 100 TeV data,
MWR

< 22ð33Þ TeV can be excluded.
Our paper is organized as follows: In Sec. II, we

briefly review the minimal LRSM (MLRSM) and current
constraints. In Sec. III, we present predictions up to
NLOþ NNLL for WR − N production and decay rates
at hadron colliders. We explore the phenomenology of
boosted heavy neutrinos and present our signal-vs-back-
ground analysis in Sec. IV. In Sec. V, we summarize and
conclude. We relegate technical details of our resummation

FIG. 1. Born diagram of WR production in hadron collisions
and decay via N to leptons and quarks. Figures are drawn using
JaxoDraw [61].
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calculation to Appendix A and implementation of the
LRSM model files by Ref. [73] to Appendix B.

II. MINIMAL LEFT-RIGHT SYMMETRIC MODEL

Here, we briefly review the main aspects of the MLRSM
relevant to our study. For an expanded discussion, see, e.g.,
Ref. [24]. In Secs. II A and II B, we address the masses
of WR and N. In Sec. II C, experimental constraints
are reviewed. We reserve discussing the model’s scalar
potential and its implementation into publicly available
simulation model files [73] for Appendix B. As we use the
files of Ref. [73], we adopt their notation.
The MLRSM [18–20] is based on the extended gauge

group

SUð3Þc ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L: ð4Þ

In addition to the SM fermion field content, there are
three generations of RH neutrinos NR. Quark and lepton
multiplets are assigned the following gauge group
representations:

QL;i ¼
�
uL
dL

�
i

∶
�
3; 2; 1;

1

3

�
;

QR;i ¼
�
uR
dR

�
i

∶
�
3; 1; 2;

1

3

�
;

ψL;i ¼
�
νL

eL

�
i

∶ð1; 2; 1;−1Þ;

ψR;i ¼
�
NR

eR

�
i

∶ð1; 1; 2;−1Þ: ð5Þ

In the above, i ¼ 1;…; 3 is the family index. Note that
(B − L) charges are normalized such that the electric charge
is given by Q ¼ I3L þ I3R þ ðB − LÞ=2, with I3Lð3RÞ being
the third isospin components of SUð2ÞLðRÞ. The scalar
sector consists of the following multiplets:

Φ ¼
�
ϕ0
1 ϕþ

2

ϕ−
1 ϕ0

2

�
∶ð1; 2; 2; 0Þ;

ΔL ¼
�
Δþ

L=
ffiffiffi
2

p
Δþþ

L

Δ0
L −Δþ

L=
ffiffiffi
2

p
�
∶ð1; 3; 1; 2Þ;

ΔR ¼
�
Δþ

R=
ffiffiffi
2

p
Δþþ

R

Δ0
R −Δþ

R=
ffiffiffi
2

p
�
∶ð1; 1; 3; 2Þ: ð6Þ

At a scale much higher than the EW scale, ΔR acquires a
VEV vR ¼ ffiffiffi

2
p hΔRi. This triggers spontaneous breaking of

the LR and (B − L) symmetries, and reduces Eq. (4) to the
SM gauge group, i.e., SUð2ÞR × Uð1ÞB−L → Uð1ÞY . The
bidoublet Φ is responsible for Dirac masses and EWSB
after it acquires the VEVs hΦi ¼ diagðk1; k2Þ=

ffiffiffi
2

p
, where

k2� ≡ k21 � k22 and kþ ¼ vSM ≈ 246 GeV: ð7Þ

In the absence of fine-tuning, k1, k2 naturally scale as

k2
k1

∼
mb

mt
≪ 1: ð8Þ

Note that ΔL can also acquire a VEV vL ¼ ffiffiffi
2

p hΔLi.
However, precision measurements of the ρ=T parameter
indicate that vL is much smaller than the EW scale [22,25].
For simplicity, we take vR and k1;2 to be real, i.e., no CP
violation, and vL ¼ 0.

A. Charged gauge boson masses

After LR and EWSB, the charged vector boson (squared)
mass matrix in the gauge, i.e., ðWL;WRÞ, basis is given by

MW ¼ g2

4

�
k21 þ k22 þ 2v2L 2k1k2

2k1k2 k21 þ k22 þ 2v2R

�
: ð9Þ

The gauge states are related to the mass eigenstates, i.e.,
ðW1;W2Þ with MW2

> MW1
, by

�
W1

W2

�
¼

�
cos ξ sin ξ

− sin ξ cos ξ

��
WL

WR

�
; ð10Þ

where the WL −WR mixing parameter ξ is

tan 2ξ ¼ 2k1k2
v2R − v2L

: ð11Þ

Under the VEV hierarchy

vR ≫ kþ ≳ k1 ≳ k− ≫ k2 ≫ vL ∼ 0; ð12Þ
the vector boson masses simplify to

MW1
≈MWL

¼ g
2
kþ and MW2

≈MWR
¼ gffiffiffi

2
p vR; ð13Þ

implying that theW1ðW2Þmass state is closely aligned with
the WLðWRÞ gauge state. Hence, for the remainder of the
text, we refer to W1ðW2Þ as WLðWRÞ.

B. Neutrino masses

The leptonic Yukawa couplings for generations i and j
are given by

LY ¼ −hijψ̄Li
ΦψRj

− ~hijψ̄Li
~ΦψRj

− fLij
ψT
Li
Ciσ2ΔLψLj

− fRij
ψT
Ri
Ciσ2ΔRψRj

þ H:c:; ð14Þ

where C denotes the charge conjugation operator and
~Φ ¼ σ2Φ�σ2. After LR and EWSB, RH Majorana, LH
Majorana, and Dirac neutrino mass matrices, respectively,
of the form
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MR ¼
ffiffiffi
2

p
vRfR;

ML ¼
ffiffiffi
2

p
vLfL;

MD ¼ 1ffiffiffi
2

p ðk1hþ k2 ~hÞ; ð15Þ

are spontaneously generated. The 3 × 3matrices in Eq. (15)
can be combined such that in the gauge basis, i.e.,
ðνL1;…; Nc

R1;…Þ, the 6 × 6 neutrino mass matrix is
given by

Mν ¼
�
ML MD

MT
D MR

�
ð16Þ

and can be diagonalized via the unitary matrix ~V:

Mdiag
ν ¼ ~VTMν

~V ¼
�
Mdiag

ν 0

0 Mdiag
N

�
: ð17Þ

Mdiag
ν ¼ diagðm1; m2; m3Þ and Mdiag

N ¼ diagðmN1
; mN2

;
mN3

Þ are the light neutrino and heavy neutrino masses,

respectively. For the VEV hierarchy of Eq. (12), ~V is
[74,75]

~V ¼
� ð1þ ζ�ζTÞ−1=2 ζ�ð1þ ζTζ�Þ−1=2
−ζTð1þ ζ�ζTÞ−1=2 ð1þ ζTζ�Þ−1=2

��
UL 0

0 YR

�

≡
�
U V

X Y

�
; ð18Þ

where ζ� ¼ MDM−1
R and UL, YR are unitary matrices that

diagonalize ~Mν and ~MR:

Mdiag
ν ¼ UT

L
~MνUL and Mdiag

N ¼ YT
R
~MNYR: ð19Þ

~Mν and ~MN are related to the mass matrices in Eq. (15) by
the seesaw relations [4–13]

~Mν ≃ML −MDM−1
R MT

D and ~MN ≃MR: ð20Þ

In the notation of Refs. [41,76], after rotating the charged
leptons from the flavor basis into the mass basis, which for
simplicity we take to be a trivial rotation, the UlνmðYlNm0 Þ
of Eq. (18) denotes the large Oð1Þ mixing between the
LH (RH) lepton flavor state lðl ¼ e; μ; τÞ and light
(heavy) neutrino mass eigenstate νmðNm0 Þ. Similarly,
VlNm0 ðXlνmÞ denotes the suppressed Oðmν=mNÞ mixing
between the LH (RH) lepton flavor state l and heavy (light)
neutrino mass eigenstate Nm0 ðνmÞ.

C. Experimental constraints

Here, we review the most stringent constraints on
the MLRSM.

(1) Collider bounds on ðMWR
;mNÞ from l�l�jj

searches: Searches by the ATLAS experiment for
pp → e�e�jjðμ�μ�jjÞ mediated by WR and N
exclude the following at

ffiffiffi
s

p ¼ 8 TeV [54]:

MWR
≲ 1.5ð2.7Þ TeV at 95%C:L: with

L ¼ 20.3 fb−1: ð21Þ

The sensitivity disparity is due to a failing isolated
electron-jet criterion when mN=MWR

≲ 0.1 [54] and
is the point of our study. Limits from CMS are
comparable [55].

(2) Collider bounds on MWR
from dijet searches:

Searches by the ATLAS (CMS) experiment for a
sequential SM W0 → jj exclude the following atffiffiffi
s

p ¼ 13 TeV [58,59]:

MW0
SSM

≲ 2.6ð2.6Þ TeV at 95%C.L. with

L ¼ 3.6ð2.4Þ fb−1: ð22Þ

(3) Limits on WR and Higgs masses from neutral
hadron transitions: Analyses of ΔF ¼ 2 transitions
in neutral K and Bd;s systems and neutron EDM
assuming generalized charge (parity) in the MLRSM
exclude the following [34,35]:

MWR
< 2.9–20 TeV at 95%C:L:; ð23Þ

mFCNH < 20 TeV at 95%C:L:; ð24Þ

where the range over MWR
is based on theoretical

arguments and mFCNH is the mass of the lightest
Higgs mediating flavor changing neutral transitions.

(4) Searches for 0νββ: In MLRSM, the gauge boson
WR together with Ni can give a saturating contri-
bution in 0νββ. Nonobservation of this LNV
process hence constrains the masses of WR and

Ni as
P

i
Y2
ei

MiM4
WR

≤ ð0.082–0.076Þ TeV−5, using the

90% C.L. half-life limit from KamLAND-Zen
T0ν
1=2 ≥ 1.07 × 1026 yrs [77]. For an MWR

of
3 TeV (5 TeV), this implies a lower limit on the
mN ≥ 150–162 GeV (19.5–21 GeV) [31].

III. PROPERTIES OF WR AND N
AT HADRON COLLIDERS

In this section, we present production and decay rates of
WR and N to leptons and jets, with mN ≪ MWR

, at the
13 TeV LHC and 100 TeV VLHC.
In the MLRSM, the WR interaction with quarks is given

by the Lagrangian
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LWR−q−q0 ¼
−gffiffiffi
2

p
X

i;j¼u;d;…

ūiVCKM0
ij Wþ

Rμγ
μPRdj þ H:c:; ð25Þ

where uiðdjÞ is an up- (down-) type quark of flavor iðjÞ,
VCKM0
ij is the RH Cabbibo-Kobayashi-Masakawa (CKM)

matrix, and PRðLÞ ¼ 1
2
ð1� γ5Þ denotes the RH (LH) chiral

projection operator. We assume four massless quarks and
take VCKM0

ij to be diagonal with unit entries.
The WR coupling to six heavy ðNm0 Þ and light ðνmÞ

neutrinos is parametrized by [41,76]

LWR−l−ν=N ¼ −gffiffiffi
2

p
X

l¼e;μ;τ

�X3
m¼1

ν̄cm Xlm þ
X6
m0¼4

Nm0 Ylm0

�

×Wþ
Rμγ

μPRl− þ H:c:; ð26Þ

where mixing matrices Xlm and Ylm0 are defined in
Sec. II B. We consider only the lightest heavy neutrino,
denoted simply by N, and neglect heavier mass eigenstates.
For simplicity, we assume diagonal neutrino mixing with
maximal coupling to electron-flavor leptons:

jYeN j ¼ 1; jYμN j ¼ jYτN j ¼ jXlmj ¼ 0: ð27Þ

Choosing instead maximal coupling to muons, i.e.,
jYμN j ¼ 1, or large e − μ mixing, i.e., jYeNj ∼ jYμN j, has
little impact on our analysis due to the long lifetime of the
muon. On the other hand, the τl final state requires
specialized cuts to account for τ decays to light neutrinos.
For more details, see Sec. IVA.
For numerical results, SM inputs are taken from the 2014

Particle Data Group [78]:

αM̄SðMZÞ ¼ 1=127.940;

MZ ¼ 91.1876 GeV;

sin2M̄SðθW ;MZÞ ¼ 0.23126: ð28Þ

PDFs and αsðμrÞ are extracted using the LHAPDF 6.1.6
libraries [79]. The factorization ðμfÞ and renormalization
ðμrÞ scales are set to μ0 ¼ MWR

everywhere. For LO-
and NLO-accurate calculations, we use the NNPDF
3.0 NLO nf ¼ 4 (lhaid=260400) PDF set [80]. For
NLOþ NNLL calculations, we use the threshold-improved
NNPDF 3.0 NNLOþ NNLL PDF set [69]. This choice
follows from the unavailability of a NLOþ NNLL PDF set
and our desire to ascertain the effects of resummation at
NNLL. Formally, the induced uncertainties from our PDF
mismatching in the LO and NLOþ NNLL calculations are
OðαsÞ and Oðα2sÞ, respectively, and beyond our claimed
accuracy. Numerically, this leads to LO cross sections that
are 10% smaller than those calculated with LO PDFs.
For additional computational details, see Appendix A.

A. WR production at NLOþ NNLL

At fixed order (FO) accuracy, we calculate the inclusive
production cross section for

pp → W�
R þ X; ð29Þ

where X is anything, via the usual application of the
collinear factorization theorem:

σFOðpp→WRþXÞ¼
X

a;b¼q;q̄0;g

Z
1

τ0

dτLabðτ;μfÞσ̂FOðab→WRÞ;

τ0≡M2
WR

s
: ð30Þ

The luminosity LðτÞ of parton pair ab in pp collisions
given by

Labðτ; μfÞ ¼
1

1þ δab

Z
1

τ

dξ1
ξ1

½fa=pðξ1; μfÞfb=pðξ2; μfÞ

þ fa=pðξ2; μfÞfb=pðξ1; μfÞ�; ð31Þ

ξ2 ≡ τ

ξ1
: ð32Þ

The PDFs fa=pðξi; μfÞ represent the likelihood of observ-
ing parton a in proton p possessing a longitudinal
momentum fraction ξi ¼ Ea=Epi

¼ pz
a=Epi

, and (re)sum
arbitrary collinear parton emissions up to a factorization
scale μf. The partonic c.m. energy

ffiffiffî
s

p
is related to the

hadronic (beam) c.m. energy
ffiffiffi
s

p
by the hadronic threshold

variable

τ ¼ ξ1ξ2 ¼
ŝ
s
; τ0 ≤ τ < 1; ð33Þ

and it extends to the kinematic threshold τ0, below which
Eq. (29) is kinematically forbidden.
Partonic scattering rates σ̂ are evaluated via helicity

amplitudes and use the CUBA libraries [81] to handle
Monte Carlo integration. NLO in QCD corrections are
obtained using the phase space slicing method [82–85], and
they exploit factorization properties of Drell-Yan (DY)
currents; see appendixes of Refs. [85,86]. LO and NLO
results are checked against the literature [60,71,73]
and MG5_aMC@NLO v2.3.3 (MG5) [87] assuming
MWR

¼ MW .
Beyond FO, Eq. (30) can be generalized [88–90] to

include the arbitrary, initial-state emission of soft gluons,
i.e., with energies much smaller than the hard scattering
process scale Q. The interpretation of σ̂ also generalizes to
include both the hard process,

qq̄0 → W�
R with Q ¼ MWR

; ð34Þ
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and the factorized soft radiation off the q; q̄0 initial states.
Schematically, the definitions of the hadronic, partonic, and
hard components for the inclusive production of a generic
color-singlet boson B are drawn in Fig. 2. Necessarily, the
inequality s > ŝ ≥ Q2 holds.
Soft radiation becomes important when the hard scale

approaches the partonic scale, i.e., when the partonic
threshold variable z approaches 1:

z≡Q2

ŝ
¼ M2

WR

ŝ
¼ τ0

τ
→ 1: ð35Þ

In this kinematic regime, which can be satisfied at Q2 ≪ s
as in Higgs production via GF or when Q2 ∼ s as in the
present case of high-mass DY, soft radiation gives rise to
numerically large logarithms that require resummation in
order to restore the perturbativity of Eq. (30).
To carry out the resummation, we follow the procedure

(and largely notations) of Refs. [91–93] and write a
generalized form of Eq. (30) in terms of τ, z, and τ0:

σFOðpp→WRþXÞ

¼
X

a;b¼q;q̄0;g

Z
1

τ0

dτ
Z

1

0

dzδ

�
z−

τ0
τ

�
LabðτÞσ̂FOab ðab→WRÞ:

ð36Þ

For inclusive WR production, σ̂FO can be expressed as

σ̂FOab ≡ σ̂FOðab → WRÞ ¼ σ0 × z × ΔFO
ab ðzÞ: ð37Þ

The constant term σ0 for gauge coupling g2R ¼ g2 ¼
4πα= sin2 θW is

σ0 ¼
g2RπjVCKM0

ab j2
4NcM2

WR

; ð38Þ

and it is related to the usual LO partonic formula by

σ̂LOðab → WRÞ ¼ σ0 ×M2
WR

× δðŝ −M2
WR

Þ
¼ σ0 × z × δð1 − zÞ: ð39Þ

Hence, one may identify up to OðαsÞ, ΔFO
qq̄0
ðzÞ ≈ δð1 − zÞþ

OðαsÞ.
If working with pQCD, the threshold resummed

cross section can be efficiently obtained after writing the
hadronic cross section in so-called Mellin space. For the
function hðxÞ, the Nth moments of its Mellin transform and
inverse Mellin transform with respect to x are

hN ≡M½hðxÞ;N� ¼
Z

1

0

dxxN−1hðxÞ; ð40Þ

hðxÞ ¼ M−1½hN ; x� ¼
1

2πi

Z
cþi∞

c−i∞
dNx−NhN; ð41Þ

where c ∈ R is to the right of all singularities in hN . The
Mellin transform of Eq. (36) at LO with respect to τ0 gives

σLON ¼
Z

1

0

dτ0τN−1
0 × σLOðτ0Þ ¼ σ0Lqq̄0;ðNþ1Þ × ΔLO

qq̄0;ðNþ1Þ;

ð42Þ
revealing an explicit factorization into a product of the
luminosity and soft coefficient, normalized by the Born
weight σ0. We drop the summation over a; b ¼ g as the
gq; gq̄0, and gg initial states do not contribute to WR
production at LO.
The advantage of working in Mellin space is this explicit

factorization. Exploiting that in the soft limit gauge
radiation amplitudes reduce to their color-connected
Born amplitudes, resummation reduces to the simple
procedure of replacing the LO soft coefficient ΔLO

ab;N with
its resummed analogue ΔRes:

ab;N [88–90]. Thus, the threshold-
resummed pp → WR cross section in Mellin space is

σRes:N ¼ σ0Lqq̄0;ðNþ1Þ × ΔRes:
qq̄0;ðNþ1Þ; ð43Þ

and in momentum space by the Mellin inverse of the above
with respect to τ0:

σRes:ðpp → WR þ XÞ ¼ σ0
2πi

Z
cþi∞

c−i∞
dNτ−N0

× Lqq̄0;ðNþ1Þ × ΔRes:
qq̄0;ðNþ1Þ: ð44Þ

FIG. 2. Schematic definitions of the hadronic (s), partonic ðŝÞ and hard scatting ðQ2Þ components for inclusive production of a generic
color-singlet boson B in pp collisions.
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We approximate the luminosity function LðτÞ using the
Chebyshev polynomial approximation [92,94], which can
be Mellin-transformed analytically, and we choose the
integration path according to the minimal prescription
(MP) procedure [91]. See Appendix A for more details.
Matching resummed and FO calculations beyond LO

requires subtracting the soft contributions common to both
calculations to avoid phase-space double counting. For a
FO result at NkLO, this can be done by Taylor-expanding
σRes: up to OðαksÞ, subtracting these terms from σRes:, and
adding the NkLO calculation to the residual resummed
expression. One may interpret this procedure as aug-
menting with approximate OðαksÞ terms in σRes:, i.e., soft
or nonhard, with the full OðαksÞ calculation, which accu-
rately describes both soft and hard radiation. Subsequently,
WR production matched at NkLOþ NjLL is given by

σN
kLOþNjLLðpp → WR þ XÞ

¼ σN
kLO þ σN

jLL −
Xk
l¼0

αls
l!

�
dl

dαls
σN

jLL

�
αs¼0

: ð45Þ

In Fig. 3, we show the total inclusive pp → WR cross
section at NLOþ NNLL (dashed-dotted) with PDF uncer-
tainty (shaded), NLO (dashed), and LO (solid) at (a) 13 and
(b) 100 TeV. The production rates at 13 (100) TeV span
approximately

2 fb–40 pbð90 ab–930 pbÞ for MWR
¼ 1–5ð1–33Þ TeV:

ð46Þ

In the lower panel are the NLOþ NNLL and NLO
K-factors, defined respectively as

KNLOþNNLL ≡ σNLOþNNLL

σLO
and KNLO ≡ σNLO

σLO
: ð47Þ

The NLOþ NNLL (dashed-dotted) and NLO (dashed)
K-factors with uncertainties span roughly

KNLOþNNLL∶ 1.2–2.4ð1.2–1.5Þ; ð48Þ

KNLO∶ 1.2–1.4ð1.1–1.3Þ: ð49Þ

At 13 and 100 TeV, we observe that the effects of
resummation become important with respect to the NLO
rate at τ0 ≈ 0.3. At 13 TeV, the resummed corrections for
τ0 > 0.3 are very large, increasing the Born (NLO) pre-
dictions by 40–140ð4–70Þ% for MWR

¼ 4–5 TeV. The
largeness of the 13 TeV K-factors for MWR

≳ 4 TeV does
not indicate the breakdown of perturbation theory. Rather, it
demonstrates the importance of soft radiation as τ0 → 1,
and is typical for processes near the boundaries of phase
space [91]. This is exemplified at 100 TeV by the reduced
importance of resummation for comparable MWR

(smaller
τ0). Despite the largeness of the PDF uncertainties at large
MWR

, the NLOþ NNLL central value remains within the
NLO uncertainty, as seen in the lower panel of Fig. 3(a).
See Sec. III D for further discussions on uncertainties.
Away from threshold, the resummed calculation converges
to the FO result, consistent with expectations [69]. For
select MWR

, we summarize our NLO and NLOþ NNLL
results in Table I.

B. WR decay

As discussed in Secs. II A and II B, WR −WL and
Ni − νi mixing are negligibly small and mFCNH ≫ MWR

.
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FIG. 3. Upper panel: As a function ofMWR
, pp → WR production cross section for

ffiffiffi
s

p ¼ (a) 13 and (b) 100 TeV, at LO (solid), NLO
(dashed), and NLOþ NNLL (dashed-dotted) with 1σ PDF uncertainty (shaded), as well as σNLOþNNLLðpp → WRÞ × BRðWR →
NeÞ × BRðN → eqq̄0Þ (dotted). Lower panel: NLO (dashed) and NLOþ NNLL (dashed-dotted) K-factors and PDF uncertainties.

NEUTRINO JETS FROM HIGH-MASS WR GAUGE … PHYSICAL REVIEW D 94, 095016 (2016)

095016-7



Subsequently, for mN < MWR
, the only open WR decay

modes are to quark and l�N pairs. The corresponding
partial widths are

ΓðWR → qq̄0Þ ¼ NcjVCKM0
qq0 j2 g

2MWR

48π
; ð50Þ

ΓðWR → tbÞ ¼ NcjVCKM0
tb j2 g

2MWR

48π
ð1 − rtÞ2

�
1þ 1

2
rt

�
;

ð51Þ

ΓðWR → lNÞ ¼ jYlN j2
g2MWR

48π
ð1 − rNÞ2

�
1þ 1

2
rN

�
;

ri ¼
m2

i

M2
WR

: ð52Þ

For our choice of quark and lepton mixing, the total WR
width is

ΓWR
¼ 2ΓðWR → qq̄0Þ þ ΓðWR → tbÞ þ ΓðWR → eNÞ

ð53Þ

¼ g2MWR

48π

�
2Nc þ Ncð1 − rtÞ2

�
1þ 1

2
rt

�

þ ð1 − rNÞ2
�
1þ 1

2
rN

��
: ð54Þ

We calculate the total WR and N decay widths for
representative masses in Table II.
The branching fraction of A to final-state Xi is defined as

BRðA → XiÞ≡ ΓðA → XiÞP
iΓðA → XiÞ

: ð55Þ

In the large MWR
limit, the WR branching fractions

converge to the asymptotic values

BRðWR → qq̄0Þ ≈ 2 × BRðWR → tbÞ ≈ 2Nc

3Nc þ 1
¼ 60%;

ð56Þ

BRðWR → NeÞ ≈ 1

3Nc þ 1
¼ 10%: ð57Þ

In the upper (lower) panel of Fig. 4(a), we show the total
WR decay width (branching fraction) for MWR

> 1 TeV
and fixed mN=MWR

ratios of
ffiffiffiffiffi
rN

p ¼ 0.01 (dashed), 0.1
(solid), 0.5 (dotted), and 0.75 (dotted-dashed). Similar to
the EW gauge bosons, the WR in this model has a narrow
width for all values of MWR

, with ΓWR
=MWR

scaling as

ΓWR

MWR

∼
g2

48π
ð3Nc þ 1Þ ≈ 2.8%: ð58Þ

This justifies the use of the narrow width approximation
(NWA). Furthermore, as pp → WR is a DY process, its
factorization properties imply that the NLO and NLOþ
NNLL corrections to its on-shell production and decay toN
are equivalent to the production-only corrections, i.e.,

σNLOðþNNLLÞðpp → WR → e�NÞ
≈ σNLOðþNNLLÞðpp → WRÞ × BRðWR → e�NÞ: ð59Þ

In the lower panel of Fig. 4(a), we observe that the
WR branching fractions remain virtually independent of

TABLE I. The pp → WR production cross sections and K-factors at various accuracies for representative MWR
andffiffiffi

s
p ¼ 13; 100 TeV, with absolute scale (first) and PDF (second) uncertainties. Exceptionally small uncertainties are noted by ð< 0.5%Þ.

σðpp → W�
R Þ [fb]

13 TeV LHC
MWR σLO σNLO KNLO σNLOþNNLL KNLOþ

NNLL

1 TeV 3.52 × 104 4.15þ0.08þ0.08
−0.07−0.08 × 104 1.18 4.33þð<0.5%Þþ0.09

−ð<0.5%Þ−0.09 × 104 1.23

3 TeV 1.18 × 102 1.51þ0.06þ0.13
−0.06−0.13 × 102 1.29 1.48þð<0.5%Þþ0.3

−ð<0.5%Þ−0.3 × 102 1.25

5 TeV 0.765 1.08þ0.07þ1.75
−0.07−1.75 1.41 1.86þð<0.5%Þþ4.55

−ð<0.5%Þ−4.55
2.43

100 TeV VLHC
MWR σLO σNLO KNLO σNLOþNNLL KNLOþ

NNLL

1 TeV 7.78 × 105 8.60þ0.06þ0.09
−ð<0.5%Þ−0.09 × 105 1.11 9.25þ0.23þ3.81

−0.19−3.81 × 105 1.19

5 TeV 2.98 × 103 3.40þ0.04þ0.05
−0.03−0.05 × 103 1.14 3.50þ0.02þ0.06

−ð<0.5%Þ−0.06 × 103 1.17

25 TeV 0.818 1.03þ0.03þ0.14
−0.03−0.14 1.26 0.970þð<0.5%Þþ0.342

−ð<0.5%Þ−0.342
1.19

33 TeV 5.98 × 10−2 7.86þ0.31þ4.66
−0.34−4.66 × 10−2 1.31 8.81þð<0.5%Þþ12.2

−ð<0.5%Þ−12.2 × 10−2 1.47

TABLE II. Total WR and N decay widths for representative
MWR

and mN .

ðMWR
;mNÞ

[TeV, GeV] (3, 30) (3, 150) (3, 300) (4, 400) (5, 500)

ΓWR
[GeV] 84.4 84.3 84.2 112 141

ΓN [eV] 3.41 × 10−3 10.7 355 513 687
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mN and attain its maximum branching of BRðWR →
Ne�Þ ≈ 0.1. For 13 (100) TeV and ðmN=MWR

Þ ¼ 0.1,
the pp → WR → Ne cross section [Eq. (59)] spans

180 pb–15 fbð100 pb–350 fbÞ for MWR
¼ 3–5ð5–25Þ TeV:

ð60Þ

For representative ðMWR
;mNÞ, we summarize our results in

column 2 of Table III.

C. N decays

In our scenario, the heavy neutrino dominantly decays to
the three-body final state

N → e�W∓�
R → e�qq̄0: ð61Þ

Both eþ and e− are allowed in the final state due to
the Majorana nature of N. If kinematically accessible, the
heavy neutrino can also decay to t and b quarks, with the
final state e�tb. In principle, N can also decay to SM EW
bosons via mixing with SM neutrinos; the rate is controlled
by the tiny mixing parameter jXlN j2 ∼ 1 − jYlN j2∼
Oðm2

ν=m2
NÞ. Following Eq. (27), such decays vanish at

tree level and, therefore, are not considered in the analysis.
For mN ≪ MWR

, the partial widths of N are

ΓðN → e�qq̄0Þ ¼ 2Nc

jYlN j2jVCKM0
qq0 j2g4m5

N

3 · 211 · π3M4
WR

;

yt ¼
m2

t

m2
N
; ð62Þ

ΓðN→ e�tbÞ ¼ 2Nc
jYlN j2jVCKM0

tb j2g4m5
N

3 · 211 · π3M4
WR

× ð1−8ytþ 8y3t − y4t − 12y2t logytÞ: ð63Þ

The validity of this approximation for mN=MWR
∼ 0.1 has

been checked against MG5. For our choice of mixing, the
total N width is

ΓN ¼ 2ΓðN → e�qq̄0Þ þ ΓðN → e�tbÞ ð64Þ

¼ 2Nc
g4m5

N

3 · 211 · π3M4
WR

½3− 8yt þ 8y3t − y4t − 12y2t logyt�

ð65Þ

and implies that ΓN=mN scales as
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FIG. 4. Total decay widths for representative
ffiffiffiffiffi
rN

p ¼ mN=MWR
of (a)WR as a function ofMWR

and (b) N as a function of mN . Lower:
(a) WR → Ne branching fraction; (b) N mean lifetime d ¼ βγ=ΓN in WR frame [mm].

TABLE III. Cross section times branching ratio predictions for
pp → W�

R → Ne�, with subsequent decay of N to leptons and
quarks, for select ðMWR

;mNÞ.
13 TeV LHC [fb]
(MWR

, mNÞ
[TeV, GeV]

σNLOþNNLL

×BRðWR → NeÞ ×BRðN → e�qq̄0Þ
(3, 30) 14.8 14.8
(3, 150) 14.8 14.8
(3, 300) 14.6 14.1
(4, 400) 1.44 1.28
(5, 500) 0.184 0.152
100 TeV VLHC [fb]
(MWR

, mNÞ
[TeV, GeV]

σNLOþNNLL

×BRðWR → NeÞ ×BRðN → e�qq̄0Þ
(5, 500) 345 286
(25, 2500) 95.7 × 10−3 64.6 × 10−3
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ΓN

mN
¼ g4

210π3

�
mN

MWR

�
4

∼ 5 × 10−6 ×

�
mN

MWR

�
4

≪ 1: ð66Þ

Hence, application of the NWA in N decays is justified but
suggests N may be long-lived. Values of ΓN for represen-
tative MWR

and mN used in this study are given in Table II.
In Fig. 4(b), we plot ΓN as a function of mN for

representative MWR
and ðmN=MWR

Þ ratios; in the lower
panel we show the mean flight distances

d0 ¼ vτ0 ¼ βγℏc=ΓN; βγ ¼ ð1 − rNÞ
2

ffiffiffiffiffi
rN

p : ð67Þ

For mN ¼ 30–1000 GeV, we find

mN

MWR

¼ 0.1ðsolidÞ∶ ΓN ∼ 10−8–10−6 GeV; ð68Þ
mN

MWR

¼ 0.01ðdashedÞ∶ ΓN ∼ 10−12–10−10 GeV: ð69Þ

The corresponding mean flight distances span

mN

MWR

¼ 0.1ðsolidÞ∶ d0 ∼ 10−7–10−5 mm; ð70Þ
mN

MWR

¼ 0.01ðdashedÞ∶ d0 ∼ 10−2–3 mm: ð71Þ

This implies that for N much lighter than MWR
, i.e.,

mN=MWR
< 0.01, heavy neutrinos appear in detector

experiments as displaced vertices, not prompt decays.
However, such a scenario is not reasonable within the
spirit of the LRSM model. Supposing mN=MWR

< 0.01
and using expressions for mN;MWR

in Secs. II B and II A,
the Yukawa couplings of the heavy neutrino N to the triplet
Higgs are restricted to fR < 3 × 10−3. This is comparable
to generation I and II quark SM Yukawa couplings.
However, taking mN ∼Oð10Þ GeV, a (vanilla) type I
seesaw model then requires, for light neutrino masses
mνm ∼ 0.1 eV, a Dirac neutrino mass of mD ∼ 30 KeV,
or a Yukawa coupling Oð15–20Þ× smaller than the SM
electron Yukawa. Though not forbidden, this is contrary to
the seesaw model spirit of explaining light neutrino masses
without excessively small couplings.
From Eq. (65) the N branching fractions are independent

of MWR
and are given by

BRðN → e�qq̄0Þ ¼
�

1; mN ≤ mt;
2

3−8ytþ8y3t−y4t−12y2t log yt
; mN > mt;

ð72Þ

BRðN→e�tbÞ¼1−8ytþ8y3t −y4t −12y2t logyt
3−8ytþ8y3t −y4t −12y2t logyt

; mN >mt:

ð73Þ

For MWR
≫ mN ≫ mt, one finds asymptotically

BRðN → e�qq̄0Þ ≈ 2 × BRðN → e�tbÞ ≈ 2

3
: ð74Þ

Consequently, the 13 and 100 TeV cross sections for the
process

pp → WR → Ne → eeqq̄0 ð75Þ
in the NWA approximation can be given in terms of
Eq. (59):

σNLOðþNNLLÞðpp → W�
R → Ne� → e�e�qq̄0Þ

≈ σNLOðþNNLLÞðpp → W�
R Þ

× BRðWR → NeÞBRðN → e�qq̄0Þ: ð76Þ
The total production rates for Eq. (76) for representative
ðMWR

;mNÞ are summarized in column 3 of Table III and for
mN=MWR

¼ 0.1 plotted in Fig. 3 (dotted). We find that the
total 13 (100) TeV rate spans approximately

10−1–4 × 104ð10−3–105Þ fb for MWR
¼ 1–5ð35Þ TeV:

ð77Þ

D. PDF and scale uncertainties

To estimate the impact of higher order terms in the QCD
perturbative series that are not calculated in the WR
production cross section, we vary the factorization and
renormalization scales about the default choice of
μ0¼MWR

up and down by a factor of 2. We present results
normalized to the cross section at the default scale. In
the lower panel of each plot is the K-factor as defined
in Eq. (47).
In Fig. 5 we show the effect of scale variation on the

NLO cross section at (a) 13 and (b) 100 TeV for a range of
WR masses. At NLO, it can be seen at both 13 and 100 TeV
that increasing (decreasing) the default scale lowers (raises)
the total cross section, except for very low WR masses at
100 TeV, a feature common to high-mass DY processes
[86]. In addition, the K-factor also steadily increases with
mass, indicating the growing importance of higher order
corrections in such scenarios. In both the 13 and 100 TeV
cases, the scale variation results in a 2%–5% uncertainty to
the total cross section.
The effect of scale variations on the NLOþ NNLL result

is presented at (c) 13 and (d) 100 TeV for the same MWR
.

The effect of the resummation on the scale variation is
manifest in the reduction of the associated uncertainty. For
the 13 TeV case, uncertainty is reduced to the subpercent
level, while at 100 TeV the impact is comparable to
(but smaller than) the NLO dependence. This is because
resummed contributions are less important away from
threshold. Indeed, the observed reduction in scale
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uncertainty is consistent with what one expects from
including higher order terms in the perturbative series.
We calculate the symmetric PDF uncertainties from the

NNPDF member sets following the recommended pro-
cedure of Ref. [79]. The 68% ð1σÞ uncertainty bands are
represented by the shaded regions in Fig. 3. In the upper
panel, only the NLOþ NNLL uncertainties are shown; in
the lower panel, both the NLO and NLOþ NNLL uncer-
tainties are shown. At 13 TeV, for MWR

¼ 4ð4.5Þ TeV, the
NLOþ NNLL uncertainty is approximately �80ð240Þ%.
At 100 TeV, the uncertainties breach 100% for MWR

between 20 and 30 TeV.
The larger uncertainties in the threshold calculation

compared to the NLO result are due in part to less data
being used to constrain the threshold-improved PDFs
[69,70]. This follows from the limited threshold calcu-
lations available for processes that enter into global fit
PDFs, and it demonstrates their need for accurate LHC
predictions.

For representative MWR
, scale and PDF uncertainties are

given in Table I.

IV. OBSERVABILITY OF BOOSTED N AT
HADRON COLLIDERS

In this section we study the observability at hadron
colliders of WR and N in the LRSM for mN=MWR

≲ 0.1.
We start with production- and decay-level kinematics of N
at LO. After constructing several observables with strong
background-discriminating power, we perform a full parton
shower (PS)/detector-level signal-to-background analysis.
For signal event generation, we modify the Manifest

LRSM FeynRules (FR) model file v1.1.6_mix by Ref. [73]
(see Appendix B 2) and use FR v2.3.10 [95,96] to generate
universal file object (UFO) inputs [97]. LO events are
simulated using MG5 [87]. Rates are scaled by the NLOþ
NNLL K-factors as defined in Eq. (47). Application of K-
factors is justified in the threshold regime as the dominant
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contribution, i.e., soft-radiation, largely leave kinematics
unchanged. Events are showered using PYTHIA 8.212 [98],
and jets are clustered with FastJet v3.20 [99,100] using the
Cambridge/Aachen (C/A) algorithm [101,102] with a
separation parameter of R ¼ 1.0. SM background proc-
esses are simulated at LOþ PS accuracy using the MG5
and are scaled by an appropriate NLO K-factor calculated
via the MG5_aMC@NLO framework. Due to extreme
phase-space cuts, event generation at NLOþ PS accuracy
is impractical.

A. Kinematic properties of boosted N

To investigate the kinematics of boosted N from WR
decays, we simulate at 13 TeV

q1q̄2 → WR → e1N → e1e2q01q̄
0
2; ð78Þ

where the two electrons possess any electric charge
combination, for the representative ðMWR

;mNÞ listed in
Table II. We focus on final-state electrons, which is the
most problematic channel for ATLAS and CMS [54,55],
but our study is also applicable to the eμ and μμ final states.
The largest change in those channels follows from the
better muon identification compared to the electron [62];
this in fact extends the validity of standard dilepton
searches. Inclusion of the N → ltb final state is similarly
straightforward. To model detector response while keeping
generator-level particle identification at LO, we smear
final-state partons as done in [103], which adopts the
expected ATLAS detector performance parametrization
[104]. Equation (78) is free of kinematic poles, and no
generator-level cuts are applied.
In Fig. 6 we show the normalized differential distribu-

tions with respect to the (a) transverse momentum ðpTÞ
and (b) pseudorapidity (η) of the charged lepton in the

W�
R → Ne� decay, denoted by lWR

. In the p
lWR
T distribu-

tion, the Jacobian peak near pT ∼MWR
=2 is unambiguous

and is largely independent of such small mN . The ηlWR

distribution reveals that lWR
are very central, with most

electrons contained within jηj < 1.0 and negligibly few
with jηj ≥ 2.0. Multi-TeV bounds on MWR

(see Sec. II)

nearly guarantee that p
lWR
T is very large and jηlj small.

Consequently, Eq. (78) efficiently passes inclusive high-pT
single-electron triggers, such as those used in Ref. [62].
As pp → Ne� is a 2 → 2 system, the heavy neutrino’s

pT and rapidity (y) distributions are identical to Fig. 6, up to
mass corrections. Hence, the decay products of the N with
high pT are largely collimated due to its relative lightness.
For theN → lNqq̄0 final state in Eq. (78), we show in Fig. 7
the normalized separation1 distributions between (a) the
charged lepton lN and its closest quark ðΔRmin

qlN
Þ, as well as

(b) the two quarks themselves ðΔRqq̄0 Þ. In both cases, the
separation peaks at ΔR ∼ 0.2ð0.4Þ for ffiffiffiffiffi

rN
p ¼ mN=MWR

¼
0.05ð0.1Þ, and follows from the scaling relationship

ΔRqX ∼ 2pX⊥=pN
T ∼ 4mN=MWR

; ð79Þ

where pX⊥ is the perpendicular momentum of X ¼ lN; q̄0

relative to its parent N. Hence, for much of the phase space,
these electrons fail particle identification criteria at
13 TeV [62]:

pl
T > 35 GeV; ΔRlX > 0.3; jηlj < 2.4; ð80Þ

and this leads to the breakdown of current ATLAS
and CMS WR − N search strategies [54]. Smaller rN¼
m2

N=M
2
WR

, hadronization, and the presence of tb pairs
exacerbate this issue.
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FIG. 6. Normalized (a) transverse momentum ðpTÞ and (b) pseudorapidity (η) distributions of the charged lepton from pp → WR →
Nl for representative MWR

and mN at 13 TeV.

1The separation between particle pair ða; bÞ is defined as
ΔRab ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðya − ybÞ2 þ ðϕa − ϕbÞ2

p
for rapidity y (or pseudor-

apidity η) and azimuthal angle ϕ.
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For such signal regions, we consider an alternate search
strategy: model the N decay products as a single object,
which we call a neutrino jet ðjNÞ, and investigate instead
the 2 → 2 process:

pp → WR → e�jN: ð81Þ

The simplified signal topology alleviates the failing iden-
tification criteria and retains the high signal-to-noise

properties of the same-sign dilepton channel. To build a
qualitative picture of the new signal definition, we pre-
liminarily define jN at the present FO parton level via C/A
clustering with ΔR ¼ 1. We cluster all final-state partons
except any electron candidate satisfying Eq. (80). Note that
jN is identified as the highest pT C/A jet.
In Fig. 8 we show the normalized distributions for jN

with respect to (a) pT , (b) y, (c) invariant mass ðmjN Þ, and
(d) missing transverse momentum (MET) for events with
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exactly one electron and one jN candidate. As anticipated,
we observe strong similarities to the lWR

distributions
and unambiguous Breit-Wigner resonances at the appro-
priate values in the mjN distribution. This indicates that jN
is a good description of N and that the signal definition
of Eq. (81) can be interpreted as Eq. (78) when
ðmN=MWR

Þ < 0.1.
A cost of this new signal definition is the loss of the

unambiguous smoking-gun collider signature of two same-
sign leptons and jets [37], which is intrinsically background-
free up to detector effects as it violates L by two units.
However, inherited from the original definition is the fact
that, up to detector and hadronization effects, the process
has no MET as no light neutrinos exist in the final state.
Requiring again exactly one electron candidate, we show in
(d) the normalized MET distribution. Due to smearing,
we find moderate MET out to 10s of GeV and largely
independent ofmN . We observe that the peak MET shifts to
larger values for largerMWR

, and this is due to the increased
likelihood of more energy being misreconstructed for more
energetic objects [104]. PresentATLASdetector capabilities
[105] permit MET cuts as tight as

MET < 35 GeV: ð82Þ

In a realistic scenario (see Sec. IV B), a more conservative
cut is required due to pileup, etc.
In Fig. 9(a) the WR resonances built from the l1 − jN

invariantmass are clearly seen for our representativemasses,
up to broadening due tomisreconstruction ofN and detector
smearing. In (b), we show the polarization of l1 in the
l1−jN system’s rest frame.We clearly observe theRHchiral
structure of the NlWR vertex for

ffiffiffiffiffi
rN

p ¼ mN=MWR
¼ 0.01.

At larger rN, however, this becomes obfuscated due to the
importance of opposite helicity states, which scale like rN ,
and lead to spin decorrelation.
Altogether, this demonstrates the viability of the new

search procedure.

Aside from the application of microjets and substructure
techniques, it may be possible to verify the Majorana nature
of heavierN via its decays to top quarks. ForDiracN, the off-
shellW�

R to which it decays can only carry the same electric
charge as the charged lepton produced from the decay of
the primary, on-shell WR, i.e., lWR

. Decays of the W�
R to a

top quark that subsequently decays leptonically can lead to
final-state muons with the same sign electric charge as lWR

.
That is, for a fixed primary WR electric charge, one has

qq̄0 → W�
R → l�

WR
N; with

N → l∓
N ðt → W�

LbÞb → l∓
Nbb̄μ

�νμ: ð83Þ

Hence, jN containing top quarks can be identified by their
larger complexity, namely, the presence of two b subjets. As
the outgoing muon momentum scales like pμ

T ∼ γtmtð1þ
M2

W=m
2
t Þ=4 ∼ γt50 GeV, where γt ∼mt=pN

T ∼mt=MWR
is

the top quark’s Lorentz boost to the lab frame, it should be
identifiable. For a Majorana N, the off-shell W�

R can carry
either electric charge. Thus, observation of such muons
with opposite electric charge of the easily identifiable lWR

is
evidence of L-violating transitions. Further discussion of
this topic is beyond the scope of this study.
We briefly note that the use of neutrino jets is also widely

applicable to other situations: In the MLRSM, high-mass
ZR and HFCNH decays to boosted NN pairs could give rise
to two back-to-back jN . If N couples non-negligibly to EW
bosons, then jN may also feature substructure topologies.
In other models, such as the inverse seesaw model, rare
decays of W=Z=h bosons to GeV-scale pseudo-Dirac
neutrinos, as well as other processes, could also result in jN .

1. Estimation of leading standard model backgrounds

Before simulating our full detector-level analysis, we are
in the position to estimate the leading SM backgrounds.
The simple leptonþ jet topology of Eq. (81) suffers from
large SM backgrounds. We sort the leading channels into
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three categories: (a) weak bosons, (b) top quarks, and
(c) fake rates from electron misidentification:

Weak boson∶ W�jð→ e�jXÞ; W�Zð→ e�jXÞ; ð84Þ
Top quark∶ tt̄þ njðsemileptonicÞ;

tbjð→ l� þ nbþmjXÞ; ð85Þ
Fake rates ∶ eþe−j; WþW−jð→ eþe−jXÞ: ð86Þ
Fake events correspond to regions of phase space where
one electron candidate is identified according to Eq. (80)
but additional electrons fail to pass the criteria.
At the generator level and assuming the following

(nominal) regulating cuts,

pj;b
T > 30 GeV; ΔRjb > 0.4;

ΔRlX > 0.3; jηj;bj < 4.5; ð87Þ
the DYþ 1j channels at LO, i.e.,Wj and eej, are found to
dominate with cross sections reaching σSM ∼ 0.3–2 nb;
see row 1 of Table IV. The signal-to-noise ratio roughly
translates to S=N ∼ 10−6–10−5. Background rates are
dramatically reduced after decaying the top quark and
EW bosons and requiring that the pT of the leading charged
lepton and process MET satisfy, at the generator level,

pl1Generator level
T > 1 TeV and

METGenerator level < 50 GeV: ð88Þ
The Wj and eej channels remain dominant but now only
reach σSM ∼ 200 ab; see row 2 of Table IV. The top
background is particularly neutralized owing to the cascade
nature of their decays, which require TeV-scale charged
leptons to be accompanied by TeV-scale light neutrinos
from a multi-TeV top quark parent. Subsequently, the top
quark and diboson backgrounds can be neglected.
Requiring exactly one charged lepton to satisfy the

electron identification of Eq. (80) and rejecting events
with additional electrons leaves the Wj rate largely
unchanged but reduces the neutral current DY background
to the σSM ∼ 60 ab level; see row 3 of Table IV. Imposing
the MET requirement of Eq. (82) after smearing indicates
that the remaining SM background sums to a total of

σSM ∼ 110 ab; see row 4 of Table IV.We calculate a NLOK-
factor of KNLO ¼ 1.30 for the Wj channel; the same K-
factor is applicable to the eej channel due to color symmetry.
This increases the total SM background to σSM ∼ 140–150
ab; see row 5 of Table IV. After incorporating a loose mljFat
cut around MWR

and an appropriate signal K-factor, the
signal-to-noise ratio exceeds S=N ≳ 10–100.

B. Detector-level signal analysis
and neutrino jet definition

Using a custom detector simulation, we model the effects
of detector resolution and efficiency based closely on the
ATLAS Kraków parametrization [106]. The parametriza-
tion provides a conservative estimate of the ATLAS
detector performance for the phase-II high-luminosity
LHC. We model pileup (with μ ¼ 80) and ΣET-dependent
resolutions for jets and MET. We define an electron to be
isolated if the hadronic energy deposit within a cone of size
R ¼ 0.3 is smaller than 10% of the lepton candidate’s pT .
For benchmark points we use the ðMWR

;mNÞ listed in
Table II, i.e., mN=mWR

≲ 0.1 at
ffiffiffi
s

p ¼ 13 and 100 TeV. We
summarize our analysis in Table V.
As described in Sec. IVA, the angular separation

between the charged lepton and the W�
R decay products

in the chain N → l�W∓ → l�qq̄0 depends on theWR − N
mass hierarchy. A significant amount of radiation from the
W�

R decay enters the isolation cone of l and can negatively
affect the lepton’s identification. While so-called mini-
isolation requirements [107] can be applied to recover
the unidentified leptons, we adopt a more conservative
approach and include the lepton’s momentum as part of a
fat jet ðjFatÞ, recombined with the C/A algorithm and a cone
size of R ¼ 1.0, i.e., jN . Hence, we focus on the inclusive
process

pp → WR → e�N → e�jFat: ð89Þ

We require the electron and jFat to further satisfy

pl
T > 1 TeV; pjFat

T > 1 TeV;

jηlj < 2.5; jylj < 2.5: ð90Þ

TABLE IV. Cross sections [ab] of SM background for pp → e�jN after decays and successive cuts.

Cut \ σLO [ab] Wj WZ tt̄ tt̄j tbj eej WWj

pj;b
T > 30 GeV, jηj;bj < 4.5þ ΔRjb > 0.4,
ΔRlX > 0.3No decay

2.17 × 109 11.0 × 106 63.8 × 106 44.0 × 106 4.18 × 106 344 × 106 327 × 103

þDecayþ plmax
T > 1 TeVþ ET < 50 GeV 218 2.61 0.201 0.660 0.062 184 0.637

þSmearingþ jηlj < 2.0þ pl
T > 35 GeV

þ2nd e� veto
218 � � � � � � � � � � � � 57 � � �

ET < 35 GeV 85 � � � � � � � � � � � � 25 � � �
KNLO ¼ 1.3 111 � � � � � � � � � � � � 33 � � �
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After kinematic and fiducial cuts, we see in row 5 (14) of
Table V that the 13 (100) TeV rate for our representative
ðMWR

;mNÞ spans 60 ab–7 fb (0.2–1 pb). Including the
detector response shifts the signal MET distribution to
larger values than estimated in Sec. IVA. In order to not
lose a majority of the events, we loosen the MET cut of
Eq. (82) to

MET < 100 GeV: ð91Þ

In rows 6 and 15 of Table V, we find that about 50%–60%
of events survive the MET requirement, with heavier
(lighter) WR having a lower (higher) survival likelihood.
This behavior is due to the increase in momentum

mismeasurement at larger pT scales, which necessarily
occurs with heavier MWR

, and is visible in the MET
distribution of Fig. 8(d). Similarly, higher collider energies
lead to additional secondary radiation and larger MET.
In Fig. 10 we show the invariant mass distributions at

LOþ PS for the reconstructed heavy neutrino N ¼ jFat and
WR ¼ ðl� þ jFatÞ systems. The signal is overlaid with the
dominant SM W þ 1j background, also at LOþ PS. At
this more realistic level, we find that jFat indeed still
recovers the desired distributions, indicating that neutrino
jets are indeed good descriptors of boosted heavy neutrinos,
and this further validates our approach.
To further reduce the SM background, we apply the

following cut around mljFat :

TABLE V. The pp → e�jFat rates [fb] after successive cuts and QCD normalization, as well as the acceptance rate and statistical
significance after all cuts for representative ðMWR

;mNÞ at
ffiffiffi
s

p ¼ 13, 100 TeV.

σðpp → W�
R → l�N → l�jNÞ [fb]

13 TeV LHC

ðMWR
;mNÞ [TeV, GeV]

Cut (3, 30) (3, 150) (3, 300) (4, 400) (5, 500)
Fiducial þ Kinematicsþ Detector þ K-factor [Eq. (90)] 6.87 6.76 6.39 0.69 0.06
MET [Eq. (91)] 4.30 (63%) 4.22 (62%) 4.02 (63%) 0.40 (58%) 0.03 (50%)
mljFat [Eq. (92)] 3.64 (85%) 3.59 (85%) 3.41 (85%) 0.30 (75%) 0.02 (67%)
A ¼ σCuts=σFidþKin 53% 53% 53% 43% 33%

Sffiffiffiffiffiffiffi
SþB

p [L ¼ 10 fb−1] 5.9 5.9 5.7 1.7 0.4
Sffiffiffiffiffiffiffi
SþB

p [100 fb−1] 19 19 18 5.4 5.7 [2 ab−1]

100 TeV VLHC
ðMWR

;mNÞ [TeV, GeV]
Cut (3, 30) (3, 150) (3, 300) (4, 400) (5, 500)
Fiducial þ Kinematicsþ Detector þ K-factor [Eq. (90)] 1020 1010 957 408 183
MET [Eq. (91)] 597 (58%) 591 (58%) 540 (56%) 223 (55%) 93.0 (51%)
mljFat [Eq. (92)] 483 (81%) 476 (81%) 433 (80%) 164 (73%) 61.2 (66%)
A ¼ σCuts=σFidþKin 47% 47% 45% 40% 33%

Sffiffiffiffiffiffiffi
SþB

p [10 fb−1] 68 67 64 40 24

(a) (b)

FIG. 10. Mass of the reconstructed (a) neutrino N and (b) WR including detector effects at LOþ PS, as detailed in Sec. IV B.
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jmljFat −MWR
j < 200 GeV: ð92Þ

The largeness of the mass window is motivated by the size
of the WR total width ΓWR

. In row 7 (16) of Table V,
we see that roughly 60%–85% (65%–80%) of events at
13 (100) TeV rate pass this cut, again with heavier (lighter)
WR having a lower (higher) survival likelihood. The
behavior here can be understood by comparing the
200 GeV mass window to ΓWR

in Table II. For heavier
(lighter) WR, we see that the mass window is about
1.4ð2.4Þ × ΓWR

, hence encapsulating fewer (more) WR.
As in the parton-level analysis, we find that the residual
SM background is negligible.
For 13 (100 TeV) we calculate in row 8 (17)

the acceptance rate, defined as the ratio of rows 7 and 5
(16 and 14):

A≡ σAll Cuts

σFiducialþKinematicsþDetectorResponse : ð93Þ

We find that approximately 33%–50% of the events pass
our selection criteria.

Using the Gaussian estimator,

σ ¼ Sffiffiffiffiffiffiffiffiffiffiffiffi
Sþ B

p ≈
ffiffiffi
S

p
; for SðBÞ ¼ L × σAll CutsSignalðSMbackgroundÞ;

ð94Þ
we can determine the statistical significance of the
signal process (S) over the SM backgrounds (B) after an
integrated luminosity of L. At 13 TeV, we find a > 5σ
statistical observation (discovery) for MWR

¼ 3ð4Þ½5� TeV,
independent of mN , after L ¼ 10ð100Þ½2000� fb−1. At
100 TeV and L ¼ 10 fb−1, all benchmark points are in
excess of 20σ. This is summarized in rows 9, 10, and 18 of
Table V and Figs. 11(a) and 11(b). We extrapolate the
discovery potential for higher MWR

by keeping fixed
the efficiency, ε≡ σFidþKin=σTotal, and the acceptance
for ðMWR

;mNÞ ¼ ð5 TeV; 500 GeVÞ, in which case
ðε ≈ 0.64;A ≈ 0.33Þ. As seen in Fig. 11(b), a 5σ discovery
can be obtained for WR masses up to MWR

¼ 15ð30Þ with
approximately 100 fb−1 (10 ab−1).
Finally, we discuss briefly the 13 and 100 TeV potential to

exclude previously unconstrained regions of the ðMWR
;mNÞ

parameter space. We use Poisson counting to deduce the
required luminosity L95 for a 95% C.L. exclusion: For a SM

 [TeV]
RWM

]
-1

L
um

in
os

ity
 [

fb

1

10

210

310

=0.1
RWM

Nm

N
j± e→R W→pp

13 TeV

-1100 fb

-11 ab

σ5

σ3

(a)

 [TeV]
RWM

]
-1

L
um

in
os

ity
 [

fb

-110

1

10

210

310

410

=0.1
RWM

Nm

N
j± e→R W→pp

100 TeV

-1100 fb

-11 ab

-110 ab

σ5

σ3

(b)

1 1.5 2 2.5 3 3.5 4 4.5 5

200
400
600
800

1000
1200
1400
1600
1800
2000

-10.9 fb
-110 fb

-1150 fb

 = 0.1

RWM
Nm

13 TeV LHC

-1Exclusion, 8 TeV 20.3 fb
     ATLAS 95% CL

JHEP07(2015)162  [1506.06020]

R
W

=M
N

m

 (Kamland)β β ν0

     [1305.0056]
PRD.88.091301 (2013)

(c)

5 10 15 20 25 30

500

1000

1500

2000

2500

3000

3500

-150 pb

-1100 fb

-12.5 ab

 = 0.1

RWM
Nm

100 TeV VLHC

R
W

=M
N

m

-1Exclusion, 8 TeV 20.3 fb
     ATLAS 95% CL

JHEP07(2015)162  [1506.06020]

(d)

3 3.5 4 4.5 5 5 10 15 20 25 30

 [TeV]
RWM  [TeV]

RWM

 [
G

eV
]

N
m

 [
G

eV
]

N
m

FIG. 11. Discovery (a, b) and 95% CL exclusion (c,d) potential of pp → WR → e�jN searches at (a, c)
ffiffiffi
s

p ¼ 13 and (b, d) 100 TeV.
Also shown in (c, d), ATLAS experiment’s 8 TeV 95% CL [54] and KamLAND-Zen 90% CL [31,77] exclusion limits.
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background ofB ≈ 0 events, we solve for the largest number
of signal events S such that the expected probability to
observe B events is at most 5%ð¼ 1 − C.L.Þ; i.e., we find S
such that we satisfy

Pr ðnobserved ¼ Bjnexpected ¼ Sþ BÞ

¼ ðSþ BÞB
B!

e−ðSþBÞ ≤ 1 − C.L. ¼ 0.05: ð95Þ

For B ≈ 0, this yields S ¼ 3. Given an efficiency ϵ and
acceptanceA,L95 can then be determined by the relationship

L95 ¼
S

ϵ ·A · σNLOþNNLL × BR × BR
: ð96Þ

We then state that a ðmN=MWR
Þmass hypothesis is excluded

at 95% C.L. if

N ¼ L95 × σNLOþNNLL × BR × BR · ϵ ·A ≥ S ¼ 3: ð97Þ

For ðmN=MWR
Þ ≤ 0.1, we show in Fig. 11(c) that

MWR
< 3ð4Þ½5� TeV can be excluded at 95% C.L. with

L ¼ 0.9ð10Þ½150� fb−1 of 13 TeV data. Also plotted are
the ATLAS experiment’s 8 TeV 95% C.L. [54] and
KamLAND-Zen 90% C.L. [31,77] complementary exclu-
sion limits.We find that regions of the ðMWR

;mNÞ parameter
space unconstrained byATLASandCMSare indeed covered
by the present, complementary analysis. The open region
between this analysis and ATLAS is an artifact of our choice
to limit our study to ðmN=MWR

Þ ≤ 0.1; application of the
neutrino jet analysis to larger mass ratios will close the
region. We note that the ability to excludeMWR

< 3 TeV atffiffiffi
s

p ¼ 13 TeV with approximately 1=20 of the 8 TeV data is
consistent with the luminosity increase for DY-type proc-
esses [108]. In Fig. 11(d) we show the analogous 100 TeV
exclusion potential: with L ¼ 100 fb−1 (2.5 ab−1), we find
that MWR

< 22ð33Þ TeV and ðmN=MWR
Þ ≤ 0.1 can be

excluded at 95% C.L.

V. SUMMARY AND CONCLUSION

The origin of tiny, nonzero neutrino masses remains an
openquestion in particle physics. In this studywe re-examine
the discovery potential of a WR gauge boson decaying
to a heavy Majorana neutrino N in the MLRSM. We focus
on the case when N is hierarchically lighter than WR, i.e.,
mN=MWR

≲ 0.1. In this limit, WR → N decays produce
highly boosted N that then decay to collimated final states.
Subsequently, the canonical collider definition

pp → WR → e�Nð→ e�jjÞ ð98Þ

breaks down due to failing isolation criteria of the final-state
charged leptons. For such a regime, we consider an alter-
native collider definition,

pp → WR → e�N → e�jN; ð99Þ

where jN is a color-singlet neutrino jet that consists of the
collimated N decay products. Furthermore, we consider
resummedQCDcorrections that are important for high-mass
DY processes. We calculate, for the first time, inclusive
pp → WR production at NLOþ NNLL matched to thresh-
old-improved PDFs. This captures dominant contributions
beyond NLO, and these are arguably the most precise
predictions available for high-mass WR at 13 and
100 TeV. We summarize our findings:
(1) We introduce the concept of neutrino jets, which

has widespread applicability to other processes and
models; see Sec. IVA. With our new collider signal
definition, a 5–6σ discovery is achievable at 13 TeV
with 10ð100Þ½2000� fb−1 for MWR

¼ 3ð4Þ½5� TeV
and ðmN=MWR

Þ< 0.1. At 100 TeV, a 5σ discovery
can be obtained for WR masses up to MWR

¼
15ð30Þ TeV with approximately 100 fb−1 (10 ab−1).
Conversely, with 0.9ð10Þ½150� fb−1 of 13 TeV data,
MWR

< 3ð4Þ½5� TeV can be excluded at 95% C.L.;
with 100 fb−1 (2.5 ab−1) of 100 TeV data, MWR

<
22ð33Þ TeV can be excluded. See Sec. IV B.

(2) At 13 TeV the NLOþ NNLL contributions increase
theBorn (NLO)-level predictions by 40–140 (4–70)%
for MWR

¼ 4 − 5 TeV, well beyond the NLO scale
uncertainty. At 100 TeV threshold effects become
important for MWR

≳ 30 TeV, where resummation
increases the Born (NLO) prediction by ≳40ð10Þ%.
Away from threshold, we find that the resummed
result converges to the NLO rate. See Sec. III.

(3) The residual scale dependence at NLOþ NNLL for
MWR

¼ 1–5ð1–30Þ TeV at 13 TeV is maximally
subpercent, and �4% at 100 TeV. The PDF un-
certainty at NLOþ NNLL exceeds 100% in the
threshold regions. Away from threshold, the PDF
uncertainty is comparable to the NLO PDF uncer-
tainty. See Sec. III D
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APPENDIX A: THRESHOLD RESUMMATION
FOR INCLUSIVE pp → W 0 PRODUCTION

Here, we review the details of threshold resummation for
inclusive production of W0 bosons with arbitrary chiral
couplings in pp collisions. Often labeled as soft-gluon or
large-x resummation [88–90], the calculation should not
be confused with small-kT (or recoil or Collins-Soper-
Sterman) resummation [109–111] nor joint recoil-threshold
resummation [112–114]. Many concise texts on the topic
exist, e.g., Refs. [91–94,115–117]. We largely follow the
notation and spirit of Refs. [91–93] and implement the
numerical procedures of Refs. [91,92], but make explicit
mass and coupling factors that are often omitted for
simplicity.

1. Threshold resummation for W 0 bosons
with arbitrary chiral couplings

The emission of soft gluons from initial-state partons
participating in hard, hadronic collisions can spawn large,
with respect to the expansion parameter αs, logarithmic
enhancements in scattering cross sections. In certain
kinematic configurations, these logarithms can become
large enough to render a perturbative expansion unreliable,
requiring that the divergent series be summed to all orders.
In particular, soft logarithms near the partonic threshold
take the form

αs log

�
ŝ −Q2

ŝ

�
¼ αs logð1 − zÞ; z≡Q2

ŝ
; ðA1Þ

where Q ∼
ffiffiffî
s

p
≫ ΛQCD is the scale of the hard scattering

process,
ffiffiffî
s

p
is the partonic scattering scale, and the

dimensionless variable z quantifies the nearness of the
partonic scale to the hard scale. A schematic distinction of
the hard, partonic, and hadronic scattering (beam) scale

ffiffiffi
s

p
is illustrated in Fig. 2. The purpose of threshold resumma-
tion is to perform a summation of such terms when z → 1
while accounting for the hierarchy of scales via renorm-
alization group evolution (RGE). We now briefly summa-
rize the procedure directly in perturbative QCD (pQCD).
For a generic color-singlet boson B (scalar or vector)

produced in hadron collisions, the total inclusive cross
section is given by the usual collinear factorization theorem

σFOðh1h2→BþXÞ¼
X

a;b¼q;q̄0;g

Z
1

τ0

dτLabðτ;μfÞσ̂FOðab→BÞ;

τ0≡M2
B

s
; ðA2Þ

where the luminosity L of the parton pair ab, with
a; b ∈ fq; q̄0; gg, at the LHC (h1 ¼ h2 ¼ p) is given in
terms of the PDFs fa=p and fb=p jointly evolved to a
factorization scale μf:

Labðτ; μfÞ ¼
1

1þ δab

Z
1

τ

dξ1
ξ1

½fa=pðξ1; μfÞfb=pðξ2; μfÞ

þ fa=pðξ2; μfÞfb=pðξ1; μfÞ�; ðA3Þ

ξ2 ≡ τ

ξ1
; ðA4Þ

and σ̂FO is the FO partonic cross section for the process

ab → B with Q ¼ MB: ðA5Þ

Following the notation and methodologies of Refs. [91,93],
we account for the arbitrary emission of soft radiation by
using a generalization of Eq. (A2):

σFOðpp→BþXÞ

¼
X

a;b¼q;q̄0;g

Z
1

τ0

dτ
Z

1

0

dzδ

�
z−

τ0
τ

�
LabðτÞ× σ̂FOðab→BÞ:

ðA6Þ

Written this way, we identify the FO partonic cross section
in the soft radiation limit as

σ̂FOðab → BÞ≡ σ̂FOab ¼ σ0 × z × ΔFO
ab ðzÞ;

ΔFO
ab ðzÞ ¼

X∞
k¼0

�
αs
π

�
k
ΔðkÞ

ab ðzÞ: ðA7Þ

The soft threshold coefficient ΔabðzÞ, which encapsulates
the factorizable soft emissions, is often denoted as Cab and
Gab in the literature. For a W0 gauge boson with arbitrary
chiral couplings gL and gR to quarks and mass MB ¼ MW0 ,
the constant term is

σ0 ¼ jVCKM0
ab j2 ðg

2
L þ g2RÞπ
4NcM2

W0
: ðA8Þ

We suppress the indices on σ0, as the trivial generalization
introduces an unnecessary notational complication. The
expression is related to the usual LO partonic expression by

σ̂LOðqq̄0 → W0Þ ¼ σ0 ×M2
W0 × δðŝ −M2

W0 Þ
¼ σ0 × z × δð1 − zÞ: ðA9Þ

At LO, one may identify Δ with the above δ function,
which is determined by kinematics alone. This is because
the LO 2 → 1 process occurs identically at threshold.
Beyond LO the structure of soft logarithms in the pertur-
bative expansion of ΔðzÞ remains essentially kinematic in
origin [116]. In terms of explicit scale dependence, one can
also write Eq. (A7) as

σ̂FOab ¼ z × ΔFO
ab ðŝ; Q2Þ × σ0ðQ2 ¼ M2

W0 Þ: ðA10Þ
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This suggestive form indeed implies, in the language of
RGE, that Δðŝ; Q2Þ is an evolution operator that runs
the hard process at Q2 ¼ M2

W0 up to the partonic scale
ŝ ¼ τs [116].
If working with pQCD, the threshold resummed cross

section can be efficiently obtained after writing the had-
ronic cross section in so-called Mellin (or N or moment)
space. This is because such convolutions become products
in Mellin space. Applying the Mellin transform, as defined
in Eq. (40), to Eq. (A6) with respect to τ0 yields, for LOW0
production,

σLON ðpp → W0Þ ¼
X

a;b¼q;q̄0;g

Z
1

0

dτ0τN−1
0

Z
1

τ0

dτ

×
Z

1

0

dzδ

�
z −

τ0
τ

�
LabðτÞσ0zΔLO

ab ðzÞ

¼ σ0
X

a;b¼q;q̄0;g

Lab;ðNþ1ÞΔLO
ab;ðNþ1Þ

¼ σ0Lqq̄0;ðNþ1ÞΔLO
qq̄0;ðNþ1Þ: ðA11Þ

In the last step we have used the fact that vector boson
production is due strictly to qq̄ annihilation in the soft
limit. This follows from currents of massless fermions
being proportional to external fermion energies, i.e.,
Jμqfqi ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EqfEqi

p
, and therefore, they vanish in the soft

radiation limit for initial states qg; q̄g and gg.
Nontrivially, obtaining the resummed cross section in N

space is a simple matter of replacing the LO coefficientΔLO
N

in Eq. (A11) by its resummed analogue [88–90]. That is,

σRes:N ðpp → W0Þ ¼ σ0Lqq̄0;ðNþ1ÞΔRes:
qq̄0;ðNþ1Þ: ðA12Þ

Among other considerations, the resummation is usually
performed in the large-N limit as the N → ∞ limit
corresponds to the z → 1 (threshold) limit for partonic
cross sections. In this limit, additional gluon emission is
constrained to be soft and is therefore exactly where one
finds a perturbative expansion rendered unreliable by large
logarithms. Specifically, the divergent contributions at
leading power in (1 − z) are plus distributions of the form

ΔðjÞðzÞ ∼ αjsðQ2Þ
�
logmð1 − zÞ

1 − z

�
þ
; m ≤ 2j − 1: ðA13Þ

In Mellin space and in the large-N limit, such distributions
are transformed to a series of the form

ΔðjÞ
N ∼ αjsðQ2Þ

X2j
r¼0

brlogrN; ðA14Þ

where br is some N-independent coefficient. To all orders
in αs, resummation captures a number of these divergent

logarithms, producing a finite result that can supplement
FO calculations. For the kth term in the expansion,
resummation corresponds at leading logarithmic accuracy
to gathering all logarithms with a power of r ¼ 2k;
at next-to-leading log accuracy, to all logs such that
2k≥ r≥ 2k−2; and generically at NjLL, 2k≥ r≥ 2k−2j.
Furthermore, this implies that in reexpanding NjLL in αs,
one can identify the inclusive Nðj−1ÞLO calculation in the
limit where all radiation is soft. This necessitates a
matching scheme when combining resummed and FO
results beyond LO.
In the notation of Ref. [92], the resummed coefficient

ΔRes:
N for color-singlet qq̄0 pairs is

ΔRes:
qq̄0;N

¼ g0ðαsÞ expSðλ; ᾱÞ; with

λ ¼ ᾱ log
1

N
and ᾱ ¼ aαsðQ2Þβ0; ðA15Þ

where a ¼ 2ð1Þ for DY (DIS) accounts for the number of
contributing initial-state hadrons, and the Sudakov factor S
is given as an expansion in ᾱ, while treating ᾱ lnN ∼Oð1Þ:

Sðλ; ᾱÞ ¼
X∞
m¼0

ᾱm−1gmþ1

¼ 1

ᾱ
g1ðλÞ|fflfflffl{zfflfflffl}
LL

þ g2ðλÞ

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
NLL

þ ᾱg3ðλÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NNLL

þOðᾱ2Þ≡X∞
k¼0

αksSk:

ðA16Þ

We note that it is possible to consistently reexpand S in
terms of αs and coefficients Sk. The normalization function
g0 is similarly perturbative and is given by

g0ðαsÞ ¼
X∞
n¼0

g0nαns ¼ g00|{z}
LL

þ αsg01

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
NLL

þ α2sg02

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NNLL

þOðα3sÞ:

ðA17Þ

Expressions and normalizations for gm, g0n, and the QCD
β-function coefficient β0 are detailed in [92]. Acquiring a
resummation of order2 NjLL is achieved by including the
matching functions in g0ðαsÞ up to OðαjsÞ, i.e., all g0n up to
n ¼ j, and gm functions for m up to m ¼ jþ 1. In this
work, we resum soft radiation up to NNLL accuracy. Thus
our resummed soft function is

2In other words, NjLL in the “�” convention or NjLL0 in the
“ 0” convention, which are precisely defined in Ref. [94].
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ΔNNLL
ðqq̄0ÞN ¼ ðg00 þ g01αs þ g02α2sÞ

× exp

�
1

ᾱ
g1ðλ; ᾱÞ þ g2ðλ; ᾱÞ þ ᾱg3ðλ; ᾱÞ

�
;

ðA18Þ

and our resummed cross section in Mellin space at NNLL is

σNNLLN ðpp → W0Þ ¼ σ0Lqq̄0;ðNþ1ÞΔNNLL
ðqq̄0ÞðNþ1Þ: ðA19Þ

2. Inverse Mellin transformation via minimal
prescription procedure

Taking the inverse Mellin transformation of Eq. (A19),
as defined in Eq. (41), gives the resummed production cross
section in momentum space:

σRes:ðpp→W0 þXÞ ¼ σ0
2πi

Z
cþi∞

c−i∞
dNτ−ðN−1Þ

0 ×LN ×ΔRes:
N :

ðA20Þ
Formally, the integration path, with c ∈ R, is to the right
of all singularities. In practice, this is impossible due to
the QCD Landau pole at N ¼ NL ≡ exp½1=2αsβ0�. The
situation can be remedied by adhering to the minimal
prescription (MP) procedure [91], which entails choosing
c ¼ CMP such that

2 < CMP < NL; ðA21Þ
to avoid the Pomeron (Landau) pole as small (large) N,
and deforming the path toward Re½N� < 0. The path
deformation is illustrated in Fig. 12(b). Subsequently,
Eq. (A20) becomes

σRes:ðpp → W0 þ XÞ¼MP σ0
2πi

Z
CMP

dNτ−ðN−1Þ
0 × LN × ΔRes:

N

ðA22Þ

¼ σ0
πi

Z
CMP½Im½N�>0�

dNτ−ðN−1Þ
0 × LN × ΔRes:

N : ðA23Þ

In the second line, a factor of 2 follows from the integrand
being even with respect to Im½N�. This follows from the
fact that the original cross section in momentum space,
Eq. (A6), is a real function.
Following Ref. [118], and the associated code

ResHiggs, we choose the path

NðtÞ ¼ cMP þ ðmMP − iÞ logðtÞ; t ∈ ð0; 1Þ; ðA24Þ

where cMP; mMP ∈ R cannot be too large numeri-
cally without hitting machine precision limitations in

τ−ðN−1Þ
0 ¼ exp½−ðN − 1Þ log τ0�. We have checked that
5 < cMP < 15 and mMP ¼ cMP=10 leaves the integral
unchanged. Making the change of variable to t, one has

σRes:ðsÞ ¼ σ0
πi

Z
1

0

dt
t
ði −mÞτ−ðN−1Þ

0 × LN × ΔRes:
N ðA25Þ

¼σ0
π

Z
1

0

dt
t
Im½ði−mÞe−ðN−1Þlogτ0 ×LN×ΔRes:

N �: ðA26Þ

In the last line, we use the fact that σRes: is a physical rate,
i.e., positive definite, implying that the integrand must be
purely imaginary to cancel the 1=i.

FIG. 12. Contours taken to perform the inverse Mellin transform. In (a) the choice of contour is as defined in Eq. (41). The contour
used to implement the minimal prescription for the resummed prediction is shown in (b).
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3. Matching resummed and fixed order expressions

The resummation procedure is derived in the threshold
limit to leading power in (1 − z) and therefore neglects
subleading power corrections, e.g., hard, wide-angle radi-
ation. To make viable predictions at collider experiments, it
is desirable to supplement resummed formulas with exact
FO results beyond LO. This is achievable by subtracting
from the resummed expression the OðαksÞ radiation terms
common to both calculations, to avoid double counting of
soft radiation, and add back the full FOOðαksÞ result, which
describes both soft and hard radiation. A convenient way to
isolate those common terms is to Taylor expand the
resummed expression σRes: about αs ¼ 0. Up to NLO, this
is given by the first two terms of the expansion

σRes: ¼
X∞
l¼0

αls
l!

� ∂l

∂αls σ
Res:

�
αs¼0

ðA27Þ

¼σRes:jαs¼0þαs½∂αsσ
Res:�αs¼0

þα2s
2
½∂2

αsσ
Res:�αs¼0

þOðα3sÞ:
ðA28Þ

As the Mellin and inverse-Mellin operators commute
with the ∂αs operator, the expansion holds in Mellin space.
Furthermore, as there is no explicit αs dependence in σ0 and
LN in Eq. (A19), the expansion of σRes:N is simply propor-
tional to the Taylor expansion of the exponentiated coef-
ficient ΔRes:

N . In Mellin space, the OðαsÞ-subtracted
resummed cross section for pp → WR is then

σRes:N jαs−Subtracted ¼ σ0 × LN × ½ΔRes:
N − ΔRes:

N jαs¼0

− αs½∂αsΔ
Res:
N �αs¼0

�: ðA29Þ

For color-singlet qq̄0 initial states, explicit calculation
shows

ΔRes:
ðqq̄0ÞN jαs¼0 ¼ g00 and

∂αsΔ
Res:
ðqq̄0ÞN jαs¼0 ¼ ðS1 þ g01Þ; ðA30Þ

which correspond to terms in Eq. (A16) and can be found in
[92]. To NLOþ NNLL accuracy, the physical inclusiveW0
production cross section in pp collisions is at last

σNLOþNNLLðpp → W0 þ XÞ ¼ σNLO þ σNNLLjαs−Subtracted;
ðA31Þ

where the modified resummed term is obtained by inserting
Eq. (A29) into Eq. (A26):

σNNLLjαs−Subtracted ¼
σ0
π

Z
1

0

dt
t
Im½ði −mÞτ−ðN−1Þ

0 × LN

× ðΔNNLL
ðqq̄0ÞN − g00 − αsðS1 þ g01ÞÞ�:

ðA32Þ

4. Parton luminosities in Mellin space

The resummation formalism we exploit requires parton
luminosities Lqq̄0 in Mellin space. This introduces a
technical difficulty as modern PDF sets are typically only
available numerically. It is possible, however, at a fixed
factorization scale μf, to approximate luminosities LabðτÞ
[and individual PDFs fa=pðξÞ] using a basis of polynomials
that can be Mellin transformed analytically. Here we use a
basis of Chebyshev polynomials of the first kind TnðxÞ, for
which fast numerical algorithms exist for calculating the
expansion coefficients, e.g. [119]. The implementation and
optimization of the Chebyshev approximation procedure
has been documented in Refs. [92,94]. We briefly sum-
marize, for completeness, how to obtain the approxi-
mated Lðqq̄0ÞN .
We write a general Chebyshev polynomial of degree n

defined over the domain x ∈ ð−1; 1Þ as

TnðxÞ ¼
Xn
m¼0

Tmnxn; Tmn ∈ Z:

The function FðuÞ over the domain u ∈ ðumin; umaxÞ can
then be approximated by the first nch polynomials by the
relationship

FðuÞ ≈ −
c0
2
þ
Xnch
k¼0

ckTkðAuþ BÞ; ðA33Þ

with A and B given by

A ¼ 2

umax − umin
and B ¼ −

umax þ umin

umax − umin
; ðA34Þ

and the kth Chebyshev coefficient ck by [119]

ck ¼
2

nch þ 1

Xnch
j¼0

~Fj × cos

�
kπðjþ 1

2
Þ

nch þ 1

�
: ðA35Þ

The jth moment of FðuÞ, i.e., ~Fj, is defined as

~Fj ¼ FðyjÞ; with

yj ¼
1

2
ðumax − uminÞ cos

�
πðjþ 1

2
Þ

nch þ 1

�

þ ðumax þ uminÞ
2

: ðA36Þ

Such efficient algorithms allow us, in principle, to
immediately obtain the luminosity Lqq̄0 ðτ; μfÞ in Mellin
space by transforming Eq. (A33) directly. However, LðτÞ is
generally poorly behaved across τ ∈ ð0; 1Þ, particularly at
the origin. This is resolvable by approximating a regular-
ized version of the luminosity and setting
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FðuÞ ¼ τðuÞLqq̄0 ðτðuÞ; μfÞ; with

τðuÞ ¼ eu for u ∈ ðlog τ0; 0Þ: ðA37Þ

As defined in Eq. (30), τ0 ¼ M2
W0=s is the threshold above

which pp → W0 is kinematically allowed to proceed. After
a wee bit of algebra, we obtain an expression for the Mellin-
transformed parton luminosities,

Lðqq̄0ÞN ¼
Z

1

0

dττN−1Lqq̄0 ðτ; μfÞ

¼
Z

1

0

dτðuÞτN−2ðuÞFðuÞ

¼
Xnch
p¼0

c̄p
ðN − 1Þpþ1

; ðA38Þ

where we have defined

c̄p ¼ 2p

upmin

Xnch
j¼p

j!
ðj − pÞ! ~cj; with

~cj ¼ −
c0
2
δj0 þ

Xnch
k¼j

ckTkj: ðA39Þ

Once one calculates the initial coefficients ci, it is straight-
forward to approximate the Mellin transform of Lqq̄0 ðτ; μfÞ
by using Eqs. (A38) and (A39). However, for different μf
choices, the function being approximated changes, and
therefore the coefficients ck need to be recomputed. This
should be taken into account if one intends to use a
dynamic factorization scale.

APPENDIX B: MODELING MANIFEST
LEFT-RIGHT SYMMETRIC MODEL

WITH FEYNRULES

The most generic scalar potential of the LRSM consists
of 18 parameters: three mass scales μ1;…;3, 14 dimension-
less couplings λ1;…;4, ρ1;…;4, α1;…;3, β1;…;3, and one CP
violating phase δ2. It is given by [120]

VðΦ;ΔL;ΔRÞ ¼ Vμ þ VΦ þ VΔ þ VΦΔ þ VΦΔLΔR
; ðB1Þ

where the scalar mass and self-coupling terms of the
bidoublet Φ are, respectively,

Vμ ¼ −μ21Tr½Φ†Φ� − μ22Tr½Φ† ~Φþ ~Φ†Φ�
− μ23Tr½Δ†

LΔL þ Δ†
RΔR�; ðB2Þ

VΦ ¼ λ1½Tr½Φ†Φ��2 þ λ2½Tr½Φ† ~Φ��2 þ λ2½Tr½ ~Φ†Φ��2

þ λ3Tr½Φ† ~Φ�Tr½ ~Φ†Φ� þ λ4Tr½Φ†Φ�Tr½Φ† ~Φþ ~Φ†Φ�:
ðB3Þ

The ΔL;R self- and cross-couplings are

VΔ ¼ ρ1½Tr½Δ†
LΔL��2 þ ρ1½Tr½Δ†

RΔR��2

þ ρ3Tr½Δ†
LΔL�Tr½Δ†

RΔR�
þ ρ2Tr½ΔLΔL�Tr½Δ†

LΔ
†
L� þ ρ2Tr½ΔRΔR�Tr½Δ†

RΔ
†
R�

þ ρ4Tr½ΔLΔL�Tr½Δ†
RΔ

†
R� þ ρ4Tr½Δ†

LΔ
†
L�Tr½ΔRΔR�:

ðB4Þ
The Φ − ΔL and Φ − ΔR couplings are

VΦΔ ¼ α1Tr½Φ†Φ�Tr½Δ†
LΔL þ Δ†

RΔR�
þ α3Tr½ΦΦ†ΔLΔ

†
L þ ϕ†ϕΔRΔ

†
R�

þ fα2eiδ2Tr½Φ† ~Φ�Tr½Δ†
LΔL�

þ α2eiδ2Tr½ ~Φ†Φ�Tr½Δ†
RΔR� þ H:c:g; ðB5Þ

with δ2 ¼ 0 making CP conservation explicit, and the
Φ − ΔL − ΔR couplings are

VΦΔLΔR
¼ β1Tr½Φ†Δ†

LΦΔR þ Δ†
RΦ

†ΔLΦ�
þ β2Tr½Φ†Δ†

L
~ΦΔR þ Δ†

R
~Φ†ΔLΦ�

þ β3Tr½ ~Φ†Δ†
LΦΔR þ Δ†

RΦ
†ΔL

~Φ�: ðB6Þ
After LR and EWSB, there exists 10 physical scalars: four

neutral, CP even states H0
0;…;3, including one at mH0

0
≈

125 GeV; two neutral CP odd states A0
0;1; two states singly

charged under Uð1ÞEM H�
1;2; and two doubly charged states

δ��
L;R. Subscripts do not indicate a mass ordering. The mass
spectrum in the VEV limit of Eq. (12) is given by [21,120]

m2
H0

0

≈ ð125 GeVÞ2 ≈ 2k2þ

�
λ1 þ 4

k21k
2
2

k4þ
ð2λ2 þ λ3Þ þ 4λ4

k1k2
k2þ

�
;

M2
H0

1

¼ M2
A0
1

≈ α3
v2R
2

k2þ
k2−

; M2
H0

3

¼ M2
A0
2

≈ ðρ3 − 2ρ1Þ
v2R
2
; M2

H0
2

≈ 2ρ1v2R;

M2
H�

1

≈ ðρ3 − 2ρ1Þ
v2R
2
þ α3

k2−
4
; M2

δ��
L

≈ ðρ3 − 2ρ1Þ
v2R
2
þ α3

k2−
2
;

M2
H�

2

≈ α3
v2R
2

k2þ
k2−

þ α3
k2−
4
; M2

δ��
R

≈ 2ρ2v2R þ α3
k2−
2
; ðB7Þ

where k� is defined in Eq. (7).
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With choice assumptions, the potential can be configured
such that the theory is consistent with experimental limits
and features new gauge states accessible by the LHC or
VLHC. Accordingly, the Manifest LRSM FeynRules
model of [73] can be set to simulate this region of
the MLRSM parameter space. We now discuss this
configuration.

1. Phenomenological constraints on
LRSM scalar potential

ExplicitCP conservation and minimization conditions of
the potential give rise to the so-called VEV seesaw
relationship [120]:

vL ¼ β2k21 þ β1k1k2 þ β3k22
ð2ρ1 − ρ3ÞvR

; ðB8Þ

implying inherently small vL for 2ρ1 ≠ ρ3 and v2R ≫ k1; k2.
Though it is natural for all ρi to be comparable in
magnitude, it is contrived to expect a fine cancellation,
particularly after radiative corrections. Consistent with
ρ=T-parameter measurements [22,25], we choose

vL ¼ 0 ⇔ β1;…;3 ¼ 0: ðB9Þ

This may also be achievable if Eq. (B1) respects an
approximate custodial symmetry.
Neglecting terms Oðk2þ=v2RÞ, the minimization condi-

tions also imply [120]

μ21
v2R

¼ α1
2
−
α3
2

�
k22
k2−

�
;

μ22
v2R

¼ α1
2
þ α3

4

�
k1k2
k2−

�
;

μ23
v2R

¼ ρ1: ðB10Þ

As argued, one expects, on naturalness grounds,

α2;3 ∼Oðα1Þ and ρ2;3 ∼Oðρ1Þ: ðB11Þ

Dropping terms relatively suppressed by ðk2=k−Þ ∼
ðmb=mtÞ ∼ 10−2 [see Eq. (8)] gives

μ21
v2R

≈
μ22
v2R

≈
α1
2
;

μ23
v2R

¼ ρ1; ðB12Þ

suggesting that LRSB is inherently at the mass scale of the
scalar potential assuming

α1 ∼Oð1Þ and ρ1 ∼Oð1Þ: ðB13Þ

In terms of MWR
and g, Eq. (B13) and positivity of

squared masses for (physical) scalars imply several mass
and coupling relationships:

m2
H0

1

M2
WR

;
m2

A0
1

M2
WR

;
m2

H�
2

M2
WR

≈
α3
g2

> 1;

m2
H0

2

M2
WR

≈
4ρ1
g2

> 1;

m2
H0

3

M2
WR

;
m2

A0
2

M2
WR

;
m2

H�
1

M2
WR

;
m2

δ��
L

M2
WR

≈
ðρ3 − 2ρ1Þ

g2
> 0;

m2
δ��
R

M2
WR

≈
4ρ2
g2

> 1: ðB14Þ

Imposing the strong requirement on Eq. (B14) to univer-
sally comply with bounds on FCNH, i.e., mFCNH in
Eq. (24), implies

ρ1;2;4 >
g2

4

�
mFCNH

MWR

�
2

; ρ3 > g2
�
mFCNH

MWR

�
2

þ 2ρ1 ∼ 6ρ1;

ðB15Þ

α1;…;3 > g2
�
mFCNH

MWR

�
2

; μ21;2 > ðmFCNHÞ2;

μ23 >
1

2
ðmFCNHÞ2: ðB16Þ

Several observations can be made from these relations:
First is that for MWR

≲ 6.5 TeV, one has ρ1;2;4 > 1. Thus,
discovery of a WR at the LHC would indicate a strongly
coupled triplet sector. Second is that a small hierarchy
among the ρi may exist. Requiring both H0

2 and H0
3 to be

heavier than mFCNH suggests ρ3 ≳ 6ρ1. Figure 13 plots the
values of ρ3 for given MWR

and mFCNH, and shows, for
example, that ρ3 < 1 and mFCNH ∼ 15ð20Þ TeV require
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FIG. 13. Scalar triplet coupling ρ3 contours for given MWR
and

mFCNH.
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MWR
≳ 10ð12Þ TeV. If H0

3 and A0
2 are largely responsible

for neutral flavor transitions, then ρ1;3 can be reduced while
keeping their differences fixed. We do not apply theoretical
prejudices against strongly coupled systems, and we treat
this as a consistent prediction. A more detailed discussion
on the perturbativity of the scalar sector can be found
in [52].
An ambiguity arises for the bidoublet self-couplings λ1;3;4

as the self-coupling of the SM-like Higgs is unconstrained.
Using Eq. (B7), we take, without impacting our study,

λ1 ≈
m2

H0
0

2k2þ
; λ2;3 ¼ 0: ðB17Þ

2. Configuration of LRSM FeynRules file

We implement our configuration of the scalar potential
and choice for quark and lepton mixing into one FR
restriction file that can be invoked when generating
UFOs for the Manifest LRSM v1.1.6-MIX model file
by [73]. See [96] for instructions. Internal parameters,
e.g., vR and SM inputs of Eq. (28), can be modified
via MG5 input parameter cards. The restriction file,
lrsmLHCRestrictions.rst, is available from the
source directory for the arXiv preprint version of this
report. It contains the following parameter identifications:
(* Turn off CKM mixing *)
s12 -> 0,
s23 -> 0,
s13 -> 0,
(* Turn off light neutrino mixing and set

PMNS to diagonal *)
sL13 -> 0,

sL23 -> 0,
sL13 -> 0,
(* Turn off off-diagonal heavy/light neu-

trino mixing [V,X in Eq.(A.11) of
0901.3589] *)
VKe -> 0,
VKmu -> 0,
VKta -> 0,
(* Make mixing in LRSM manifest: all +1.

Quasi-manifest: at least one -1 *)
Wl11 -> 1,
Wl22 -> 1,
Wl33 -> 1,
WU11 -> 1,
WU22 -> 1,
WU33 -> 1,
WD11 -> 1,
WD22 -> 1,
WD33 -> 1,
(* LH vev *)
vL -> 0,
(* Quark masses and Yukawas *)
MU -> 0,
MD -> 0,
MC -> 0,
MS -> 0,
(* Lepton masses and Yukawas *)
Me -> 0,
Mmu -> 0,
Mta -> 0,
MN1 -> 0,
MN2 -> 0,
MN3 -> 0.
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