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WWV (V=y, Z) vertex in the Georgi-Machacek model
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The CP-even static form factors Ak}, and AQy (V =y, Z) associated with the WWV vertex are studied
in the context of the Georgi-Machacek model (GMM), which predicts nine new scalar bosons
accommodated in a singlet, a triplet, and a fiveplet. General expressions for the one-loop contributions
to Ak}, and AQy arising from neutral, singly, and doubly charged scalar bosons are obtained in terms of
both parametric integrals and Passarino-Veltman scalar functions, which can be numerically evaluated. It is
found that the GMM yields 15 (28) distinct contributions to AK; and AQ, (A, and AQy), though several
of them are naturally suppressed. A numerical analysis is done in the region of parameter space still
consistent with current experimental data and it is found that the largest contributions to Ak, arise from
Feynman diagrams with two nondegenerate scalar bosons in the loop, with values of the order of
a = ¢%/(96x?) reached when there is a large splitting between the masses of these scalar bosons. As for
AQy, it reaches values as large as 10~2a for the lightest allowed scalar bosons, but it decreases rapidly as
one of the masses of the scalar bosons becomes large. Among the new contributions of the GMM to the
Ak, and AQy form factors are those induced by the Hf W¥ Z vertex, which arises at the tree level and is a

unique prediction of this model.
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I. INTRODUCTION

The observation of a 125 GeV Higgs-like particle by the
CMS [1] and ATLAS [2] collaborations hints that the Higgs
mechanism, responsible for mass generation of elementary
particles, is realized in nature. So far, the current measure-
ments of this particle’s properties are consistent with the
standard model (SM) Higgs boson. However, a more
detailed and precise analysis is still necessary to confirm
whether this particle is the SM Higgs boson or any other
remnant scalar boson arising in an extended scalar sector
from a scenario beyond the SM. In fact, from a theoretical
point of view, there is no fundamental reason for a minimal
Higgs sector, as occurs in the SM. It is therefore appropriate
to consider additional scalar representations, which could
have a role in the symmetry-breaking mechanism and
establish a relationship with a yet-undiscovered sector.

Despite the great success of the SM, several extension
models have been conjectured in order to solve the puzzle
of some of the questions still unanswered by this theory. In
this context, models with scalar triplet representations have
attracted considerable attention due to their appealing
features, such as the possibility of implementing the seesaw
mechanism to endow the neutrinos with naturally light
Majorana masses (the so-called type-II seesaw), the appear-
ance of the H*W¥Z coupling at the tree level, and the
presence of doubly charged scalar particles. In this respect,
the Georgi-Machacek model (GMM) [3,4] is one of the
most attractive Higgs triplet models as it preserves the
relationship p = 1 at the tree level via an SU(2) custodial
symmetry. The GMM is based mainly on the SM but in the
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scalar sector introduces a complex scalar triplet y, a real
scalar triplet £, and the usual complex scalar doublet ¢
under the SU(2), x U(1), gauge symmetry. After the
spontaneous symmetry breaking, the physical scalar spec-
trum of the GMM is given by the SM-like Higgs boson &
and one extra CP-even singlet H; one scalar triplet H;
(HY, H5); and one scalar fiveplet Hs (H2, HE*, HY). All of
these multiplets are mass degenerate as a result of the
custodial symmetry. The phenomenology of the GMM has
been broadly studied over recent years [5—18]. For instance,
a study of the search and production of the GMM Higgs
bosons at the LHC has been analyzed in [16,17], and its
phenomenology at a future electron-positron collider has
been reported in [18].

Even if there is not enough energy available to produce
the new scalar particles predicted by the GMM, one can
search for their virtual effects through some observables.
Particular interest has been put on the radiative corrections
to the WWV (V =y, Z) vertex, which represents a very
sensitive scenario to search for any new physics (NP)
effects and test the gauge sector of the SM. In fact, the one-
loop corrections to the on-shell WWy vertex, which define
the static electromagnetic properties of the W gauge boson,
was one of the first ever one-loop calculations within the
SM [19], followed by a plethora of calculations of the
respective contributions of several SM extensions, such as
the two-Higgs doublet model (THDM) [20], the minimal
supersymmetric standard model (MSSM) [21], left-right
symmetric theories [22], extra dimensions [23], the littlest
Higgs model [24], 331 models [25,26], effective theories
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[27-29], etc. In contrast with the on-shell WWy vertex,
additional difficulties in the calculation of the on-shell
WWZ vertex arise due to the nonzero mass of the Z gauge
boson. In this respect, the study of radiative corrections to
the WWZ vertex has been the focus of attention when the Z
boson is off shell as can be found in Refs. [23,25,30,31].
These types of calculations are in general gauge dependent
and require special techniques, such as the pinch technique,
to extract the relevant physical information.

The on-shell WWV vertex can be written in terms of four
form factors that define the CP-even and CP-odd static
properties of the W boson. The two CP-odd form factors
Ak}, and AQy are absent up to the one-loop level in the SM
and are thus expected to be negligibly small. As far as the
CP-even form factors Ak}, and AQy are concerned, they
arise at the one-loop level in the SM and any other
renormalizable theory, thereby being highly sensitive to
NP effects.

The most general dimension-4 CP-conserving WWV
(V =y, Z) vertex is given by [32]

L= —igv{gYV”(W_"”Wj — WHYW) + &y V,, WH W

A
+ M_‘; VHY W;raw(;” } , (1 )
w

where gy stands for the WWYV tree-level coupling constant
(in the SM, g, = gsw and g; = gcy). Here g, ky, and 4y
represent form factors that can receive radiative corrections.
In the SM, SU(2), x U(1), gauge symmetry implies g] =
ky = 1 and Ay = 0 at the tree level.

The vertex function that determines the WWV coupling
can be written as

Y = igv{A[Zp”g”/’ +4(0Pg" - 0*g"))
+ 206, (@19 - 0°)

4A 1
2 (oo -gmipa?) | @

+
2
nyy

where we have used the convention employed in [19] for
the external momenta, as shown in Fig. 1. The form factors
defined in Eq. (2) are related to those appearing in Eq. (1)
according to

Ay =ky — 1+ Ay, (3)

It is worth mentioning that the definition Axy = xy — 1 is
customarily used in experimental works, where the con-
straints are given traditionally as bounds on Aky and Ay,
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FIG. 1. Nomenclature for the WWYV vertex function. The circle
denotes radiative contributions.

whereas in theoretical works it has been usual to present the
analytical results in terms of Ak}, and AQy.

For the photon, «, and 4, are related to the magnetic
dipole moment yy, and the electric quadrupole moment Qy,
of the W gauge boson as follows:

pw = ———(1+x,+4,), (5)
Oy = —m%m—m (6)

In this work, we will calculate the contributions of the
complete scalar sector of the GMM to the Ak}, and AQy
form factors, which could be at the reach of the future linear
collider experiments [33,34]. The structure of our work is
organized as follows. An overview of the GMM is
presented in Sec. II. In Sec. III we present the analytical
expressions for the Ak}, and AQ form factors, whereas the
numerical results are analyzed in Sec. IV and the con-
clusions and outlook are presented in Sec. V.

II. THE GEORGI-MACHACEK MODEL

The scalar sector of the GMM is composed by an isospin
complex triplet y with hypercharge ¥ = 2, a real triplet &
with ¥ =0, and the usual SM isospin doublet ¢ with
Y = 1. The global SU(2), x SU(2)y custodial symmetry
is manifest by writing the fields as

¢0* ¢+ )(0* §+ )(++
¢ = (_¢+* ¢0>’ X=| =" & Al b
g gt 0

(7)

where @ and X transform under the custodial symmetry as
® - U, ®U} and X — U, XU}, with U, g = €™ Here
T =1* stands for the SU(2) generators in the triplet
representation,
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whereas for the doublet representation 7% = ¢/2, with ¢“
the Pauli matrices.

The neutral members of the fields in Eq. (7) develop a
nonzero vacuum expectation value (VEV) defined by

(®) = %szz and (X) = v I35, with I, the nxn
identity matrix. The masses of the W and Z gauge bosons

constrain the VEVs as follows:

~ (246 GeV)2. 9)

2 2,2
v(/)—|—81)}(=v =

1
V2Gy

The kinetic Lagrangian of the scalar sector, out of which the
gauge boson masses arise, takes the form

1 1
L= 5Tr[(D,;I))T(DM@)] - ETr[(D”X)T(D”X)], (10)
with the covariant derivative given by

g

a a "d
57 Wi® —i—1;B,9, (11)

D,®=0,%+i 5

and a similar expression for D, X. As for the most general
scalar potential that obeys the custodial symmetry, it can be
written as

V(®,X) = %%Tr(@*@) + %%Tr(x*x) + A4 [Tr(®7T®))?
+ L Tr(®T®)Tr(XTX) + 3 Tr(XTXX'X)
+ A4 [Tr(XTX))? — AsTr(®F 29 ®2) Tr(X 19X 1b)
- M, Tr(®'z2®7%) (UXUT),,
- M,Tr(XTt*Xt?) (UXUY) (12)

where the matrix U, which rotates X into the Cartesian
basis, is given by
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1 1
-~ Y %

U= -5 0 -5 | (13)
0 1 0

In order to obtain the physical scalar spectrum after the
spontaneous symmetry breaking, it is appropriate to
decompose the neutral fields into the real and imaginary
parts in the following way

v ¢0,r+ i¢0.i
0 4 +—,
RV, AR
XO.r+ i}((),i
\/i )
8-, 4+ (14)

2=+

The physical fields are organized by their transformation
properties under the SU(2) custodial symmetry into a
fiveplet, a triplet, and two singlets. The fiveplet and triplet
states are given by

+4+ ot
HST =",

R I
HS *\/50( 5 ),
HY = —\@50 - \/;(0 (15)

c
HY = —su¢p™ + =0 + &),
H;

V2

= —sp¢™ + cux®, (16)

where the mix between v, and v, is parametrized in terms
of a mixing angle 5 according to

v 2\/31}1. (17)

CHECOSGH:—¢, Sy =sinfy =
v

The two singlet mass eigenstates are given by

. /
H = sina¢®” + cosaH?,

(18)

. /
h = cos ag®" — sinaHY,

where HY = \@50 + \@;(0*’, whereas 4 is associated with
the SM Higgs boson. The mixing angle « is given by

2 2
sin2q — M2 (19)
m%, —m?

with
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M5, = \/7?; vg[—My +4(24, = 45)v, ). (20)
A peculiarity of this model is that the Hs states are
fermiophobic, which stems from the fact that there is no
doublet field in the custodial fiveplet. As far as the masses
of the fiveplet and triplet are concerned, they are degenerate
at the tree level and are expressed in terms of the respective
VEVs and the parameters involved in the scalar potential as
follows:

M 3
mg =ty + 12Myu, + S dsvg + 8407 (21)
v, 2
2 1 2 ) 5 > 2\ 1 5 2
m; _E<U¢+8U){) +E(U¢+8UZ) = (@"FE)U .
(22)

On the other hand, the singlet masses are given by

1
M = 5 M+ M F (MG = ME) +4(ME,)7,

(23)
with
M3, = 82103, (24)
and
M, = A?ﬁ ~6M,v, +8(43 +324) 05 (25)
X

From the kinetic Lagrangian (10) one can also obtain the
interactions between the SM gauge bosons and all the new
scalar bosons predicted by the GMM. The full set of
Feynman rules can be found in Refs. [4,15]. As far as our
calculation is concerned, apart from the usual SM vertex of
the type W-W*V (V =y, Z), in the GMM the following

X% (p1)

19X 4 x 4V THOP
X4 (p2) e
¢B(p2)
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new types of vertices can arise, ¢F TV, ¢TTPpIEV,
P PEEWT, pTPIWE, ¢TPEWE, and WFWT 1+, where
) =h, H, H, ¢)=HY, ¢ = H, HI, and ¢]F =
HIT (I = A, B). In addition, the Z gauge boson has extra
couplings of the form ¢TW*Z, ¢T¢p3Z, ¢$52Z, and
qﬁgc;ﬁ%Z. It turns out that all these vertices are just of three
distinct types, namely, X, X,V (three gauge bosons),
¢adppXc (two scalar bosons and one gauge boson), and
¢4 XpXc (one scalar boson and two gauge bosons), where
¢; (I = A, B) stands for a neutral, singly charged or doubly
charged scalar boson, whereas X; (/ = A, B, C) stands for
a neutral or charged gauge boson. Evidently, the allowed
vertices are dictated by electric charge conservation, Bose
symmetry, CP invariance (as long as it is assumed to be
conserved), etc. However, the Lorentz structure is similar
for each type of vertex and so are the respective Feynman
rules, which arise from the following Lagrangians:

. T
Ly x,v= lngxAV(XIxWVW - XZVXA;VU + VXX 0,)s

(26)
El/’/\lf)sxc = ig¢A¢BVX}é¢Zaﬂ¢B’ (27)

and
Lx xype = 9%, X0 X2 Xy (28)

with X" = 9#XY4 — 0"X’,. We have assumed that CP is
conserved.

For the photon, the only allowed vertices are WWy,
dF¢p*y, and 7T Py, whereas the Z gauge boson can
also have nondiagonal couplings to both charged and
neutral scalar bosons. From Egs. (26)—(28), generic
Feynman rules follow straightforwardly and are shown
in Fig. 2. Therefore, we can perform a model-independent
calculation and express our results in terms of the coupling
constants and the masses of the virtual particles. In

X3
¢c
"
YWAAN
/ 9prppXc (p1 — p2)¥ Xg igXAXBdf'cgaﬁ

FIG. 2. Generic Feynman rules for the relevant vertices involved in our calculation. The arrows stand for the direction of the
4-momenta and T3 = g,a(p1 — p3)ﬁ + Gop(p2 — pl)ﬂ + 95 (P3 = P2)a- V =7, Z, p; (I = A, B, C) denote a neutral singly or doubly
charged scalar boson, and X; (J = A, B) stands for a neutral or charged gauge boson. The electric charge and CP properties of the
particles attached to each vertex are dictated by electric charge conservation, Bose symmetry, CP invariance, etc.
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particular, the coupling constants for the vertices allowed in
the GMM are presented in Appendix A.

IIL. Ak}, AND AQy FORM FACTORS IN THE GMM

We now turn to present the contributions of the scalar
sector of the GMM to the Ak}, and AQy form factors at the
one-loop level. In this model, the new one-loop contribu-
tions arise from generic triangle diagrams (the bubble
diagrams do not contribute) that can be classified according
to the number of distinct particles circulating into the loop.
In Fig. 3 we show a set of Feynman diagrams that
contribute to both the WWy and WWZ vertices. These
diagrams include just two distinct particles circulating
inside the loop as they involve diagonal couplings of the
form ¢A¢AV and XAXAV.

Contrary to the couplings of the photon to a pair of
charged scalar bosons, which can only be of diagonal type
due to electromagnetic gauge invariance, the Z gauge
boson can have nondiagonal couplings to a pair of neutral
or charged scalar bosons. Therefore, in addition to the
diagrams of Fig. 3, the Ak, and AQ, form factors can
receive extra contributions from the Feynman diagrams
shown in Fig. 4, which have three distinct particles
circulating into the loop. Below we will present the
contributions to Ak}, and AQy for all these types of
diagrams.

Before presenting our results, some remarks about our
calculation are in order:

(i) The Feynman diagrams were evaluated via the

unitary gauge. In order to make a cross-check of
our results we used both the Feynman parametriza-
tion technique and the Passarino-Veltman method to
solve the loop integrals.
We verified that all the contributions of bubble
diagrams to the Ak}, and AQ, form factors involv-
ing quartic vertices with two scalar bosons and two
gauge bosons vanish, and thus the only contributions
arise from triangle diagrams.

(i)

(iii)

(iv)

)
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The mass shell and transversality conditions for the
gauge bosons enabled us to make the following
replacements,

2 2

m m
="' p0=0. pP=my--r"
(29)
and
Pa = Qw p/)’ - _Qﬁ’ py - 0’ (30)

which results in a considerable simplification of the
calculation.

Instead of dealing with the calculation of the WWy
and WWZ vertices separately, we performed the
calculation of the general WWYV vertex, with V a
massive neutral gauge boson. We have exploited the
fact that there are only three generic trilinear vertices
involved in the one-loop contributions to the WWV
vertex and thus a model-independent calculation
was done using the generic Feynman rules of Fig. 2.
The result for the contribution of each type of
Feynman diagram will be presented in terms of
loop functions, given as parametric integrals and
also in terms of Passarino-Veltman scalar integrals,
times a factor involving all the generic coupling
constants associated with each vertex participating
in the particular diagram. The contributions to the
form factors of the WWy and WWZ vertices follow
easily from our general expressions after taking the
appropriate mass limits and substituting the corre-
sponding coupling constants of the GMM or any
other extension model.

We corroborated that the WWYV amplitude arising
from each type of diagram can be cast in the form of
Eq. (2) and also that all the contributions to the Ax],
and AQy, form factors are free of ultraviolet
divergences.

Wi

(a)

FIG. 3.

(b)

(©

Generic Feynman diagrams for the new scalar contributions to both the WWy and WWZ vertices involving only two distinct

virtual particles. The arrows stand for the directions of the 4-momenta. The possible combinations of internal particles are given by the
vertices allowed in each particular model. For instance, when V = y, the following electric charges of the internal particles are possible

in the GMM, in units of the positron charge: if Q,
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FIG. 4. Extra contributions to the Ax’, and AQ, form factors
from nondiagonal couplings. As explained in the text, the
possible sets of internal particles are determined by the vertices
allowed in a particular model.

We now proceed to present the results. Once the
amplitude for each Feynman diagram is written down with
the help of the Feynman rules of Fig. 2, the Feynman
parametrization technique and the Passarino-Veltman
method can be applied straightforwardly, followed by some
lengthy algebra. Thereafter one can express the contribu-
tions to the Ax|, and AQy form factors for each type of
Feynman diagram of Fig. 3 as follows:

AK/& - 167‘;2 II‘C/_i(xAvaﬁxV>7 (31)
AQy = _@IQ (X4, Xp, Xv), (32)

forV=Z7,yandi = a, b, c. We have introduced the scaled
variable x; = m?/m3, (I = A, B), with m, and mg denot-
ing the masses of the particles circulating into each type of
diagram. A word of caution is in order here as m, and mp,
and thereby x, and xp, are distinct for each type of
contribution. As for the loop functions Iy~ and )™, they
are presented in Appendix B in terms of parametric
integrals and Passarino-Veltman scalar integrals, together
with the explicit form of the Ci, factors, which are given in
terms of the coupling constants of the vertices involved in
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each Feynman diagram. These coefficients are presented in
Appendix C for each possible contribution arising in
the GMM.

As explained above, the Ak} and AQ}, form factors can
be obtained from the general expressions (31)—(32), and the
loop functions presented in Appendix B, by taking the
my — 0 limit. The resulting loop functions Ii_Q’ are also
shown in this Appendix. We have verified that these
expressions are in agreement with the results presented
in Ref. [24], where the WWy vertex was studied in the
context of little Higgs models.

As far as the Feynman diagrams of Fig. 4 are concerned,
they only contribute to the WWZ vertex and the respective
form factors depend now on three distinct internal masses.
They can be written as follows:

. C i
Axz = = 1672;2 L& (x4, xp, X, X7), (33)
AQ, = — g 157 (x4, X, X0\ X7). (34)
16722 ¢

This time the superscript i stands for the total contributions
of diagrams i; and i,, with i = d, e, f. Expressions for the
loop functions in terms of both parametric integrals and
Passarino-Veltman scalar integrals can be found in
Appendix B.

Once the general expressions for the different kinds of
contributions are obtained, we can compute the total
contribution of the scalar sector of a given model by
simply adding up all the partial contributions. We will
present below a numerical analysis of the contributions of
the GMM. For the numerical evaluation we computed the
parametric integrals via the Mathematica numerical rou-
tines. A cross-check was done via the numerical evalua-
tion of the results given in terms of Passarino-Veltman
scalar functions [35] with the help of the LoopTools
routines [36,37].

IV. NUMERICAL DISCUSSION

In order to make a numerical evaluation of the contri-
bution of the GMM to the Ak}, and AQy form factors, it is
necessary to take into account the current constraints on the
parameter space of this model. In particular, our results
depend on five free parameters, namely, the singlet mixing
angle a, the mixing angle between the doublet and the
triplet 8y, and the masses of the new singlet m, the triplet
my,, and the fiveplet my,. A recent study on the indirect
constraints on the GMM from B physics and electroweak
precision observables can be found in [38], where the limit
on the triplet VEV v, <65 GeV, arising from the meas-
urement of the b — sy process, was used to impose the
strongest bound sinfy < 0.75. On the other hand, the
current LHC measurements of the couplings and signal
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strength of the SM-like Higgs boson production [39,40]
constrain in a direct way the 6y — a plane [17]. As for the
masses of the new scalar bosons, experimental constraints
on the fiveplet mass have been derived by the ATLAS
Collaboration using the like-sign WW j production cross-
section measurement [41]. Furthermore, theoretical con-
straints from unitarity and vacuum electroweak stability
limit the mass of all the scalar bosons of the GMM to be less
than 1 TeV [14,15,42,43]. This constraint was obtained
assuming a Z, symmetry obeyed by the scalar potential in
order to reduce the number of free parameters. However, a
study presented in Ref. [14] showed that when the most
general potential (14) is considered, there is a decoupling
limit in which the masses of the new scalar bosons can be
heavy. Therefore, it is interesting considering the scenario
when the masses of the new scalar bosons can be heavier
than 1 TeV.

A. Ak, and AQ, form factors

We listin Tables I1I-V of Appendix C all the contributions
of the GMM to both Ak, and AQ,, including the list of
particles circulating into each loop and the explicit form of
the corresponding CJ", coefficient. Excluding the pure SM
contributions, the Ak, and AQ, form factors receive ten
contributions of the type-(a) diagrams, three of the type-(b)
diagrams, and two of the type-(c) diagrams. Notice that all
the new scalar bosons participate in the type-(a) diagrams,
whereas the type-(b) diagrams only receive contributions
from the singlet and the fiveplet scalar bosons, and the type-
(c) diagrams from the fiveplet scalar bosons only. We first
examine the general behavior of Ak}, and AQ, as functions
of the masses of the scalar bosons. For the type-(b) and type-
(c) contributions we show in Fig. 5 the form factors as a
function of the mass of the scalar boson circulating into the

PHYSICAL REVIEW D 94, 095006 (2016)

loop, whereas for the type-(a) diagram we consider two
scenarios: when both scalar bosons are degenerate and when
one scalar boson mass is fixed and the other one is variable.

We first discuss the behavior of A/, (left plot of Fig. 5).
As far as the type-(a) contribution is concerned, it depends
on the masses of two scalar bosons S; and S, and is highly
dependent on the splitting between their masses
Amyy = mg —m3 . When such a splitting is vanishing
or very small, mg =myg , this contribution decreases
quickly as mg increases (dashed line), but it tends to a
nonvanishing constant value when the splitting becomes
large (solid line), which is in accordance with the decou-
pling theorem as discussed in Ref. [44]. It is worth
mentioning that the sharp dip observed in the solid line
is due to a change of sign of the form factor, which can
become important as there could be large cancellations
between contributions due to this change of sign. On the
other hand, the type-(b) and type-(c) contributions only
depend on one scalar boson mass and they are larger for a
light scalar boson but decrease quickly when the scalar
boson mass increases. It is important to notice that the C2*
constants are proportional to the VEV vj; thus the size of this
type of contribution will increase by around two orders of
magnitude with respect to the values shown in the plots.
Even when the scalar boson masses are relatively light, the
type-(a) contribution is the dominant one, except for
degenerate masses, when all the contributions are of similar
size. In summary, the dominant contribution to Ak, is
expected to arise from type-(a) diagrams, except for a
possible suppression due to the C; factor and possible
cancellations between distinct contributions. The largest
Ak, value is reached when the scalar boson masses g, and
mg, are relatively light or when there is a large mass
splitting Am,.

i i 1 0
a1k, 140, /C,
10 £ 4 '\ 1l
L ~ 10.1
i B iza’mszzmcev - : \_ 001
i=a, mg, =m,
0.1F TS 4 3 10001
| =b
—i=C A : 1o
| - 4 N
001 L ~ \\ - - ] 10_5
~ ‘- ~ - T~ -—.
N T — L L -~ - = .
ool SN T T T —4 T Il §
T T e e e e e —— — L L L ===
500 1000 1500 2000 500 1000 1500 2000
mg, [GeV] ms, [GeV]

FIG.5. Behavior of the contributions of the diagrams of Fig. 3 to the A}, and AQ, form factors as functions of the masses of the scalar
bosons circulating into the loops of each type of contribution divided by the Cj, coefficient and in units of a = ¢*/(96x%). While the
type-(a) contribution depends on two scalar boson masses mg, and myg, , the type-(b) and type-(c) diagrams depend on only one scalar

boson mass my, .
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We now turn to analyze the AQ, form factor, whose
dependence on the scalar boson masses is shown in the right
plot of Fig. 5. We observe that this form factor exhibits a
different behavior to that of Ax,. Although type-(a) con-
tributions are also larger than type-(b) and type-(c) contri-
butions, in this case there is no dependence on the mass
splitting Am,; and all the contributions decrease when at
least one of the scalar boson masses becomes large. However,
the decrease of AQ, as my, increases is less pronounced that
in the case of Ax]. Therefore, barring an extra suppression
due to the size of the C} coefficients and possible cancella-
tions, the largest contributions to AQ, will arise from type-(a)
diagrams provided that all the scalar boson masses are light.
The contribution to this form factor is dominated by the
heaviest scalar boson circulating in the type-(a) diagrams and
will be very suppressed even if the other scalar boson is
relatively light. In type-(b) and type-(c) diagrams there is also
a strong suppression for a heavy scalar boson.

When adding up all the partial contributions to Ax), and
AQ,, there could be extra suppression due to the size and
sign of the C; coefficients and the loop functions. For

instance, s is constrained to be less than 10! and thus any
contribution proportional to this parameter will have a
suppression factor of the order of 1072 and will be
negligible unless the remaining contributions are also
suppressed. All the contributions of this kind arise from
diagrams involving a weak gauge boson and a fiveplet
scalar boson. Therefore, all the type-(c) contributions and
the type-(b) contributions numbers 2 and 3 (for the number
of each contribution, see Tables III through VIII) will be
two orders of magnitude smaller than the remaining
contributions, although there is a region of the parameter
space in which all the contributions are equally suppressed.
Even more, the type-(b) contribution number 1 arises from
the loop with the W gauge boson and the H scalar boson,
being proportional to the square of the coefficient
fu=1t0Bcys,— 2v/65y¢,), which is very small for small
s, and sy . Therefore, in most of the allowed region of the
parameter space, the largest contributions will arise from
the type-(a) diagrams with two nondegenerate scalar
bosons, though the diagram including the SM Higgs boson
and a triplet scalar boson is considerably suppressed as the
coefficient g7 is very suppressed too. In addition, due to the
relative change of sign between distinct contributions there
could be large cancellations once all the type-(a) contri-
butions are added up and so there could be regions of the
parameter space where all three types of contributions are
of similar size. However, this region is not the one in which
the largest contributions to the form factors can arise.
All the properties discussed above will reflect on the
general behavior of the total contribution from the GMM to
the Ak’y and AQy form factors, which we have evaluated as
functions of the scalar boson masses. For the mixing angles
we used two combinations of values lying inside the allowed
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area of the parameter space determined by the authors of
Ref. [16] in their study of fiveplet state production at the
LHC. We thus considered the sets of values (sy,s,) =
(0.1,0.2) and (sy,s,) = (0.1,-0.3), which allows us to
illustrate the behavior of Ak;,. As for the masses of the scalar
bosons we fix the value of the mass of the singlet scalar my to
either 400 GeV or 1000 GeV, and plot in Fig. 6 the contour
lines of Ax;, in the my, vs my, plane. In all these plots the
main contributions to Ak} arise from type-(a) diagrams,
though in some regions the type-(b) contributions can be of
similar size. We observe that for small my (left plots) the
largest contributions are reached for large my, and small m
and vice versa (lightest area). The region in which my, and
my, are almost degenerate appears in the plots as a dark strip
and is the region in which A/, reaches its lowest values. On
the other hand, when my is large (right plots) we observe that
Ak, reaches its largest values for large m,, and light m,_, but
in this case there is no such increase when my, is large and
my;, remains small, as there are cancellations between the
distinct contributions. The dark strip where this form factor
reaches its lowest values now has shifted upwards but in
general encompasses the area where the three scalar boson
masses are large and thereby almost degenerate, namely, the
top right corners of these plots. We also observe that a change
in s, has a slight impact on the behavior of Ax,. However,
irrespective of the value of s,, in general the largest values of
Ak, correspond to the scenarios where there is a large
splitting between the scalar boson masses and the smallest
values correspond to the case when the three masses are large
or degenerate. The largest values of Axj, in the explored
region of the parameter space, are of the order of a. In general
the largest contributions arise from type-(a) contributions
numbers 2,4, 5,7, and 9, but when all the masses of the scalar
bosons are degenerate these contributions are suppressed and
are of a similar size as the type-(b) contribution number 1,
which in general is more suppressed than type-(a)
contributions.

We now turn to the analysis of the behavior of the AQ,
form factor. We consider the same scenarios as in the study
of Ak, and show in Fig. 7 the contour plot for AQ, in the m,
vs my, plane. As discussed above, contributions of type-(a)
have now no dependence on the splitting of the scalar boson
masses and they decrease rapidly as at least one of the scalar
boson masses becomes large. Therefore, type-(a) contribu-
tions will reach their largest values in the region (the lightest
area) where the masses of both scalars running into the loop
are relatively light. As for the type-(b) contributions, they
have a similar behavior to type-(a) contributions as they
decrease as the scalar boson mass increases, though in
general they are smaller than type-(a) contributions and so
are type-(c) contributions. The behavior of the total con-
tribution to AQ, will thus be dominated by the type-(a)
contributions and will be larger for light degenerate scalar
boson masses. This is illustrated in the four plots of Fig. 7 in
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FIG. 6. Contour plot for the Ak} form factor in the GMM in the m 1, VS8 my, plane for a fixed value of my and the indicated values of

the mixing angles sy and s,.

which the largest contributions are reached for small
degenerate masses and they decrease when either my, or
mpy, becomes large, though this decrease remains smooth up
to masses of about 800 GeV. In this case the dominant
contributions arise from the type-(a) contributions numbers
6, 8, and 10. When all the masses of the scalar bosons are
light, the type-(a) contribution number 2 is of a similar size
as contributions 6, 8, and 10, whereas all other contributions
are suppressed due to the small value of the corresponding
coefficient Cy. In general, the largest values reached by AQ,
are of the order of 1% of a and there is a slight dependence on
the value of s,,.

It is interesting to note that the contributions of the GMM
to Ak, are about two orders of magnitude larger than those
to AQ,. Such a behavior of the WWy form factors, which
was also observed for instance in the context of a model
with technihadrons [45] and the minimal 331 model [44],
can be explained in the light of the decoupling theorem. It
turns out that Ak, and AQ, appear in the WWy vertex
function (2) as coefficients of Lorentz structures of canoni-
cal dimension 4 and 6, respectively. This means that Ax;,
can be sensitive to nondecoupling effects of heavy par-
ticles, whereas AQy is always insensitive to such effects
and a natural suppression of this form factor by inverse
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FIG. 7.

powers of the mass of the heaviest particle inside the loop
is expected. In the present analysis we have considered
the contributions of heavy scalar bosons, which explains
the observed behavior of the WWy form factors. For a more
general discussion of this issue we refer the interested
reader to Refs. [44-46]. We will see below that, as
expected, this feature is also present in the behavior of
the Ax’, and AQ, form factors.

B. Ak, and AQ; form factors

We will now analyze the Ax/, and AQ, form factors, for
which we will follow a similar approach to that used above.

The same as in Fig. 6, but for the AQ, form factor.

We thus start by studying the general behavior of the distinct
types of contributions. Apart from the diagrams of Fig. 3,
there are additional contributions due to the diagrams of
Fig. 4. As for the contributions of types (a), (b), and (c), their
behavior is quite similar to that observed in Fig. 5, so we will
focus on the analysis of the extra contributions, whose
behavior will turn out to be rather similar to that of
contributions of type (a), (b), and (c), respectively. As
shown in Appendix C, in the GMM there are seven
contributions of type (d), four of type (e), and three of type
(f). Although our general results allow us to calculate type-
(d) contributions with three distinct scalar boson masses
mg, , mg,, and mg,, in the GMM all the masses of the same
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multiplet are degenerate. It means that type-(d) contributions
arise only from diagrams with at least two degenerate scalar
bosons. Also, although type-(e) contributions arise from
diagrams that can have two distinct scalar bosons, their
masses are degenerate and there is dependence on one mass
only, and this is also true for type-(f) contributions.
Therefore, we expect that type-(d) contributions will be
the dominant contribution to Ax’, as long as there is a large
splitting between the scalar boson masses, whereas type-(e)
and type-(f) contributions will only be important for a
relatively light scalar boson mass. This is depicted in
Fig. 8, where we show the behavior of the Ak}, and AQ,
form factors for all the scenarios allowed in the GMM.
For type-(d) contributions we consider three scenarios: mg,
fixed and mg, = mg, variables, mg, = mg, fixed and mg,
variable, and the three scalar boson masses degenerate
mg, = mg, = mg,. On the other hand, for type-(e) contri-
butions we only consider the case when the two scalar bosons
are degenerate. In Fig. 8 we observe that Ak’, and AQ, have a
similar behavior to that of the Ak}, and AQ, form factors. In
particular, the largest contributions to A/, are reached when
there is a large splitting between the scalar masses or when all
the scalar boson masses circulating into each loop are
relatively light. However, the decrease of Ax’, for large
mg, is now less quick than in the case of Ax}. Again, the C},
factor is proportional to » for type-(e) and type-(f) contri-
butions, so the values shown in the plots will increase by two
orders of magnitude for these contributions. As for AQ, it
will reach its largest value for the smallest allowed scalar
boson masses as in the case of AQ,. When the scalar bosons
are very heavy, they will be approximately degenerate, in
which case AQ, will decrease significantly. Extra suppres-
sion for both form factors can arise from the C, coefficients
and from potential cancellations between the distinct con-
tributions as in the case of the electromagnetic form factors.

PHYSICAL REVIEW D 94, 095006 (2016)

In Fig. 9 we present the contour plots for Ax), for the
same sets of parameter values used above. In spite of the
extra contributions, the behavior of this form factor is rather
similar to that of Ax},. We first note that all the contributions
of types (c), (e), and (f) have an extra suppression due to the
5%, factor appearing in the respective C', coefficient and
thus the main contributions will arise from type-(a) and
type-(d) contributions, and to a lesser extent from type-(b)
contribution number 1. All other contributions are only
important in regions of the parameter space where the
dominant contributions are suppressed by the respective
loop function. As far as the scenario with s, =0.1 is
concerned, we observe in the top left plot, in which we use
myg = 400 GeV, that the largest contributions arise when
either my, or my_ is large, whereas in the top right plot we
observe that there is enhancement only when my, is large
and my_ remains small, but not in the opposite case. It
means that there are cancellations between contributions
when my, and my are large and thus the total contribution
does not increase in spite of the large splitting between m
and my,. When the three masses my, my,, and my, are
degenerate the total contribution is suppressed by about one
order of magnitude. Even if all the scalar boson masses are
relatively light, Ax’, is smaller than in the case where either
mpy, or my, is large. In the bottom plots we use s, = —0.3
and observe that the behavior of A/, has a slight change
due to the change in the values of the C% coefficients;
however its largest values are also of the order of a. The
darkest strip where Ax’, reaches its smallest values, which
corresponds to nearly degenerate my, and my,, has now
shifted downwards. In summary, the largest values of Ak,
in this region of the parameter space, are of the order of a,
and are reached when there is a large splitting between the
masses’ scalar bosons. In general the largest contributions
to Ax’, arise from type-(a) and type-(d) diagrams, with the

1471/ C'y 140'7l/Cz
10 T T T ] \ T T T T
= i=d, mg, =mg , mg;=400 GeV \
i=d, mg y=mg, =400 GeV
1 ¢ ; - E
— i=d. mgy=mg, =mg,
= i=c.mg, =mg, o
~ £ ™
0.1 SR — E 40.001
0.01 3 \ .
J10-
S,
N e— ..
0.001 L T = - .
—— = = mtor— e = ) ) == = =T
500 1000 1500 2000 1000 2000 3000 4000
mg, [GeV] ms, [GeV]

FIG. 8.

Behavior of the contribution of diagrams of Fig. 4 to the Ax/, and AQ, form factors as a function of the masses of the scalar

bosons circulating into the loops of each type of contribution divided by the C%, coefficient and in units of a. Type-(d) contribution
depends on three scalar boson masses mg, , mg,, and mg, ; type-(¢) depends on two scalar masses mg, and myg,; and type-(f) diagrams
depend on only one scalar boson mass mg . We only consider the possible scenarios arising in the GMM.
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FIG.9. Contour plot for the Ax’, form factor in the GMM in the my, vs my_ plane for a fixed value of m and the indicated values of

the mixing angles sy and s,,.

type (b), (e), and (f) diagrams yielding a subdominant
contribution, which is only relevant when all the masses of
the scalar bosons are degenerate.

We now turn to the analysis of the behavior of the AQ,
form factor, which is shown in Fig. 10 in the my_ vs my,
plane. As discussed above, in this case there is no enhance-
ment due to a large splitting of the scalar boson masses but
a decrease when at least one of the masses of the scalar
bosons becomes large. Therefore, contributions of types (a)
and (d) reach their largest values provided that all the scalar
boson masses are relatively light. As for the remaining

contributions, they have a similar behavior as they decrease
as the scalar boson mass increases, though in general they
are smaller than type-(a) and type-(d) contributions. We
observe that the largest contributions to AQ, arise from
diagrams including only fiveplet scalar bosons provided
that my, is relatively light irrespective of the value of my
and my. . The behavior of the total contribution to AQj is
thus dominated by type-(a) contributions numbers 6, 8, and
10, reaching its largest values for light m;_. Note that type-
(a) contributions are the only ones that can involve fiveplet
scalar bosons only. When all the masses of the scalar
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FIG. 10. The same as in Fig. 9, but for the AQ, form factor.

bosons are light, the type-(a) contributions numbers 2 and 3
are of a similar size as contributions 6, 8, and 10, whereas
all other contributions are suppressed due to the small value
of the corresponding coefficient C%. If my and my, remain
small while my_ increases, there is a cancellation between
type-(a) contributions involving singlet and triplet scalar
bosons, such that the total sum decreases considerably
when my_ increases. In general the largest contributions are
of the order of 1% of a in the region of the parameter space
considered.

As in the case of the WWy form factors, we also note
that the Ax/, form factor is about two orders of magnitude

larger than AQ,. As it was pointed out above, this
behavior can be explained in the context of the decoupling
theorem.

V. CONCLUSIONS

The presence of new scalar particles is a consequence
of well-motivated extensions of the SM. Even if such
particles were not directly produced at particle colliders,
their quantum effects could be at the reach of detection
through precision measurement. In this work, we have
obtained the one-loop corrections to the Ak}, and AQy
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(V =y, Z) form factors induced by new scalar particles. A
model-independent calculation was done via both the
Feynman parameter technique and the Passarino-
Veltman reduction scheme. Our general results are
expressed in terms of three (six) generic contributions
to Ak, and AQ, (Ak, and AQz) that can be used to
calculate the corrections arising from models with an
extended scalar sector predicting new neutral, singly, and
doubly charged scalar bosons. For the numerical analysis
we have focused on the GMM, which is a Higgs triplet
model that has been the source of some interest recently.
This model predicts 9 new scalar bosons accommodated in
a singlet, a triplet, and a fiveplet, which yield 15 new
contributions to Ak, and AQ,, whereas Ak, and AQ,
receive 28 contributions. The general behavior of the Ax],
and AQy form factors was analyzed for values of the
parameters lying inside the region allowed by experimen-
tal and theoretical constraints. It was found that A,
reaches values of the order of a = ¢*>/(96x°), with the
largest values arising from the diagrams with two non-
degenerate scalar bosons provided that there is a large
splitting between their masses. On the other hand AQy
reaches values of the order of 1% of a, with the largest
contributions arising from diagrams with relatively light
degenerate scalar bosons. Both form factors decrease
rapidly when all the scalar boson masses are heavy.
The values for Ak}, and AQ, predicted by the GMM
are competitive with the ones predicted by other weakly
coupled SM extensions, but a very high experimental
precision still would be necessary to disentangle such
effects.
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APPENDIX A: FEYNMAN RULES FOR THE
GMM VERTICES

We now present the Feynman rules for the vertices of the
type Xa XAV, pappXc, and ¢, XX arising in the GMM.
Here X represents a neutral or charged gauge boson, V =y,
Z, and ¢ is a neutral, singly, or doubly charged scalar
boson. The respective Lorentz structure for each vertex of
this kind was shown in Fig. 2, so we only need to present
the respective coupling constants. Since in the GMM there
are no extra gauge bosons, the only vertices of the type
XX,V are WFW*y and WTW*Z, whose coupling con-
stants are gy, = g, = e and gyyz = gz = gcw. As far as
vertices of the class ¢,¢pX are concerned, the respective
coupling constants are shown in Table I, whereas the
coupling constants for vertices of the kind ¢4 XzX - are
presented in Table II.
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TABLE I. Coupling constants for vertices of the class ¢,¢pX
(two scalar bosons and one gauge boson) in the GMM. Here

sy = sin@y and cy = cos Oy, g, = +(2v/6¢ys, + 3spc,), and
gy = %(Zﬁcﬂca — 35y5,)- For the Lorentz structure see Fig. 2.

Vertex Coupling constant
HihWT 99n
HyHWF 991
HEHIWT ey
HEHIWF By
Hsng wT + %ch
HTHIWT +ig
Hi*HI W™ ~ 759
HESHT W ~ L ge
HYhZ i g
H)HZ —i L gy
HYHYZ —iA—cy
HfHFZ ﬁ Cy
H{H;Z 7= (1= 2s3)
+ 17— 9 2
HIH3Z G (1 —2s3)
HI'H;7Z (1 =2s3)
Hy H3y e
HI{HSy e
H{"H;7y 2e
TABLEII. Coupling constants for vertices of the class ¢, XX ¢

(one scalar boson and two gauge bosons) in the GMM. Here
fn= % (Bepeq + 2\/65115(1) and fy = %(36’115(1 - 2\/6chrz)'
For the Lorentz structure see Fig. 2.

Vertex Coupling constant
+ W F g+t 2
W=WTH; g—ﬁvsH
t7g+
W*ZH; F % vSy
+W- HO
WrW=H; %USH
0
ZZH; - rngv vSy
WHW~h —g*vf,
WTW-H Fufy
ZZh _ETZ of)
w
ZZH 7
S vfn
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APPENDIX B: ONE-LOOP FUNCTIONS

In this appendix we present the results for the loop
integrals involved in the Ax} and AQy form factors in
terms of parametric integrals and Passarino-Veltman scalar
functions.

1. Parametric integrals

The loop functions arising from the Feynman diagrams
of Fig. 3 can be written in terms of the following parametric
integrals,

1
IXéi—/ F,‘éé"(x)dx, (BI1)
0

forV=2Zyand i = a, b, c. These loop functions depend
on x,, xXg, and xy, but for the sake of shortness we will drop
the explicit dependence from now on. It is worth reminding
the reader that subscripts A, B correspond to the virtual
particles circulating into each Feynman diagram of Fig. 3.
We will first present the F;/(x) functions for a massive
neutral gauge boson V, which can be written as

V=i(x) = fi(x i(x n—lm
P = £i0) + £ aan |5

+/5(x) log[A(x)], (B2)
and

A . . x—1)/x
Fg"(x) = hj(x) + hi(x)tan™! [%—V} (B3)

where we introduced the auxiliary function

E(x) = [42(x) = (x = 1)y ]2, (B4)

with A(x) =x(x—6—1)+x, and 6= x, —xp. Also,
f ;(x) stand for polynomial functions given by

fo(x) =4(x* = 1), (BS)
1) =~ 7 (%= D= Dy + 420+ 1),
(B6)
f4(x) = 6x* = 8x +2; (B7)
) = = 3z (£ = Dlxtay = 650) +30). - (B8)
folx) = m (4xxy(x(x —68) +64)
+4x,(x(x(76 = 8x +9) — llxy + x5 — 1)
+4xy) + (x = 1)2(3x = 1)x3), (B9)
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1

fh(x) = E((‘l —3x)x = 1)xy; (B10)
A

1 — x?
i) ==, B1)

{(x :; ¥ =1)(x—x

) = f (40 = D=

+4x(x +3)xg + Bx = 1)(x = 1)%xy), (B12)
e (B13)

where we have defined 6, = x4 + x5 — 1.

As far as the polynomial functions h{ are concerned, we
only need h{,

8(x—1)x

() = -2 =D (B14)

Xy

32Ax
h() = 2 (B15)

$(x)xy/

since the [ E‘b and [ E‘C loop functions obey
1y-b = 242 v B16)
¢ s ¢ (
[ (B17)
o == "

As far as the coupling constants C', are concerned, they
are as follows:

co = 9¢A¢ng¢gquAw9¢A¢AV’ (B18)
- W , (B19)
w
IR RN
cs = TPsXgWIbadaV (B20)

2
my, gy

where g,pc stands for the coupling constants associated
with the ABC vertex, which are presented in Appendix A.
Notice that it is necessary to be careful when establishing
the flow of the 4-momenta in the Feynman rule for each
vertex to determine the correct sign of the respective
coupling constant.

The contributions to Ax” and AQ), from this set of
diagrams follow easily after setting x;; — x; in the above
parametric integrals and inserting the appropriate coupling
constants in the coefficients Ci, given in Egs. (B18)—(18).
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We can also obtain the electromagnetic form factors AK’Yi
and AQ; straightforwardly by considering the x,, — 0 limit

and the corresponding coupling constants. In this case, the
parametric integrals simplify to

=2 A (= 1)(Bx— Dlog A(¥)]dx,  (B21)

e ™

e 1 [1 (1=3x)log[A(x)] 4x
I =~ -1 dx, B23
A )[ w ) B
and
o 4 [1(x=1)%
e== dx, B24
o3 (524
with
= Ly (B25)
0 4x, Q >
o= L (B26)
0 dxp o -

We now present the parametric integrals for the loop
functions of the Feynman diagrams of Fig. 4, which only
contribute to the Ak, and AQ!, form factors. This time the
superscript i stands for the whole contribution of diagrams
iy and i, with i = d, e, f. The parametric integrals /7 are
given by a similar expression to that of Eq. (B1), but with
the FZ functions now depending also on the variable xc.
They are given by

FEH(x) = f67 (%) + f7 (x)m (x) + 57 (x)ma(x),

(B27)
and
Fg(x) = hg™ (x) + h{~ (x)m (x) + b5 (%) (x),

(B28)
|

O —

20(x)x 4 xpX%

PHYSICAL REVIEW D 94, 095006 (2016)

where we introduced the auxiliary functions

7 (x) = tan™! [1 n ;z(x_—(;)_le)zx%] (B29)
() = tog | 7). (B30)

with 2'(x) = x(x = &' — 1) + x¢ and & = x¢ — xg. The f}
and h; functions are given by

fd(x) =4(x=1)(Bx—1)log[A(x)] +8(x> = 1),  (B31)

fi(x) = (=2(x + Dxz(=x(xy — 2x5 + x¢ +2)

0(x)xz
+ x4 + xc + 2x%) + (5x + 1)5”?

- (x=1)>(3x = 1)x2), (B32)

2
9(x) :x—(—(5x+ D)xp+5xxc+xc+x(3x—4)x7+x7);

(B33)
g(x)z—(x;cl)((sx—1)1ogu(x)}+2(x+1)), (B34)
flx) = 0(x)xcxy (2x7(x(=x(x4 = 2xp + x¢) + 2xp + x¢

+2x% = 2) +x4) — & (5xx4 + x4 — Sxx0 + X0)
+(x=1)2Bx=1)x2) (B35)

f5(x) = Tren, (Sxxy + x4 — Sxxc + x¢
+ ((4=3x)x—1)xz); (B36)
£l = 2%;;}32 (27 (x(3x4 + 9 — 1) = 35 — 1)

+ x,8 — (3x = 1)(3xp + 1)xzlog [A(x)]), (B37)

(x2(x? (x4 (8xp + 5x¢ + 16) + 9x% + 22x5(xc — 2x5) + 76x5 — 2x¢) — 4x (x4 (5x5 + x¢)

+3x% + x5(=3xp + Txc +2) + 1) —4x3(4x, + 13x5 — 1) — x4x¢ + 3x3 + 6x5xc + 2x¢)
+x78 (xc(x(—4xy — 13x5 +5) = 2x4 + 3xp + 1) + x4 (x(10x, + Txg —8x+ 1) —4x, + 3x5 + 1))

+ x40 + (x = 1)2(3x = 1)(3x5 + 1)x3),

(B38)
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: 1
fx) = ——— (xz(=xc(x(5xp +13x5 = 5) + x4 — 3x5) +3(3x + 1)xaxp + (3x — 1)x,(3x4 —2x — 1) + x¢)
4xsxpx7
+ 2487 4+ (x = 1)(3x = 1)(3xp + 1)x3), (B39)
with
O(x) = 2x4(xc — (x = 1)xz) — x5 +4x(xg + x — 1)xz — (x¢ + (x = 1)xz)% (B40)
Again we only need the h;’l functions
16(x —1
i(x) — - 18X = 1x (B41)
Xz
Hi(x) = — 16x(8? = x7 (x4 + x¢ + 252 _QX(XA —2xp+xc+2))) ’ (B42)
0(x)x3
[
7 (x) = 8x25’7 (B43) As = By(m},, my, m%) — By(0, mz, m%), (B53)
Xz

whereas the loop functions for the type-(e) and type-(f)
contributions are given by

1

147¢ = JZ-d B44
0 4XC 0 ( )
7= % pza (B45)
0 SXA.X'B 0
Finally, the C, coupling constants are
cl = 9¢A¢Ewg¢3¢cwg¢cmz’ (B46)
9z
Cy = g¢A¢BW~g¢BXCWQXC¢A (B47)
My gz
Cé gXAXEWgXBr/)Cng)CXA (B 48)
my gz

2. Passarino-Veltman scalar integrals

The loop functions I} were also obtained via the
Passarino-Veltman reduction scheme in terms of two- and
three-point scalar functions with the help of the Feyncalc
package [47]. We first define the following dimensionless
ultraviolet finite functions:

A; = By(0, mA,mA) By(0, mB,m%) (B49)

A, = BO(vam%\’mB) B(0, vamzza) (B50)

A; = Bo(mv,mxzava) Bo(vammmB) (B51)

Ay = By(0,m%, m3) — Bo(0, m%, m%),  (B52)

Ag = Bo(mv’ mA’ mc) BO(mW’ m%, m2c) (B54)

Ay = m3,Co(0, m3,, m3,, m4, m%, m3),  (B55)
Ag = myy Co(my, miy, my,, m3, meg, mg),  (B56)

2 2 02 02

where By(mj, m7, m¢) and Cy(p7, p3, pty. mi, m3, m;) are
two- and three- pomt scalar functions.

The I,YQ_ " loop functions can be cast in the following
form:

8
Z p)/_lAJ + ZXVIV_i,
j=0

. 13 4
V—i __ V—i
I = 5w > a4,
0 j=1

with Ag=1 and i =a,...,f. For simplicity we have
omitted the dependence of the polynomial functions
DY, Q’ p}/_i, and q}"" on x4, xg, and xc.

For the Feynman diagrams of Fig. 3 we obtain the
following nonvanishing polynomial functions for a massive

neutral gauge boson V:

V—i _
I

= v (B57)

(BS8)

DY~ =3y (B59)
Py = =2yy(38% = xy + 1), (B60)
Py = —6x,yy6_, (B61)
pY=4 = 63yy5_, (B62)

Py = 6(68” — x4 (xy +8) + xp(Sxy — 8) + xy +2),
(B63)
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Py = —=12(p + xpxy)(36 —xy + 1), (B64)
DYb =2x3y} (B65)

1
Py :_gyV(ZxA—xV)(352—Xv+ 1), (B66)

PHYSICAL REVIEW D 94, 095006 (2016)

1
p:‘;_b = 5(24)(:/24(2 — Xp — XV) +XA(22XBXV + 4XB(3XB - 4) + SX%, - 6XV + 4)

+12x3 — xy(xp(6x5 + Sxy — 8) + xy + 2)),

pY=t = x3(18xp + 13xy — 22) — 3x3 (9xpxy + 6(xp — 2)xp + x3 + 3xy — 10)
+x4((9x5 + 4)x3 + (x5(17x5 — 16) = 5)xy +2(3x5 — 1) (x5 — 1)?)

— 6xj —XV(3XB +XV - 1)(XB(XB +xV - 2) + 1),

D)‘:,_C = xpy} (B71)
V—-c 1 2
Po :g)’v(35 —xy + 1), (B72)
V—c 1
P = EXA)’V5—, (B73)
V—c 1
p2 = —Eyvéé_, (B74)
V—c 1 2
py = E(xA(lsz + xy +8) — 6x3
+ 3XB<—2.XB + Xy — 8) — Xy — 2), (B75)

Py = =x3(9xp + xy +5) + x4 (x5(9x5 + xy + 14)
+2xy + 1) + 3x3 + xp(—3xp(xp + 3)

+ (xy = 9)xy + 11) —xy + 1, (B76)
Dy =2 x0d (B77)

gy = yy(12=28(xy +6) + (xy = 2)xy),  (B78)
g1 =" = =2x,yy (8(xy +6) = 2(xy + 1)), (B79)

gy = 2y (82 (xy + 6) — 2x4 (xy + 1) + 2x5(2xy — 3)),

(B8O)
gy = 2(x4(8 — xy(3xy + 20)) + 65°(3xy —2)
+ 3xp(xy(3xy —4) +8)
+2(xy = 1)(xy +6)), (B81)

1
py™" = _EXAYVé—(zxA - Xy), (B67)
1
py = 55)’V5—(ZXA - xv), (B68)
(B69)
(B70)

I
gy~ = =6(=2x,x55(9xy = 6) = 2x3 (xy (xy +4) = 2)
+ 2x4 (2xp(xy (2xy — 1) +2) + xy(2xy — 1) + 2)
+ x5 (6xy —4) — xpxy + 2(=3x% + x5 — 1)x},
+2(xp(=3(xp = 2)x5 = 5) + 2)xy +4(xp — 1)*),
(B82)

with yy =1 —4xy, and p =1 —2(x,4 +x3) + 6. Also,
the 757" and I}, loop functions obey Egs. (B16)
and (15).

For V =y, we need to be careful when taking the limit
xy — 0 as one obtains an indeterminate result of the form
0/0 since the Gram determinant vanishes. Therefore one
must apply the I’Hopital rule, as is described in detail in
Ref. [44]. We obtain the following results after applying
this method:

D=3 (B83)
Pt =68 -35-1, (B84)
Pt =6x,6_, (B85)
Py = 6(xs = &), (B36)
D" =2p%x, (B87)
5 1
Py = ¢ (pP(3p(28 + Txs + xp) + 96x435 = p)).  (BSS)
P70 = pxa(xa(—4xp + p — 8) + 423
—(p+4)xp—p+4), (B89)
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Py = =p(p(&8 +3x4) +8xaxp),  (BIO)
y—a 2
‘ gy = —4x,(6-1)((6-1)>=3xp), (BI7)
D7 =2p%xp (B91) :
oS == (=p(p(=3x4(4xp + 1) + 6x3 + 3x5(2xp
+9) = 1) +48x,8,)), (B92)

g = 4(=(4xp + 1)xp + x4 (634 — 1)x
+ x4 ((5 = dxp)xg = Vg + (x4 = 1)°x4 + x3),
P = pxal(l = 8)(4x5 + p), (B93) (B98)

Py C = p(p(8® — x4 +4xp) +4xpd,),  (BY4) . " - ,
with the 77,” and I7,“ obeying (B25) and (B26).
Dy =3p (B95) Finally we present the polynomial functions for the
contributions to the WWZ form factors obtained from the
—a 2 di f Fig. 4:
g5 = =3 (=33} (8xp + 5) + 2 (9xp(4x; +3) + 10) ragrams ot H5

— x4 (xp(3xp(8xp +3) +8) — 1) + 6x4

DL = xpy? (B99)
+ (xp — 1)(6x3 + 3x3 + x5 + 2)), (B96)
|
1
p§ = 3 (=2y7(xz(3(=2xax5 + x3 — 2xpxc + 2x5 + xg) + 2) — 6(x4 — x¢)* — 2x3)). (B100)
it =2x,y7(—xp(xz = 2) + xpxz — 2x¢c + X7), (B101)

P54 = 2x,(x4(17xp — 3x¢ +5) — 74 + x5(=10x5 + 3x¢c + 4) + Txe — 2)
+4(x4 — xc)(Bxy — 6xp + 3x¢ +2) + 2x2 (8 — dxg — 1), (B102)

p¥d = =2(—x4(3xp(3x; — 4) = 5xcxz + 8xc + x5 +x7 +4) + x5 (x +2)
+ xc(xp(=x% 4+ x7 = 12) = Tx; +4) + x7((xp + 6)xpx; + 2(x5 — 6)x5 + x; + 2) + 6x%), (B103)
pEd =2x%(—xy — 2xg(xc = 3) + x5 + (xc — D)xc + 1)
+ 2x7(x4(=9xp + Txc — 1) + x5 + Sxpxe + 2(xp — 6)xp — 6x% — 3xc + 2)
+4(XA—Xc)(XA+6XB—7XC—2), (B104)

pE? = 2(xa(2xc(5x7 — 8) — x7(12x5 + x7 + 8)) + x5 (xz + 8) — xcxz(12x5 + xz + 8)
+ 2x7(xp(6xp + 5x7 — 8) + x7 + 2) + x&(x; + 8)), (B105)

p%‘d = —4(3x4 — 6xp + 3xc — 2x7 + 2)(=xz(x4(xp —xc + 1) + x5(=xp + xc + 2) + x¢)

+ (xa = x¢)* + xpx5 + xz); (B106)
D% = xcxZys, (B107)
1
i = 2 (=xzy3(=xz(3(=2xaxp + X3 = 2xp¥c + 205 + x7) +2) + 6(xa — xc)* +247)), (B108)
1
pie= 3 (xaxzy%(xa(xz = 2) = (x5 + 1)xz + 2x¢)), (B109)
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1
p%“f = —Exzyz(xA(xB((W —2x7)xz —12) = 3xcxy + 5x, + 4) +xf‘(xz —6)(xz—1)

+ 3xc((xp + 5)xz 4 4(xp = 3)) + xz(xp(xp(xz — 10) — 4xz +4) — x; — 2) — 6x7.), (B110)

1
pie = —Exzyz(xA(3xB(3xZ —4) = 5xcxy + 8x¢ + %% + x7 +4) + x5 (=(xz +2))

+ xc(xp((xz = )xz + 12) + 15x; — 36) — xz((xp + 6)xpxz + 2(xp — 6)xp + xz +2) — 6x2), (B111)

pEie = %xzyz(xA(3xB(3xZ —4) = Txcxz + 16xc + x% + x7 +4) + x5 (= (xz + 2))
+ xc(xp(xz(2x7 = 5) + 12) + xz(xz + 11) —=36) — x((xp + 6)xxz + 2(x5 — 6)xp + x7 + 2)
— x2((xz = 6)x; + 14)), (B112)
g = %nyZ(xA (xz(12x5 + xz + 8) + 2x¢(8 = 5x7)) + x5 (=(xz +8))
+ xcxz(12x5 + 5x7 — 8) — 2x,(x5(6x5 + 5x7 — 8) + x7 +2) — x2(x; + 8)), (B113)
P§ ¢ = —xzyz(x3(3xp(xz +2) = 3xcxz + 3xc + 53z - 2)

+ x4 (4xc(Bxp(xy — 1) + (xz = 3)xz +5) — x4 (x5(9x5 + 5x7 —2) + 2x, + 1) = 3x2(x, — 1))
= 3x3 + xexz(xp(—=9x5 — Txz + 10) — 4x, + 7) + 3x2(xpxz + 2x5 + 3x, — 6)

+2x;(3xp + x7 — 1) (xp(xp +x7 —2) + 1) = 3x3); (B114)
Df,_f = dx xpx,y% (B115)

Py = —%YZ5+(XZ(3(—2XAXB + x5 = 2xpx¢ + 20 +x¢) +2) = 6(x4 — x¢)* = 2x7), (B116)
PT = —xayz0, (x4 (7 = 2) = (x5 + D)z + 2xc), (B117)

Py = x5 (xz = 6)(xz — 1) = X3 (xp((x7 — 10)x; + 6) + 3x7(xc — x; + 4) = 30)
+ x4 (xz(xp(Txp + 64) + 10xc + 17) — 2(x5(40 — 6x¢) + 6x% + xc(3xc +2) + 18)
— (xp(xp + 14) +5)x3) + (x5 — 1)(xc(3xp5(xz +4) + Txz — 4)
= xz(xp(xp(xz = 10) +4(xz = 7)) = xz = 2) = 6x7), (B113)

Py = x5 (=(xz +2)) = X5 (2xp(4xz = 7) + Sxz(xz — xc) + 8x¢ — 22x7 + 38)
((xz = 6)xz +20) + (76 — 17x7)xz — 80) + x3(—(xz —4))(xz = 3)
—6(xc —x7)* = 12(xc + 3) + 21xz) + (x5 — 1) (xc(xp(=2x% + x5 — 12) = Tx; + 4)
+x7(xg(xg(xz +2) = 2x; +20) + x; +2) + 6x%), (B119)

+ x4 (xp(xc

e =3 (xy +2) + 23 (xp(14 = 8xz) + xc(Txz — 16) + (22 = 5x,)x, — 38)
+ x4 (xp(=2xc((xz = 6)x, + 14) + x,(17x, — 76) + 80) + x5(x; — 4)(x; — 3)
+ x%((xz — 6)xz + 14) — xc(xz(xz + 10) = 20) + 3x2(2x; — 7) + 36)
+ (xp = D) (=xc(xp(xz(2xz = 5) +12) + (xz = 1)(xz + 4)) + xz(xp(xp(xz +2) — 2x7 + 20) + x7 +2)
+xz((xz = 6)xz + 14)), (B120)
Ps ¢ =23 (xa(2lxg —xc +7) — 5x3 = (xp = 1)(6x5 +xc = 2))
+ x7(x28, + 2x¢(5x4 — 6x5 —4)5, — 11x3xp — 60x4x5 + x3 + 7x3
—dx, + 12x3 + 36x% — 4dxg) + 85 (x4 — x¢)? — 4xy, (B121)
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s = =2(xa(xc(=3x3yz + x5(xz(9x7 = 26) + 32) + xz(6x7 — 11) 4 20)
+ x%(=9xp — 8xz +5) + xz(xp(xp(43 — 13xz) + 3x% — xz(2x; + 1) +9) — 6x; +9) + 3x2)
= 3x3(xz(xg —x¢ +3) + xp + xc = 5) + x5 (x(=9x¢cxz + 9xe + Txy — 40) + 6x%(xz — 1)
—4(xe = 1)xZ + 3xc(xe + 3)xz — xc(3xc +17) +2(xz = 9)) + 3x%
+ (xp — 1)(=x2(Bxp(xz +2) + 5x7 — 2) + xcxz(xp(9xp + x7 + 14) + 2x; + 1)
—2xz7(xg(3xp(xp +3) = (xz —=9)xz — 11) + x; — 1) + 3x2));

3
D =

a5~ " = yz(2x4(xpxz(xz + 6) + xc(16 = 9x7)) + x5 (= ((xz = 3)xz + 16))
+ 2xpxcxz(xz + 6) + x7(=2x5(xz + 6) + (xz = 2)xz +12) = x¢((xz = 3)xz + 16)),

g% = —xpy;(xa((x7 = 3)xz 4+ 16) = x5 (xpx, + 6xp + 2x; + 2) + xc(9x7 — 16)),

g5 = =2x%(x4(—13xp + 3xc — 1) + 5x5 = 3(xp + 4)xc + 8x% + 5x5 + 5)
- 6XZ(XA(5XB + Xc — 9) - 3x124 - 9.X'B.XC =+ 2.)(/% + xC<4xC =+ 9) - 2)
+36(xc — x4) (x4 — 2x5 + x¢ + 2) + x5 (—2x4x5 + X5 + x4 + (X — 5)xp — 2),

g5~ = x3(3x5 + xp(—xp +xc — 13) = 2)
+ x2(x4(30xg — 15x¢ — 4) = 3x% + 2x5(=10xp + 4xc + 17) + 24xc — 10)
+ 2x7(x4(23(x¢ + 1) = 39xp) — 5x3 + 3(xp(5xc — 8) + 6x% — xc(4xc +9) +2))
+4(xq — x¢)(Txy + 18xp — 9xc — 18),

g% = x3(—3x4 — 2(xp + )xc + x5 + 13x5 + x5 + 2)
+ x2 (x4 (=30xp + 24xc +4) + 3x3 — 2x5(5x¢ + 17) + 2053 — xc(7xc + 18) + 10)
+ 2x,(x4(39x5 — 49xc — 23) + 5x;4 — 3xp(xc — 8) — 18x% + x(26x¢ + 31) — 6)
—4(xy —x¢)(Txy + 18xp — 25x- — 18),

gé™1 = x% (x5 (=36xp + 30xc — 20) + 3x3 — 12x53(3x¢ + 2) + 36x3 + xc(3x¢c — 20) + 20)
+ 2x7(2x, (6x5 — 23xc + 2) + 17x5 + 4(3xp + 1)xe — 12(xp — 1)> + 17x%)
— 64(xy — x¢)* 4 x3(=3x, + 18x5 — 3xc +4),

g5 =—6

(2x3 (2xaxp — XaXe + X4 + 2Xpxc — 3x5 + x5 + xc — 1)

—x2(3x% (xp — x¢ +2) + x4 (2x(6x¢c + 1) = 9x% — xc(3xc +4) + 1)
+3(xp +2)x2 + (2 = 9xp)xpxc + 2x5(3(xg — 2)xg +5) + xc — 4)

+ 2x,(=3x% (xp + xc = 2) + x4 (2x5(6xc + 1) = 3x% — xc(3x¢ + 10) + 1)
+2x5 = 3x%(xc + 2) + x5((2 = 3x¢)xc + 6) + 2x3 + x¢ + 2x5(xc + 3))

—6(xq — x¢)*(xq — 2x5 + x¢ + 2) — xpx% — 4xz),

with the 7%7¢ and 17, functions given by (B44) and (B45).
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TABLE III.  C¥, coefficients for all the type-(a) contributions to
the Ax/, and AQy form factors in the GMM. The second column
shows the particles circulating into the loop and the last two
columns show the corresponding C¥, factors.

Number AB ¢y G

1 Hsh L gh(1-25%) 79
2 H3H (1 - 253) T Yh
3 H3HS o (1-2s%) g

4 HgHg gii%‘r, (1- 2S%V) ﬁgzc%—l
5 H3H) %(1 ~222) e
: mH Eaoa) i
7 H{HI _%(1 _242) —39°ch
8 HSHS" — i (1-2s%) i
9 Hy™H; 291 - 25%) g'ch
10 H5~H3 £ (1-25%) 7

TABLE IV. The same as in Table III, but for the type-(b)
contributions.

Number AB ct, ct
1 W-H e e
9 9
2 W~ HY 5,7 5
12m2, 12m?,
3 [}[]4‘[-13“+ g*sh v’ B g*shv?
Zm%l, Zm%V

TABLE V. The same as in Table III, but for the type-(c)
contributions.

Number AB (0 cy
422 42 2
_ g sy v 92 9 Su?
1 H;Z g (1= 253) i
- 52 0%
2 HyWS o -fima-ag)  _sge
wltw m%v

PHYSICAL REVIEW D 94, 095006 (2016)

TABLE VL. CY coefficients for the type-(d) contributions in the
GMM. The second column shows the particles circulating into the
loop and the last column shows the corresponding C¢ factor.

Number ABC o
1 H5yHYHS e
8cyy
2 H3HYHS T
8¢,
3 HiH;"H{ _2
N 4(:2‘
07+ )
4 H3Hz h 2Jc_$v g
0 >
5 HYHTH - an
w
6 HYH H? f;fz’
W
7 HYHIH? _fj,
TABLE VII. The same as in Table VI, but for the type-(e)
contributions.
Number ABC (6
1 HSHYW- g'sy v
3T T 8A2m2
ww
2 HIHI W+ gy’
i V24c2,m?,
: iz fax
wwW
TABLE VIII. The same as in Table VI, but for the type-(f)
contributions.
Number ABC Cé
1 W~ZH3 _ gy’
4c3,m?,
2 ZWTH _ g f2
oy H
3 ZWtH! _ gy
6¢2,m?
ww

APPENDIX C: Ci, COEFFICIENTS FOR ALL THE
NEW CONTRIBUTIONS OF THE GMM TO THE
Ax), AND AQ, FORM FACTORS

After taking into account all the vertices allowed in the
GMM (Appendix A) we can determine the new contribu-
tions to the Ak} and AQy form factors arising from the
Feynman diagrams of Figs. 3 and 4. In Tables III-VIII we
show the explicit form of the Ci, coefficients of Eqs. (B18)—
(18) and (B46)—(B48) for each such contribution.
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