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The CP-even static form factors Δκ0V and ΔQV (V ¼ γ, Z) associated with the WWV vertex are studied
in the context of the Georgi-Machacek model (GMM), which predicts nine new scalar bosons
accommodated in a singlet, a triplet, and a fiveplet. General expressions for the one-loop contributions
to Δκ0V and ΔQV arising from neutral, singly, and doubly charged scalar bosons are obtained in terms of
both parametric integrals and Passarino-Veltman scalar functions, which can be numerically evaluated. It is
found that the GMM yields 15 (28) distinct contributions to Δκ0γ and ΔQγ (Δκ0Z and ΔQZ), though several
of them are naturally suppressed. A numerical analysis is done in the region of parameter space still
consistent with current experimental data and it is found that the largest contributions to Δκ0V arise from
Feynman diagrams with two nondegenerate scalar bosons in the loop, with values of the order of
a ¼ g2=ð96π2Þ reached when there is a large splitting between the masses of these scalar bosons. As for
ΔQV , it reaches values as large as 10−2a for the lightest allowed scalar bosons, but it decreases rapidly as
one of the masses of the scalar bosons becomes large. Among the new contributions of the GMM to the
Δκ0V and ΔQV form factors are those induced by the H�

5 W
∓Z vertex, which arises at the tree level and is a

unique prediction of this model.
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I. INTRODUCTION

The observation of a 125 GeV Higgs-like particle by the
CMS [1] and ATLAS [2] collaborations hints that the Higgs
mechanism, responsible for mass generation of elementary
particles, is realized in nature. So far, the current measure-
ments of this particle’s properties are consistent with the
standard model (SM) Higgs boson. However, a more
detailed and precise analysis is still necessary to confirm
whether this particle is the SM Higgs boson or any other
remnant scalar boson arising in an extended scalar sector
from a scenario beyond the SM. In fact, from a theoretical
point of view, there is no fundamental reason for a minimal
Higgs sector, as occurs in the SM. It is therefore appropriate
to consider additional scalar representations, which could
have a role in the symmetry-breaking mechanism and
establish a relationship with a yet-undiscovered sector.
Despite the great success of the SM, several extension

models have been conjectured in order to solve the puzzle
of some of the questions still unanswered by this theory. In
this context, models with scalar triplet representations have
attracted considerable attention due to their appealing
features, such as the possibility of implementing the seesaw
mechanism to endow the neutrinos with naturally light
Majorana masses (the so-called type-II seesaw), the appear-
ance of the H�W∓Z coupling at the tree level, and the
presence of doubly charged scalar particles. In this respect,
the Georgi-Machacek model (GMM) [3,4] is one of the
most attractive Higgs triplet models as it preserves the
relationship ρ ¼ 1 at the tree level via an SUð2Þ custodial
symmetry. The GMM is based mainly on the SM but in the

scalar sector introduces a complex scalar triplet χ, a real
scalar triplet ξ, and the usual complex scalar doublet ϕ
under the SUð2ÞL ×Uð1ÞY gauge symmetry. After the
spontaneous symmetry breaking, the physical scalar spec-
trum of the GMM is given by the SM-like Higgs boson h
and one extra CP-even singlet H; one scalar triplet H3

(H0
3,H

�
3 ); and one scalar fivepletH5 (H0

5,H
��
5 ,H�

5 ). All of
these multiplets are mass degenerate as a result of the
custodial symmetry. The phenomenology of the GMM has
been broadly studied over recent years [5–18]. For instance,
a study of the search and production of the GMM Higgs
bosons at the LHC has been analyzed in [16,17], and its
phenomenology at a future electron-positron collider has
been reported in [18].
Even if there is not enough energy available to produce

the new scalar particles predicted by the GMM, one can
search for their virtual effects through some observables.
Particular interest has been put on the radiative corrections
to the WWV (V ¼ γ, Z) vertex, which represents a very
sensitive scenario to search for any new physics (NP)
effects and test the gauge sector of the SM. In fact, the one-
loop corrections to the on-shell WWγ vertex, which define
the static electromagnetic properties of theW gauge boson,
was one of the first ever one-loop calculations within the
SM [19], followed by a plethora of calculations of the
respective contributions of several SM extensions, such as
the two-Higgs doublet model (THDM) [20], the minimal
supersymmetric standard model (MSSM) [21], left-right
symmetric theories [22], extra dimensions [23], the littlest
Higgs model [24], 331 models [25,26], effective theories
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[27–29], etc. In contrast with the on-shell WWγ vertex,
additional difficulties in the calculation of the on-shell
WWZ vertex arise due to the nonzero mass of the Z gauge
boson. In this respect, the study of radiative corrections to
theWWZ vertex has been the focus of attention when the Z
boson is off shell as can be found in Refs. [23,25,30,31].
These types of calculations are in general gauge dependent
and require special techniques, such as the pinch technique,
to extract the relevant physical information.
The on-shellWWV vertex can be written in terms of four

form factors that define the CP-even and CP-odd static
properties of the W boson. The two CP-odd form factors
Δ~κ0V and Δ ~QV are absent up to the one-loop level in the SM
and are thus expected to be negligibly small. As far as the
CP-even form factors Δκ0V and ΔQV are concerned, they
arise at the one-loop level in the SM and any other
renormalizable theory, thereby being highly sensitive to
NP effects.
The most general dimension-4 CP-conserving WWV

(V ¼ γ, Z) vertex is given by [32]

L ¼ −igV
�
gV1VμðW−μνWþ

ν −WþμνW−
ν Þ þ κVVμνWþμW−ν

þ λV
M2

W
VμνWþα

ν W−
αμ

�
; ð1Þ

where gV stands for the WWV tree-level coupling constant
(in the SM, gγ ¼ gsW and gZ ¼ gcW). Here gV1 , κV , and λV
represent form factors that can receive radiative corrections.
In the SM, SUð2ÞL × Uð1ÞY gauge symmetry implies gV1 ¼
κV ¼ 1 and λV ¼ 0 at the tree level.
The vertex function that determines the WWV coupling

can be written as

Γμαβ
V ¼ igV

�
A½2pμgαβ þ 4ðQβgμα −QαgμβÞ�

þ 2Δκ0VðQβgμα −QαgμβÞ

þ 4ΔQV

m2
W

�
pμQαQβ −

1

2
m2

Vp
μgαβ

��
; ð2Þ

where we have used the convention employed in [19] for
the external momenta, as shown in Fig. 1. The form factors
defined in Eq. (2) are related to those appearing in Eq. (1)
according to

Δκ0V ≡ κV − 1þ λV; ð3Þ

ΔQV ¼ −2λV: ð4Þ

It is worth mentioning that the definition ΔκV ¼ κV − 1 is
customarily used in experimental works, where the con-
straints are given traditionally as bounds on ΔκV and λV ,

whereas in theoretical works it has been usual to present the
analytical results in terms of Δκ0V and ΔQV .
For the photon, κγ and λγ are related to the magnetic

dipole moment μW and the electric quadrupole momentQW
of the W gauge boson as follows:

μW ¼ e
2mW

ð1þ κγ þ λγÞ; ð5Þ

QW ¼ −
e
m2

W
ðκγ − λγÞ: ð6Þ

In this work, we will calculate the contributions of the
complete scalar sector of the GMM to the Δκ0V and ΔQV
form factors, which could be at the reach of the future linear
collider experiments [33,34]. The structure of our work is
organized as follows. An overview of the GMM is
presented in Sec. II. In Sec. III we present the analytical
expressions for the Δκ0V and ΔQ form factors, whereas the
numerical results are analyzed in Sec. IV and the con-
clusions and outlook are presented in Sec. V.

II. THE GEORGI-MACHACEK MODEL

The scalar sector of the GMM is composed by an isospin
complex triplet χ with hypercharge Y ¼ 2, a real triplet ξ
with Y ¼ 0, and the usual SM isospin doublet ϕ with
Y ¼ 1. The global SUð2ÞL × SUð2ÞR custodial symmetry
is manifest by writing the fields as

Φ ¼
�

ϕ0� ϕþ

−ϕþ� ϕ0

�
; X ¼

0
B@

χ0� ξþ χþþ

−χþ� ξ0 χþ

χþþ� −ξþ� χ0

1
CA;

ð7Þ

where Φ and X transform under the custodial symmetry as
Φ → ULΦU

†
R and X → ULXU

†
R with UL;R ¼ eiθ

a
L;RT

a
. Here

Ta ¼ ta stands for the SUð2Þ generators in the triplet
representation,

FIG. 1. Nomenclature for the WWV vertex function. The circle
denotes radiative contributions.
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t1 ¼ 1ffiffiffi
2

p

0
B@

0 1 0

1 0 1

0 1 0

1
CA;

t2 ¼ 1ffiffiffi
2

p

0
B@

0 −i 0

i 0 −i
0 i 0

1
CA;

t3 ¼ 1ffiffiffi
2

p

0
B@

1 0 0

0 0 0

0 0 −1

1
CA; ð8Þ

whereas for the doublet representation Ta ¼ σa=2, with σa

the Pauli matrices.
The neutral members of the fields in Eq. (7) develop a

nonzero vacuum expectation value (VEV) defined by
hΦi ¼ vϕffiffi

2
p I2×2 and hXi ¼ vχI3×3, with In×n the n × n

identity matrix. The masses of the W and Z gauge bosons
constrain the VEVs as follows:

v2ϕ þ 8v2χ ≡ v2 ¼ 1ffiffiffi
2

p
GF

≈ ð246 GeVÞ2: ð9Þ

The kinetic Lagrangian of the scalar sector, out of which the
gauge boson masses arise, takes the form

L ¼ 1

2
Tr½ðDμΦÞ†ðDμΦÞ� þ 1

2
Tr½ðDμXÞ†ðDμXÞ�; ð10Þ

with the covariant derivative given by

DμΦ ¼ ∂μΦþ i
g
2
τaWa

μΦ − i
g0

2
τ3BμΦ; ð11Þ

and a similar expression for DμX. As for the most general
scalar potential that obeys the custodial symmetry, it can be
written as

VðΦ; XÞ ¼ μ22
2
TrðΦ†ΦÞ þ μ23

2
TrðX†XÞ þ λ1½TrðΦ†ΦÞ�2

þ λ2TrðΦ†ΦÞTrðX†XÞ þ λ3TrðX†XX†XÞ
þ λ4½TrðX†XÞ�2 − λ5TrðΦ†τaΦτbÞTrðX†taXtbÞ
−M1TrðΦ†τaΦτbÞðUXU†Þab
−M2TrðX†taXtbÞðUXU†Þab; ð12Þ

where the matrix U, which rotates X into the Cartesian
basis, is given by

U ¼

0
BB@

− 1ffiffi
2

p 0 1ffiffi
2

p

− iffiffi
2

p 0 − iffiffi
2

p

0 1 0

1
CCA: ð13Þ

In order to obtain the physical scalar spectrum after the
spontaneous symmetry breaking, it is appropriate to
decompose the neutral fields into the real and imaginary
parts in the following way

ϕ0 →
vϕffiffiffi
2

p þ ϕ0;r þ iϕ0;iffiffiffi
2

p ;

χ0 → vχ þ
χ0;r þ iχ0;iffiffiffi

2
p ;

ξ0 → vχ þ ξ0: ð14Þ

The physical fields are organized by their transformation
properties under the SUð2Þ custodial symmetry into a
fiveplet, a triplet, and two singlets. The fiveplet and triplet
states are given by

Hþþ
5 ¼ χþþ; Hþ

5 ¼ 1ffiffiffi
2

p ðχþ − ξþÞ;

H0
5 ¼ −

ffiffiffi
2

3

r
ξ0 þ

ffiffiffi
1

3

r
χ0;r; ð15Þ

Hþ
3 ¼ −sHϕþ þ cHffiffiffi

2
p ðχþ þ ξþÞ;

H0
3 ¼ −sHϕ0;i þ cHχ0;i; ð16Þ

where the mix between vϕ and vχ is parametrized in terms
of a mixing angle θH according to

cH ≡ cos θH ¼ vϕ
v
; sH ≡ sin θH ¼ 2

ffiffiffi
2

p
vχ

v
: ð17Þ

The two singlet mass eigenstates are given by

h ¼ cos αϕ0;r − sin αH00
1 ; H ¼ sin αϕ0;r þ cos αH00

1 ;

ð18Þ

where H00
1 ¼

ffiffi
1
3

q
ξ0 þ

ffiffi
2
3

q
χ0;r, whereas h is associated with

the SM Higgs boson. The mixing angle α is given by

sin 2α ¼ 2M2
12

m2
H −m2

h

; ð19Þ

with
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M2
12 ¼

ffiffiffi
3

p

2
vϕ½−M1 þ 4ð2λ2 − λ5Þvχ �: ð20Þ

A peculiarity of this model is that the H5 states are
fermiophobic, which stems from the fact that there is no
doublet field in the custodial fiveplet. As far as the masses
of the fiveplet and triplet are concerned, they are degenerate
at the tree level and are expressed in terms of the respective
VEVs and the parameters involved in the scalar potential as
follows:

m2
5 ¼

M1

4vχ
v2ϕ þ 12M2vχ þ

3

2
λ5v2ϕ þ 8λ3v2χ ; ð21Þ

m2
3 ¼

M1

4vχ
ðv2ϕ þ 8v2χÞ þ

λ5
2
ðv2ϕ þ 8v2χÞ ¼

�
M1

4vχ
þ λ5

2

�
v2:

ð22Þ

On the other hand, the singlet masses are given by

m2
h;H ¼ 1

2
½M2

11 þM2
22 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

11 −M2
22Þ2 þ 4ðM2

12Þ2
q

�;
ð23Þ

with

M2
11 ¼ 8λ1v2ϕ; ð24Þ

and

M2
22 ¼

M1v2ϕ
4vχ

− 6M2vχ þ 8ðλ3 þ 3λ4Þv2χ : ð25Þ

From the kinetic Lagrangian (10) one can also obtain the
interactions between the SM gauge bosons and all the new
scalar bosons predicted by the GMM. The full set of
Feynman rules can be found in Refs. [4,15]. As far as our
calculation is concerned, apart from the usual SM vertex of
the type W−WþV (V ¼ γ, Z), in the GMM the following

new types of vertices can arise, ϕ∓
Aϕ

�
AV, ϕ∓∓

A ϕ��
A V,

ϕ∓
Aϕ

��
B W∓, ϕ∓

Aϕ
0
BW

�, ϕ∓
A
~ϕ0
BW�, and W∓W∓ϕ��

A , where
ϕ0
I ¼ h, H, H0

5, ~ϕ0
I ¼ H0

3, ϕ∓
I ¼ H∓

3 , H∓
5 , and ϕ∓∓

I ¼
H∓∓

5 (I ¼ A, B). In addition, the Z gauge boson has extra
couplings of the form ϕ∓

AW
�Z, ϕ∓

Aϕ
�
BZ, ϕ0

AZZ, and
ϕ0
A
~ϕ0
BZ. It turns out that all these vertices are just of three

distinct types, namely, XAXAV (three gauge bosons),
ϕAϕBXC (two scalar bosons and one gauge boson), and
ϕAXBXC (one scalar boson and two gauge bosons), where
ϕI (I ¼ A, B) stands for a neutral, singly charged or doubly
charged scalar boson, whereas XJ (J ¼ A, B, C) stands for
a neutral or charged gauge boson. Evidently, the allowed
vertices are dictated by electric charge conservation, Bose
symmetry, CP invariance (as long as it is assumed to be
conserved), etc. However, the Lorentz structure is similar
for each type of vertex and so are the respective Feynman
rules, which arise from the following Lagrangians:

LXAXAV ¼ igXAXAVðX†
AμνV

μν − Xμν
A XA

†
μVν þ VμνXA

†
μXAνÞ;

ð26Þ

LϕAϕBXC
¼ igϕAϕBVX

μ
Cϕ

†
A∂μ

↔
ϕB; ð27Þ

and

LXAXBϕC
¼ gXAXBϕC

Xμ
AXBμϕC; ð28Þ

with Xμν
A ¼ ∂μXν

A − ∂νXμ
A. We have assumed that CP is

conserved.
For the photon, the only allowed vertices are WWγ,

ϕ∓ϕ�γ, and ϕ∓∓ϕ��γ, whereas the Z gauge boson can
also have nondiagonal couplings to both charged and
neutral scalar bosons. From Eqs. (26)–(28), generic
Feynman rules follow straightforwardly and are shown
in Fig. 2. Therefore, we can perform a model-independent
calculation and express our results in terms of the coupling
constants and the masses of the virtual particles. In

FIG. 2. Generic Feynman rules for the relevant vertices involved in our calculation. The arrows stand for the direction of the
4-momenta and Γμαβ ¼ gμαðp1 − p3Þβ þ gαβðp2 − p1Þμ þ gβμðp3 − p2Þα. V ¼ γ, Z, ϕI (I ¼ A, B, C) denote a neutral singly or doubly
charged scalar boson, and XJ (J ¼ A, B) stands for a neutral or charged gauge boson. The electric charge and CP properties of the
particles attached to each vertex are dictated by electric charge conservation, Bose symmetry, CP invariance, etc.
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particular, the coupling constants for the vertices allowed in
the GMM are presented in Appendix A.

III. Δκ0V AND ΔQV FORM FACTORS IN THE GMM

We now turn to present the contributions of the scalar
sector of the GMM to the Δκ0V and ΔQV form factors at the
one-loop level. In this model, the new one-loop contribu-
tions arise from generic triangle diagrams (the bubble
diagrams do not contribute) that can be classified according
to the number of distinct particles circulating into the loop.
In Fig. 3 we show a set of Feynman diagrams that
contribute to both the WWγ and WWZ vertices. These
diagrams include just two distinct particles circulating
inside the loop as they involve diagonal couplings of the
form ϕAϕAV and XAXAV.
Contrary to the couplings of the photon to a pair of

charged scalar bosons, which can only be of diagonal type
due to electromagnetic gauge invariance, the Z gauge
boson can have nondiagonal couplings to a pair of neutral
or charged scalar bosons. Therefore, in addition to the
diagrams of Fig. 3, the Δκ0Z and ΔQZ form factors can
receive extra contributions from the Feynman diagrams
shown in Fig. 4, which have three distinct particles
circulating into the loop. Below we will present the
contributions to Δκ0V and ΔQV for all these types of
diagrams.
Before presenting our results, some remarks about our

calculation are in order:
(i) The Feynman diagrams were evaluated via the

unitary gauge. In order to make a cross-check of
our results we used both the Feynman parametriza-
tion technique and the Passarino-Veltman method to
solve the loop integrals.

(ii) We verified that all the contributions of bubble
diagrams to the Δκ0V and ΔQV form factors involv-
ing quartic vertices with two scalar bosons and two
gauge bosons vanish, and thus the only contributions
arise from triangle diagrams.

(iii) The mass shell and transversality conditions for the
gauge bosons enabled us to make the following
replacements,

Q2 ¼ m2
V

4
; p ·Q ¼ 0; p2 ¼ m2

W −
m2

V

4
;

ð29Þ

and

pα → Qα; pβ → −Qβ; pμ → 0; ð30Þ

which results in a considerable simplification of the
calculation.

(iv) Instead of dealing with the calculation of the WWγ
and WWZ vertices separately, we performed the
calculation of the general WWV vertex, with V a
massive neutral gauge boson. We have exploited the
fact that there are only three generic trilinear vertices
involved in the one-loop contributions to the WWV
vertex and thus a model-independent calculation
was done using the generic Feynman rules of Fig. 2.
The result for the contribution of each type of
Feynman diagram will be presented in terms of
loop functions, given as parametric integrals and
also in terms of Passarino-Veltman scalar integrals,
times a factor involving all the generic coupling
constants associated with each vertex participating
in the particular diagram. The contributions to the
form factors of the WWγ and WWZ vertices follow
easily from our general expressions after taking the
appropriate mass limits and substituting the corre-
sponding coupling constants of the GMM or any
other extension model.

(v) We corroborated that the WWV amplitude arising
from each type of diagram can be cast in the form of
Eq. (2) and also that all the contributions to the Δκ0V
and ΔQV form factors are free of ultraviolet
divergences.

Vμ

W+
α W−

β

φA φA

φB

(a)

Vμ

(c)

W+
α W−

β

φA φA

XB

(b)

W+
α W−

β

Vμ

φB

XA XA

FIG. 3. Generic Feynman diagrams for the new scalar contributions to both the WWγ and WWZ vertices involving only two distinct
virtual particles. The arrows stand for the directions of the 4-momenta. The possible combinations of internal particles are given by the
vertices allowed in each particular model. For instance, when V ¼ γ, the following electric charges of the internal particles are possible
in the GMM, in units of the positron charge: if QA ¼ −1 then QB ¼ 0, if QA ¼ 1 then QB ¼ 2, and if QA ¼ −2 then QB ¼ −1.
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We now proceed to present the results. Once the
amplitude for each Feynman diagram is written down with
the help of the Feynman rules of Fig. 2, the Feynman
parametrization technique and the Passarino-Veltman
method can be applied straightforwardly, followed by some
lengthy algebra. Thereafter one can express the contribu-
tions to the Δκ0V and ΔQV form factors for each type of
Feynman diagram of Fig. 3 as follows:

Δκ0iV ¼ −
Ci
V

16π2
IV−iκ ðxA; xB; xVÞ; ð31Þ

ΔQi
V ¼ −

Ci
V

16π2
IV−iQ ðxA; xB; xVÞ; ð32Þ

for V ¼ Z, γ and i ¼ a, b, c. We have introduced the scaled
variable xI ¼ m2

I =m
2
W (I ¼ A, B), with mA and mB denot-

ing the masses of the particles circulating into each type of
diagram. Aword of caution is in order here as mA and mB,
and thereby xA and xB, are distinct for each type of
contribution. As for the loop functions IV−iκ and IV−iQ , they
are presented in Appendix B in terms of parametric
integrals and Passarino-Veltman scalar integrals, together
with the explicit form of the Ci

V factors, which are given in
terms of the coupling constants of the vertices involved in

each Feynman diagram. These coefficients are presented in
Appendix C for each possible contribution arising in
the GMM.
As explained above, the Δκ0iγ and ΔQi

γ form factors can
be obtained from the general expressions (31)–(32), and the
loop functions presented in Appendix B, by taking the
mV → 0 limit. The resulting loop functions Iγ−iκ;Q are also
shown in this Appendix. We have verified that these
expressions are in agreement with the results presented
in Ref. [24], where the WWγ vertex was studied in the
context of little Higgs models.
As far as the Feynman diagrams of Fig. 4 are concerned,

they only contribute to the WWZ vertex and the respective
form factors depend now on three distinct internal masses.
They can be written as follows:

Δκ0iZ ¼ −
Ci
Z

16π2
IZ−iκ ðxA; xB; xC; xZÞ; ð33Þ

ΔQi
Z ¼ −

Ci
Z

16π2
IZ−iQ ðxA; xB; xC; xZÞ: ð34Þ

This time the superscript i stands for the total contributions
of diagrams i1 and i2, with i ¼ d, e, f. Expressions for the
loop functions in terms of both parametric integrals and
Passarino-Veltman scalar integrals can be found in
Appendix B.
Once the general expressions for the different kinds of

contributions are obtained, we can compute the total
contribution of the scalar sector of a given model by
simply adding up all the partial contributions. We will
present below a numerical analysis of the contributions of
the GMM. For the numerical evaluation we computed the
parametric integrals via the Mathematica numerical rou-
tines. A cross-check was done via the numerical evalua-
tion of the results given in terms of Passarino-Veltman
scalar functions [35] with the help of the LoopTools
routines [36,37].

IV. NUMERICAL DISCUSSION

In order to make a numerical evaluation of the contri-
bution of the GMM to the Δκ0V and ΔQV form factors, it is
necessary to take into account the current constraints on the
parameter space of this model. In particular, our results
depend on five free parameters, namely, the singlet mixing
angle α, the mixing angle between the doublet and the
triplet θH, and the masses of the new singlet mH, the triplet
mH3

, and the fiveplet mH5
. A recent study on the indirect

constraints on the GMM from B physics and electroweak
precision observables can be found in [38], where the limit
on the triplet VEV vχ ≤ 65 GeV, arising from the meas-
urement of the b → sγ process, was used to impose the
strongest bound sin θH ≤ 0.75. On the other hand, the
current LHC measurements of the couplings and signal

FIG. 4. Extra contributions to the Δκ0Z and ΔQZ form factors
from nondiagonal couplings. As explained in the text, the
possible sets of internal particles are determined by the vertices
allowed in a particular model.
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strength of the SM-like Higgs boson production [39,40]
constrain in a direct way the θH − α plane [17]. As for the
masses of the new scalar bosons, experimental constraints
on the fiveplet mass have been derived by the ATLAS
Collaboration using the like-sign WWjj production cross-
section measurement [41]. Furthermore, theoretical con-
straints from unitarity and vacuum electroweak stability
limit the mass of all the scalar bosons of the GMM to be less
than 1 TeV [14,15,42,43]. This constraint was obtained
assuming a Z2 symmetry obeyed by the scalar potential in
order to reduce the number of free parameters. However, a
study presented in Ref. [14] showed that when the most
general potential (14) is considered, there is a decoupling
limit in which the masses of the new scalar bosons can be
heavy. Therefore, it is interesting considering the scenario
when the masses of the new scalar bosons can be heavier
than 1 TeV.

A. Δκ0γ and ΔQγ form factors

We list in Tables III–VofAppendixC all the contributions
of the GMM to both Δκ0γ and ΔQγ, including the list of
particles circulating into each loop and the explicit form of
the corresponding Ci

γ coefficient. Excluding the pure SM
contributions, the Δκ0γ and ΔQγ form factors receive ten
contributions of the type-(a) diagrams, three of the type-(b)
diagrams, and two of the type-(c) diagrams. Notice that all
the new scalar bosons participate in the type-(a) diagrams,
whereas the type-(b) diagrams only receive contributions
from the singlet and the fiveplet scalar bosons, and the type-
(c) diagrams from the fiveplet scalar bosons only. We first
examine the general behavior of Δκ0γ and ΔQγ as functions
of the masses of the scalar bosons. For the type-(b) and type-
(c) contributions we show in Fig. 5 the form factors as a
function of the mass of the scalar boson circulating into the

loop, whereas for the type-(a) diagram we consider two
scenarios: when both scalar bosons are degenerate andwhen
one scalar boson mass is fixed and the other one is variable.
We first discuss the behavior of Δκ0γ (left plot of Fig. 5).

As far as the type-(a) contribution is concerned, it depends
on the masses of two scalar bosons S1 and S2 and is highly
dependent on the splitting between their masses
Δm21 ¼ m2

S2
−m2

S1
. When such a splitting is vanishing

or very small, mS2 ≃mS1 , this contribution decreases
quickly as mS1 increases (dashed line), but it tends to a
nonvanishing constant value when the splitting becomes
large (solid line), which is in accordance with the decou-
pling theorem as discussed in Ref. [44]. It is worth
mentioning that the sharp dip observed in the solid line
is due to a change of sign of the form factor, which can
become important as there could be large cancellations
between contributions due to this change of sign. On the
other hand, the type-(b) and type-(c) contributions only
depend on one scalar boson mass and they are larger for a
light scalar boson but decrease quickly when the scalar
boson mass increases. It is important to notice that the Cb;c

γ

constants are proportional to the VEV v; thus the size of this
type of contribution will increase by around two orders of
magnitude with respect to the values shown in the plots.
Even when the scalar boson masses are relatively light, the
type-(a) contribution is the dominant one, except for
degenerate masses, when all the contributions are of similar
size. In summary, the dominant contribution to Δκ0γ is
expected to arise from type-(a) diagrams, except for a
possible suppression due to the Ci

γ factor and possible
cancellations between distinct contributions. The largest
Δκ0γ value is reached when the scalar boson massesmS1 and
mS2 are relatively light or when there is a large mass
splitting Δm12.

FIG. 5. Behavior of the contributions of the diagrams of Fig. 3 to theΔκ0γ and ΔQγ form factors as functions of the masses of the scalar
bosons circulating into the loops of each type of contribution divided by the Ci

γ coefficient and in units of a ¼ g2=ð96π2Þ. While the
type-(a) contribution depends on two scalar boson masses mS1 and mS2 , the type-(b) and type-(c) diagrams depend on only one scalar
boson mass mS1 .
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We now turn to analyze the ΔQγ form factor, whose
dependence on the scalar boson masses is shown in the right
plot of Fig. 5. We observe that this form factor exhibits a
different behavior to that of Δκ0γ. Although type-(a) con-
tributions are also larger than type-(b) and type-(c) contri-
butions, in this case there is no dependence on the mass
splitting Δm21 and all the contributions decrease when at
least one of the scalar bosonmasses becomes large.However,
the decrease ofΔQγ asmS1 increases is less pronounced that
in the case of Δκ0γ . Therefore, barring an extra suppression
due to the size of the Ci

γ coefficients and possible cancella-
tions, the largest contributions toΔQγ will arise from type-(a)
diagrams provided that all the scalar boson masses are light.
The contribution to this form factor is dominated by the
heaviest scalar boson circulating in the type-(a) diagrams and
will be very suppressed even if the other scalar boson is
relatively light. In type-(b) and type-(c) diagrams there is also
a strong suppression for a heavy scalar boson.
When adding up all the partial contributions to Δκ0γ and

ΔQγ , there could be extra suppression due to the size and
sign of the Ci

γ coefficients and the loop functions. For
instance, sH is constrained to be less than 10−1 and thus any
contribution proportional to this parameter will have a
suppression factor of the order of 10−2 and will be
negligible unless the remaining contributions are also
suppressed. All the contributions of this kind arise from
diagrams involving a weak gauge boson and a fiveplet
scalar boson. Therefore, all the type-(c) contributions and
the type-(b) contributions numbers 2 and 3 (for the number
of each contribution, see Tables III through VIII) will be
two orders of magnitude smaller than the remaining
contributions, although there is a region of the parameter
space in which all the contributions are equally suppressed.
Even more, the type-(b) contribution number 1 arises from
the loop with the W gauge boson and the H scalar boson,
being proportional to the square of the coefficient
fH ¼ 1

6
ð3cHsα − 2

ffiffiffi
6

p
sHcαÞ, which is very small for small

sα and sH. Therefore, in most of the allowed region of the
parameter space, the largest contributions will arise from
the type-(a) diagrams with two nondegenerate scalar
bosons, though the diagram including the SM Higgs boson
and a triplet scalar boson is considerably suppressed as the
coefficient g2h is very suppressed too. In addition, due to the
relative change of sign between distinct contributions there
could be large cancellations once all the type-(a) contri-
butions are added up and so there could be regions of the
parameter space where all three types of contributions are
of similar size. However, this region is not the one in which
the largest contributions to the form factors can arise.
All the properties discussed above will reflect on the

general behavior of the total contribution from the GMM to
the Δκ0γ and ΔQγ form factors, which we have evaluated as
functions of the scalar boson masses. For the mixing angles
we used two combinations of values lying inside the allowed

area of the parameter space determined by the authors of
Ref. [16] in their study of fiveplet state production at the
LHC. We thus considered the sets of values ðsH; sαÞ ¼
ð0.1; 0.2Þ and ðsH; sαÞ ¼ ð0.1;−0.3Þ, which allows us to
illustrate the behavior ofΔκ0γ . As for the masses of the scalar
bosonswe fix thevalue of themass of the singlet scalarmH to
either 400 GeVor 1000 GeV, and plot in Fig. 6 the contour
lines of Δκ0γ in the mH3

vs mH5
plane. In all these plots the

main contributions to Δκ0γ arise from type-(a) diagrams,
though in some regions the type-(b) contributions can be of
similar size. We observe that for small mH (left plots) the
largest contributions are reached for largemH3

and smallmH5

and vice versa (lightest area). The region in which mH3
and

mH5
are almost degenerate appears in the plots as a dark strip

and is the region in which Δκ0γ reaches its lowest values. On
the other hand, whenmH is large (right plots) we observe that
Δκ0γ reaches its largest values for largemH3

and lightmH5
, but

in this case there is no such increase when mH5
is large and

mH3
remains small, as there are cancellations between the

distinct contributions. The dark strip where this form factor
reaches its lowest values now has shifted upwards but in
general encompasses the area where the three scalar boson
masses are large and thereby almost degenerate, namely, the
top right corners of these plots.We also observe that a change
in sα has a slight impact on the behavior of Δκ0γ . However,
irrespective of the value of sα, in general the largest values of
Δκ0γ correspond to the scenarios where there is a large
splitting between the scalar boson masses and the smallest
values correspond to the casewhen the threemasses are large
or degenerate. The largest values of Δκ0γ, in the explored
region of the parameter space, are of the order ofa. In general
the largest contributions arise from type-(a) contributions
numbers 2, 4, 5, 7, and9, butwhen all themasses of the scalar
bosons are degenerate these contributions are suppressed and
are of a similar size as the type-(b) contribution number 1,
which in general is more suppressed than type-(a)
contributions.
We now turn to the analysis of the behavior of the ΔQγ

form factor. We consider the same scenarios as in the study
ofΔκ0γ and show in Fig. 7 the contour plot forΔQγ in themH5

vsmH3
plane. As discussed above, contributions of type-(a)

have now no dependence on the splitting of the scalar boson
masses and they decrease rapidly as at least one of the scalar
boson masses becomes large. Therefore, type-(a) contribu-
tions will reach their largest values in the region (the lightest
area) where the masses of both scalars running into the loop
are relatively light. As for the type-(b) contributions, they
have a similar behavior to type-(a) contributions as they
decrease as the scalar boson mass increases, though in
general they are smaller than type-(a) contributions and so
are type-(c) contributions. The behavior of the total con-
tribution to ΔQγ will thus be dominated by the type-(a)
contributions and will be larger for light degenerate scalar
boson masses. This is illustrated in the four plots of Fig. 7 in
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which the largest contributions are reached for small
degenerate masses and they decrease when either mH3

or
mH5

becomes large, though this decrease remains smooth up
to masses of about 800 GeV. In this case the dominant
contributions arise from the type-(a) contributions numbers
6, 8, and 10. When all the masses of the scalar bosons are
light, the type-(a) contribution number 2 is of a similar size
as contributions 6, 8, and 10, whereas all other contributions
are suppressed due to the small value of the corresponding
coefficientCa

γ . In general, the largest values reached byΔQγ

are of the order of 1%ofa and there is a slight dependence on
the value of sα.

It is interesting to note that the contributions of the GMM
to Δκ0γ are about two orders of magnitude larger than those
to ΔQγ . Such a behavior of the WWγ form factors, which
was also observed for instance in the context of a model
with technihadrons [45] and the minimal 331 model [44],
can be explained in the light of the decoupling theorem. It
turns out that Δκ0γ and ΔQγ appear in the WWγ vertex
function (2) as coefficients of Lorentz structures of canoni-
cal dimension 4 and 6, respectively. This means that Δκ0γ
can be sensitive to nondecoupling effects of heavy par-
ticles, whereas ΔQγ is always insensitive to such effects
and a natural suppression of this form factor by inverse

FIG. 6. Contour plot for the Δκ0γ form factor in the GMM in the mH3
vs mH5

plane for a fixed value of mH and the indicated values of
the mixing angles sH and sα.
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powers of the mass of the heaviest particle inside the loop
is expected. In the present analysis we have considered
the contributions of heavy scalar bosons, which explains
the observed behavior of theWWγ form factors. For a more
general discussion of this issue we refer the interested
reader to Refs. [44–46]. We will see below that, as
expected, this feature is also present in the behavior of
the Δκ0Z and ΔQZ form factors.

B. Δκ0Z and ΔQZ form factors

We will now analyze the Δκ0Z and ΔQZ form factors, for
which we will follow a similar approach to that used above.

We thus start by studying the general behavior of the distinct
types of contributions. Apart from the diagrams of Fig. 3,
there are additional contributions due to the diagrams of
Fig. 4. As for the contributions of types (a), (b), and (c), their
behavior is quite similar to that observed in Fig. 5, sowewill
focus on the analysis of the extra contributions, whose
behavior will turn out to be rather similar to that of
contributions of type (a), (b), and (c), respectively. As
shown in Appendix C, in the GMM there are seven
contributions of type (d), four of type (e), and three of type
(f). Although our general results allow us to calculate type-
(d) contributions with three distinct scalar boson masses
mS1 , mS2 , and mS3 , in the GMM all the masses of the same

FIG. 7. The same as in Fig. 6, but for the ΔQγ form factor.
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multiplet are degenerate. It means that type-(d) contributions
arise only from diagrams with at least two degenerate scalar
bosons. Also, although type-(e) contributions arise from
diagrams that can have two distinct scalar bosons, their
masses are degenerate and there is dependence on one mass
only, and this is also true for type-(f) contributions.
Therefore, we expect that type-(d) contributions will be
the dominant contribution to Δκ0Z as long as there is a large
splitting between the scalar boson masses, whereas type-(e)
and type-(f) contributions will only be important for a
relatively light scalar boson mass. This is depicted in
Fig. 8, where we show the behavior of the Δκ0Z and ΔQZ
form factors for all the scenarios allowed in the GMM.
For type-(d) contributions we consider three scenarios: mS3
fixed and mS2 ¼ mS1 variables, mS3 ¼ mS2 fixed and mS1
variable, and the three scalar boson masses degenerate
mS3 ¼ mS2 ¼ mS1 . On the other hand, for type-(e) contri-
butionswe only consider the casewhen the two scalar bosons
are degenerate. In Fig. 8weobserve thatΔκ0Z andΔQZ have a
similar behavior to that of the Δκ0γ and ΔQγ form factors. In
particular, the largest contributions toΔκ0Z are reached when
there is a large splitting between the scalarmasses orwhen all
the scalar boson masses circulating into each loop are
relatively light. However, the decrease of Δκ0Z for large
mS1 is now less quick than in the case ofΔκ0γ . Again, the Ci

Z
factor is proportional to v for type-(e) and type-(f) contri-
butions, so the values shown in the plots will increase by two
orders of magnitude for these contributions. As for ΔQZ, it
will reach its largest value for the smallest allowed scalar
boson masses as in the case ofΔQγ. When the scalar bosons
are very heavy, they will be approximately degenerate, in
which case ΔQZ will decrease significantly. Extra suppres-
sion for both form factors can arise from the Ci

Z coefficients
and from potential cancellations between the distinct con-
tributions as in the case of the electromagnetic form factors.

In Fig. 9 we present the contour plots for Δκ0Z for the
same sets of parameter values used above. In spite of the
extra contributions, the behavior of this form factor is rather
similar to that ofΔκ0γ. We first note that all the contributions
of types (c), (e), and (f) have an extra suppression due to the
s2H factor appearing in the respective Ci

Z coefficient and
thus the main contributions will arise from type-(a) and
type-(d) contributions, and to a lesser extent from type-(b)
contribution number 1. All other contributions are only
important in regions of the parameter space where the
dominant contributions are suppressed by the respective
loop function. As far as the scenario with sα ¼ 0.1 is
concerned, we observe in the top left plot, in which we use
mH ¼ 400 GeV, that the largest contributions arise when
either mH3

or mH5
is large, whereas in the top right plot we

observe that there is enhancement only when mH3
is large

and mH5
remains small, but not in the opposite case. It

means that there are cancellations between contributions
when mH5

and mH are large and thus the total contribution
does not increase in spite of the large splitting betweenmH5

and mH3
. When the three masses mH, mH3

, and mH5
are

degenerate the total contribution is suppressed by about one
order of magnitude. Even if all the scalar boson masses are
relatively light, Δκ0Z is smaller than in the case where either
mH3

or mH5
is large. In the bottom plots we use sα ¼ −0.3

and observe that the behavior of Δκ0Z has a slight change
due to the change in the values of the Ci

Z coefficients;
however its largest values are also of the order of a. The
darkest strip where Δκ0Z reaches its smallest values, which
corresponds to nearly degenerate mH3

and mH5
, has now

shifted downwards. In summary, the largest values of Δκ0Z,
in this region of the parameter space, are of the order of a,
and are reached when there is a large splitting between the
masses’ scalar bosons. In general the largest contributions
to Δκ0Z arise from type-(a) and type-(d) diagrams, with the

FIG. 8. Behavior of the contribution of diagrams of Fig. 4 to the Δκ0Z and ΔQZ form factors as a function of the masses of the scalar
bosons circulating into the loops of each type of contribution divided by the Ci

Z coefficient and in units of a. Type-(d) contribution
depends on three scalar boson masses mS1 , mS2 , and mS3 ; type-(e) depends on two scalar masses mS1 and mS2 ; and type-(f) diagrams
depend on only one scalar boson mass mS1 . We only consider the possible scenarios arising in the GMM.
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type (b), (e), and (f) diagrams yielding a subdominant
contribution, which is only relevant when all the masses of
the scalar bosons are degenerate.
We now turn to the analysis of the behavior of the ΔQZ

form factor, which is shown in Fig. 10 in the mH5
vs mH3

plane. As discussed above, in this case there is no enhance-
ment due to a large splitting of the scalar boson masses but
a decrease when at least one of the masses of the scalar
bosons becomes large. Therefore, contributions of types (a)
and (d) reach their largest values provided that all the scalar
boson masses are relatively light. As for the remaining

contributions, they have a similar behavior as they decrease
as the scalar boson mass increases, though in general they
are smaller than type-(a) and type-(d) contributions. We
observe that the largest contributions to ΔQZ arise from
diagrams including only fiveplet scalar bosons provided
that mH5

is relatively light irrespective of the value of mH

and mH3
. The behavior of the total contribution to ΔQZ is

thus dominated by type-(a) contributions numbers 6, 8, and
10, reaching its largest values for light mH5

. Note that type-
(a) contributions are the only ones that can involve fiveplet
scalar bosons only. When all the masses of the scalar

FIG. 9. Contour plot for the Δκ0Z form factor in the GMM in the mH3
vs mH5

plane for a fixed value of mH and the indicated values of
the mixing angles sH and sα.
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bosons are light, the type-(a) contributions numbers 2 and 3
are of a similar size as contributions 6, 8, and 10, whereas
all other contributions are suppressed due to the small value
of the corresponding coefficient Ca

Z. If mH and mH3
remain

small while mH5
increases, there is a cancellation between

type-(a) contributions involving singlet and triplet scalar
bosons, such that the total sum decreases considerably
whenmH5

increases. In general the largest contributions are
of the order of 1% of a in the region of the parameter space
considered.
As in the case of the WWγ form factors, we also note

that the Δκ0Z form factor is about two orders of magnitude

larger than ΔQZ. As it was pointed out above, this
behavior can be explained in the context of the decoupling
theorem.

V. CONCLUSIONS

The presence of new scalar particles is a consequence
of well-motivated extensions of the SM. Even if such
particles were not directly produced at particle colliders,
their quantum effects could be at the reach of detection
through precision measurement. In this work, we have
obtained the one-loop corrections to the Δκ0V and ΔQV

FIG. 10. The same as in Fig. 9, but for the ΔQZ form factor.
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(V ¼ γ, Z) form factors induced by new scalar particles. A
model-independent calculation was done via both the
Feynman parameter technique and the Passarino-
Veltman reduction scheme. Our general results are
expressed in terms of three (six) generic contributions
to Δκ0γ and ΔQγ (Δκ0Z and ΔQZ) that can be used to
calculate the corrections arising from models with an
extended scalar sector predicting new neutral, singly, and
doubly charged scalar bosons. For the numerical analysis
we have focused on the GMM, which is a Higgs triplet
model that has been the source of some interest recently.
This model predicts 9 new scalar bosons accommodated in
a singlet, a triplet, and a fiveplet, which yield 15 new
contributions to Δκ0γ and ΔQγ, whereas Δκ0Z and ΔQZ

receive 28 contributions. The general behavior of the Δκ0V
and ΔQV form factors was analyzed for values of the
parameters lying inside the region allowed by experimen-
tal and theoretical constraints. It was found that Δκ0V
reaches values of the order of a ¼ g2=ð96π2Þ, with the
largest values arising from the diagrams with two non-
degenerate scalar bosons provided that there is a large
splitting between their masses. On the other hand ΔQV
reaches values of the order of 1% of a, with the largest
contributions arising from diagrams with relatively light
degenerate scalar bosons. Both form factors decrease
rapidly when all the scalar boson masses are heavy.
The values for Δκ0V and ΔQV predicted by the GMM
are competitive with the ones predicted by other weakly
coupled SM extensions, but a very high experimental
precision still would be necessary to disentangle such
effects.
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APPENDIX A: FEYNMAN RULES FOR THE
GMM VERTICES

We now present the Feynman rules for the vertices of the
type XAXAV, ϕAϕBXC, and ϕAXBXC arising in the GMM.
Here X represents a neutral or charged gauge boson, V ¼ γ,
Z, and ϕ is a neutral, singly, or doubly charged scalar
boson. The respective Lorentz structure for each vertex of
this kind was shown in Fig. 2, so we only need to present
the respective coupling constants. Since in the GMM there
are no extra gauge bosons, the only vertices of the type
XAXAV are W∓W�γ and W∓W�Z, whose coupling con-
stants are gWWγ ¼ gγ ¼ e and gWWZ ¼ gZ ¼ gcW . As far as
vertices of the class ϕAϕBXC are concerned, the respective
coupling constants are shown in Table I, whereas the
coupling constants for vertices of the kind ϕAXBXC are
presented in Table II.

TABLE I. Coupling constants for vertices of the class ϕAϕBXC
(two scalar bosons and one gauge boson) in the GMM. Here
sH ¼ sin θH and cH ¼ cos θH , gh ¼ 1

6
ð2 ffiffiffi

6
p

cHsα þ 3sHcαÞ, and
gH ¼ 1

6
ð2 ffiffiffi

6
p

cHcα − 3sHsαÞ. For the Lorentz structure see Fig. 2.
Vertex Coupling constant

H�
3 hW

∓ ggh
H�

3 HW∓ ggH
H�

3 H
0
5W

∓ −
ffiffi
3

p
6
gcH

H�
5 H

0
5W

∓ ffiffi
3

p
2
g

H�
5 H

0
3W

∓ � i
2
gcH

H�
3 H

0
3W

∓ � i
2
g

H��
5 H∓

5 W
∓ − 1ffiffi

2
p g

H��
5 H∓

3 W
∓ − 1ffiffi

2
p gcH

H0
3hZ i g

cW
gh

H0
3HZ −i g

cW
gH

H0
5H

0
3Z −i gffiffi

3
p

cW
cH

H�
5 H

�
3 Z

g
2cW

cH

Hþ
3 H

−
3Z

g
2cW

ð1 − 2s2WÞ
Hþ

5 H
−
5Z

g
2cW

ð1 − 2s2WÞ
Hþþ

5 H−−
5 Z g

cW
ð1 − 2s2WÞ

Hþ
3 H

−
3 γ e

Hþ
5 H

−
5 γ e

Hþþ
5 H−−

5 γ 2e

TABLE II. Coupling constants for vertices of the class ϕAXBXC
(one scalar boson and two gauge bosons) in the GMM. Here
fh ¼ 1

6
ð3cHcα þ 2

ffiffiffi
6

p
sHsαÞ and fH ¼ 1

6
ð3cHsα − 2

ffiffiffi
6

p
sHcαÞ.

For the Lorentz structure see Fig. 2.

Vertex Coupling constant

W�W∓H��
5

g2ffiffi
2

p vsH

W�ZH�
5 ∓ g2

2cW
vsH

WþW−H0
5

g2

2
ffiffi
3

p vsH

ZZH0
5 − g2ffiffi

3
p

c2W
vsH

WþW−h −g2vfh
WþW−H g2vfH
ZZh − g2

c2W
vfh

ZZH g2

c2W
vfH
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APPENDIX B: ONE-LOOP FUNCTIONS

In this appendix we present the results for the loop
integrals involved in the Δκ0V and ΔQV form factors in
terms of parametric integrals and Passarino-Veltman scalar
functions.

1. Parametric integrals

The loop functions arising from the Feynman diagrams
of Fig. 3 can be written in terms of the following parametric
integrals,

IV−iκ;Q ¼
Z

1

0

FV−i
κ;Q ðxÞdx; ðB1Þ

for V ¼ Z, γ and i ¼ a, b, c. These loop functions depend
on xA, xB, and xV , but for the sake of shortness we will drop
the explicit dependence from now on. It is worth reminding
the reader that subscripts A, B correspond to the virtual
particles circulating into each Feynman diagram of Fig. 3.
We will first present the FV−i

κ;Q ðxÞ functions for a massive
neutral gauge boson V, which can be written as

FV−i
κ ðxÞ ¼ fi0ðxÞ þ fi1ðxÞtan−1

�ðx − 1Þ ffiffiffiffiffi
xV

p
ζðxÞ

�

þ fi2ðxÞ log½λðxÞ�; ðB2Þ
and

FV−i
Q ðxÞ ¼ hi0ðxÞ þ hi1ðxÞtan−1

�ðx − 1Þ ffiffiffiffiffi
xV

p
ζðxÞ

�
; ðB3Þ

where we introduced the auxiliary function

ζðxÞ ¼ ½4λðxÞ − ðx − 1Þ2xV �12; ðB4Þ

with λðxÞ ¼ xðx − δ − 1Þ þ xA and δ ¼ xA − xB. Also,
fijðxÞ stand for polynomial functions given by

fa0ðxÞ ¼ 4ðx2 − 1Þ; ðB5Þ

fa1ðxÞ ¼ −
4

ζðxÞ ffiffiffiffiffi
xV

p ðð3x − 1Þðx − 1Þ2xV þ 4λðxÞðxþ 1ÞÞ;

ðB6Þ

fa2ðxÞ ¼ 6x2 − 8xþ 2; ðB7Þ

fb0ðxÞ ¼ −
1

2x2A
ðx − 1ÞðxðxV − 6xAÞ þ xVÞ; ðB8Þ

fb1ðxÞ ¼
1

2ζðxÞx2A
ffiffiffiffiffi
xV

p ð4xxVðxðx − δÞ þ δþÞ

þ 4xAðxðxð7δ − 8xþ 9Þ − 11xA þ xB − 1Þ
þ 4xAÞ þ ðx − 1Þ2ð3x − 1Þx2VÞ; ðB9Þ

fb2ðxÞ ¼
1

4x2A
ðð4 − 3xÞx − 1ÞxV ; ðB10Þ

fc0ðxÞ ¼
1 − x2

xB
; ðB11Þ

fc1ðxÞ ¼
1

ζðxÞxB ffiffiffiffiffi
xV

p ð4ðx2 − 1Þðx − xAÞ

þ 4xðxþ 3ÞxB þ ð3x − 1Þðx − 1Þ2xVÞ; ðB12Þ

fc2ðxÞ ¼
ð4 − 3xÞx − 1

2xB
; ðB13Þ

where we have defined δ� ¼ xA � xB − 1.
As far as the polynomial functions hji are concerned, we

only need hai ,

ha0ðxÞ ¼ −
8ðx − 1Þx

xV
; ðB14Þ

ha1ðxÞ ¼
32λx

ζðxÞx3=2V

; ðB15Þ

since the IV−bQ and IV−cQ loop functions obey

IV−bQ ¼ 2xA − xV
8x2A

IV−aQ ; ðB16Þ

IV−cQ ¼ −
1

xB
IV−aQ : ðB17Þ

As far as the coupling constants Ci
V are concerned, they

are as follows:

Ca
V ¼ gϕAϕBWgϕBϕAWgϕAϕAV

gV
; ðB18Þ

Cb
V ¼ g2XAϕBW

gXAXAV

m2
WgV

; ðB19Þ

Cc
V ¼ g2ϕAXBW

gϕAϕAV

m2
WgV

; ðB20Þ

where gABC stands for the coupling constants associated
with the ABC vertex, which are presented in Appendix A.
Notice that it is necessary to be careful when establishing
the flow of the 4-momenta in the Feynman rule for each
vertex to determine the correct sign of the respective
coupling constant.
The contributions to Δκ0iZ and ΔQi

Z from this set of
diagrams follow easily after setting xV → xZ in the above
parametric integrals and inserting the appropriate coupling
constants in the coefficients Ci

V given in Eqs. (B18)–(18).
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We can also obtain the electromagnetic form factors Δκ0iγ
and ΔQi

γ straightforwardly by considering the xV → 0 limit
and the corresponding coupling constants. In this case, the
parametric integrals simplify to

Iγ−aκ ¼ 2

Z
1

0

ðx − 1Þð3x − 1Þ log ½λðxÞ�dx; ðB21Þ

Iγ−bκ ¼ −
Z

1

0

ðx − 1Þ2ðx2 þ 3xA þ λðxÞÞ
2xAλðxÞ

dx; ðB22Þ

Iγ−cκ ¼1

2

Z
1

0

ðx−1Þ
�ð1−3xÞ log½λðxÞ�

xB
þ 4x
λðxÞ

�
dx; ðB23Þ

and

Iγ−aQ ¼ 4

3

Z
1

0

ðx − 1Þ3x
λðxÞ dx; ðB24Þ

with

Iγ−bQ ¼ 1

4xA
Iγ−aQ ; ðB25Þ

Iγ−cQ ¼ −
1

4xB
Iγ−aQ : ðB26Þ

We now present the parametric integrals for the loop
functions of the Feynman diagrams of Fig. 4, which only
contribute to the Δκ0iZ and ΔQi

Z form factors. This time the
superscript i stands for the whole contribution of diagrams
i1 and i2, with i ¼ d, e, f. The parametric integrals IZ−iκ;Q are
given by a similar expression to that of Eq. (B1), but with
the FZ−i

κ;Q functions now depending also on the variable xC.
They are given by

FZ−i
κ ðxÞ ¼ fZ−i0 ðxÞ þ fZ−i1 ðxÞη1ðxÞ þ fZ−i2 ðxÞη2ðxÞ;

ðB27Þ

and

FZ−i
Q ðxÞ ¼ hZ−i0 ðxÞ þ hZ−i1 ðxÞη1ðxÞ þ hZ−i2 ðxÞη2ðxÞ;

ðB28Þ

where we introduced the auxiliary functions

η1ðxÞ ¼ tan−1
�

2ðx − 1ÞxZ
1þ δ02 − ðx − 1Þ2x2Z

�
; ðB29Þ

η2ðxÞ ¼ log

�
λ0ðxÞ
λðxÞ

�
; ðB30Þ

with λ0ðxÞ ¼ xðx − δ0 − 1Þ þ xC and δ0 ¼ xC − xB. The fij
and hij functions are given by

fd0ðxÞ ¼ 4ðx − 1Þð3x − 1Þ log ½λðxÞ� þ 8ðx2 − 1Þ; ðB31Þ

fd1ðxÞ ¼
4

θðxÞxZ
ð−2ðxþ 1ÞxZð−xðxA − 2xB þ xC þ 2Þ

þ xA þ xC þ 2x2Þ þ ð5xþ 1Þδ02
− ðx − 1Þ2ð3x − 1Þx2ZÞ; ðB32Þ

fd2ðxÞ¼
2

xZ
ð−ð5xþ1ÞxAþ5xxCþxCþxð3x−4ÞxZþxZÞ;

ðB33Þ

fe0ðxÞ¼−
ðx−1Þ
xC

ðð3x−1Þlog ½λðxÞ�þ2ðxþ1ÞÞ; ðB34Þ

fe1ðxÞ ¼
1

θðxÞxCxZ
ð2xZðxð−xðxA − 2xB þ xCÞ þ 2xB þ xC

þ 2x2 − 2Þ þ xAÞ − δ0ð5xxA þ xA − 5xxC þ xCÞ
þ ðx − 1Þ2ð3x − 1Þx2ZÞ ðB35Þ

fe2ðxÞ ¼
1

2xCxZ
ð5xxA þ xA − 5xxC þ xC

þ ðð4 − 3xÞx − 1ÞxZÞ; ðB36Þ

ff0ðxÞ ¼
ðx − 1Þ
2xAxBxZ

ð2xZðxð3xA þ 9xB − 1Þ − 3xB − 1Þ

þ xAδ0 − ð3x − 1Þð3xB þ 1ÞxZ log ½λðxÞ�Þ; ðB37Þ

ff1ðxÞ ¼
1

2θðxÞxAxBx2Z
ðx2Zðx2ðxAð8xB þ 5xC þ 16Þ þ 9x2A þ 22xBðxC − 2xBÞ þ 76xB − 2xCÞ − 4xðxAð5xB þ xCÞ

þ 3x2A þ xBð−3xB þ 7xC þ 2Þ þ 1Þ − 4x3ð4xA þ 13xB − 1Þ − xAxC þ 3x2A þ 6xBxC þ 2xCÞ
þ xZδ0ðxCðxð−4xA − 13xB þ 5Þ − 2xA þ 3xB þ 1Þ þ xAðxð10xA þ 7xB − 8xþ 1Þ − 4xA þ 3xB þ 1ÞÞ
þ xAδ03 þ ðx − 1Þ2ð3x − 1Þð3xB þ 1Þx3ZÞ; ðB38Þ

M. A. ARROYO-UREÑA et al. PHYSICAL REVIEW D 94, 095006 (2016)

095006-16



ff2ðxÞ ¼ −
1

4xAxBx2Z
ðxZð−xCðxð5xA þ 13xB − 5Þ þ xA − 3xBÞ þ 3ð3xþ 1ÞxAxB þ ð3x − 1ÞxAð3xA − 2x − 1Þ þ xCÞ

þ xAδ02 þ ðx − 1Þð3x − 1Þð3xB þ 1Þx2ZÞ; ðB39Þ
with

θðxÞ ¼ 2xAðxC − ðx − 1ÞxZÞ − x2A þ 4xðxB þ x − 1ÞxZ − ðxC þ ðx − 1ÞxZÞ2: ðB40Þ

Again we only need the hdi functions

hd0ðxÞ ¼ −
16ðx − 1Þx

xZ
; ðB41Þ

hd1ðxÞ ¼ −
16xðδ02 − xZðxA þ xC þ 2x2 − xðxA − 2xB þ xC þ 2ÞÞÞ

θðxÞx2Z
; ðB42Þ

hd2ðxÞ ¼
8xδ0

x2Z
; ðB43Þ

whereas the loop functions for the type-(e) and type-(f)
contributions are given by

IZ−eQ ¼ −
1

4xC
IZ−dQ ðB44Þ

IZ−fQ ¼ δþ
8xAxB

IZ−dQ : ðB45Þ

Finally, the Ci
Z coupling constants are

Cd
Z ¼ gϕAϕBWgϕBϕCWgϕCϕAZ

gZ
; ðB46Þ

Ce
Z ¼ gϕAϕBWgϕBXCWgXCϕAZ

m2
WgZ

; ðB47Þ

Cf
Z ¼ gXAXBWgXBϕCWgϕCXAZ

m2
WgZ

: ðB48Þ

2. Passarino-Veltman scalar integrals

The loop functions IV−iκ;Q were also obtained via the
Passarino-Veltman reduction scheme in terms of two- and
three-point scalar functions with the help of the Feyncalc
package [47]. We first define the following dimensionless
ultraviolet finite functions:

Δ1 ¼ B0ð0; m2
A;m

2
AÞ − B0ð0; m2

B;m
2
BÞ; ðB49Þ

Δ2 ¼ B0ðm2
W;m

2
A;m

2
BÞ − B0ð0; m2

B;m
2
BÞ; ðB50Þ

Δ3 ¼ B0ðm2
V;m

2
A;m

2
AÞ − B0ðm2

W;m
2
A;m

2
BÞ; ðB51Þ

Δ4 ¼ B0ð0; m2
B;m

2
BÞ − B0ð0; m2

C;m
2
CÞ; ðB52Þ

Δ5 ¼ B0ðm2
W;m

2
B;m

2
CÞ − B0ð0; m2

C;m
2
CÞ; ðB53Þ

Δ6 ¼ B0ðm2
V;m

2
A;m

2
CÞ − B0ðm2

W;m
2
B;m

2
CÞ; ðB54Þ

Δ7 ¼ m2
WC0ð0; m2

W;m
2
W;m

2
A;m

2
A;m

2
BÞ; ðB55Þ

Δ8 ¼ m2
WC0ðm2

V;m
2
W;m

2
W;m

2
A;m

2
C;m

2
BÞ; ðB56Þ

where B0ðm2
i ; m

2
j ; m

2
kÞ and C0ðp2

1; p
2
2; p

2
12; m

2
i ; m

2
j ; m

2
kÞ are

two- and three-point scalar functions.
The IV−iκQ loop functions can be cast in the following

form:

IV−iκ ¼ 1

DV−i
κ

X8
j¼0

pV−i
j Δj þ 2xVIV−iQ ; ðB57Þ

IV−iQ ¼ 1

DV−i
Q

X8
j¼1

qV−ij Δj; ðB58Þ

with Δ0 ¼ 1 and i ¼ a;…; f. For simplicity we have
omitted the dependence of the polynomial functions
DV−i

κ0;Q, p
V−i
j , and qV−ij on xA, xB, and xC.

For the Feynman diagrams of Fig. 3 we obtain the
following nonvanishing polynomial functions for a massive
neutral gauge boson V:

DV−a
κ0 ¼ 3y2V ðB59Þ

pV−a
0 ¼ −2yVð3δ2 − xV þ 1Þ; ðB60Þ

pV−a
1 ¼ −6xAyVδ−; ðB61Þ

pV−a
2 ¼ 6δyVδ−; ðB62Þ

pV−a
3 ¼ 6ð6δ2 − xAðxV þ 8Þ þ xBð5xV − 8Þ þ xV þ 2Þ;

ðB63Þ
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pV−a
7 ¼ −12ðρþ xBxVÞð3δ − xV þ 1Þ; ðB64Þ

DV−b
κ0 ¼ 2x2Ay

2
V ðB65Þ

pV−b
0 ¼ −

1

6
yVð2xA − xVÞð3δ2 − xV þ 1Þ; ðB66Þ

pV−b
1 ¼ −

1

2
xAyVδ−ð2xA − xVÞ; ðB67Þ

pV−b
2 ¼ 1

2
δyVδ−ð2xA − xVÞ; ðB68Þ

pV−b
3 ¼ 1

2
ð24x2Að2 − xB − xVÞ þ xAð22xBxV þ 4xBð3xB − 4Þ þ 5x2V − 6xV þ 4Þ

þ 12x3A − xVðxBð6xB þ 5xV − 8Þ þ xV þ 2ÞÞ; ðB69Þ

pV−b
7 ¼ x3Að18xB þ 13xV − 22Þ − 3x2Að9xBxV þ 6ðxB − 2ÞxB þ x2V þ 3xV − 10Þ

þ xAðð9xB þ 4Þx2V þ ðxBð17xB − 16Þ − 5ÞxV þ 2ð3xB − 1ÞðxB − 1Þ2Þ
− 6x4A − xVð3xB þ xV − 1ÞðxBðxB þ xV − 2Þ þ 1Þ; ðB70Þ

DV−c
κ0 ¼ xBy2V ðB71Þ

pV−c
0 ¼ 1

6
yVð3δ2 − xV þ 1Þ; ðB72Þ

pV−c
1 ¼ 1

2
xAyVδ−; ðB73Þ

pV−c
2 ¼ −

1

2
yVδδ−; ðB74Þ

pV−c
3 ¼ 1

2
ðxAð12xB þ xV þ 8Þ − 6x2A

þ 3xBð−2xB þ xV − 8Þ − xV − 2Þ; ðB75Þ

pV−c
7 ¼ −x2Að9xB þ xV þ 5Þ þ xAðxBð9xB þ xV þ 14Þ

þ 2xV þ 1Þ þ 3x3A þ xBð−3xBðxB þ 3Þ
þ ðxV − 9ÞxV þ 11Þ − xV þ 1; ðB76Þ

DV−a
Q ¼ 3

4
xVy3V ðB77Þ

qV−a0 ¼ yVð12 − 2δ2ðxV þ 6Þ þ ðxV − 2ÞxVÞ; ðB78Þ

qV−a1 ¼ −2xAyVðδðxV þ 6Þ − 2ðxV þ 1ÞÞ; ðB79Þ

qV−a2 ¼ 2yVðδ2ðxV þ 6Þ − 2xAðxV þ 1Þ þ 2xBð2xV − 3ÞÞ;
ðB80Þ

qV−a3 ¼ 2ðxAð8 − xVð3xV þ 20ÞÞ þ 6δ2ð3xV − 2Þ
þ 3xBðxVð3xV − 4Þ þ 8Þ
þ 2ðxV − 1ÞðxV þ 6ÞÞ; ðB81Þ

qV−a7 ¼ −6ð−2xAxBδð9xV − 6Þ − 2x2AðxVðxV þ 4Þ − 2Þ
þ 2xAð2xBðxVð2xV − 1Þ þ 2Þ þ xVð2xV − 1Þ þ 2Þ
þ x3Að6xV − 4Þ − xBx3V þ 2ð−3x2B þ xB − 1Þx2V
þ 2ðxBð−3ðxB − 2ÞxB − 5Þ þ 2ÞxV þ 4ðxB − 1Þ3Þ;

ðB82Þ

with yV ¼ 1 − 4xV , and ρ ¼ 1 − 2ðxA þ xBÞ þ δ2. Also,
the IV−bQ and IV−cQ loop functions obey Eqs. (B16)
and (15).
For V ¼ γ, we need to be careful when taking the limit

xV → 0 as one obtains an indeterminate result of the form
0=0 since the Gram determinant vanishes. Therefore one
must apply the l’Hôpital rule, as is described in detail in
Ref. [44]. We obtain the following results after applying
this method:

Dγ−a
κ0 ¼ 3 ðB83Þ

pγ−a
0 ¼ 6δ2 − 3δ − 1; ðB84Þ

pγ−a
1 ¼ 6xAδ−; ðB85Þ

pγ−a
2 ¼ 6ðxA − δ2Þ; ðB86Þ

Dγ−b
κ0 ¼ 2ρ2xA ðB87Þ

pγ−b
0 ¼ 1

6
ðρð3ρð2δ2 þ 7xA þ xBÞ þ 96xAxB − ρÞÞ; ðB88Þ

pγ−b
1 ¼ ρxAðxAð−4xB þ ρ − 8Þ þ 4x2A

− ðρþ 4ÞxB − ρþ 4Þ; ðB89Þ
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pγ−b
2 ¼ −ρðρðδ2 þ 3xAÞ þ 8xAxBÞ; ðB90Þ

Dγ−c
κ0 ¼ 2ρ2xB ðB91Þ

pγ−c
0 ¼ 1

6
ð−ρðρð−3xAð4xB þ 1Þ þ 6x2A þ 3xBð2xB

þ 9Þ − 1Þ þ 48xBδþÞÞ; ðB92Þ

pγ−c
1 ¼ ρxAð1 − δÞð4xB þ ρÞ; ðB93Þ

pγ−c
2 ¼ ρðρðδ2 − xA þ 4xBÞ þ 4xBδþÞ; ðB94Þ

Dγ−a
Q ¼ 3ρ ðB95Þ

qγ−a0 ¼ −
2

3
ð−3x3Að8xB þ 5Þ þ x2Að9xBð4xB þ 3Þ þ 10Þ

− xAðxBð3xBð8xB þ 3Þ þ 8Þ − 1Þ þ 6x4A

þ ðxB − 1Þð6x3B þ 3x2B þ xB þ 2ÞÞ; ðB96Þ

qγ−a1 ¼ −4xAðδ − 1Þððδ − 1Þ2 − 3xBÞ; ðB97Þ

qγ−a2 ¼ 4ð−ð4xA þ 1Þx3B þ xAð6xA − 1Þx2B
þ xAðð5 − 4xAÞxA − 1ÞxB þ ðxA − 1Þ3xA þ x4BÞ;

ðB98Þ

with the Iγ−bQ and Iγ−cQ obeying (B25) and (B26).
Finally we present the polynomial functions for the

contributions to the WWZ form factors obtained from the
diagrams of Fig. 4:

DZ−d
κ0 ¼ xZy2Z ðB99Þ

pZ−d
0 ¼ 1

3
ð−2yZðxZð3ð−2xAxB þ x2A − 2xBxC þ 2x2B þ x2CÞ þ 2Þ − 6ðxA − xCÞ2 − 2x2ZÞÞ; ðB100Þ

pZ−d
1 ¼ 2xAyZð−xAðxZ − 2Þ þ xBxZ − 2xC þ xZÞ; ðB101Þ

pZ−d
2 ¼ 2xZðxAð17xB − 3xC þ 5Þ − 7x2A þ xBð−10xB þ 3xC þ 4Þ þ 7xC − 2Þ

þ 4ðxA − xCÞð3xA − 6xB þ 3xC þ 2Þ þ 2x2Zðδ2 − 4xB − 1Þ; ðB102Þ

pZ−d
4 ¼ −2ð−xAð3xBð3xZ − 4Þ − 5xCxZ þ 8xC þ x2Z þ xZ þ 4Þ þ x2AðxZ þ 2Þ

þ xCðxBð−x2Z þ xZ − 12Þ − 7xZ þ 4Þ þ xZððxB þ 6ÞxBxZ þ 2ðxB − 6ÞxB þ xZ þ 2Þ þ 6x2CÞ; ðB103Þ

pZ−d
5 ¼ 2x2Zð−xA − 2xBðxC − 3Þ þ x2B þ ðxC − 1ÞxC þ 1Þ

þ 2xZðxAð−9xB þ 7xC − 1Þ þ x2A þ 5xBxC þ 2ðxB − 6ÞxB − 6x2C − 3xC þ 2Þ
þ 4ðxA − xCÞðxA þ 6xB − 7xC − 2Þ; ðB104Þ

pZ−d
6 ¼ 2ðxAð2xCð5xZ − 8Þ − xZð12xB þ xZ þ 8ÞÞ þ x2AðxZ þ 8Þ − xCxZð12xB þ xZ þ 8Þ

þ 2xZðxBð6xB þ 5xZ − 8Þ þ xZ þ 2Þ þ x2CðxZ þ 8ÞÞ; ðB105Þ

pZ−d
8 ¼ −4ð3xA − 6xB þ 3xC − 2xZ þ 2Þð−xZðxAðxB − xC þ 1Þ þ xBð−xB þ xC þ 2Þ þ xCÞ

þ ðxA − xCÞ2 þ xBx2Z þ xZÞ; ðB106Þ

DZ−e
κ0 ¼ xCx2Zy

3
Z ðB107Þ

pZ−e
0 ¼ 1

6
ð−xZy2Zð−xZð3ð−2xAxB þ x2A − 2xBxC þ 2x2B þ x2CÞ þ 2Þ þ 6ðxA − xCÞ2 þ 2x2ZÞÞ; ðB108Þ

pZ−e
1 ¼ 1

2
ðxAxZy2ZðxAðxZ − 2Þ − ðxB þ 1ÞxZ þ 2xCÞÞ; ðB109Þ
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pZ−e
2 ¼ −

1

2
xZyZðxAðxBðð17 − 2xZÞxZ − 12Þ − 3xCxZ þ 5xZ þ 4Þ þ x2AðxZ − 6ÞðxZ − 1Þ

þ 3xCððxB þ 5ÞxZ þ 4ðxB − 3ÞÞ þ xZðxBðxBðxZ − 10Þ − 4xZ þ 4Þ − xZ − 2Þ − 6x2CÞ; ðB110Þ

pZ−e
4 ¼ −

1

2
xZyZðxAð3xBð3xZ − 4Þ − 5xCxZ þ 8xC þ x2Z þ xZ þ 4Þ þ x2Að−ðxZ þ 2ÞÞ

þ xCðxBððxZ − 1ÞxZ þ 12Þ þ 15xZ − 36Þ − xZððxB þ 6ÞxBxZ þ 2ðxB − 6ÞxB þ xZ þ 2Þ − 6x2CÞ; ðB111Þ

pZ−e
5 ¼ 1

2
xZyZðxAð3xBð3xZ − 4Þ − 7xCxZ þ 16xC þ x2Z þ xZ þ 4Þ þ x2Að−ðxZ þ 2ÞÞ

þ xCðxBðxZð2xZ − 5Þ þ 12Þ þ xZðxZ þ 11Þ − 36Þ − xZððxB þ 6ÞxBxZ þ 2ðxB − 6ÞxB þ xZ þ 2Þ
− x2CððxZ − 6ÞxZ þ 14ÞÞ; ðB112Þ

pZ−e
6 ¼ 1

2
xZyZðxAðxZð12xB þ xZ þ 8Þ þ 2xCð8 − 5xZÞÞ þ x2Að−ðxZ þ 8ÞÞ

þ xCxZð12xB þ 5xZ − 8Þ − 2xZðxBð6xB þ 5xZ − 8Þ þ xZ þ 2Þ − x2CðxZ þ 8ÞÞ; ðB113Þ
pZ−e
8 ¼ −xZyZðx2Að3xBðxZ þ 2Þ − 3xCxZ þ 3xC þ 5xZ − 2Þ

þ xAð4xCð3xBðxZ − 1Þ þ ðxZ − 3ÞxZ þ 5Þ − xZðxBð9xB þ 5xZ − 2Þ þ 2xZ þ 1Þ − 3x2CðxZ − 1ÞÞ
− 3x3A þ xCxZðxBð−9xB − 7xZ þ 10Þ − 4xZ þ 7Þ þ 3x2CðxBxZ þ 2xB þ 3xZ − 6Þ
þ 2xZð3xB þ xZ − 1ÞðxBðxB þ xZ − 2Þ þ 1Þ − 3x3CÞ; ðB114Þ

DZ−f
κ0 ¼ 4xAxBxZy2Z ðB115Þ

pZ−f
0 ¼ −

1

3
yZδþðxZð3ð−2xAxB þ x2A − 2xBxC þ 2x2B þ x2CÞ þ 2Þ − 6ðxA − xCÞ2 − 2x2ZÞ; ðB116Þ

pZ−f
1 ¼ −xAyZδþðxAðxZ − 2Þ − ðxB þ 1ÞxZ þ 2xCÞ; ðB117Þ

pZ−f
2 ¼ x3AðxZ − 6ÞðxZ − 1Þ − x2AðxBððxZ − 10ÞxZ þ 6Þ þ 3xZðxC − xZ þ 4Þ − 30Þ

þ xAðxZðxBð7xB þ 64Þ þ 10xC þ 17Þ − 2ðxBð40 − 6xCÞ þ 6x2B þ xCð3xC þ 2Þ þ 18Þ
− ðxBðxB þ 14Þ þ 5Þx2ZÞ þ ðxB − 1ÞðxCð3xBðxZ þ 4Þ þ 7xZ − 4Þ
− xZðxBðxBðxZ − 10Þ þ 4ðxZ − 7ÞÞ − xZ − 2Þ − 6x2CÞ; ðB118Þ

pZ−f
4 ¼ x3Að−ðxZ þ 2ÞÞ − x2Að2xBð4xZ − 7Þ þ 5xZðxZ − xCÞ þ 8xC − 22xZ þ 38Þ

þ xAðxBðxCððxZ − 6ÞxZ þ 20Þ þ ð76 − 17xZÞxZ − 80Þ þ x2Bð−ðxZ − 4ÞÞðxZ − 3Þ
− 6ðxC − xZÞ2 − 12ðxC þ 3Þ þ 21xZÞ þ ðxB − 1ÞðxCðxBð−x2Z þ xZ − 12Þ − 7xZ þ 4Þ
þ xZðxBðxBðxZ þ 2Þ − 2xZ þ 20Þ þ xZ þ 2Þ þ 6x2CÞ; ðB119Þ

pZ−f
5 ¼ x3AðxZ þ 2Þ þ x2AðxBð14 − 8xZÞ þ xCð7xZ − 16Þ þ ð22 − 5xZÞxZ − 38Þ

þ xAðxBð−2xCððxZ − 6ÞxZ þ 14Þ þ xZð17xZ − 76Þ þ 80Þ þ x2BðxZ − 4ÞðxZ − 3Þ
þ x2CððxZ − 6ÞxZ þ 14Þ − xCðxZðxZ þ 10Þ − 20Þ þ 3xZð2xZ − 7Þ þ 36Þ
þ ðxB − 1Þð−xCðxBðxZð2xZ − 5Þ þ 12Þ þ ðxZ − 1ÞðxZ þ 4ÞÞ þ xZðxBðxBðxZ þ 2Þ − 2xZ þ 20Þ þ xZ þ 2Þ
þ x2CððxZ − 6ÞxZ þ 14ÞÞ; ðB120Þ

pZ−f
6 ¼ x2ZðxAð21xB − xC þ 7Þ − 5x2A − ðxB − 1Þð6xB þ xC − 2ÞÞ

þ xZðx2Cδþ þ 2xCð5xA − 6xB − 4Þδþ − 11x2AxB − 60xAxB þ x3A þ 7x2A

− 4xA þ 12x3B þ 36x2B − 44xBÞ þ 8δþðxA − xCÞ2 − 4xZ; ðB121Þ
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pZ−f
8 ¼ −2ðxAðxCð−3x2ByZ þ xBðxZð9xZ − 26Þ þ 32Þ þ xZð6xZ − 11Þ þ 20Þ

þ x2Cð−9xB − 8xZ þ 5Þ þ xZðxBðxBð43 − 13xZÞ þ 3x2B − xZð2xZ þ 1Þ þ 9Þ − 6xZ þ 9Þ þ 3x3CÞ
− 3x3AðxZðxB − xC þ 3Þ þ xB þ xC − 5Þ þ x2AðxBð−9xCxZ þ 9xC þ 7x2Z − 40Þ þ 6x2BðxZ − 1Þ
− 4ðxC − 1Þx2Z þ 3xCðxC þ 3ÞxZ − xCð3xC þ 17Þ þ 2ðxZ − 9ÞÞ þ 3x4A

þ ðxB − 1Þð−x2Cð3xBðxZ þ 2Þ þ 5xZ − 2Þ þ xCxZðxBð9xB þ xZ þ 14Þ þ 2xZ þ 1Þ
− 2xZðxBð3xBðxB þ 3Þ − ðxZ − 9ÞxZ − 11Þ þ xZ − 1Þ þ 3x3CÞÞ; ðB122Þ

DZ−d
Q ¼ 3

8
x2Zy

3
Z ðB123Þ

qZ−d0 ¼ yZð2xAðxBxZðxZ þ 6Þ þ xCð16 − 9xZÞÞ þ x2Að−ððxZ − 3ÞxZ þ 16ÞÞ
þ 2xBxCxZðxZ þ 6Þ þ xZð−2x2BðxZ þ 6Þ þ ðxZ − 2ÞxZ þ 12Þ − x2CððxZ − 3ÞxZ þ 16ÞÞ; ðB124Þ

qZ−d1 ¼ −xAyZðxAððxZ − 3ÞxZ þ 16Þ − xZðxBxZ þ 6xB þ 2xZ þ 2Þ þ xCð9xZ − 16ÞÞ; ðB125Þ

qZ−d2 ¼ −2x2ZðxAð−13xB þ 3xC − 1Þ þ 5x2A − 3ðxB þ 4ÞxC þ 8x2B þ 5xB þ 5Þ
− 6xZðxAð5xB þ xC − 9Þ − 3x2A − 9xBxC þ 2x2B þ xCð4xC þ 9Þ − 2Þ
þ 36ðxC − xAÞðxA − 2xB þ xC þ 2Þ þ x3Zð−2xAxB þ x2A þ xA þ ðxB − 5ÞxB − 2Þ; ðB126Þ

qZ−d4 ¼ x3Zð3xA þ xBð−xB þ xC − 13Þ − 2Þ
þ x2ZðxAð30xB − 15xC − 4Þ − 3x2A þ 2xBð−10xB þ 4xC þ 17Þ þ 24xC − 10Þ
þ 2xZðxAð23ðxC þ 1Þ − 39xBÞ − 5x2A þ 3ðxBð5xC − 8Þ þ 6x2B − xCð4xC þ 9Þ þ 2ÞÞ
þ 4ðxA − xCÞð7xA þ 18xB − 9xC − 18Þ; ðB127Þ

qZ−d5 ¼ x3Zð−3xA − 2ðxB þ 1ÞxC þ x2B þ 13xB þ x2C þ 2Þ
þ x2ZðxAð−30xB þ 24xC þ 4Þ þ 3x2A − 2xBð5xC þ 17Þ þ 20x2B − xCð7xC þ 18Þ þ 10Þ
þ 2xZðxAð39xB − 49xC − 23Þ þ 5x2A − 3xBðxC − 8Þ − 18x2B þ xCð26xC þ 31Þ − 6Þ
− 4ðxA − xCÞð7xA þ 18xB − 25xC − 18Þ; ðB128Þ

qZ−d6 ¼ x2ZðxAð−36xB þ 30xC − 20Þ þ 3x2A − 12xBð3xC þ 2Þ þ 36x2B þ xCð3xC − 20Þ þ 20Þ
þ 2xZð2xAð6xB − 23xC þ 2Þ þ 17x2A þ 4ð3xB þ 1ÞxC − 12ðxB − 1Þ2 þ 17x2CÞ
− 64ðxA − xCÞ2 þ x3Zð−3xA þ 18xB − 3xC þ 4Þ; ðB129Þ

qZ−d8 ¼ −6ð2x3Zð2xAxB − xAxC þ xA þ 2xBxC − 3x2B þ xB þ xC − 1Þ
− x2Zð3x2AðxB − xC þ 2Þ þ xAð2xBð6xC þ 1Þ − 9x2B − xCð3xC þ 4Þ þ 1Þ
þ 3ðxB þ 2Þx2C þ ð2 − 9xBÞxBxC þ 2xBð3ðxB − 2ÞxB þ 5Þ þ xC − 4Þ
þ 2xZð−3x2AðxB þ xC − 2Þ þ xAð2xBð6xC þ 1Þ − 3x2B − xCð3xC þ 10Þ þ 1Þ
þ 2x3A − 3x2BðxC þ 2Þ þ xBðð2 − 3xCÞxC þ 6Þ þ 2x3B þ xC þ 2x2CðxC þ 3ÞÞ
− 6ðxA − xCÞ2ðxA − 2xB þ xC þ 2Þ − xBx4Z − 4xZÞ; ðB130Þ

with the IZ−eQ and IZ−fQ functions given by (B44) and (B45).
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APPENDIX C: Ci
V COEFFICIENTS FOR ALL THE

NEW CONTRIBUTIONS OF THE GMM TO THE
Δκ0γ AND ΔQγ FORM FACTORS

After taking into account all the vertices allowed in the
GMM (Appendix A) we can determine the new contribu-
tions to the Δκ0V and ΔQV form factors arising from the
Feynman diagrams of Figs. 3 and 4. In Tables III–VIII we
show the explicit form of theCi

V coefficients of Eqs. (B18)–
(18) and (B46)–(B48) for each such contribution.

TABLE III. Ca
V coefficients for all the type-(a) contributions to

the Δκ0V and ΔQV form factors in the GMM. The second column
shows the particles circulating into the loop and the last two
columns show the corresponding Ca

V factors.

Number AB Ca
Z Ca

γ

1 H−
3 h g2

2c2W
g2hð1 − 2s2WÞ g2g2h

2 H−
3H g2

2c2W
g2Hð1 − 2s2WÞ g2g2H

3 H−
3H

0
3

g2

8c2W
ð1 − 2s2WÞ g2

4

4 H−
3H

0
5

g2c2H
24c2W

ð1 − 2s2WÞ
1
12
g2c2H

5 H−
5H

0
3

g2c2H
8c2W

ð1 − 2s2WÞ
1
4
g2c2H

6 H−
5H

0
5

3g2

8c2W
ð1 − 2s2WÞ 3

4
g2

7 Hþ
3 H

þþ
5 − g2c2H

4c2W
ð1 − 2s2WÞ − 1

2
g2c2H

8 Hþ
5 H

þþ
5 − g2

4c2W
ð1 − 2s2WÞ − 1

2
g2

9 H−−
5 H−

3
g2c2H
2c2W

ð1 − 2s2WÞ g2c2H

10 H−−
5 H−

5
g2

2c2W
ð1 − 2s2WÞ g2

TABLE IV. The same as in Table III, but for the type-(b)
contributions.

Number AB Cb
Z Cb

γ

1 W−H −g4 f2Hv
2

m2
W

g4 f2Hv
2

m2
W

2 W−H0
5 − g4s2Hv

2

12m2
W

g4s2Hv
2

12m2
W

3 WþHþþ
5

g4s2Hv
2

2m2
W

- g
4s2Hv

2

2m2
W

TABLE V. The same as in Table III, but for the type-(c)
contributions.

Number AB Cc
Z Cc

γ

1 H−
5Z

g4s2Hv
2

8c4Wm2
W
ð1 − 2s2WÞ g4s2Hv

2

4c2Wm2
W

2 H−−
5 W− − g4s2Hv

2

2c2Wm2
W
ð1 − 2s2WÞ − g4s2Hv

2

m2
W

TABLE VI. Cd
Z coefficients for the type-(d) contributions in the

GMM. The second column shows the particles circulating into the
loop and the last column shows the corresponding Cd

Z factor.

Number ABC Cd
Z

1 H−
3H

0
3H

−
5

g2c2H
8c2W

2 H−
3H

0
5H

−
5

g2c2H
8c2W

3 Hþ
3 H

þþ
5 Hþ

5 − g2c2H
4c2W

4 H0
3H

þ
3 h g2

2c2W
g2h

5 H0
3H

þ
3 H − g2

2c2W
g2H

6 H0
3H

þ
3 H

0
5

g2c2H
12c2W

7 H0
3H

þ
5 H

0
5 − g2c2H

4c2W

TABLE VII. The same as in Table VI, but for the type-(e)
contributions.

Number ABC Ce
Z

1 H−
5H

0
5W

−
− g4s2Hv

2

8c2Wm2
W

2 Hþ
5 H

þþ
5 Wþ g4s2Hv

2ffiffi
2

p
4c2Wm2

W

3 H0
5H

þ
5 Z g4s2Hv

2

4c4Wm2
W

TABLE VIII. The same as in Table VI, but for the type-(f)
contributions.

Number ABC Cf
Z

1 W−ZH−
5 − g4s2Hv

2

4c2Wm2
W

2 ZWþH − g4v2

c2Wm2
W
f2H

3 ZWþH0
5 − g4s2Hv

2

6c2Wm2
W
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