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In this paper, we perform a full next-to-leading order (NLO) QCD calculation of neutralino scattering
on protons or neutrons in the minimal supersymmetric standard model. We match the results of the
NLO QCD calculation to the scalar and axial-vector operators in the effective field theory approach.
These govern the spin-independent and spin-dependent detection rates, respectively. The calculations
have been performed for general bino, wino and higgsino decompositions of neutralino dark matter
and required a novel tensor reduction method of loop integrals with vanishing relative velocities and
Gram determinants. Numerically, the NLO QCD effects are shown to be of at least of similar size
and sometimes larger than the currently estimated nuclear uncertainties. We also demonstrate
the interplay of the direct detection rate with the relic density when consistently analyzed with the
program DM@NLO.
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I. INTRODUCTION

Nowadays, the existence of dark matter is well
established by experimental observations on many differ-
ent length scales. In particular, on cosmological length
scales, measurements of the temperature anisotropies of
the cosmic microwave background (CMB) allow a very
precise determination of the relic density of dark matter.
The most recent value obtained by the Planck collabo-
ration [1], including polarization data from the Wilkinson
Microwave Anisotropy Probe [2], is

ΩCDMh2 ¼ 0.1199� 0.0022; ð1:1Þ

where h denotes the present Hubble expansion rate in
units of 100 km s−1 Mpc−1. Even though the quantity of
dark matter in the Universe is known very accurately,
its nature remains concealed. The reason for this unfortu-
nate situation is that so far all experimental evidence
for dark matter stems exclusively from its gravitational
interaction.
Among the numerous attempts to explain dark matter,

postulating the existence of a yet unknown weakly
interacting massive particle (WIMP) is a widely adopted
paradigm. This approach is attractive because a WIMP
with typical weak scale interactions and a mass of
∼100 GeV naturally leads to the observed relic density
via thermal freeze-out [3]. The canonical example for a
WIMP is the lightest neutralino ~χ01, which is the lightest
supersymmetric particle in many scenarios of the minimal

supersymmetric standard model (MSSM). In the follow-
ing, we refer to it simply by “the neutralino”. Remember
that giving rise to a suitable dark matter candidate is only
a positive by-product of introducing supersymmetry
(SUSY) as the most general space-time symmetry, which
is furthermore motivated by its elegant solution to the
hierarchy problem and the possible unification of gauge
and Yukawa couplings. Alternatively, more minimal
extensions to the SM with additional Higgs doublets
[4], neutrinos [5] or other scalars and fermions [6] may be
considered.
Assuming that dark matter actually consists of WIMPs,

additional nongravitational detection possibilities open up.
First, one can try to directly produce WIMPs at a collider.
As the WIMPs themselves are not detectable with current
collider detectors, the typical observable of such a process
consists of a single jet or gauge boson and missing
transverse energy. The second possibility is to look for
Standard Model annihilation products of WIMPs in very
dense astronomical objects such as the Sun or the center of
the Galaxy, where the WIMPs might have accumulated.
The observational challenge of this indirect detection
approach is to distinguish between the astrophysical back-
ground and a possible WIMP signal. Finally, one can try to
observe the rare interactions of a WIMP with a nucleus by
detecting its recoil in the so-called direct detection experi-
ments. The technical difficulty here is to detect a very weak
signal, while simultaneously excluding all nondark matter
sources [3].
The direct detection rate, i.e. the number of events per

time and per detector mass, depends on the dark matter-
nucleus interaction. On the microscopic level, this corre-
sponds to the interaction of the WIMP with the quarks and
gluons inside the nucleons of the nucleus. However, as the
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typical process energies are much smaller than the mediator
masses1 of the microscopic theory, it is customary to
calculate the corresponding cross sections in the framework
of effective field theories (EFT) [11–14]. In the EFT
approach, the heavy particles which mediate the interaction
between dark matter and the constituents of the nucleus are
integrated out.
Integrating-out heavy particles translates different

Lorentz structures of the microscopic theory to different
effective contact interactions expressed in terms of effective
operators. Not all of the effective interactions contribute in
the nonrelativistic limit which is relevant for direct detec-
tion. In the MSSM, the dominant effective operators for
neutralino dark matter are the scalar operator mqχχqq and
the axial-vector operator χγμγ5χqγμγ5q, as the vector and
tensor operators vanish in the case of a Majorana fermion.
These operators lead to coherent spin-independent (SI) and
spin-dependent (SD) contributions, respectively.
The tree-level contributions of neutralino dark matter to

these operators have first been calculated in Ref. [15]. Since
then, several improvements have been made by either
including additional operators like e.g. gluon operators
[16,17] or by calculating electroweak radiative corrections
for pure wino, higgsino or bino dark matter [18–20].
In this paper, we perform a full OðαsÞ calculation for the

two dominant operators listed above. In contrast to previous
approaches, we allow for a general neutralino admixture
and calculate the radiative corrections using fully general
loop integrals. By doing so, we implement a second, loop-
improved dark matter observable in our numerical package
DM@NLO, the first one being the relic density [21–29].
Combining these calculations allows us to effectively
constrain the MSSM parameter space and precisely predict
the direct detection rate.
The remainder of this paper is organized as follows: In

Sec. II, we briefly remind the reader how the direct
detection rate is computed in general, and we describe
our renormalization scheme. We present the underlying
EFT calculation, specify the matching of full and effective
theory, and describe the running of the operators and their
associated Wilson coefficients. In order to use the same
tensor reduction method for our direct detection and relic
density calculation, the tensor reduction method had to be
modified to account for vanishing Gram determinants. As
this technical aspect might be interesting on its own, we
illustrate it separately in the Appendix. Our numerical
results are then given in Sec. III. We analyze the impact of
the radiative corrections and contrast them with the nuclear
uncertainties. We also study the influence of the neutralino
composition on the resulting neutralino-nucleus cross
sections. Furthermore, we combine our direct detection

and relic density routines to obtain precise predictions for
the neutralino-nucleon cross section in a given scenario.
Finally, we conclude in Sec. IV. We do not present any
technical details of our relic density calculations here, but
instead refer the reader to our previous papers and in
particular Ref. [25].

II. CALCULATION OF THE NEUTRALINO
NUCLEON CROSS SECTION

A. Composition of direct detection rate

In this section, we briefly review the standard formulas
for the calculation of neutralino direct detection rates. The
desired quantity is the rate of events dR per energy interval
dE. This differential event rate is typically expressed in
terms of counts per kg and day and keV. It can be written as

dR
dE

¼
X
i

ci
σi

2m~χ0
1
μ2i

ρ0ηi: ð2:1Þ

The sum runs over all detector nuclides i, and the factor ci
denotes the mass fraction of the nuclear species i in the
detector. Let mi be the mass of the nucleus of species i.
Then μi is the reduced mass

μi ¼
m~χ0

1
mi

m~χ0
1
þmi

: ð2:2Þ

The local dark matter density is described by ρ0. Before
using the canonical value of 0.3 GeV=cm3, one should
calculate the neutralino relic density to ensure that its value
is in agreement with the experimental constraints and that
the neutralinos can solely account for dark matter. ηi
contains the integration over the dark matter velocity
relative to the detector ~v,

ηi ¼
Z

vesc

vmin;i

d3v
fð~vÞ
v

with vmin;i ¼
ffiffiffiffiffiffiffiffiffi
miE
2μ2i

s
: ð2:3Þ

The lower integration limit vmin;i is given by the minimal
neutralino velocity, which can cause a recoil energy E.
The upper integration limit is fixed by the Galactical
escape speed vesc, which is usually set to 544 km=s. Faster
particles are not gravitationally bound in the Milky Way.
More details on the integration limits can be found in
Refs. [30–32]. fð~vÞ is the local velocity distribution,
which is typically assumed to be Maxwellian. However,
several studies have unveiled that this simplification
might not describe the situation properly, see e.g.
[33–35]. All the particle physics is contained in the cross
sections for elastic nucleus-neutralino scattering σi,
where we distinguish between spin-independent and
spin-dependent contributions.

1As this condition is not necessarily fulfilled at a collider, EFT
methods are under debate in this context, and so-called simplified
models should be used [7–10].
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The spin-independent cross section can be written as

σSIi ¼ μ2i
π
jZigSIp þ ðAi − ZiÞgSIn j2jFSI

i ðQiÞj2; ð2:4Þ

where FSI
i ðQiÞ is the spin-independent structure function

for the nucleus i. It depends on the momentum transfer
Qi ¼

ffiffiffiffiffiffiffiffiffiffiffi
2miE

p
, can be understood as the Fourier transform

of the nucleon density, and is normalized to FSI
i ð0Þ ¼ 1.

The nucleus i consists of Zi protons and Ai − Zi neutrons,
where Zi is its atomic number and Ai is its mass number. To
enable a comparison of direct detection results, that is
independent of the detector material and technology, the
experimental collaborations typically publish constraints
on the cross section of the dark matter particle and a single
nucleon2 N, which simply reads

σSIN ¼ μ2N
π
jgSIN j2: ð2:5Þ

Here, the neutralino-nucleus reduced mass μi is replaced by
the neutralino-nucleon reduced mass μN in complete
analogy. The nucleon masses mN are given by

mp ¼ 0.9383 GeV and mn ¼ 0.9396 GeV: ð2:6Þ

The effective spin-independent four-fermion couplings
among neutralinos and protons p or neutrons n are denoted
by gSIp and gSIn . They can be determined via

gSIN ¼
X
q

hNjqqjNiαSIq ; ð2:7Þ

where the nucleon index N stands either for a proton or a
neutron and where the sum runs over all quark types q.3

The spin-independent interaction between quarks and
neutralinos is denoted by αSIq . The quark matrix element
hNjqqjNi can be qualitatively understood as the probability
to find a quark q in the nucleon N. We write it as

hNjmqqqjNi ¼ fNTqmN; ð2:8Þ

where mN denotes the nucleon mass and mq the quark
mass. The scalar coefficients fNTq are determined exper-
imentally or via lattice QCD. We point out that especially
fNTs is affected by experimental uncertainties, which mainly
stem from the determination of the pion-nucleon sigma

term [36–38]. We use the values given in Refs. [39–41]
which differ from the ones implemented in DarkSUSY [42]
or micrOMEGAs [43]. We list all values for comparison in
Table I.4 The factors fNTq of the heavy quarks are linked to
those of the light quarks via [44]

fNTc ¼ fNTb ¼ fNTt ¼
2

27

�
1 −

X
q¼u;d;s

fNTq

�
: ð2:9Þ

The spin-dependent cross section can be cast into the
form

σSDi ¼ 4μ2i
2J þ 1

ðjgSDp j2Spp;iðQiÞ þ jgSDn j2Snn;iðQiÞ
þ jgSDp gSDn jSpn;iðQiÞÞ; ð2:10Þ

where J denotes the nuclear spin. Details on the spin
structure functions Spp;iðQiÞ, Snn;iðQiÞ and Spn;iðQiÞ can be
found in Ref. [45]. The spin-dependent cross section for a
neutralino and a single nucleon N reads

σSDN ¼ 3μ2N
π

jgSDN j2: ð2:11Þ

The effective spin-dependent four-fermion couplings
among neutralinos and protons p (gSDp ) or neutrons n
(gSDn ) are given by

gSDN ¼
X

q¼u;d;s

ðΔqÞNαSDq : ð2:12Þ

In contrast to the spin-independent case, we sum only over
the light quarks u, d and s, as mainly these flavors
contribute to the spin of the nucleon.5 ðΔqÞN can be seen
as the fraction of the nucleon spin carried by the quark q.

TABLE I. Scalar coefficients fNTq used in different codes.

Scalar coefficient DM@NLO DarkSUSY micrOMEGAs

fpTu 0.0208 0.023 0.0153
fnTu 0.0189 0.019 0.0110
fpTd 0.0411 0.034 0.0191
fnTd 0.0451 0.041 0.0273
fpTs ¼ fnTs 0.043 0.14 0.0447
fpTc ¼ fpTb ¼ fpTt 0.0663 0.0595 0.0682
fnTc ¼ fnTb ¼ fnTt 0.0661 0.0592 0.0679

2At this point, the typical assumption is that the interaction
strength of neutralinos is the same for protons and neutrons. This
is not necessarily fulfilled in a nonminimal model like the
MSSM. Therefore we keep our calculations general and distin-
guish between protons and neutrons.

3We are summing over all quark types, as we do not include
gluon operators yet. Alternatively, one could replace the heavy-
quark contributions by loop-induced gluon processes including
heavy quarks as virtual particles.

4We are working with micrOMEGAs 2.4.1 to benefit from our
established relic density interface. However, we have updated the
nuclear input values to themost recent versionmanually. Hence the
values given in Table I correspond to micrOMEGAs 4.2.5.

5Note, however, that it was recently claimed that bottom
quarks may also contribute to the spin-dependent interaction [46].
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More precisely, it describes the second moment of the
polarized quark density and is related to the nucleon spin
vector sμ via

hNjqγμγ5qjNi ¼ 2sμðΔqÞN: ð2:13Þ

We choose the default values of micrOMEGAs for the
polarized quark densities

ðΔuÞp ¼ ðΔdÞn ¼ 0.842; ð2:14Þ

ðΔdÞp ¼ ðΔuÞn ¼ −0.427; ð2:15Þ

ðΔsÞp ¼ ðΔsÞn ¼ −0.085; ð2:16Þ

constrained by isospin symmetry, i.e. ðΔuÞp ¼ ðΔdÞn
and ðΔdÞp ¼ ðΔuÞn.

B. Renormalization scheme

Our QCD calculations at next-to-leading order (NLO)
and beyond are performed within a hybrid on shell=DR
renormalization scheme, described in detail in
Refs. [25–27]. In the quark sector, the top and bottom
quark masses are defined on shell and in the DR scheme,
respectively. Note that through the Yukawa coupling to
(in particular the neutral pseudoscalar) Higgs boson
resonances, the bottom quark mass can have a sizeable
influence on the dark matter annihilation cross section
and must therefore be treated with particular care. We
obtain it from the SM MS mass mbðmbÞ, determined in
an analysis of ϒ sum rules, through evolution to the scale
μR, transformation to the SM DR and then MSSM DR
scheme [25,26]. In the squark sector, we have five
independent parameters

m~t1 ; m ~b1
; m ~b2

; At and Ab ¼ 0: ð2:17Þ

The lighter stop mass and the two sbottom masses are
taken to be on shell, while the stop and sbottom trilinear
coupling parameters are taken in the DR scheme. From
these parameters, we compute as dependent quantities the
stop and sbottom mixing angles θ~t and θ ~b and m~t2 for the
heavier stop [26]. The masses of the first- and second-
generation squarks are taken on shell. The strong cou-
pling constant αsðμRÞ is renormalized in the MSSM DR
scheme with six active flavors and obtained after
evolution of the world-average, five-flavor SM MS
value at the Z0-boson mass to the renormalization scale
μR and an intermediate transformation to the SM DR
scheme [27].
Although EFT calculations are usually performed in a

minimal scheme such as MS or its SUSY equivalent DR,
we continue to use the hybrid scheme presented above for
three main reasons: First, we want to combine our direct

detection calculations with our relic density analysis, where
this scheme has proven very reliable. In particular, the on
shell description of the top quark leads to improved
perturbative stability and better fits our supersymmetric
processes and top quark final states in comparison to a
definition in theDR scheme [29]. A second reason is that the
hybrid scheme also leads to improved perturbative stability
for direct detection as described below in Sec. III C.
The last reason is that using this hybrid scheme allows
for simpler comparison of the leading order result with
micrOMEGAs. This is due to fact that both, our calculation and
micrOMEGAs, use the same on shell squark masses calculated
by SPheno as described in Sec. III.

C. Matching of the full and effective theory

This section is devoted to the matching of the full theory,
namely the MSSM, valid at high energies (μhigh ∼ 1 TeV)
onto the effective energy valid at low energies
(μlow ∼ 5 GeV). The tree-level diagrams of the scattering
process ~χ01q → ~χ01q within the MSSM are shown in Fig. 1.
The corresponding amplitudes have to be evaluated at
vanishing relative velocity and mapped onto the yet
unknown Wilson coefficients c1 and c2 of the effective
Lagrangian

Leff ¼ c1Q1 þ c2Q2 ¼ c1χχqqþ c2χγμγ5χqγμγ5q:

ð2:18Þ

We stress that in this convention a factor mq has to be
factored out of c1 when replacing the nuclear matrix
elements via Eq. (2.8). Both of the operators Q1 and Q2

given above lead to an effective four-fermion interaction as
shown in the left diagram of Fig. 2. The Higgs processes
contribute solely to the scalar operator and the Z0 processes
solely to the axial-vector operator. We include only the

FIG. 1. Tree-level processes in the full theory.

FIG. 2. Tree-level process (left) and virtual correction (right) in
the effective theory.
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scalar Higgs bosons h0 and H0 and not the pseudoscalar
Higgs boson A0, since the latter leads to the kinematically
suppressed operator χγ5χqγ5q. The squark processes con-
tribute to both operators. To bring the spinor fields into the
desired order, a Fierz transformation has to be performed in
this case.
The aforementioned mapping onto the Wilson coeffi-

cients is governed by the matching condition. This con-
dition demands that the amplitude of the full theory Mfull
is reproduced by the effective theory at the high scale μhigh.
At tree level we have

Mtree
full ¼! Mtree

eff ¼ ctree1 Qtree
1 þ ctree2 Qtree

2 ; ð2:19Þ

which leads to

ctree1 ¼ αSIq

¼
X

ϕ¼h0;H0

gR~χ ~χ ϕg
L
qqϕ

m2
ϕ

−
1

4

X2
i¼1

gL~χ ~qiqg
R�
~χ ~qiq

m2
~qi
− s

−
1

4

X2
i¼1

gL~χ ~qiqg
R�
~χ ~qiq

m2
~qi
− u

; ð2:20Þ

ctree2 ¼ αSDq ¼ 1

2

gR
~χ ~χ Z0ðgLqqZ0 − gRqqZ0Þ

m2
Z0

þ 1

8

X2
i¼1

jgL~χ ~qiqj2 þ jgR~χ ~qiqj2
m2

~qi
− s

þ 1

8

X2
i¼1

jgL~χ ~qiqj2 þ jgR~χ ~qiqj2
m2

~qi
− u

: ð2:21Þ

In the limit of vanishing relative velocity, the Mandelstam
variables s and u simplify to ðm~χ0

1
�mqÞ2, respectively.

The elementary couplings between three particles a, b
and c are denoted by gabc. Using the chirality projectors
PL=R ¼ ð1 ∓ γ5Þ=2, they can be decomposed into left- and
right-handed parts via

gabc ¼ gLabcPL þ gRabcPR: ð2:22Þ

Explicit expressions for the couplings can be found, e.g., in
Ref. [47]. The tree-level results have been analytically
compared with those implemented in DarkSUSY. Taking into
account that DarkSUSY does not distinguish between s- and
u-channels, we find perfect agreement.
So far we have basically reproduced already available

results. The next step is to improve on the tree-level
calculation by including all OðαsÞ corrections to the
leading operators. The corresponding diagrams within
the full theory are shown in Fig. 3. We distinguish between
propagator corrections (the first row), vertex corrections

(the second and the third row) and box contributions (the
last row).
We have calculated all of the loop amplitudes in full

generality using dimensional reduction. The gluon propa-
gator correction shown as the third diagram in the first row
then vanishes, as it is proportional to the scaleless scalar
integral A0ð0Þ ¼ 0. In the case of the other propagator and
the vertex corrections, we were able to benefit from
previous loop calculations performed in the context of
Ref. [25]. The box amplitudes were calculated from
scratch. These amplitudes lead to a plethora of effective
operators. We keep only the most relevant, namely those of
Eq. (2.18). In case of the gluon boxes, Fierz transforma-
tions are necessary again. Explicit expressions for all
involved loop amplitudes will be given in Ref. [48]. In
contrast to our relic density calculations, the loops are
evaluated at zero relative velocity in the context of direct
detection. This leads to additional problems, namely
vanishing Gram determinants. We illustrate this technical
issue separately in the Appendix.
The propagator and vertex corrections give rise to ultra-

violet divergences. These divergences are removed via
renormalization (cf. Sec. II B), i.e. by adding the correspond-
ing counterterms. A detailed description of the counterterms
involved here is given in Ref. [26]. As we always distinguish
ultraviolet and infrared poles (ϵUV and ϵIR) when evaluating
loop integrals,wewere able to explicitly check the ultraviolet
safety of our calculation.
Having the renormalized amplitudes of the full theory

at hand, we can start with the matching procedure at
NLO. The matching condition remains basically unchanged
and reads

FIG. 3. Virtual corrections in the full theory.
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MNLO
full ¼! MNLO

eff : ð2:23Þ

⇔Mtree
full þM1loop

full ¼! cNLO1 QNLO
1 þ cNLO2 QNLO

2 : ð2:24Þ

In this convention, the full NLO result consists of the tree-
level result and its OðαsÞ one-loop correction. The latter
includes all the virtual corrections depicted in Fig. 3. The
crucial point in Eq. (2.24) is that there is a one-loop
correction to the Wilson coefficients and the effective
operators. We neglect terms of Oðα2sÞ and write

Mtree
full þM1loop

full ¼! ðctree1 þ c1loop1 ÞðQtree
1 þQ1loop

1 Þ
þ ðctree2 þ c1loop2 ÞðQtree

2 þQ1loop
2 Þ

¼ ctree1 Qtree
1 þ ctree2 Qtree

2 þ c1loop1 Qtree
1

þ c1loop2 Qtree
2 þ ctree1 Q1loop

1 þ ctree2 Q1loop
2 :

ð2:25Þ
At Oðα0sÞ, we reproduce the tree-level matching con-

dition Eq. (2.19). At OðαsÞ, we obtain

M1loop
full − ctree1 Q1loop

1 − ctree2 Q1loop
2

¼ c1loop1 Qtree
1 þ c1loop2 Qtree

2 : ð2:26Þ
Before we can calculate theOðαsÞ corrections to theWilson
coefficients, i.e. determine c1loop1 and c1loop2 , we have to
identify the one-loop corrections to the effective operators
Q1loop

1 and Q1loop
2 . These can be written as

Q1loop
1 ¼ ðKEFTV1 þKEFTVC1ÞQtree

1 and ð2:27Þ
Q1loop

2 ¼ ðKEFTV2 þKEFTVC2ÞQtree
2 ; ð2:28Þ

i.e. they can be expressed as the tree-level operators
multiplied with correction factors describing vertex cor-
rections and vertex counterterms in the effective field
theory. The vertex correction in the effective field theory
is depicted on the right of Fig. 2. This allows us to explicitly
write down the one-loop Wilson coefficients as

c1loop1 ¼ αSIq;P þ αSIq;PC þ αSIq;V þ αSIq;VC

þ αSIq;B − ctree1 ðKEFTV1 þKEFTVC1Þ: ð2:29Þ

c1loop2 ¼ αSDq;P þ αSDq;PC þ αSDq;V þ αSDq;VC

þ αSDq;B − ctree2 ðKEFTV2 þKEFTVC2Þ: ð2:30Þ

Here αSIq;P, α
SI
q;PC, α

SI
q;V, α

SI
q;VC and αSIq;B denote the con-

tributions to the spin-independent four-fermion coupling
stemming from the propagator corrections, propagator
counterterm, vertex correction, vertex counterterms and
box diagrams, respectively. The spin-dependent contribu-
tions are labeled analogous. All of these terms will be given
explicitly in Ref. [48].

We stress that αSIq;P þ αSIq;PC, αSIq;V þ αSIq;VC, αSIq;B and
KEFTV1 þKEFTVC1 are separately ultraviolet finite, and the
same holds for the spin-dependent case and the associated
correction factors KEFTV2 þKEFTVC2. However, there are
also infrared divergences involved, which have not been
discussed yet. Although most of the individual terms given
above are infrared divergent, c1loop1 and c1loop2 as a whole are
infrared finite, which is an essential feature of the matching
procedure. The appearance of infrared divergences is con-
nectedwithmassless particles likegluons.These particles are
likewise degrees of freedom in the full and the effective
theory. In otherwords: The infrared regime of both theories is
the same. Whenever there occurs an infrared divergence
in the full theory, the very same infrared divergence occurs
in the effective theory as well, and both cancel during the
matching procedure. In our calculation, this cancellation is
due to the correction factors KEFTV1, KEFTVC1, KEFTV2 and
KEFTVC2 which we list now.
The vertex correction factor KEFTV1 is obtained by

calculating the diagram shown on the right of Fig. 2
involving the effective operator Qtree

1 . We get

KEFTV1 ¼
αsCF

4π
ð4B0 − 2þ 4pbp2ðC0 þ C1 þ C2ÞÞ;

ð2:31Þ
where the two- and three-point functions possess the
arguments B ¼ Bðpb − p2; m2

q; m2
qÞ and C ¼ Cðp2; pb; 0;

m2
q; m2

qÞ. Here the four-momentum of the ingoing quark is
denoted by pb and that of the outgoing quark by p2. In the
limit of vanishing relative velocity, we simply have
p ¼ pb ¼ p2. Moreover, CF ¼ 4=3 denotes the usual color
factor. This vertex correction is algebraically identical to
the Higgs-gluon vertex shown on the very left in the second
row of Fig. 2, which has two important consequences. On
the one hand, the Higgs-gluon vertex completely cancels in
the matching procedure. The gluon is likewise a degree of
freedom in the full and the effective theory and therefore
the corresponding vertex correction occurs in both theories.
It is included in the effective operator, not the Wilson
coefficient. Moreover the correction factor KEFTV1 is ultra-
violet divergent, as it includes the two-point function B0.
To allow for a consistent matching procedure, we have to
renormalize the effective theory in the same way as the full
theory. This means that we have to add a counterterm δc1 to
the four-fermion coupling. This counterterm has to be of
the same form as δgϕqq (with ϕ ¼ h0, H0) and reads

δcL1 ¼ ctree;L1

�
δZm

mq
þ 1

2
δZL

q þ 1

2
δZR�

q

�
; ð2:32Þ

where δZm denotes the mass and δZq the wave function
counterterm. For more details on these counterterms we
refer the reader again to Ref. [26]. The associated right-
handed part of δc1 is obtained by the substitution L ↔ R.
The correction factor KEFTVC1 is then simply given by
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KEFTVC1 ¼
δcL1=c

tree;L
1 þ δcR1 =c

tree;R
1

2
: ð2:33Þ

Remember that ctree1 does not only incorporate Higgs
contributions, but that squark processes contribute as well
[cf. Eq. (2.21)]. Whereas the Higgs-gluon vertex correction
and its associated counterterm completely vanish in the
matching procedure, this is not true for the vertex correc-
tions to the squark processes shown in the third row of
Fig. 3 and their counterterms. However, the infrared
divergences of these corrections and the ones stemming
from the boxes shown in the last row of Fig. 3 are precisely
canceled by the correction factors. This is an important
consistency check of the whole calculation. Thanks to our
generic implementation of loop integrals and the discrimi-
nation between ultraviolet and infrared poles, we could
verify this cancellation explicitly.
We continue with the determination of KEFTV2, i.e. the

vertex correction factor for the spin-dependent operatorQ2.
The associated diagram is shown on the right of Fig. 2
again, the only difference to the previous case is the
included four-fermion coupling. Keeping only the relevant
effective operators, we obtain

KEFTV2 ¼
αsCF

4π
ð2B0 þ 4pbp2ðC0 þ C1 þ C2Þ − 4C00 − 1Þ

ð2:34Þ

where the two- and three-point functions possess the same
arguments as before. The missing piece is the counterterm
δc2, which renders the vertex correction given above
ultraviolet finite. This counterterm is constructed in anal-
ogy to δgZ0qq and reads

δcL2 ¼ ctree;L2

�
1

2
δZSM;L

q þ 1

2
δZSM;L�

q þ αsCF

π

�
: ð2:35Þ

As before, the correction factor KEFTVC2 is obtained via

KEFTVC2 ¼
δcL2=c

tree;L
2 þ δcR2 =c

tree;R
2

2
: ð2:36Þ

Note that we have included the additional finite part αsCF
π to

retain a conventional axial current divergence which is in
agreement with Refs. [12] and [49].6 Moreover we incor-
porate just Standard Model contributions to δZq in this

case. The reason is as follows: In case of the Higgs vertex
corrections including the gluon and the gluino, only the
former is ultraviolet divergent. The whole counterterm
δgϕqq is responsible for the cancellation of this divergence.
As the gluon vertex correction occurs likewise in the
effective theory, we have constructed its associated counter-
term δc1 in complete analogy to δgϕqq. In case of the Z0

vertex corrections including the gluon and the gluino, both
are ultraviolet divergent. The divergences of the first
diagram are removed by the Standard Model part of
δgZ0qq and the latter by the SUSY part of δgZ0qq. During
the matching procedure, the gluon vertex correction and its
corresponding counterterm has to cancel, whereas the
vertex correction including the gluino and its counterterm
contributes to the Wilson coefficient. Hence we only
include Standard Model contributions to the spinor field
counterterms in δc2. This completes our matching calcu-
lation at NLO.

D. Running of effective operators and associated
Wilson coefficients

The matching calculation presented in the last section is
performed at the high scale μhigh ∼ 1 TeV. In contrast, the
nuclear matrix elements are defined at a low scale
μlow ∼ 5 GeV. This is the energy regime we finally aim
to describe with our effective field theory. To connect the
two energy regimes, we have to evolve the effective
operators and associated Wilson coefficients from the high
scale down to the low scale by solving the corresponding
renormalization group equations (RGEs). This part of
the calculation is briefly referred to as “running” and is
presented in this section.
The scale dependence of theWilson coefficients is inverse

to that of the corresponding operators. Therefore it cancels in
the product, which is an essential feature of any operator
product expansion. In the effective Lagrangian introduced in
Eq. (2.18), we have neglected higher-dimensional operators
in our operator product expansion, i.e.

Leff ¼
X∞
i¼1

ciQi ≈ c1χχqqþ c2χγμγ5χqγμγ5qþ � � �

ð2:37Þ

As we are interested only in QCD effects, the running of the
two operators given above is solely determined by their
respective quark parts.
The scalar operator mqqq is scale independent.

As a consequence, the running calculation in the spin-
independent case is rather simple. We have to factor out the
quark mass mqðμhighÞ from the coefficient c1. This quark
mass has to be evolved down to the low scale μlow in the
usual way, i.e. by solving its RGE. We then replace the
combination mqðμlowÞqq via Eq. (2.8).

6The results given in Ref. [49] were obtained using the MS
scheme and dimensional regularization. Transferring results from
this scheme to the DR scheme and dimensional reduction—which
we are using—is nontrivial in general. Discrepancies may arise
due to the treatment of γ5 in D dimensions. However, these
problems should occur at the three-loop order for the first time and
do neither affect the finite contribution included in Eq. (2.35) nor
the running of the axial-vector operator presented in the next
section [50].
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In contrast to that, the renormalization and the resulting
running of the axial-vector operator is not trivial. This
calculation has first been performed in Ref. [49]. The
relevant renormalization constant reads

ZSinglet
A ¼ 1þ αs

π
CF −

1

ϵUV

�
αs
4π

�
2
�
20

9
nf þ

88

3

�
þOðα3sÞ;

ð2:38Þ

where nf denotes the number of active flavors and an
additional finite term has been included to cure the axial
anomaly. It is precisely this term which has been included
in Eq. (2.35) as well. Finite terms of orderOðα2sÞ have been
neglected, as they are irrelevant for the running up to the
desired order. Given this constant, we can calculate the
corresponding anomalous dimension via

γSingletA ¼ ðZSinglet
A Þ−1 d

d log μ
ZSinglet
A ð2:39Þ

and obtain

γSingletA ¼
�
αs
4π

�
2

16nf þOðα3sÞ: ð2:40Þ

To arrive at this result one has to insert the RGE of the
strong coupling constant including its divergent part,
namely

dg
d log μ

¼ −ϵUVgþ βðgÞ; ð2:41Þ

where βðgÞ is the usual QCD beta function

βðgÞ
g

¼ −β0
αs
4π

þOðα2sÞ ¼ −
�
11 −

2

3
nf

�
αs
4π

þOðα2sÞ:

ð2:42Þ

The remaining step is to determine the running of the
Wilson coefficient c2 via

d
d log μ

c2ðμÞ ¼ γSingletA c2ðμÞ: ð2:43Þ

We finally obtain

c2ðμlowÞ
c2ðμhighÞ

¼ exp

�
2nfðαsðμhighÞ − αsðμlowÞÞ

β0π

�
; ð2:44Þ

which agrees with the result given in Ref. [12]. Note that in
general different operators may mix under renormalization.
This is fortunately not the case here, but it will happen
when one includes e.g. the gluon operator GμνGμν [12].

III. NUMERICAL RESULTS

In this sectionwe describe our numerical setup andpresent
numerical results for three selected reference scenarios.
These scenarios are defined in a phenomenological
MSSM (pMSSM) with eleven free parameters, which we
have already used in our previous analyses. This setup was
designed for relic density calculations including light stops
[26–28]. As it has proven sufficient for finding interesting
direct detection scenarios, we stick to it for consistency and
keep inmind, that a more specific pMSSM setupmay lead to
considerably larger loop contributions.
The aforementioned eleven free parameters are as follows:

The Higgs sector is fixed by the higgsino mass parameter
μ, the ratio of thevacuumexpectationvalues of the twoHiggs
doublets tan β, and the pole mass of the pseudoscalar Higgs
boson mA. The gaugino sector is defined by the bino (M1),
wino (M2) and gluino (M3) mass parameters, which in our
setup are not related through any assumptions stemming
from grand unified theories. Moreover we define a common
soft SUSY-breaking mass parameter M ~q1;2 for the first- and
second-generation squarks. The third-generation squark
masses are controlled by the parameterM ~q3 associated with
sbottoms and left-handed stops and by the parameterM ~u3 for
right-handed stops. The trilinear coupling in the stop sector is
given byAt, while the trilinear couplings of the other sectors,
includingAb, are set to zero. Since the slepton sector is not at
the center of our attention, it is parametrized by a single soft
parameter M ~l. The most interesting parameters for the
following discussion are those determining the neutralino
decomposition (μ, M1 and M2) and M ~q1;2 .
These eleven pMSSM input parameters are defined in the

DR scheme at the scale ~M ¼ 1 TeV according to the SPA
convention [51]. We identify this scale with our renormal-
ization scale μR, which simultaneously corresponds to the
high scale μhigh of our EFT calculation. The input parameters
are handed over to the numerical package SPheno [52] to
calculate the associated physical spectrum.
We neglect the masses of the quarks of the first two

generations in the kinematics to improve numerical stability.
On the other hand, we keep those masses in the Yukawa
couplings to allow forHiggs exchange processes. Remember
that the Yukawa masses are basically factored out of the
amplitudes and replaced by the nuclear matrix elements via
Eq. (2.8). It has been checked explicitly that the effect of this
simplification on the final results is negligible.
Our three reference scenarios are listed in Table II.

Table III contains the corresponding relevant gaugino and
squark masses7 as well as the obtained mass of the lightest
neutral (and thus SM-like) Higgs boson, the neutralino relic

7We are not showing the squark masses m ~u2 , m ~d2
, m~c1 , m~c2 ,

m~s1 and m~s2 . However, as we are working with a common soft
mass parameter M ~q1;2, all squark masses of the first two
generations are roughly the same.
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density computed at tree level with micrOMEGAs and
the important branching ratio of the rare B-meson decay
b → sγ computed with SPheno. Moreover, Table IV lists the
most relevant (co)annihilation channels for determining the
relic density. Other important parameters are the neutralino
mixing angles, i.e. its bino, wino and higgsino admixture.
As the phenomenology of the three reference scenarios is to
a large extent driven by these parameters, we explore them
in more detail in the following. We devote an individual
section to each scenario.

A. Scenario A—Bino-wino dark matter

We start by investigating scenario A. This scenario has
been introduced in Ref. [25] and studied again in Ref. [29].
Its main feature are sizeable gaugino coannihilation con-
tributions to the relic density calculation as listed in
Table IV. The direct detection in this scenario is in no
way special, and we include this scenario as an arbitrary
conservative case.
The decomposition of the neutralino in dependence of

the pMSSM input parameterM1 is shown in Fig. 4. As long
as M1 < M2, the neutralino is mostly bino. It turns into

mostly wino when M1 > M2 ¼ 766 GeV while the higg-
sino content always stays small due to M1, M2 < μ. Note
that scenario A itself, i.e. the cosmologically preferred
region, sits near the turnover (M1 ¼ 731 GeV). This
situation is encountered in many pMSSM scenarios and
clearly calls for a general treatment of the neutralino
admixture. We also show the associated neutralino mass
on the top of each plot as a derived parameter. This
connects our theoretical predictions to experimental exclu-
sion limits, which are usually given in dependence of the
WIMP mass. Note that the correspondence between M1

and m~χ0
1
is basically 1∶1 for M1 up to 800 GeV, but for

larger values ofM1 the neutralino becomes mostly wino, so
that its mass is almost independent of M1.
We continue with the discussion of the neutralino-

nucleon cross sections, which are displayed in Fig. 5.
The upper left plot of Fig. 5 illustrates the spin-independent

TABLE II. pMSSM input parameters for three selected reference scenarios. All parameters except tan β are given in GeV.

tan β μ mA M1 M2 M3 M ~q1;2 M ~q3 M ~u3 M ~l At

A 13.4 1286.3 1592.9 731.0 766.0 1906.3 3252.6 1634.3 1054.4 3589.6 −2792.3
B 13.7 493.0 500.8 270.0 1123.4 1020.3 479.9 1535.5 836.7 3469.4 −2070.9
C 7.0 815.0 1452.8 675.3 1423.4 1020.3 809.9 1835.5 1436.7 3469.4 −2670.9

TABLE III. Gaugino and squark masses and other selected observables corresponding to the reference scenarios of Table II. All
masses are given in GeV.

m~χ0
1

m~χ0
2

m~χ�
1

m~χ�
2

m ~u1 m ~d1
m~t1 m ~b1

m~g mh0 Ω~χ0
1
h2 BRðb → sγÞ

A 738.1 802.4 802.3 1295.1 3270.9 3271.6 993.9 1622.9 2049.9 126.3 0.1244 3.0 × 10−4

B 265.7 498.4 495.7 1135.3 549.5 555.7 802.9 1531.0 1061.2 124.8 0.1199 3.6 × 10−4

C 669.2 826.6 819.6 1438.9 865.0 868.4 1389.1 1832.3 1090.7 125.2 0.1179 3.3 × 10−4

TABLE IV. Most relevant (co)annihilation channels in the
reference scenarios of Table II. Channels which contribute less
than 1% to the thermally averaged cross section and/or are not
implemented in our code are not shown.

A B C

~χ01 ~χ
0
1 → tt̄ 1% 10% 52%

bb̄ 9% 78% 40%

~χ01 ~χ
0
2 → tt̄ 3%

bb̄ 23%

~χ01 ~χ
�
1 → tb̄ 43%

Total 79% 88% 92%
FIG. 4. Neutralino decomposition in scenario A.
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neutralino-proton cross section. This quantity has been
calculated by micrOMEGAs (orange solid line), our code at
tree level (black solid line) and our code including full
OðαsÞ corrections to the dominant effective operators (blue
solid line). The shift between our tree-level calculation and
micrOMEGAs is mainly due to different nuclear input values
(cf. Table I). After adjusting the nuclear input, our tree-level
calculation agrees quite well with micrOMEGAs, which is
shown by the dotted black line. In absolute numbers, as
expected, the neutralino-proton cross section is rather small
(10−47–10−46 cm2), as long as the neutralino is mostly
bino. The tree-level couplings to Higgs bosons are sup-
pressed in this case, and so are the squark processes
because of the heavy squark masses (cf. Table III). The
shift between our tree-level and our full NLO calculation is
of similar size as the shift between our tree level and
micrOMEGAs. In the present case, the first shift is mainly
caused by SUSY-QCD corrections to the Higgs exchange
process including third generation squarks as the other
squarks are much heavier.

Furthermore we show the improved8 tree-level calcu-
lation of micrOMEGAs as the green dotted line. Among other
improvements, this choice is supposed to replace the heavy
quark contributions by the gluon one-loop processes as
given in Ref. [16]. However, we could not find a significant
difference in comparison to the pure tree-level calculation
in any scenario. Therefore, the green dotted and orange full
lines are indistinguishable also in this plot.
We also show the resulting relic density obtained with

micrOMEGAs as the dashed orange line (right ordinate). Note
that this curve is roughly inverse to the cross section curves.
This correlation is not completely unexpected. Larger
gaugino (co)annihilation cross sections into final quark
states leading to a smaller relic density are linked to larger
neutralino-nucleon cross sections. The crucial condition for
this correlation is that the neutralinos annihilate dominantly

FIG. 5. Spin-independent (top) and spin-dependent (bottom) neutralino-nucleon cross sections in scenario A for protons (left)
and neutrons (right).

8More precisely, the green dotted line corresponds to the
choice MSSMDDTestðloop¼1;…Þ, whereas the orange solid
line corresponds to MSSMDDTestðloop¼0;…Þ.
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into quark final states. In the present case this is given for
M1 > 200 GeV. For smaller M1, neutralinos prefer to
annihilate into electroweak final states, and the resulting
bump in the relic density has no counterpart in the
neutralino-nucleon cross section. The orange vertical band
marks the region of M1 leading to a relic density compat-
ible with the Planck limits as given in Eq. (1.1). We
investigate this region in greater detail later.
The upper right plot of Fig. 5 shows the spin-independent

neutralino-neutron cross section. No major difference in
comparison to the proton case is found in this scenario, since
the isospin-dependent contributions from first-generation
quarks are suppressed by large squark masses.
We continue with the lower left plot of Fig. 5 where the

spin-dependent neutralino-proton cross section is given.
Here the blue and black solid lines completely overlap,
signalizing that the NLO corrections are negligible. This is
indeed the case in this scenario. Remember that only light
quarks (u, d, s) and corresponding squarks contribute to the
spin-dependent cross section (cf. Sec. II A). These squarks
are very heavy in this scenario (cf. Table III) and loops
including them are strongly suppressed. The small shift
(∼þ7%) between our results and micrOMEGAs is not due to
the nuclear input values this time—by default we are using
the same input in the spin-dependent case. It is rather due
to the running of the operator and associated Wilson
coefficient described in Sec. II D, which is not implemented
in micrOMEGAs. If we deactivate the running in our code, we
find perfect agreement with micrOMEGAs. The spin-depen-
dent neutralino-neutron cross section is shown in the lower
right plot of Fig. 5. As before, no major difference in
comparison to the proton case is found in this scenario.
We take a closer look at the cosmologically preferred

region now, i.e. we zoom into the region 700 GeV < M1 <
800 GeV of the upper left plot of Fig. 5. The result is
shown in Fig. 6. Apart from the previously introduced three

solid lines, we depict the relic density obtained with
micrOMEGAs (orange dashed line), our code at tree level
(black dashed line) and our code at NLO (blue dashed line).
These three calculations lead to different cosmologically
preferred regions as indicated by the orange, black and blue
vertical band, respectively. Assuming that the neutralinos
solely account for dark matter, we can combine these
calculations to constrain the pMSSM parameter space and
to precisely predict the resulting neutralino-nucleon cross
section. This corresponds to identifying the intersections of
the vertical bands and solid lines of the same color. The
results are given in Table V where we also list the relative
shifts of the micrOMEGAs and our full NLO result with
respect to our tree-level calculation. The shifts are in
opposite directions and of similar size in this case.

B. Scenario B—Bino-higgsino dark matter

When varying M1 in scenario B, the neutralino decom-
position changes again, this time from mostly bino into
mostly higgsino as shown in Fig. 7. The turning point is at
M1 ∼ μ ∼ 500 GeV. The neutralino mass depends only
weakly on M1 for larger values of M1. In comparison to
the previous scenario, the remaining dependence is larger
which is in agreement with the softer admixture transition
(compare Figs. 4 and 7). This decomposition and the
relatively light squarks (cf. Table III) are the essential
phenomenological properties of this scenario.

FIG. 6. Combined relic density and direct detection calculation
in scenario A.

TABLE V. Resulting M1 and spin-independent neutralino-
proton cross section when combining direct detection and relic
density routines in scenario A.

M1 [GeV] σSIp [10−46 cm2] Shift of σSIp

micrOMEGAs 731 1.68 −15%
Tree level 734 1.98
Full NLO 733 2.26 þ14%

FIG. 7. Neutralino decomposition in scenario B.
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The neutralino-nucleon cross sections for scenario B are
shown in Fig. 8. The first thing to note is that there are three
vertical orange bands now, corresponding to three regions
which lead to a relic density compatible with Eq. ([1]). Apart
from scenario B itself (M1 ¼ 270 GeV), there is a second
line on the other side of thepeak of the dashed orange line and
a third one at M1 ∼ 475 GeV. The peak is due to a Higgs
resonance caused by 2m~χ0

1
∼mH0, mA0 ∼ 500 GeV, which

heavily increases the neutralino cross section into bottom
quarks and in turn heavily reduces the resulting relic density.
Bottomquarks are favored over top quarks, as tan β ¼ 13.7 is
rather large here. The peak does not show up in the
neutralino-nucleon cross sections. This is as expected, as
the Higgs process has turned from a resonant s-channel to a
nonresonant t-channel. The third vertical band lies precisely
in the region where the neutralino admixture changes from
bino to higgsino, stressing again the necessity to treat the
general neutralino admixture.
The spin-independent nucleon cross sections are shown

in the upper plots of Fig. 8. Once again, no major difference

is found between the proton and neutron case. The relative
shifts between our tree-level calculation (black solid line)
and micrOMEGAs (orange solid line) or our NLO calculation
(blue solid line) are roughly as before. No significant
change is found when activating the improved tree-level
calculation of micrOMEGAs (green dotted line). The agreement
between our tree-level calculation using the nuclear input
values of micrOMEGAs (black dotted line) and the micrOMEGAs

result is slightly worse. The remaining discrepancy is mainly
due to the use of effective couplings in micrOMEGAs and a
different treatment of the top quark mass and of the
associated stop sector (cf. Sec. II B). Moreover
micrOMEGAs does not kinematically distinguish between
the s- and the u-channels shown in Fig. 1. Although these
differences are present in general, the resulting discrepancy
depends on the concrete scenario. In this scenario they lead to
a small, but visible shift, whereas they do not in the other two
scenarios.
New features show up in the spin-dependent case, i.e. in

the lower plots of Fig. 8. Here, the proton and neutron cross

FIG. 8. Spin-independent (top) and spin-dependent (bottom) neutralino-nucleon cross sections in scenario B for protons (left)
and neutrons (right).
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sections differ by almost one order of magnitude in the
small M1 regime. Moreover the tree-level and NLO results
clearly separate in the proton case for small M1. This large
splitting is absent in the neutron case. The reason is as
follows: In the small M1 regime, the neutralino is mostly
bino (cf. Fig. 4). Moreover, the squarks of the first two
generations are rather light in this scenario (cf. Table III).
The former leads to a suppression of the usually dominant
Z0 processes, while the latter kinematically favors the
squark processes. As a result, the squark processes con-
tribute sizeably in the smallM1 regime. In contrast to the Z0

processes, these processes strongly depend on the involved
quark flavor and are sensitive to different choices of ðΔqÞN
as given in Eqs. (2.14) and (2.15). In the case of the proton,
this leads to a partial cancellation of the individually large
squark contributions, which is much less pronounced in the
neutron case. This explains the difference between the
proton and neutron cross sections. The rather large impact
of the NLO corrections on the proton cross section has a
related origin. As the leading squark contributions cancel in
the proton case, the cross section becomes more sensitive to
the subleading virtual corrections. Due to the rather light
squark masses in this scenario, these virtual corrections are
not negligible. For largeM1, the Z0 processes dominate and
the virtual corrections are less important.
We take a closer look at the cosmologically preferred

region around the Higgs resonance in the case of the spin-
dependent neutralino-proton cross section in Fig. 9. As
before, we are showing the resulting relic density obtained
with micrOMEGAs (orange dashed line), our tree-level
calculation (black dashed line) and our NLO calculation
(blue dashed line). The vertical bands of the respective
colors correspond to the M1 regions leading to a relic
density compatible with Eq. (1.1). These bands are very
thin here, as the relic density is changing rapidly near
the resonance, which allows to effectively constrain the

pMSSM parameter space. Subsequently we can read off the
predicted cross section. The results are shown in Table VI.
As we are using the same nuclear input as micrOMEGAs in

the spin-dependent case, the shift between our tree-level
prediction and micrOMEGAs is smaller than in scenario A,
where we investigated the spin-independent neutralino-
proton cross section. Note that the relative position of the
vertical bands, i.e. the relic density constraint, can influence
this shift in both directions. The effect of reading off the
cross section at different M1 reduces the shift in the first
case (M1 ¼ 226 GeV and M1 ¼ 228 GeV) and increases
the shift in the second case (M1 ¼ 270 GeV and
M1 ¼ 267 GeV), as the order of the bands has changed.
The exact opposite occurs when comparing our tree-level
and our NLO results. Here both relative shifts are large,
reaching almost −40%.

C. Scenario C—Higgsino-bino dark matter

In scenario C, we vary the higgsino mass parameter μ,
which changes the neutralino decomposition from higgsino
to bino as shown in Fig. 10. The turning point is at
μ ∼M1 ∼ 675 GeV. Concerning the neutralino admixture,
scenario C can be understood as a mirrored version of
scenario B (cf. Fig. 7).

FIG. 9. Combined relic density and direct detection calculation
in scenario B.

TABLE VI. Resulting M1 and spin-dependent neutralino-
proton cross section when combining direct detection and relic
density routines in scenario B.

M1 [GeV] σSDp [10−43 cm2] Shift of σSDp

micrOMEGAs 226 2.78 þ3%
Tree level 228 2.70
Full NLO 227 1.65 −39%
micrOMEGAs 270 4.14 þ8%
Tree level 267 3.84
Full NLO 269 2.47 −36%

FIG. 10. Neutralino decomposition in scenario C.
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The neutralino-nucleon cross sections in scenario C are
shown in Fig. 11. As the slope of the relic density (orange
dashed line) is smaller than in the previous scenarios, the
region compatible with the Planck limits is larger, which
leads to a thicker vertical orange band. No essential new
features are found in the spin-independent cross sections
shown in the upper plots of Fig. 11. In particular, the
relative shift between our tree-level calculation (black solid
line) and micrOMEGAs (orange solid line) for a given M1 is
roughly as big as the shift between our tree-level and our
NLO calculation (blue solid line) amounting to ∼ −16%
and ∼þ13%, respectively. No significant difference is
found between the proton and the neutron case.
Similar to scenario A, in scenario C the dark matter

annihilates into electroweak final states for small to
moderate values of the μ-parameter. When the value of
the μ-parameter increases the quark final states start to
dominate. This fact is reflected in Fig. 11 where the direct
detection cross section is anticorrelated with the relic
density only for large μ where the dark matter annihilates
into quarks.

In contrast to the spin-independent case where the results
were insensitive to the proton-neutron difference, the spin-
dependent cross sections shown in the lower plots of
Fig. 11 obviously depend on the nucleon type. This
difference is caused by a similar phenomenon as the one
described in the previous section. In the large μ region, the
neutralino becomes mostly bino (cf. Fig. 10), which
suppresses the Z0 processes. Although the squarks are
not as light as in scenario B here (cf. Table III), the squark
processes are kinematically favored again. Remember that
the squark processes occur in the s- and u-channel. The
denominators of the tree-level processes read s=u −m2

~qi
which simplifies to ðm~χ0

1
�mqÞ2 −m2

~qi
in the limit of

vanishing relative velocity. Hence it is not the total squark
mass, but the neutralino-squark mass difference that mat-
ters. This difference decreases with increasing μ. As a
result, the squark processes contribute sizeably to the spin-
dependent cross sections for large μ. These processes
depend on the involved flavor and in turn the chosen
nuclear input values as given in Eqs. (2.14) and (2.15).

FIG. 11. Spin-independent (top) and spin-dependent (bottom) neutralino-nucleon cross sections in scenario C for protons (left) and
neutrons (right).
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In the case of the proton, we encounter a destructive
interference of the individual terms, which leads to the
drop observed at μ ∼ 850 GeV. Here the associated four-
fermion coupling changes its sign and the resulting cross
section vanishes. A similar situation would be encountered
in the neutron case for larger values of μ. However, as this
region leads to a too large relic density, we are not
investigating this in more detail.
Instead, we zoom into the region 700 < μ < 900 GeV

and analyze the spin-dependent neutralino-proton cross
section in Fig. 12. As before, we are showing the resulting
relic density obtained with micrOMEGAs (orange dashed
line), our tree-level (black dashed line) and our NLO
routines (blue dashed line). These three calculations lead
to different regions compatible with the Planck limits, as
indicated by the vertical bands of the corresponding colors.
The bands are broader than before, as the relic density is
increasing less rapidly when changing μ. Note that the blue
and orange bands overlap to a large extent, which signals
that the effective couplings used in the relic routines of
micrOMEGAs are able to approximate the dominant NLO
contributions quite well in this scenario. This may happen,
but is not necessarily the case, as studied e.g. in Ref. [25].
On the other hand, micrOMEGAs does not include radiative
corrections to the spin-dependent cross section. Hence the
orange solid line is closely following the black solid line.
As mentioned before, the remaining difference is due to the
running of the operator and associated Wilson coefficient.
It is again interesting to combine the relic density and

direct detection calculations. Our tree-level and NLO
routines lead to different preferred regions along the μ
axis. Simultaneously the shift between the cross section
obtained at tree level and at NLO is very large for a given μ
(more than −50% near the drop). However, when combin-
ing both calculations these effects cancel each other. This is
not the case for the comparison of micrOMEGAs with our

tree-level result, where micrOMEGAs predicts a larger cross
section.
The aforementioned regions of μ and the corresponding

cross sections are listed in Table VII. The broader vertical
bands result in a range of allowed μ values and an
associated range of cross sections. Note that these ranges
exist in principle in every scenario. However, as they are
very small in the previous scenarios we omitted them for
simplicity. The shifts given in Table VII are exemplary and
have been obtained by combining the mean values of the
cross sections.
Before concluding, we take a small detour and briefly

comment on the renormalization scheme dependence. As
we have described in Sec. II B, we are working with a
hybrid on shell=DR scheme. In particular the squark
masses of the first two generations are treated on shell
just like in micrOMEGAs. Our code optionally also supports a
pure DR scheme. When studying the differences between
the two schemes, the spin-dependent neutralino-neutron
cross section shown in the lower right plot of Fig. 11 has
proven very useful. This plot is shown again in Fig. 13, this
time using a pure DR scheme. No visible differences
between the two plots occur for small μ. The virtual
corrections to the spin-dependent cross section are negli-
gible in this regime which is not affected by the choice of
the scheme. For larger values of μ, our tree-level result

FIG. 12. Combined relic density and direct detection calcu-
lation in scenario C.

TABLE VII. Resulting μ and spin-dependent neutralino-proton
cross section when combining direct detection and relic density
routines in scenario C.

μ [GeV] σSDp [10−43 cm2] Shift of σSDp

micrOMEGAs 815–821 1.80–2.43 þ63%
Tree level 823–829 1.06–1.53
Full NLO 813–819 1.08–1.62 þ4%

FIG. 13. Spin-dependent neutralino-neutron cross section in
scenario C using a pure DR scheme.
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(black solid line)—now using DR squark masses—clearly
separates from micrOMEGAs (orange solid line)—still using
on shell squark masses—which has previously not been the
case (cf. Fig. 11).
Remember that the cross section in this region is heavily

influenced by the squark processes as explained in the
beginning of this section. These processes benefit from the
decreasing neutralino-squark mass difference appearing in
the denominators of the corresponding propagators. This
mass difference is sensitive to the choice of the scheme. To
investigate this in greater detail, we write the scale-
independent on shell squark mass mOS

~q as a sum of two
individually scale-dependent terms, the scale-dependent

DR massmDR
~q ðμRÞ and an additional finite term resumming

virtual corrections Δm ~qðμRÞ,

mOS
~q ¼ mDR

~q ðμRÞ þ Δm ~qðμRÞ: ð3:1Þ

If we replace the on shell squark masses by their smaller
DR masses, i.e. if we discard the finite Δm ~qðμRÞ terms, the
neutralino-squark mass difference decreases even further.
This leads to the observed steep drop of our tree-level
result. However, at NLO this effect diminishes again and
the blue lines shown in the lower right plot of Fig. 11 and in
Fig. 13 roughly agree. The reason behind that is that the
leading corrections incorporated in Δm ~qðμRÞ reappear
again, this time as virtual corrections to the squark
propagators. In other words, the tree-level result heavily
depends on the definition of the squark mass in this special
situation, but the NLO result is much more stable. The main
difference between the two schemes is that the virtual
corrections are partially included at tree level in the on shell
mass in the first case, whereas they show up as large
propagator corrections in the second case. We prefer the
first scheme, which leads to smaller virtual corrections and
an improved perturbative stability. Let us finally mention
that the resulting differences between the two schemes in
other cases, i.e. for other cross sections, are less pro-
nounced. A similar study in the context of the relic density
can be found in Ref. [29].

IV. CONCLUSION

In this paper, we presented a NLO SUSY-QCD calcu-
lation for the scattering of neutralino dark matter off of the
partonic constituents of nucleons, which required a novel
tensor reduction method of loop integrals with vanishing
relative velocities and Gram determinants. We consistently
matched these one-loop corrections to the scalar and axial-
vector operators, which govern the spin-independent and
spin-dependent scattering processes in the effective field
theory approach. As a result, the operators and Wilson
coefficients acquired a scale dependence, which was taken
into account by applying renormalization group running to

the Wilson coefficients. Our formalism is valid for general
compositions of bino, wino, or higgsino dark matter.
We investigated three benchmark scenarios, which sat-

isfy current Higgs mass, relic density, flavor-changing
neutral current and direct SUSY particle search constraints
from the LHC, but which were not tuned to be particularly
sensitive to the new NLO corrections for direct detection.
Despite the fact that the first- and second generation squark
masses were at the TeV scale, we observed corrections that
were of similar size or in some cases larger than the
currently estimated nuclear uncertainties. This could be
explained by small neutralino-squark mass differences
governing the propagator denominators at low velocity.
In general, large corrections can be expected in the spin-
independent case for Higgs bosons coupling to winos and
heavy quarks, in the spin-dependent case for Z-bosons
coupling to higgsinos and light (potentially also heavy)
quark flavors, and in both cases from squarks with small
masses or mass differences or scenarios with destructive
interference at tree level. In the first case, our calculation is
complementary to the explicit generation of heavy quarks
from gluon operators at one loop, similarly to the com-
plementarity of variable and fixed flavor schemes that are
both employed in deep-inelastic scattering. The calculation
for gluon operators has been performed previously else-
where; its implementation in DM@NLO and a comparison of
the two approaches is left for future work, as is a numerical
study for light or nearly neutralino mass-degenerate
squarks.
Through the implementation of direct detection at NLO

as a second dark matter observable in DM@NLO, consistent
investigations of correlations between direct detection and
the relic density at NLO are now possible. First examples
have been given in this paper in the three mentioned
reference scenarios. Systematically, shifts in the extracted
dark matter mass from NLO corrections to the relic density
implied different NLO corrections to be expected in direct
detection experiments.
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APPENDIX: TENSOR REDUCTION FOR
VANISHING GRAM DETERMINANT

In the course of the DM@NLO project, we have computed
a large collection of loop integrals and associated special
cases in generic form. In addition, we always distinguish
between infrared and ultraviolet divergences. As these
divergences have to vanish when determining physical
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observables, this discrimination allows for powerful checks
of our calculations. Hence it is desirable to use the same
thoroughly tested routines for the new direct detection
calculation. However, in the context of direct detection, all
the amplitudes are evaluated at zero momentum transfer.9

This causes problems for the tensor reduction of loop
amplitudes which we employ [54].
In this Appendix we present our alternative approach,

which is partially based on Ref. [55]. To keep the
discussion transparent and to stress the general idea, we
restrict ourselves to the simple case of determining the
tensor coefficients C1 and C2. All other necessary tensor
coefficients can be worked out analogously.
We start by setting up our notation. The scalar and tensor

integrals relevant for our discussion are defined via

B0ðp1; m2
0; m

2
1Þ ¼

ð2πμRÞ4−D
iπ2

Z
dDq

1

D0D1

; ðA1Þ

Bμðp1; m2
0; m

2
1Þ ¼

ð2πμRÞ4−D
iπ2

Z
dDq

qμ
D0D1

; ðA2Þ

C0ðp1; p2; m2
0; m

2
1; m

2
2Þ ¼

ð2πμRÞ4−D
iπ2

Z
dDq

1

D0D1D2

;

ðA3Þ

Cμðp1; p2; m2
0; m

2
1; m

2
2Þ ¼

ð2πμRÞ4−D
iπ2

Z
dDq

qμ
D0D1D2

;

ðA4Þ

Cμνðp1; p2; m2
0; m

2
1; m

2
2Þ ¼

ð2πμRÞ4−D
iπ2

Z
dDq

qμqν
D0D1D2

:

ðA5Þ

Here μR denotes the renormalization scale which has been
introduced to fix the mass dimension of the integrals. The
denominators are given by Di ¼ ðqþ piÞ2 −m2

i þ iϵ with
p0 ¼ 0. The idea of the tensor reduction method is to
decompose the tensor integrals into a linear combination of
all possible Lorentz structures accompanied by yet
unknown tensor coefficients. Omitting the arguments, we
have

Bμ ¼ p1;μB1; ðA6Þ

Cμ ¼ p1;μC1 þ p2;μC2; ðA7Þ

Cμν ¼ gμνC00 þ p1;μp1;νC11 þ p2;μp2;νC22

þ ðp1;μp2;ν þ p2;μp1;νÞC12: ðA8Þ

The tensor coefficients are obtained by multiplying
both sides with the available Lorentz invariants. In this
way, the tensor integrals are reduced to a combination
of scalar integrals. When determining C1 and C2 we
have to solve a set of linear equations which results in

�
C1

C2

�
¼ A−1

�
R1

R2

�
¼ 1

detA

�
p2
2 −p1p2

−p1p2 p2
1

��
R1

R2

�
;

ðA9Þ

where we have introduced

detðAÞ ¼ p2
1p

2
2 − ðp1p2Þ2; ðA10Þ

R1 ¼
1

2
ðB0ð0; 2Þ − B0ð1; 2Þ − f1C0Þ; ðA11Þ

R2 ¼
1

2
ðB0ð0; 1Þ − B0ð1; 2Þ − f2C0Þ; ðA12Þ

fi ¼ p2
i −m2

i þm2
0 with i ¼ 1; 2: ðA13Þ

Furthermore we define the shorthand notation B0ði; jÞ ¼
B0ðpj − pi;m2

i ; m
2
jÞ, which we use analogously for B1.

The method illustrated above breaks down when the
matrix A is not invertible, i.e. when detðAÞ vanishes.
However, instead of using Eq. (A9) for determining the
tensor coefficients C1 and C2, we can assume that
these coefficients still exist and express C0 in terms of
two-point functions by writing p2

2R1 − p1p2R2 ¼ 0 and
−p1p2R1 þ p2

1R2 ¼ 0 and solving these (equivalent)
equations for C0.
The main idea of Ref. [55] is to repeat this procedure

for every tensor rank successively. We can write
down the expressions determining the tensor coefficients
of second rank, i.e. C00, C11, C12 and C22. The ultraviolet
divergent coefficient C00 is not directly10 affected by
problems of vanishing Gram determinants and found
to be

C00 ¼
m2

0C0

D − 2
þ B0ð1; 2Þ þ f1C1 þ f2C2

2ðD − 2Þ : ðA14Þ

In contrast, the remaining tensor coefficients can not be
obtained via standard tensor reduction for vanishing
Gram determinant. Instead of that, the corresponding
equations can be used to determine the tensor equations

9To determine the relic density, only cross sections including a
finite relative velocity are needed, as those with zero relative
velocity are weighted by zero in the thermal averaging procedure.

10The coefficient C00 is indirectly plagued by problems in the
limit of a vanishing Gram determinant, as it is composed of the
problematic coefficients C1 and C2.
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of rank one, i.e. C1 and C2. The result can be written in
compact form as

�
C1

C2

�
¼ Z−1

i

�
R3;i

R4;i

�
with i ¼ 1; 2: ðA15Þ

The abbreviations used here are

R3;i ¼ xi1

�
B1ð1; 2Þ þ B0ð1; 2Þ −

2m2
0

D − 2
C0

−
1

D − 2
B0ð1; 2Þ

�
þ xi2ðB1ð0; 1Þ þ B1ð1; 2Þ

þ B0ð1; 2ÞÞ; ðA16Þ

R4;i ¼ xi1ðB1ð0; 2Þ − B1ð1; 2ÞÞ

þ xi2

�
−B1ð1; 2Þ −

2m2
0

D − 2
C0 −

1

D − 2
B0ð1; 2Þ

�
;

ðA17Þ

Zi ¼
�
Yi þ xi1

D−2 f1
xi1
D−2 f2

xi2
D−2 f1 Yi þ xi2

D−2 f2

�
with

Yi ¼ xi1f1 þ xi2f2 and

�
p2
2 −p1p2

−p1p2 p2
1

�

¼
�
x11 x12
x21 x22

�
: ðA18Þ

To summarize, the presented method allows to determine
the tensor coefficients of rank n by investigating the
equations for tensor coefficients of rank nþ 1 in the limit
of vanishing Gram determinant. This works in an algo-
rithmic manner. In comparison to the standard tensor
reduction method, the expressions are more lengthy.
However, note that the algebraic form of Eqs. (A9) and
(A15) is the same. One might ask what happens when
detðZiÞ vanishes. This is of interest, as we precisely run into
this situation in the course of our direct detection calcu-
lations when evaluating e.g. the three-point function
C0ðp; p;m2

0; m
2
1; m

2
2Þ.

There are basically three ways to proceed. First, note that
there are actually two sets of equations hiding behind

FIG. 14. Numerical stability of the three-point tensor coefficients in the limit v → 0 or equivalently t → 0.
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Eq. (A15). In some lucky cases it might happen that only
one variant fails while the other is still working. The second
possibility is to apply l’Hôpital’s rule without encountering
detðZiÞ again. This is an improvement in comparison to the
standard tensor reduction method, where detðAÞ usually
reappears when taking the limit.
We took a closer look at the problematic cases involved

in our calculation and found a third way out of this
dilemma. We illustrate this by referring to the three-point
function C0ðp; p;m2

0; m
2
1; m

2
2Þ. Remember that p1 ¼ p2 ¼

p is a stronger condition than just p2
1 ¼ p2

2 ¼ p2 which
happens frequently for identical external particles. The
crucial observation is that the tensor coefficients C1 and C2

are no longer uniquely defined in this situation; only their
sum Ca ¼ C1 þ C2 is. Instead of Eq. (A8), we get

Cμ ¼ p1;μC1 þ p2;μC2 → pμðC1 þ C2Þ ¼ pμCa: ðA19Þ

It is precisely this combination which remains in all the
amplitudes in the limit p1 → p2. Hence we replace this sum
by Ca. This coefficient can be easily obtained in the usual
way and reads

Ca ¼
1

2p2
ðB0ð0; 2Þ − B0ð1; 2Þ − f1C0Þ: ðA20Þ

By taking into account that tensor coefficients may
coalesce under certain kinematical circumstances and
applying the method of Ref. [55] as illustrated above,
we were able to stabilize the tensor reduction method for
vanishing Gram determinant for all loop amplitudes occur-
ring in our direct detection analysis. This is particularly true
for the four-point functions needed for the box contribu-
tions. Although the basic idea remains unchanged, the
corresponding expressions become very large and were
therefore calculated with the help of MATHEMATICA.
All tensor coefficients obtained in this way have been

tested extensively. We have numerically compared them
with the corresponding coefficients resulting from the
standard tensor reduction method for small, but nonvanish-
ing Gram determinant. Some examples are shown in
Fig. 14. The upper left plot of Fig. 14 shows the numerical
stability of the tensor coefficients C1 and C2 in the limit of
equal momenta or equivalently ðpb − p2Þ2 ¼ t → 0. More
precisely, we show the real parts of C1 (in red) and C2 (in
blue) obtained by the regular tensor reduction method

divided by Ca=2 obtained via Eq. (A20) and subtracted by
one. In this representation, the black null line corresponds
directly to Ca=2. We observe, as expected, that both C1 and
C2 are relatively stable for t ≤ −0.5 GeV2 and marginally
differ from Ca=2. The regular tensor reduction is still
working here and the small, but finite velocity leads to a
small shift relative to the black reference line. However,
when we approach the limit t → 0 the regular tensor
method fails and both of the coefficients become numeri-
cally unstable.
As explained before, the individual tensor coefficients

C1 and C2 are no longer uniquely defined in this limit, only
their sum is. The real part of this sum divided by Ca and
subtracted by one is shown in the upper right plot of
Fig. 14. It is more stable than the individual coefficients,
but still becomes noisy at very small relative velocities. For
larger (but still small) relative velocities, the agreement
between C1 þ C2 and Ca is excellent, which justifies our
approach.
We show analogous plots for the tensor coefficient C00

and the combination C11 þ 2C12 þ C22 in the lower part of
Fig. 14. The main features are similar to the ones discussed
before. Using the original tensor reduction method, the
tensor coefficients become numerically unstable at very
small relative velocities. When using the alternative
approach described in this section, we obtain a stable
result for v ¼ 0 which is in perfect agreement with the
standard method for small, but nonzero relative velocities.
The black reference line in the lower right plot of Fig. 14 is
defined by

Cb ¼
1

3p2

�
B0ð1; 2Þ −m2

0C0 þ 2B1ð0; 1Þ − 2f2Ca −
1

2

�
:

ðA21Þ

Although of minor importance for the tensor reduction
itself, we list all the masses used in the plots above for
completeness. They are mb ¼ 2.3 GeV, mt ¼ 148.0 GeV,
m~g ¼ 1170.7 GeV, m ~b1

¼1007.3GeV, m ~b2
¼1071.9GeV,

m~t1 ¼ 827.9GeV and finally m~t2 ¼ 1042.6 GeV. Note that
we have p2

2 ¼ p2
b ¼ m2

b in the first three plots, whereas
p2
2 ¼ p2

b ¼ m2
t in the lower right plot. More details on the

presented alternative tensor reduction method can be found
in Ref. [48].
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