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We investigate a simple model using the numerical simulation in the complex Langevin equation (CLE)
and the analytical approximation with the Gaussian ansatz. We find that the Gaussian ansatz captures the
essential and even quantitative features of the CLE results quite well when they converge to the exact
answer, as well as the border of the unstable region where the CLE converges to a wrong answer. The
Gaussian ansatz is therefore useful for looking into this convergence problem and we find that the exact
answer in the unstable region is nicely reproduced by another solution that is naively excluded from the
stability condition. We consider the Gaussian probability distributions corresponding to multiple solutions
along the Lefschetz thimble to discuss the stability and the locality. Our results suggest a prescription to
improve the convergence of the CLE simulation to the exact answer.
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I. INTRODUCTION

Functional integration in quantum field theories shares
the same theoretical structure with the partition function in
statistical mechanics and the Monte-Carlo algorithm is the
most useful for both cases as long as the integrand is
positive semidefinite. However, such an algorithm based on
importance sampling in general breaks down for the
integrand having an oscillating complex phase. This is
the notorious sign problem and it unfortunately appears in
many interesting physical environments such as quantum
chromodynamics (QCD) at finite baryon chemical poten-
tial, QCDwith a θ-term, Hubbard model away from the half
filling, imbalanced or frustrated spin systems, etc. As found
in reviews on the sign problem [1–6], many ideas have been
proposed and tested, but no solution is established yet.
For finite-density QCD, introductory lectures are available;
see Ref. [7].
It would be a natural idea to seek for an alternative

quantization scheme that is suitable for numerical simu-
lations and does not rely on importance sample. One of the
most promising candidates is the so-called stochastic
quantization using the Langevin equation or the Fokker-
Planck equation. A comprehensive review is found in
Ref. [8]. An extension of the stochastic quantization
procedure to a theory with complex terms is specifically
referred to as the method of the complex Langevin equation
(CLE), for the Langevin variables are complexified then
(for the early pioneering attempt, see Ref. [9]). The
potential of the CLE has been recently revisited as a
theoretical tool to evade the sign problem in finite-density
QCD (see Ref. [10] for a modern review). It was also
expected that the CLE approach would be capable of
describing real-time dynamics [11], but it was reported that
the long-time numerical simulation falls into a wrong
solution [11,12] (see also Ref. [13] for another real-time

subtlety to define the retarded and the advanced propa-
gators with the CLE.) To identify the subtleties in the
convergence problem in the CLE method, toy models have
been quite useful to provide us with insights about the
validity, which include low-dimensional models [14,15],
(chiral) matrix models [15,16], and also even simple one-
dimensional (or called zero-dimensional in the field-theory
context) integrals [15,17–21], some of which are motivated
by the sign problem for the Bose gas at finite chemical
potential [22,23].
The breakthrough that triggered successful QCD (or

gauge theory more generally) simulations such as pioneer-
ing, Refs. [24,25], and more recent, Refs. [26,27], was the
recognition of the technique called the gauge cooling,
which was introduced to make the probability distribution
not spread in the complexified direction [28] [see also
Ref. [29] for successful U(1) and SU(3) link model studies
before the invention of the gauge cooling machinery],
which may also cure the problem caused by the drift term
singularity [15]. On the formal level the (sufficient) con-
vergence criteria to the correct physical answer are known
[19,30], which requires analyticity (holomorphicity) of the
theory and the locality of the probability distribution.
It is sometimes quite instructive to consider the CLE

method from the point of view of a similar complexified
approach known as the Lefschetz thimble method as
discussed in Refs. [21,31–34]. The Lefschetz thimble is
a higher-dimensional extension of the steepest descent path
in complex analysis and the most important property is that
the complex phase is constant along this path or thimble
(see Refs. [35] for mathematical foundation and also
Refs. [36,37] for recent reviews). The method has been
implemented for quantum field theory [38,39] and tested
in low-dimensional models [40,41] (see also Ref. [42] for
a condensed matter application). The important insight
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obtained from the Lefschetz thimble method is that the
Stokes phenomenon makes the structure of the theory
complicated [43], which is the case near the phase
transition or in the real-time formalism [33]. Another
interesting observation is that there may appear multiple
saddle points that have complex phases and their destruc-
tive interference [21,44] is indispensable to understand
some nontrivial phenomenon like the Silver Blaze puzzle
[45,46]. The strong advantage in the Lefschetz thimble
method is that the analytical investigations are possible,
which also leads to a new discovery of hidden theoretical
structures [47].
The objective of this work is to explore some analytical

aspects in the CLE approach. As compared to the Lefschetz
thimble especially for the one-dimensional integral models,
the CLE studies more often rely on numerical simulations.
As closely discussed in Ref. [19] the probability distribution
function can be constructed perturbatively, but to reveal the
full profile, the numerical calculations are unavoidable,
which is of course useful to deepen our understanding,
but it would be desirable if we have analytical formulas from
which we can somehow infer detailed information on the
theory. To this end, we would propose a Gaussian ansatz in
the present paper. This is a generalization of the mean-field
treatment to the CLE framework. The idea can be traced
back to a variational approach to stochastic quantization
[48], and it was reported that an analytical evaluation with
one variational parameter (corresponding to the dynamical
mass) agrees quite well with the full numerical result for a
one-dimensional N-component model. Within this varia-
tional approach the 1=N expansion has been also discussed
in Ref. [49]. Such a mean-field treatment has been gener-
alized to the CLE with a complex action for the relativistic
Bose gas at finite chemical potential [23]. This direction of
extension should be quite intriguing; for example, a com-
parison between the mean-field results and the CLE results
in the Polyakov loop model has provided us with a useful
hint on the breakdown of the CLEwith a branch-cut crossing
problem [50], and the more direct mean-field treatment of
the CLE method itself would give us a further analytical
insight into the subtlety of the convergence, as we will
discuss. (For the Lefschetz thimble version of the compari-
son to the mean-field Polyakov loop model, see Ref. [51]
which has justified the mean-field treatment in Ref. [52].)
This paper is organized as follows. In Sec. II basic

equations of the CLE method are summarized for conven-
ience of the readers and the Gaussian ansatz is introduced
with two variational parameters as a generalization of the
free two-point function. Section III is devoted to detailed
explanations of the properties of the one-dimensional
quartic model, followed by the main part of this paper
in Sec. IV in which a comparison between the Gaussian
ansatz results and the exact answer is made for three
distinct regions of the model parameters. The conclusion is
finally given in Sec. V.

II. FORMALISM

We briefly look over the general formalism of the
complex Langevin method and its equivalent representation
using the Fokker-Planck equation. Then, we introduce our
idea of the Gaussian ansatz as an approximate solution of
the Fokker-Planck equation. Here we will present expres-
sions for a scalar field theory only, but the generalization
for other field theories should be straightforward.
The fundamental ingredient in the complex Langevin

method is a complexified extension of the Langevin
equation with a fictitious time τ, which reads

∂ϕðx; τÞ
∂τ ¼ −

δS½ϕ�
δϕðx; τÞ þ ηðx; τÞ; ð1Þ

where ηðx; τÞ represents stochastic noise satisfying
hηðx; τÞηðx0; τ0Þi ¼ 2δðdÞðx − x0Þδðτ − τ0Þ. If the action S
takes a complex value, as is the case for fermions with a
finite chemical potential or general real-time dynamics,
ϕ should be also complexified as ϕ ¼ ϕR þ iϕI with
ϕR;ϕI ∈ R. For analytical purposes it is often more
convenient to deal with a different but equivalent repre-
sentation of the quantization procedure using the Fokker
Planck equation, that is expressed as

dP½ϕ�
dτ

¼
Z

ddx

�
δ

δϕR

�
Re

�
δS
δϕ

�
P½ϕ�

�

þ δ2P
δϕ2

R
þ δ

δϕI

�
Im

�
δS
δϕ

�
P½ϕ�

��
: ð2Þ

For sign-problem free field theories in Euclidean space-
time, the action S is a real functional of real ϕ and
the solution of Eq. (2) approaches P½ϕ� ∝ e−S½ϕ�. In
Minkowskian space-time, on the other hand, the action
is complex (and another simple but useful example of a
complex action is the Bose gas at finite chemical potential
[22,23]). In a free real-time scalar theory, for an explicit
example, S in momentum space is complex as

S½ϕ� ¼ i
Z

ddp
ð2πÞd ϕð−pÞð−p

2 þm2 − iϵÞϕðpÞ; ð3Þ

where a small real part is necessary for convergence in
the iϵ prescription. Obviously a real valued P½ϕ� cannot
approach a standard form of the functional integral weight
∼e−S½ϕ� because the weight is complex then. It is quite
instructive that an analytical solution of the Fokker-Planck
equation (2) is known for this example of Eq. (3) as [8]

P½ϕ� ¼ N exp

�
−
Z

ddp
ð2πÞd ϵ

�
ϕRð−pÞϕRðpÞ

þ
�
1þ 2ϵ2

ðp2 −m2Þ2
�
ϕIð−pÞϕIðpÞ

−
2ϵ

p2 −m2
ϕRð−pÞϕIðpÞ

��
: ð4Þ
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It is just a straightforward calculation to confirm that we
can recover a correct expression for the propagator from
this real probability weight, i.e.Z

DϕRDϕIP½ϕ�ϕð−pÞϕðpÞ ¼
i

p2 −m2 þ iϵ
: ð5Þ

We should note that the imaginary part in the right-hand
side of Eq. (5) arises from not the weight P½ϕ� but
complexified ϕðpÞ in the left-hand side. Therefore, in such
complexified representation of theory, the sign problem is
evaded but the operator generally acquires a residual
complex phase.
The prescription we would propose in this work is a

Gaussian ansatz as an extension of Eq. (4), namely,

ϵ → AðpÞ; p2 −m2 → −BðpÞ ð6Þ
for interacting field theories. Here, real-valued A and B are
to be regarded as “renormalized” width and mass including
interaction effects and should be determined by the sta-
tionary condition of the Fokker-Planck equation, that is;
dP=dτ ¼ 0. Conceptually, the above ansatz should corre-
spond to a Gaussian truncation with “mean-field” variables
A and B optimized by the variational principle. Although
this ansatz introduces an approximation, a fully analytical
treatment is feasible then and it should be useful to
understand how the complex Langevin equation converges
to a false solution (which has been understood from power-
decay behavior of the probability distribution [19] but we
will shed light from a different perspective) and where we
can find a correct answer (for successful applications of the
mean-field treatment, see Ref. [23]).

III. QUARTIC MODEL

Here, a simplest one-dimensional (or in the field-theory
context, it is commonly called “zero-dimensional” counting
the number of spacetime) example should suffice for our
present purpose to demonstrate how useful the Gaussian
ansatz is to get an analytical insight.

A. Definition

We define the “theory” by the following integral [53];

Zðα; βÞ ¼
Z

dϕe−Sðϕ;α;βÞ;

Sðϕ; α; βÞ ¼ 1

2
αϕ2 þ 1

4
βϕ4; ð7Þ

where α ¼ aþ ib (a; b ∈ R) and β ¼ cþ id (c; d ∈ R)
are complex coefficients and ϕ is a real integration variable.
After the ϕ integration we can find the exact result in terms
of the modified Bessel function as

Zðα; βÞ ¼
ffiffiffiffiffi
α

2β

r
eα

2=ð8βÞK1=4

�
α2

8β

�
ð8Þ

for Reα > 0 and Reβ > 0. For Reα < 0 the Bessel function
in the above expression should be replaced with I�1=4ðα28βÞ.
For the validity check of the method, we will refer to the
exact answer that we can obtain from these analytical
expressions or from the direct numerical integration
of Eq. (7).
This theory has interesting features similar to phase

structures. To see them let us consider a two-point function,
that is,

hϕ2iexact ¼
R
dϕϕ2e−SR
dϕe−S

¼ α

4β

K−3=4ðα28βÞ þ K5=4ðα28βÞ
K1=4ðα28βÞ

−
α

2β
−
1

α
ð9Þ

for Reα > 0 and Reβ > 0. Again, it is not difficult to carry
out the direct numerical integration as long as Reβ > 0.
Now we see hϕ2iexact as a function of a ¼ Reα and
b ¼ Imα while keeping β ¼ 1. Such a choice does not
lose the generality because we can always rescale ϕ (after
complexifying the theory) so that β ¼ 1.
Figure 1 shows jhϕ2iexactj as a function of a and b. It is

clear to see that the expectation value increases in the
region for a < 0, which is reminiscent of the spontaneous
symmetry breaking. Of course, the present model does
not have infinite degrees of freedom and, strictly speaking,
the spontaneous symmetry breaking is impossible, i.e.
hϕiexact ¼ 0 always holds for any a. Nevertheless, we
can understand that a situation similar to the spontaneous
symmetry breaking occurs in the following sense. The
integration (7) is dominated around the minima (saddle

FIG. 1. Absolute value of the exact answer of hϕ2iexact as a
function of the real part a and the imaginary part b of the
quadratic coefficient α.
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points) of S as obtained from dS=dϕ ¼ 0. For the present
theory there are three saddle points,

ϕ̄0 ¼ 0; ϕ̄� ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
−α=β

p
: ð10Þ

Clearly S ¼ S0 ¼ 0 at ϕ ¼ ϕ̄0 and S ¼ S� ¼ −α2=4 at
ϕ ¼ ϕ̄�. Therefore, as long as ReS� < ReS0, the integra-
tion is dominated around ϕ̄� and hϕ2iexact should behave
like −α=β in the first approximation. There is no phase
transition in a strict sense, but we may well identify this
situation physically as an analogue of the ordered state.
The qualitative behavior, however, changes drastically

at jbj≃ jaj with a < 0 and, so to speak, the broken
symmetry is restored in the region for jbj > jaj. The
reason for this change is easy to understand from the
above consideration. For jbj> jajwe explicitly see ReS� ¼
−a2 þ b2 > ReS0 ¼ 0, and so the integration is again
dominated around ϕ̄0 and the nonzero expectation values
at ϕ̄� become irrelevant in effect. Thus, we may say that the
ordered state is hindered by attenuation effects caused by
large b.
In summary this theory has three characteristic and

qualitatively distinct states depending on a and b as
follows:

a > 0∶ normal state

a < 0; a2 ≳ b2∶ ordered state

a < 0; b2 ≳ a2∶ attenuated state:

It is known that the CLE fails in the attenuated state for
a < 0 and b2 ≳ a2, which we will closely investigate
analytically using the Gaussian ansatz. Also, it would be
worthwhile mentioning that the convergence of the CLE
simulation to the exact answer is proven in the region with
a > 0 and b2 < 3a2, while the CLE simulation may not
work for higher order expectation values, hϕni ðn ≥ 4Þ, in
the region with a > 0 and b2 > 3a2 even in the normal
state [19]. For the moment we will focus on hϕ2i and will
test our method for hϕ4i later.

B. Results from the CLE

Here, we briefly discuss the results from the CLE to
show where the CLE fails (for the two-point function). We
numerically solved Eq. (1) for the action (7) with discre-
tization dt ¼ 5 × 10−3 and updated the fictitious time
evolution by 105 steps and average the numerical outputs
over time. When we detected a runaway trajectory, we
decreased the step size and took 103 steps back to avoid
contamination from the runaway.
We show the difference between the CLE results and the

exact answer in Fig. 2. From this comparison we see that
the CLE works good for a > 0 generally (there may be a
failure for the higher order functions [19] and we will come

to this point in the end of this paper), and also it works in
the ordered state with a < 0 as long as a2 > b2. We just
note that in this theory the Stokes phenomenon occurs at
a ¼ 0, and so the onset of the Stokes phenomenon does
not necessarily coincide with the breakdown of the CLE
simulation. As we mentioned before, the most problematic
region for the CLE calculation in this theory is a < 0 and
b2 ≳ a2, which we call the attenuated state throughout this
present work.

IV. ANALYSIS WITH THE GAUSSIAN ANSATZ

Because the Gaussian ansatz is not an exact solution of
the Fokker-Planck equation (2) for β ≠ 0 in general, there is
some ambiguity in the determination of A and B associated
with the choice of what we optimize. A prescription we
adopt here is an equilibrium condition for a two-point
function, that is,

Z
dϕRdϕIϕ

2
dP½ϕ�
dτ

¼ 0; ð11Þ

which naturally must hold when dP½ϕ�=dτ ¼ 0 is reached.
From the real and the imaginary parts of the above
condition, we can get two equations to solve A and B as
functions of a and b. It should be noted that this condition
has similarity to the “criteria for correctness” of the second
order as discussed in Ref. [19]. Thus our condition
naturally leads to a sort of gap equation in a sense that
the nth order criteria for correctness is equivalent to the
Schwinger-Dyson equation of n-point function.

A. Normal state

Plugging the action (7) into the Fokker-Planck equa-
tion (2), we can express dP=dτ and substitute it for

FIG. 2. Comparison between the CLE results and the exact
answer.
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Eq. (11). We can explicitly perform the Gaussian integra-
tions with respect to ϕR and ϕI and after simplifying terms,
we can find a set of equations to fix Aðα; βÞ and Bðα; βÞ as

A − a ¼ 3

A2 þ B2
ðcAþ dBÞ; ð12Þ

B − b ¼ 3

A2 þ B2
ðdA − cBÞ: ð13Þ

It is easy to confirm that the noninteracting limit at β ¼ 0
(i.e. c ¼ d ¼ 0) immediately leads to Aðα; 0Þ ¼ a and
Bðα; 0Þ ¼ b as it should (and this free solution is nothing
but the lowest order solution discussed in Ref. [19]).
There are four independent branches of solutions for

Eq. (13). For our present choice of β ¼ 1 (i.e. c ¼ 1 and
d ¼ 0) the above set of equations leads to two complex and
two real solutions. The real solution with A > 0, which is
required for the stability of the Gaussian integration, is
uniquely determined as

A¼a
2
þ 1

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48a2þða2þb2−12Þ2

q
þa2−b2þ12

r
;

ð14Þ

B ¼ b
2
þ sgnðabÞ

2
ffiffiffi
2

p

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48a2 þ ða2 þ b2 − 12Þ2

q
− a2 þ b2 − 12

r
:

ð15Þ

It is clear that we can give an estimate for the two-point
function using the Gaussian ansatz in the following way:

hϕ2iGauss ¼
R
dϕRdϕIϕ

2P½ϕ�R
dϕRdϕIP½ϕ�

¼ 1

Aðα; βÞ þ iBðα; βÞ : ð16Þ

This final result from the Gaussian ansatz is so simple in the
analytical structure as compared to the exact answer, but we
can confirm that this gives a good approximation in the
normal state.
To quantify how good the Gaussian ansatz is, let us make

a plot in a way similar to Fig. 2, with hϕ2iCLE replaced with
hϕ2iGauss, which is presented in Fig. 3. It is very interesting
to see that Fig. 3 has a remarkable similarity to Fig. 2. In
particular the Gaussian ansatz works excellently to show
good agreement with the exact answer in the region with
a ≥ 0 for any b. The next question that naturally arises is
how close to each other hϕ2iGauss and hϕ2iCLE are in the
whole region, especially whether “wrong” values in the
attenuated state agree or not. We numerically checked this

to find that they are different approximately by a factor 3.
Later, we will discuss how to reach the exact answer in the
attenuated state.
Our Gaussian ansatz takes care of fluctuations around

ϕ ¼ ϕ̄0 and implicitly neglects the contributions from other
saddle points at ϕ ¼ ϕ̄�. In terms of the Lefschetz thimble
method, such an approximated treatment is justified by the
fact that only the thimble attached to ϕ̄0 makes a finite
contribution for a > 0. There is, however, a sudden change
in the thimble structure at a ¼ 0, which is commonly called
the Stokes phenomenon, and eventually all three thimbles
attached to ϕ̄0 and ϕ̄� come to make a finite contribution
for a < 0. This sudden change partially explains the sudden
breakdown of the Gaussian ansatz estimate around a ¼ 0.
One might have an impression that the Gaussian ansatz

may still work in the ordered state in view of Fig. 3 but
some cautions are needed. In the region with a2 > b2 and
a < 0, as jaj grows up (and so the “condensate” grows up),
the agreement gets worse. For example, at a ¼ −4 and
b¼0 as shown in Fig. 3, jhϕ2iGauss−hϕ2iexactj=jhϕ2iexactj≈
0.5 and the deviations would be larger with increasing jaj
in the negative direction. However, as we see from Fig. 2,
the CLE should describe the physics correctly also in this
region of the ordered state.

B. Ordered state

In many physical examples the Stokes phenomenon
makes the difficulty even more difficult. However, the
CLE is capable of going beyond the Stokes phenomenon
from the normal state to the ordered state except for the
onset region. Although the most interesting question is
what should be happening in the attenuated state as we will
address later, let us clarify how the Gaussian ansatz can
capture the correct physics in the ordered state too.

FIG. 3. Comparison between the Gaussian ansatz results and
the exact answer for the quadratic operator.
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In this region the contributions around ϕ̄� should be
dominant, and so the Gaussian ansatz must be formulated
also around ϕ̄�. In the mean-field-type calculations it is a
common technique to consider fluctuations around a
shifted vacuum that is self-consistently determined by
the energy minimization condition. Therefore, the proba-
bility weight should be changed as P½ϕ� → P�½ϕ� ¼ P½ϕþ
ϕ̄�� with A� and B�. Then, the two-point function should
be approximated as

hϕ2iGauss ¼
1

A� þ iB�
−
α

β
; ð17Þ

where the last term represents the contribution by
ϕ̄2
� ¼ −α=β. The set of equations to fix A� and B� is

slightly changed from Eq. (13) by ϕ̄2
� as

A� þ 2a ¼ 3

A2
� þ B2

�
ðcA� þ dB�Þ; ð18Þ

B� þ 2b ¼ 3

A2
� þ B2

�
ðdA� − cB�Þ: ð19Þ

We can solve the above easily to find the analytical
expressions again.
Here, let us make a remark on the convergence to the

right solution. Generally speaking, beyond the Stokes
phenomenon, multiple saddle points take part in the
integration; all of ϕ̄0 and ϕ̄� in the present case. In physical
applications it is often the case that one of them dominates
the physics. The spontaneous symmetry breaking is such a
phenomenon that can be correctly described by one saddle-
point property. Because our one-dimensional theory does
not have such symmetry breaking, we have to sum up both
contributions from ϕ̄� to have hϕi ¼ 0, but with infinite
degrees of freedom only one contribution is spontaneously
chosen, and thus the CLE method should work better
then. Some other special examples are known to be more
problematic. The mixed phase associated with a first-order
phase transition should be one of the most typical exam-
ples. In such a situation contributions from different saddle
points are equally important, and also missing a relative
complex phase may cause a further problem of falling into a
wrong answer [21]. Another famous example is the Silver
Blaze problem for which relative phases from infinite
saddle points make destructive interference [44]. For these
problems, to formulate the Gaussian ansatz to work, we
need to take a proper superposition of P0½ϕ� centered at ϕ̄0

and P�½ϕ� centered at ϕ̄� with relative weights including
complex phase factors.

C. Attenuated state

The most interesting and nontrivial question is why the
CLE simulation and also the Gaussian ansatz do not work

in the attenuated state with a < 0 and b2 ≳ a2. This is
beyond the Stokes phenomenon, but because of the real
weight, e−ReS ¼ e−ðb2−a2Þ=4 ≪ 1, we can safely neglect
these contributions from ϕ̄� for b2 ≫ a2 and the integra-
tion should be well approximated by the fluctuations
around ϕ̄0 only. Thus, it is very likely that the CLE
simulation and the Gaussian ansatz should be valid
descriptions, but they fail in practice. Because the
Gaussian ansatz enables us to cope with the problem with
simple analytical formulas, we can relatively easily identify
the source of the problem.
It is already apparent from Eq. (15) how the Gaussian

ansatz leads to unphysical behavior. Let us consider
expected behavior of B for asymptotically large b.
Naturally, we would immediately anticipate B≃ b for
large enough b from our physical intuition, and Eq. (15)
indeed predicts B → b for jbj ≫ a as long as a > 0, while
it gives B → 0 for jbj ≫ jaj once the system enters a < 0.
This is a very clear manifestation of where the wrong
answer is picked up. Actually, the exact answer certainly
exhibits the behavior of B≃ b even in the a < 0 region, as
checked in Fig. 4 where a counterpart of B defined by
Imhϕ2i−1exact is plotted as a function of a and b. Apart from
the ordered state for a < 0, a2 > b2 and some spiky
structures near the phase border, Imhϕ2i−1exact clearly scales
as ∼b in a way consistent with our intuition.
We already pointed out that there is another real solution

of the set of equations (13), whose explicit forms are

~A¼a
2
−

1

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48a2þða2þb2−12Þ2

q
þa2−b2þ12

r
;

ð20Þ

FIG. 4. Counterpart of B inferred from hϕ2iexact as a function of
a and b in the region for a < 0.
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~B ¼ b
2
−
sgnðabÞ
2

ffiffiffi
2

p

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48a2 þ ða2 þ b2 − 12Þ2

q
− a2 þ b2 − 12

r
:

ð21Þ

The problem of this solution is that the integration with the
Gaussian probability is not well defined due to ~A < 0 and
we should usually exclude this branch of the solution.
For the moment let us postpone discussions on the

stability but simply adopt the above branch of solution to
evaluate new h ~ϕ2iGauss ¼ 1=ð ~Aþ i ~BÞ in the a < 0 region.
We show the comparison between h ~ϕ2iGauss and the exact
answer in Fig. 5 and it is clear from this comparison that
this new h ~ϕ2iGauss gives a very good approximation in the
region with a < 0 and b2 > a2 (if sufficiently away from
the phase boundary; see also the structure in Fig. 4). The
important observation is that we take the difference
between h ~ϕ2iGauss and hϕ2iexact before computing its
absolute value, and so the good agreement seen in
Fig. 5 includes the information on the complex phase.
This means that, even though ~A < 0 seems to be not
allowed for convergence of the Gaussian integral, the exact
answer indicates that this seemingly unstable ~A < 0 is
actually the right physical branch of solution.
Then, two questions arise. One is how such an unstable

branch of solution can be the physical choice. Another one
is what principle determines which branch of solution
describes physically the correct behavior of the theory.
These questions cannot be answered within the framework
of the CLE or the Gaussian ansatz of the CLE but we
need more inputs from different approaches. Here, let us

consider these questions by means of the Lefschetz thimble
method. Figure 6 is a typical example of the thimble
structures in the attenuated state for a < 0 and b2 ≫ a2,
and to draw Fig. 6 we chose a ¼ −0.1 and b ¼ 10. From
this we understand that the integration path along the
thimble or the steepest descendent path is tilted from the
real axis by −π=4 around ϕ̄0 ¼ 0 if a < 0 and b2 ≫ a2.
Because we already know that the integral is dominated

by the contribution near ϕ̄0 only, we shall change the
integration variable along the “thimble-inspired” integra-
tion path (that coincides with the Lefschetz thimble near
ϕ̄0) as

ϕ → ϕ0 ¼ eiπ=4ϕ: ð22Þ

Let us point out that such a U(1) rotation makes sense only
in the complexified description and this kind of trans-
formation may be linked to the gauge cooling in the gauge
theory. Then, the action (7) near ϕ̄0 is expressed as

S≃ 1

2
ð−iαÞϕ02 ¼ 1

2
ðb − iaÞϕ02; ð23Þ

which implies that the roles of a and b should be switched to
each other along this path. Needless to say, such a variable
change causes another convergence problem from the ϕ4

term in the definition of the theory, but we are focusing only
on the local properties around ϕ̄0. Such a treatment shall be
self-consistently justified if the probability distribution is
localized well around ϕ̄0. Now, because of Eq. (23), the
probability distribution in the Gaussian ansatz should be
parametrized by B0 instead of A and −A0 instead of B.
Equation (13) should be also replaced as

FIG. 5. Comparison in the a < 0 region between the Gaussian
ansatz results with the unstable branch of solution and the exact
answer.

FIG. 6. Steepest descendent paths (Lefschetz thimbles) shown
by purple lines and steepest ascendent paths shown by green lines
around three saddle points shown by orange dots. Parameters are
chosen as a ¼ −0.1 and b ¼ 10.
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B0 − b ¼ 3

A02 þ B02 · ð−B0Þ; ð24Þ

−A0 þ a ¼ 3

A02 þ B02 ð−A0Þ; ð25Þ

where c ¼ −1 (after the change of ϕ → ϕ0) and d ¼ 0 are
plugged in. Then, the above equations are completely
identical to the original equations (13) having the same
solutions of Eqs. (14) and (15), and Eqs. (20) and (21). Even
though the solutions are just the same, this argument tells us
an important implication—for the integration with the
Gaussian ansatz to converge around ϕ̄0, what we need is
B > 0 and the sign of A does not matter. In this way, the first
question is answered now. Both branches of A, B and ~A, ~B
are possible; Eqs. (15) and (21) lead to B > 0 and ~B > 0 for
b > 0. We note that the thimble would be tilted in the
opposite direction for b < 0 and then the convergence would
require B < 0 and ~B < 0 which are also satisfied in
Eqs. (15) and (21).
The second question is a little more nontrivial; both

solutions seem to be equally possible from the integration
stability condition. Besides, in the a > 0 region, we have
chosen Eqs. (14) and (15) from the condition of A > 0 in
the previous discussion, but even in this A > 0 case, once
we consider the path deformation along the Lefschetz
thimble, the convergence condition around ϕ̄0 is only
the realness of A and B. Hence, regardless of the sign of
A, both solutions, Eqs. (14) and (15) and Eqs. (20) and (21),
are possible.
For the self-consistent justification, the Gaussian width

must be small. The Gaussian width along the thimble near
ϕ̄0 is determined by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
, and interestingly, we can

readily find from Eqs. (14) and (15), and Eqs. (20) and (21),
that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~A2 þ ~B2

p
for a > 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~A2 þ ~B2
p

≫
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
for a < 0: ð26Þ

This observation nicely explains which branch of solution
should be picked up to describe the correct physics. For the
demonstration purpose to visualize how the probability
distributions spread, we plot P½ϕ0� along the thimble in
terms of ϕ0 in Fig. 7 and from this plot we see that the
spreading distribution with Eqs. (14) and (15) is not very
well localized around ϕ̄0 but it is stretched to the regions
around ϕ̄�, which already signals for falling into a wrong
answer.
An interesting question is what then happens if we

implement the CLE simulation after performing a
rotation like Eq. (23) or more generally: S½ϕ0�¼ 1

2
jαjϕ02þ

1
4
βe−2iθϕ04 where θ is an argument of a complex number α
and ϕ0 ¼ eiθ=2ϕ. Such a deformation of the theory might

make the existence of the theory questionable, but we
should remember that the existence of the theory is already
subtle as soon as it is complexified because the complexi-
fied stochastic processes may always hit diverging rays on
the complex plane; for the existence of the theory due to the
cancellation of divergences, see discussions in Sec. 11. 5 in
Ref. [8]. We may also say that we could have put a small
ϕ04 term in the probability distribution that guarantees the
convergence, which is dropped in the Gaussian ansatz.
Figure 8 shows our CLE results along the tilted path in

terms of ϕ0. The structure for a < 0 is surprisingly similar
to the results in the Gaussian ansatz with ~A and ~B presented
in Fig. 5. This is a very clear numerical evidence about such
a close relation between the CLE and the Gaussian ansatz

FIG. 7. Gaussian profiles along the thimble-inspired path near
ϕ̄0 corresponding to Eqs. (14) and (15) (spreading solution by the
dotted line) and Eqs. (20) and (21) (localized solution by the solid
line) for a ¼ −0.1 and b ¼ 10.

FIG. 8. Comparison between the CLE results along the Lef-
schetz thimble and the exact answer for the quadratic operator.
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results. Summarizing our findings, the failure of the CLE
simulation in the attenuated state as seen in Fig. 2 is
attributed to the seemingly more stable but unphysically
spreading solution, and if the CLE simulation is performed
along the Lefschetz thimble without phase oscillation, the
physical well-localized solution is correctly picked up to
recover the exact answer. We note that we simplified the
treatment by performing the thimble-inspired rotation only
but it is in principle feasible to change the variable more
faithfully to the Lefschetz thimble. Again, we would
emphasize that our proposed simple treatment of the
Gaussian ansatz is so powerful to explain all the good
and bad behavior of the CLE simulations (where it works
quantitatively for good behavior and only qualitatively for
bad behavior).
Another interesting and important question is whether

the Gaussian ansatz works for higher order operators or not.
It has been argued in Ref. [19] that hϕ4i cannot converge to
the physical answer for b2 > 3a2 even in the a > 0 region,
while hϕ2i can. Our optimistic guess is that the Gaussian
ansatz should be a valid description for higher order
operators because the probability distribution is exponen-
tially localized by construction. It is quite easy to check it
by a generalization of Eq. (16), i.e.

hϕ4iGauss ¼
3

½Aðα; βÞ þ iBðα; βÞ�2 : ð27Þ

Then, the comparison to the exact answer is shown in
Fig. 9, which looks just like the comparison for hϕ2i in
Fig. 3. From this explicit comparison it is obvious that the
Gaussian ansatz definitely remains as a good approxima-
tion even for higher order operators in the region with
a > 0 and b2 > 3a2.

Now, a natural question is what happens in the numerical
CLE simulation for hϕ4i. If the original action is put into
the CLE simulation, we can indeed see sizable deviations
of hϕ4iCLE from the exact answer even at a > 0 in the
b2 ≫ a2 region. If the simulation goes to higher and
higher order operators, the failure region expands toward
b2 > 3a2 gradually. Now, the most interesting question is
whether the transformation from ϕ to ϕ0 can help the CLE
simulation with approaching the exact answer. Figure 10
shows such a comparison. Surprisingly, it is evident that the
convergence problem in the a > 0 region has been com-
pletely resolved.

V. CONCLUSION

We have exploited an approximation scheme using the
Gaussian ansatz to solve the Fokker-Planck equation
and made quantitative comparisons between the complex
Langevin equation, CLE, results and the Gaussian ansatz
results. Although the gap equations in the Gaussian ansatz
are so simple, we have confirmed that multiple solutions
from them capture all the essential features of the CLE
simulation not only for the successful regions quantitatively
but also for the unsuccessful regions qualitatively.
Our most striking finding is that one poorly localized

branch of solutions is picked up by the Gaussian ansatz and
another branch of solutions corresponds to the correct
physical answer in the unsuccessful parameter regions. To
pick the correct one up, if the theory is reexpressed in terms
of the variable along the Lefschetz thimble (though it was
done only approximately in the present work), the branch
of solution that describes a more localized probability
distribution can be picked up, which has been revealed by
multiple solution structures in the Gaussian ansatz. The

FIG. 9. Comparison between the Gaussian ansatz results and
the exact answer for the quartic operator.

FIG. 10. Comparison between the CLE results along the
Lefschetz thimble and the exact answer for the quartic operator.
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idea has been tested in the CLE simulation also, and we
have verified the consistency between the thimble-guided
CLE simulation and the physical branch of solutions in the
Gaussian ansatz.
Our analysis implies a positive prospect in favor of the

CLE simulation. Even when the convergence property is
not sufficiently good leading to unphysical results, it does
not necessarily mean the complete breakdown of the
method itself. When it occurs, the CLE simulation may
have multiple fixed points and it simply falls into where it
should not fall into, though one of other fixed points may
still correspond to the correct physics. This is very nice,
because a minimal change in the treatment like the
deformation of the integration path could help us with
digging out the correct branch of solutions (see also the
results in Refs. [18,34] for other minimal changes to
improve the correct convergence). This observation might

have something to do with recently proposed ideas on the
gauge cooling for the singular-drift problem [15]. It would
be the most exciting challenge to apply our method of the
Gaussian ansatz to another theory like S ¼ −ðβ cos θ þ iθÞ
[54] which is the simplest integral that emulates the
symmetry properties of lattice gauge theories.
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