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We investigate the topological properties of unquenched QCD on the basis of numerical results of
simulations at fixed topological charge, recently reported by Borsanyi et al. We demonstrate that their
results for the mean value of the chiral condensate at fixed topological charge are inconsistent with the
analytical prediction of the large-volume expansion around the saddle point, and argue that the most
plausible explanation for the failure of the saddle-point expansion is a vacuum energy density that is
θ-independent at high temperatures, but surprisingly not too high ðT ∼ 2TcÞ, a result which would imply a
vanishing topological susceptibility and the absence of all physical effects of the Uð1Þ axial anomaly at
these temperatures. We also show that under a general assumption concerning the high-temperature phase
of QCD, where the SUðNfÞA symmetry is restored, the analytical prediction for the chiral condensate at
fixed topological charge is in very good agreement with the numerical results of Borsanyi et al., all effects
of the axial anomaly should disappear, the topological susceptibility and all the θ derivatives of the vacuum
energy density vanish, and the theory becomes θ independent at any T > Tc in the infinite-volume limit.

DOI: 10.1103/PhysRevD.94.094505

I. INTRODUCTION

Understanding the role of the θ parameter in QCD and its
connection with the strong-CP problem is one of the major
challenges for high-energy theorists [1]. The aim of
elucidating the existence of new low-mass, weakly inter-
acting particles from a theoretical, phenomenological, and
experimental point of view is intimately related to this
issue. The light particle that has gathered the most attention
has been the axion, predicted by Weinberg and Wilczek [2]
and Wilczek [3] in the Peccei and Quinn mechanism [4] to
explain the absence of parity and temporal-invariance
violations induced by the QCD vacuum. The axion is
one of the more interesting candidates to make up the dark
matter of the Universe, and the axion potential, which
determines the dynamics of the axion field, plays a
fundamental role in this context. At high temperatures,
the potential can be calculated in the dilute instanton gas
model [5], but at medium and low temperatures interactions
become nonperturbative, and a lattice QCD calculation is
needed.
The calculation of the topological susceptibility in QCD

is already a challenge, but calculating the complete poten-
tial requires a strategy to deal with the so-called sign
problem, that is, the presence of a highly oscillating term in
the path integral. Indeed, Euclidean lattice gauge theory,
our main nonperturbative tool for QCD studies from first
principles, has not been able to help us much because of the
imaginary contribution to the action coming from the θ
term, which prevents the applicability of the importance
sampling method [6]. This is the main reason why the only
progress in the analysis of the θ dependence of the vacuum

energy density in pure gauge QCD, from first principles,
reduces to the computation of the first few coefficients (up
to order θ6) in the expansion of the free-energy density in
powers of θ [7–9], and the maximum temperature at which
quenched simulations seem to give reliable results for the
topological susceptibility is of the order of 1.5Tc [10–12],
with Tc the critical temperature for the chiral symmetry
restoration phase transition. The situation in full QCD
with dynamical fermions is, on the other hand, even worse
[13–15].
The QCD axion model relates the topological suscep-

tibility χT at θ ¼ 0 with the axion mass ma and decay
constant fa through the relation χT ¼ m2

af2a. The axion
mass is, on the other hand, an essential ingredient in the
calculation of the axion abundance in the Universe.
Therefore, a precise computation of the temperature
dependence of the topological susceptibility in QCD
becomes of primordial interest in this context. This is
the reason why several calculations of the topological
susceptibility in unquenched QCD have been published
recently [13–15].
The authors of Ref. [13] explore Nf ¼ 2þ 1 QCD in a

range of temperatures, from Tc to around 4Tc, and their
results for the topological susceptibility differ strongly,
both in the size and in the temperature dependence, from
the dilute instanton gas prediction, giving rise to a shift of
the axion dark-matter window of almost 1 order of
magnitude with respect to the instanton computation.
The authors of Ref. [14], however, observe in the same
model very distinct temperature dependences of the topo-
logical susceptibility in the ranges above and below
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250 MeV; though for temperatures above 250 MeV, the
dependence is found to be consistent with the dilute
instanton gas approximation, at lower temperatures the
falloff of topological susceptibility is milder. On the other
hand, a novel approach is proposed in Ref. [15], i.e., the
fixed Q integration, based on the computation of the mean
value of the gauge action and chiral condensate at fixed
topological charge Q; they find a topological susceptibility
many orders of magnitude smaller than that of Ref. [13] in
the cosmologically relevant temperature region.
We want to show in this paper that an analysis of some of

the numerical results reported in Ref. [15] concerning the
mean value of the chiral condensate at fixed topological
charge suggest that the vacuum energy density is θ
independent at high temperatures, but surprisingly not
too high ðT ∼ 2TcÞ; this is a result which would imply a
vanishing topological susceptibility and the absence of all
physical effects of the Uð1Þ axial anomaly at these temper-
atures. Since our analysis is based on the computation of
physical quantities at fixed topological charge, we sum-
marize some peculiar features of such a computation and
derive an expression for the ratio of partition functions in
different topological sectors in Sec. II. In Sec. III we show,
provided that the vacuum energy density has a nontrivial θ
dependence, that the difference of gauge actions and of
chiral condensates between the Q and vanishing topologi-
cal sectors are in both cases of the order of the inverse
lattice volume 1

VxLt
and proportional to the square of the

topological charge Q. In this section we also compare our
analytical results with the numerical results reported in
Ref. [15]. The absence of the typical effects of the Uð1ÞA
anomaly in the chiral symmetry restored phase of QCD at
high temperatures was suggested years ago [16,17], and
investigated later on in [18–27]. In Sec. IV we show, under
very general assumptions, that all effects of the axial
anomaly should disappear in the high-temperature phase
of QCD, where the SUðNfÞA symmetry is restored. The
topological susceptibility and all the θ derivatives of the
vacuum energy density should vanish and the theory should
become θ independent. Our conclusions are reported
in Sec. V.

II. QCD WITH A θ TERM

Quantum field theories with a topological term in the
action are a subject of interest in high-energy particle
physics and in solid-state physics. In particle physics, these
models describe particle interactions with a CP-violating
term. The inclusion of this term in the QCD Lagrangian
was the result of the discovery of the Uð1Þ axial anomaly,
which solved the Uð1ÞA problem but generated a new
problem, that of strong CP.
The Euclidean continuum Lagrangian of Nf flavors

QCD with a θ term is

L¼
X
f

Lf
Fþ

1

4
Fa
μνðxÞFa

μνðxÞþ iθ
g2

64π2
ϵμνρσFa

μνðxÞFa
ρσðxÞ;

ð1Þ

with Lf
F the fermion Lagrangian for the f flavor, and

Q ¼ g2

64π2

Z
d4xϵμνρσFa

μνðxÞFa
ρσðxÞ ð2Þ

is the topological charge of the gauge configuration, which
takes integer values.
In this section we summarize a few interesting features,

some of them well known, of QCD with a topological term
in the action. One of these features concerns the fact that the
mean value of any intensive operator in QCD at θ ¼ 0 can
be computed in any fixed topological sector [28,29], in
particular in the Q ¼ 0 topological sector. Even if this
result seems a paradox, because the zero charge topological
sector is free from the Uð1ÞA anomaly and breaks sponta-
neously chiral symmetry, we will show how one can
reconciliate the absence of the Uð1ÞA anomaly with a
finite nonvanishing mass for the η meson. We will discuss
separately the one-flavor model and the case of several
flavors, and will derive a expression for the ratio of partition
functions in different topological sectors, which will be
useful in the next section.

A. The one-flavor model

Concerning the one-flavor model, where the only axial
symmetry is an anomalous Uð1Þ symmetry, the standard
wisdom on the vacuum structure of this model in the
chiral limit is that it is unique at each given value of θ, the θ
vacuum. Indeed, the only plausible reason to have a
degenerate vacuum in the chiral limit would be the
spontaneous breakdown of chiral symmetry, but because
it is anomalous, there is no symmetry. Furthermore, in
contrast to what happens when chiral symmetry is sponta-
neously broken, the infinite volume limit and the chiral
limit commute. In fact, due to the chiral anomaly, the model
shows a mass gap in the chiral limit and, therefore, all
correlation lengths are finite in physical units.
An elegant realization of all these ideas is the Leutwyler

and Smigla (L-S) approach [30]. This approach is based,
for the one-flavor model, on the assumption that the
vacuum energy or free-energy density can be expanded
in powers of the fermion mass m, treating the quark mass
term as a perturbation. Indeed, as previously stated, the
spectrum of the one-flavor model, due to the chiral
anomaly, does not contain massless particles and, therefore,
the perturbation series in powers of the fermion mass m
should not give rise to infrared divergences. This expansion
will be then an ordinary Taylor series

−Eðm; θÞ ¼ −E0 þ Σmcosθ þOðm2Þ; ð3Þ
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giving rise to the following expansions for the scalar and
pseudoscalar condensates:

hūui ¼ Σcosθ þOðmÞ; ð4Þ

hiūγ5ui ¼ Σsinθ þOðmÞ: ð5Þ

The resolution of the Uð1Þ axial problem is obvious in this
approach. Indeed, the expression for the free-energy
density (3) tell us that the topological susceptibility χT
has the following expansion:

χT ¼ Σmcosθ þOðm2Þ; ð6Þ

and then the divergence in the chiral limit of the first term in
the right-hand side of the equation relating the pseudoscalar
susceptibility

χp ¼
Z

hiūðxÞγ5uðxÞiūð0Þγ5uð0Þid4x

with the chiral condensate and χT

χp ¼ hūui
m

−
χT
m2

ð7Þ

is compensated with the divergence of second term in this
equation, giving rise to a finite pseudoscalar susceptibility
or, equivalently, a finite mass for the ūγ5u meson.
All these features can be understood in simple words.

Because of the chiral anomaly, a nonvanishing value of the
chiral condensate does not break any symmetry. The
Goldstone theorem is not fulfilled because there is no
spontaneous symmetry breaking.
The L-S formalism was developed in the continuum.

However, there is a lattice regularization, the Ginsparg-
Wilson (G-W) fermions [31] from which the overlap
fermions [32] are an explicit realization, which shares with
the continuum all essential ingredients and gives at the
same time mathematical rigor to all developments. Indeed
G-W fermions have a Uð1Þ anomalous symmetry [33],
good chiral properties, a quantized topological charge, and
allow us to establish and exact index theorem on the lattice
[34]. Furthermore G-W fermions, in contrast to Wilson
fermions, are free from phases where parity and flavor
symmetries are spontaneously broken [35]. We will use this
lattice regularization in what follows.
With this in mind we can write for the free-energy

density E, scalar S and pseudoscalar P condensates,
pseudoscalar susceptibility χp, and topological susceptibil-
ity χT the same expressions as in the L-S approach,

−Eðβ; m; θÞ ¼ −E0ðβÞ þ Σmcosθ þOðm2Þ; ð8Þ

hSi ¼ Σcosθ þOðmÞ; ð9Þ

hPi ¼ Σsinθ þOðmÞ; ð10Þ

χT ¼ Σmcosθ þOðm2Þ; ð11Þ

χp ¼ hSi
m

−
χT
m2

; ð12Þ

where these expressions are now valid at finite lattice
spacing a and finite lattice volume V, and Σ depends on
both parameters with a finite nonvanishing value in the
infinite volume limit. β is the inverse gauge coupling and
we omit the β dependence of Σ for simplicity.
The partition function of the model can be written as a

sum over all topological sectors Q of the partition function
in each topological sector times a θ-phase factor as follows:

ZðθÞ ¼
X
Q

ZQeiθQ; ð13Þ

where Q takes all integer values, and it is bounded at finite
volume by the number of degrees of freedom.
At large lattice volume V the partition function should

behave as

ZðθÞ ¼ e−VEðβ;m;θÞ ð14Þ

with Eðβ; m; θÞ given by (8). On the other hand, the mean
value of any intensive operator O, as for instance the scalar
and pseudoscalar condensates or any correlation function,
in a given topological sector Q, can be computed as
follows:

hOiQ ¼
R
dθhOiθZðθ; mÞe−iθQR
dθZðθ; mÞe−iθQ : ð15Þ

Because the vacuum energy density, as a function of θ,
has its absolute minimum at θ ¼ 0, Eqs. (8) and (15) tell us
that the mean value of any intensive operator at θ ¼ 0 and
nonvanishing fermion mass can be computed in any fixed
topological sector. Indeed, Eq. (15) gives in the infinite
lattice volume limit the following relation:

hOiQ ¼ hOiθ¼0: ð16Þ

We can apply Eq. (16) to the computation of the
pseudoscalar correlation function hPðxÞPð0Þiθ¼0 by com-
puting it in the vanishing charge topological sector.
However, this sector is anomaly free, and breaks sponta-
neously chiral symmetry in order to give a nonvanishing
value Σ for the chiral condensate in the chiral limit. The
pseudoscalar meson susceptibility diverges and the
Goldstone theorem should tell us that the pseudoscalar
meson is massless in the chiral limit. The loophole in this
argument is that in systems with a global constraint, the
divergence of the susceptibility does not necessarily imply
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a divergent correlation length. Indeed, the susceptibility
must be computed by integrating out the correlation
function over all distances, and then taking the infinite-
volume limit, in this order. In systems with a global
constraint, the infinite-volume limit and the space integral
of the correlation function do not necessarily commute.
A very simple example of that is the Ising model at infinite
temperature with an even number of spins and with
vanishing full magnetization as a global constraint. In such
a case, one has for the spin-spin correlation function

hs2i i ¼ 1

hsisji ¼ −
1

ðV − 1Þ :

The integral of the infinite-volume limit of the correlation
function is equal to 1, whereas the infinite volume limit of
the integrated correlation function vanishes. The correlation
function has a contribution of order 1=V that violates
cluster at finite volume and vanishes in the infinite-volume
limit, but that gives a finite contribution to the integrated
correlation function. This example, even if very simple, is
illustrative because this is in fact what happens for the
pseudoscalar correlation function.
Coming back to QCD with a θ term, the standard

wisdom on this model is that it has no phase transition
at θ ¼ 0. Then we can expand the pseudoscalar correlation
function in powers of the θ angle as follows:

hPðxÞPð0Þiθ ¼ hPðxÞPð0Þiθ¼0 þ hðx;muÞθ2 þOðθ4Þ;
ð17Þ

where

hðx;muÞ ¼ hSðxÞSð0Þiθ¼0 − hPðxÞPð0Þiθ¼0 þOðmuÞ:
ð18Þ

The vacuum energy density (8) can also be expanded in
powers of θ as

−Eðβ; mu; θÞ ¼ −E0ðβ; muÞ −
1

2
χTðβ; muÞθ2 þOðθ4Þ

ð19Þ

with

χTðβ; muÞ ¼ muΣþOðm2
uÞ: ð20Þ

Taking into account Eqs. (16) and Eqs. (17)–(19) and
making an expansion around the saddle-point solution, we
can write the following equation for the pseudoscalar
correlation function in the zero-charge topological
sector:

hPðxÞPð0ÞiQ¼0 ¼ hPðxÞPð0Þiθ¼0 þ
1

V
hSðxÞSð0Þiθ¼0 − hPðxÞPð0Þiθ¼0 þOðmuÞ

χT
þO

�
1

V2

�
: ð21Þ

Equation (21) shows, as in the simple Ising model
case, a violation of cluster at finite volume for the
pseudoscalar correlation function in the zero-charge
topological sector. In the infinite-volume limit, the
pseudoscalar correlation function in the zero-charge
topological sector and in QCD at θ ¼ 0 agree, as
expected. Concerning susceptibilities we can write, by
integrating out Eq. (21) and taking the infinite volume
limit, the following relation:

χp;Q¼0 ¼ χp þ
Σ2 þOðmuÞ

χT
ð22Þ

where we have made use of the fact that in the infinite-
volume limit intensive operators do not fluctuate,

��
1

V

X
x

SðxÞ
�

2
�

¼
�
1

V

X
x

SðxÞ
�

2

��
1

V

X
x

PðxÞ
�

2
�

¼
�
1

V

X
x

PðxÞ
�

2

:

The dominant contribution of the second term in Eq. (22)
in the chiral limit diverges with the quark mass as Σ=mu,
whereas

χp;Q¼0 ¼
hSðxÞi
mu

:

Combining these results we get, notwithstanding the
pseudoscalar susceptibility diverges in the zero-charge
sector in the chiral limit, that the pseudoscalar susceptibility
in one-flavor QCD is finite and the pseudoscalar meson is
massive. The pseudoscalar susceptibility in the Q ¼ 0
sector diverges in the chiral limit not because of a divergent
correlation length but as a consequence of the cluster-
violating contributions to the pseudoscalar correlation
function (21), which are singular at m ¼ 0 and of order
1
V, and which give a finite singular contribution to χp;Q¼0.
To conclude the discussion on the one-flavor model, we

want to remark that the validity of the commutation of the
infinite-volume limit and the chiral limit in this model does
not apply to the zero-charge topological sector. Indeed, as
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previously stated, the zero-charge topological sector breaks
spontaneously chiral symmetry, and even if all correlation
lengths are finite in this sector, there are divergent suscep-
tibilities in the chiral limit. We have seen that the pseu-
doscalar susceptibility diverges in this sector, but also the
scalar susceptibility χs at vanishing quark mass can be
computed as

χs;Q¼0;mu¼0 ¼
1

2
ðχs;mu¼0 þ χp;mu¼0Þ þ

V
2
Σ2; ð23Þ

which shows explicitly the divergence with the lattice
volume V, and makes the perturbative expansion of the
chiral condensate in powers ofmu ill defined in the infinite-
volume limit.

B. Several flavors

QCD with several flavors shows some important
differences with respect to the one-flavor case. The
model also suffers from the chiral anomaly but has a
spontaneously broken SUðNfÞ chiral symmetry in the
chiral limit at any temperature below the critical temper-
ature of the chiral transition Tc. There are divergent
correlation lengths for T < Tc in this limit and, in
contrast to the one-flavor case, the infinite-volume limit
and the chiral limit do not commute if T < Tc. However,
the essential features previously described for the one-
flavor model still work in the several-flavors case.
Equation (12) reads now

χp ¼ hSi
m

− N2
f
χT
m2

; ð24Þ

where χp stands now for the flavor singlet pseudoscalar
susceptibility and S is the flavor singlet scalar conden-
sate. The vacuum energy density can also be expanded in
this case in powers of the θ angle as

Eðβ; mf; θÞ ¼ E0 −
1

2
χTðβ; mfÞθ2 þOðθ4Þ; ð25Þ

and Eqs. (13)–(16) also work for several flavors.
Let us write the expression, which we will use in the

following, for the ratio of the partition functions in the Q
topological sector ZQ and in the vanishing topological
sector Z0

ZQ

Z0

¼
R
dθe−iQθZðθ; mÞR

dθZðθ; mÞ ; ð26Þ

and its expansion around the saddle-point solution

ZQ

Z0

¼ 1 −
1

VxLt

Q2

2χT
þO

�
1

V2

�
; ð27Þ

where Vx is the spatial lattice volume and Lt the number of
lattice points in time direction. Equation (27) implies that
all topological sectors have the same probability in the
infinite spatial volume limit at any temperature T ¼ 1=Lt.
Otherwise, the saddle-point expansion breaks down, the
most plausible reason for which being that the vacuum
energy density (25) is θ independent.

III. THE FINITE-TEMPERATURE
CHIRAL TRANSITION

We want to explore in this section the physical conse-
quences of Eq. (27) on the temperature dependence of the
topological susceptibility.
Taking the logarithm in (27) we get

log
ZQ

Z0

¼ −
1

VxLt

Q2

2χT
þO

�
1

V2

�
ð28Þ

and the following expressions for the logarithmic deriva-
tives with respect to the inverse-square gauge coupling β
and fermion masses mf:

hSgiQ − hSgiQ¼0
¼ Q2

VxLt

1

2χ2T

∂χT
∂β þO

�
1

V2

�
ð29Þ

�X
x

SfðxÞ
�

Q

−
�X

x

SfðxÞ
�

Q¼0

¼ Q2

VxLt

1

2χ2T

∂χT
∂mf

þO

�
1

V2

�
; ð30Þ

where Sg and SfðxÞ in (29) are the lattice pure gauge action
and the scalar chiral condensate, respectively.
There are two remarkable properties of the difference

of gauge actions and of chiral condensates between the Q
and vanishing topological sectors in Eqs. (29) and (30):
they are of the order of the inverse lattice volume 1

VxLt
and

proportional to the square of the topological charge Q in
both cases.
The numerical results for hSgiQ − hSgiQ¼0

and
hPxSfðxÞiQ − hPxSfðxÞiQ¼0

reported in Ref. [15] show
a finite nonvanishing contribution in the infinite volume
limit, linear in jQj for both quantities. These results have
been obtained from numerical simulations of lattice QCD
with Nf ¼ 3þ 1 staggered dynamical quarks at T ∼ 5Tc

and Nf ¼ 2þ 1 overlap fermions, the last in a range of
temperatures running from 2Tc to 4Tc [15], and also in the
quenched model [36]. Furthermore, the numerical results of
Ref. [15] show a value of hPxSfðxÞiQ¼1

− hPxSfðxÞiQ¼0
,

�X
x

SfðxÞ
�

Q¼1

−
�X

x

SfðxÞ
�

Q¼0

≈
1

mf
; ð31Þ
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independent of the temperature, in the range of temper-
atures reported (300–650 MeV).
Summarizing, the results reported in [15] for the differ-

ence of the gauge action and of the chiral condensate
between the Q and vanishing topological sectors, obtained
from numerical simulations of QCD at T > Tc, are in
contradiction with the corresponding results obtained from
the expansion around the saddle point [(29) and (30)],
which should hold in the large-volume limit.
There are only two plausible explanations for such a

contradiction:
(i) The results of Ref. [15] are afflicted from strong

volume corrections.
(ii) The saddle-point expansion fails to reproduce the

correct behavior of physical quantities in the large-
volume limit.

Because the authors of Ref. [15] exclude large finite-size
corrections from their numerical analysis of the difference
of the gauge action and of the chiral condensate between
the Q and vanishing topological sectors (see Figs. S19 and
S22 of [15]), the only plausible explanation is the failure of
the expansion around the saddle point. However, the only
reason for the failure of the saddle-point expansion is
that the main ingredient of this expansion, the fact that
ZðθÞ defines in (26) an integration measure extremely sharp
around θ ¼ 0, does not work. Because ZðθÞ ¼
e−VxLtEðβ;mf;θÞ and Eðβ; mf; θÞ has its absolute maximum
at θ ¼ 0 for any nonvanishing value of the fermion mass
mf and gauge coupling β, we should conclude, as pre-
viously stated, that the vacuum energy density is θ
independent at high temperatures, but surprisingly not
too high (T ∼ 2Tc). A θ-independent vacuum energy
density for physical temperatures above a given temper-
ature Tch would imply a vanishing topological susceptibil-
ity and the absence of all physical effects of the Uð1Þ axial
anomaly at these temperatures.
Years ago Cohen [16,17] showed, assuming the absence

of the zero mode’s contribution, that all the disconnected
contributions to the two-point correlation functions in the
SUð2ÞA chiral symmetry restored phase at high temper-
atures vanish in the chiral limit. The main conclusion of this
work was that the eight scalar and pseudoscalar mesons
σ; π̄; η; ρ̄, should have the same mass in the chiral limit, the
typical effects of the Uð1ÞA anomaly being absent in this
phase. This issue has been investigated both analytically
and with numerical simulations in [18–27]. In particular,
Aoki and collaborators have reported numerical results
from simulations of QCD with overlap fermions [23,25]
which show a degeneracy of the π̄ and η correlators. In
addition, they have also shown in [24], by studying
multipoint correlation functions in various channels, that
the Uð1ÞA anomaly becomes invisible in susceptibilities of
scalar and pseudoscalar mesons in the SUð2ÞA chiral
symmetric phase of QCD with two overlap quarks.

In the next section we will argue that the effects of the
chiral anomaly on the meson spectrum, and in any physical
observable, should disappear in the high-temperature
SUðNfÞA chiral symmetric phase of QCD.

IV. THE RESTORATION OF THE Uð1ÞA
SYMMETRY AT ANY T > Tc

In this section we want to show, on very general grounds,
how all effects of the axial anomaly should disappear in the
high-temperature phase of QCD, where the SUðNfÞA
symmetry is restored. The topological susceptibility and
all the θ derivatives of the vacuum energy density should
vanish and the theory should become θ independent.
The only general assumption of this section is that in the

high-temperature phase of QCD, where the SUðNfÞA
symmetry is restored, the spectrum shows a mass gap
even in the chiral limit. All correlation lengths are finite in
physical units, no symmetry is spontaneously broken, the
model is free from infrared divergences, and the perturba-
tive expansion of the vacuum energy density and of the
chiral condensate in powers of the quark mass converges
for every θ (phase transitions in θ are not expected at
T > Tc [9,37]). A finite spatial lattice volume of linear size
much larger than the inverse mass gap should be enough to
reproduce the correct physical results, and in contrast to
what happens in the low-temperature broken phase, the
infinite-volume limit and the chiral limit should commute.
The situation is similar to that of the one-flavor model
previously discussed, where the chiral anomaly and, there-
fore, the absence of spontaneous chiral symmetry breaking
was responsible for the mass gap in the spectrum of this
model. However, in contrast to the one-flavor case, the
zero-charge topological sector does not show spontaneous
symmetry breaking, and all susceptibilities are finite in the
chiral limit in this sector. This suggests that the validity of
the perturbative expansion in powers of the quark mass m,
and of the commutation of the infinite volume limit and the
chiral limit, applies also to this sector; we will make use of
this in what follows.
We will first discuss the two-flavor case and will com-

ment on the extension of the results to Nf ≥ 3. We will also
show that Eq. (31) holds in the chiral symmetry restored
phase, up to order-mf corrections, a result which, as
previously stated, has been observed in the numerical
simulations reported in [15] at T ¼ 2Tc. We work, as
throughout this paper, in a lattice with a fermion regulari-
zation that, as the overlap fermions, obey the Ginsparg-
Wilson relation.

A. The two-flavor model

To fix the notation let SðxÞ ¼ SuðxÞ þ SdðxÞ and PðxÞ ¼
PuðxÞ þ PdðxÞ be the sum of the up and down scalar and
pseudoscalar condensates, respectively, let χs;m¼0;V and
χp;m¼0;V be the flavor singlet scalar and pseudoscalar
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susceptibilities at m ¼ mu ¼ md ¼ 0, and let finite lattice
volume V ¼ L3

sLt. Taking into account that SðxÞ and PðxÞ
transform like a vector under UAð1Þ chiral anomalous
rotations, we can write for the expansion of the mean value
of the chiral condensate in powers of m

hSðxÞiθ ¼ χs;m¼0;Vm − sin2
θ

2
ðχs;m¼0;V − χp;m¼0;VÞm

þOðm3Þ; ð32Þ

which gives the following expression for the vacuum
energy density:

−EVðβ; m; θÞ ¼ −E0;VðβÞ þ
1

2
χs;m¼0;Vm2

−
1

2
sin2

θ

2
ðχs;m¼0;V − χp;m¼0;VÞm2

þOðm4Þ; ð33Þ

where E0;VðβÞ is the vacuum energy density at m ¼ 0,
which depends only on the inverse gauge coupling β.
Equation (33) gives for the topological susceptibility at

θ ¼ 0 the following relation with the scalar and pseudo-
scalar flavor-singlet susceptibilities:

χT;V ¼ m2

4
ðχs;m¼0;V − χp;m¼0;VÞ þOðm4Þ; ð34Þ

which is of the order of m2, as expected.
Equations (32) and (33) allow us to write the following

expansion in powers of m for the mean value of the chiral
condensate in the Q ¼ 0 topological sector:

hSðxÞiQ¼0¼ χs;m¼0;Vm−
1

2
ðχs;m¼0;V −χp;m¼0;VÞmþOðm3Þ:

ð35Þ

As previously discussed, the large lattice volume expansion
around the saddle point predicts, provided that the vacuum
energy density shows a nontrivial θ dependence, that the
chiral condensate in any fixed topological sector equals the
chiral condensate in the full theory at θ ¼ 0, in the large-
volume limit, up to corrections of the order of 1

V. Then the
only way to keep the validity of the expansion of the chiral
condensate and the vacuum energy density in powers of the
quark mass m is that χs;m¼0;V − χp;m¼0;V is Oð1VÞ,

χs;m¼0;V − χp;m¼0;V ∼O

�
1

V

�
: ð36Þ

Equation (36) implies that the topological susceptibility
(34) vanishes, the scalar and pseudoscalar susceptibilities
are equal in the chiral limit, and, therefore, the eight scalar
and pseudoscalar mesons σ; π̄; η; ρ̄ should have the same
mass in this limit.
The analysis here performed can be extended to higher

orders in the expansions (32)–(35), obtaining as a result
new conditions, analogous to (36), that show that the theory
should be θ independent in the infinite-volume limit and
that all the effects of the chiral anomaly are missed.
There is a simpler way to understand all these features.

The vacuum energy density can be parameterized as
follows:

EVðβ; m; θÞ − EVðβ; m; 0Þ ¼ m2θ2fðβ; m; θ2Þ; ð37Þ
with fðβ; m; θ2Þ > 0 for every θ ∈ ð−π; π�, since θ ¼ 0 is
assumed to be the only absolute minimum of the vacuum
energy density. It is an even function of θ (fðβ; m; θ2Þ is
also an even function of m in the two-flavor model) that
vanishes at m ¼ 0. The subtracted full chiral condensate
hPxSðxÞiθ¼0 − hPxSðxÞiQ¼0 is, on the other hand, finite
in the infinite-volume limit, and can be computed as
follows:

�X
x

SðxÞ
�

θ¼0

−
�X

x

SðxÞ
�

Q¼0

¼ VxLt

R
dθð2mfðβ; m; θ2Þ þm2∂mfðβ; m; θ2ÞÞθ2e−VxLtm2θ2fðβ;m;θ2ÞR

dθe−VxLtm2θ2fðβ;m;θ2Þ ; ð38Þ

which obviously vanishes at m ¼ 0.
We can compute the subtracted full chiral condensate at

any nonvanishing quark mass m by doing the saddle-point
expansion of (38) and the final result for the dominant
contribution in the m → 0 limit is

�X
x

SðxÞ
�

θ¼0

−
�X

x

SðxÞ
�

Q¼0

¼ 1

m
: ð39Þ

Then, if we want to keep the validity of the expansion of the
vacuum energy density in powers of the quark massm, and
of the commutation of the infinite-volume limit and the

chiral limit, we need to invalidate the saddle-point expan-
sion; this requires that the θ-dependent part of the vacuum
energy density (37) be at least of the order of 1

V.
We can also compute the mean value of the chiral

condensate in the Q ¼ 1 topological sector under this
condition [or condition (36)]. The final result is

mhSðxÞiQ¼1 ¼ χs;m¼0;Vm2 þ 1

V
ð2þOðm2ÞÞ; ð40Þ

which gives for the difference between the full condensates
in the Q ¼ 1 and Q ¼ 0 topological sectors the following
expression:
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m

��X
x

ðSuðxÞ þ SdðxÞÞ
�

Q¼1

−
�X

x

ðSuðxÞ þ SdðxÞÞ
�

Q¼0

�
¼ 2þOðm2Þ: ð41Þ

B. Three or more flavors

The generalization of the results of the previous sub-
section to Nf ≥ 3 is straightforward but has some peculiar
features which we want to remark.
In the two-flavor model the scalar χs;m¼0;V and pseudo-

scalar χp;m¼0;V susceptibilities in the chiral limit get
contributions from the Q ¼ 0 and Q ¼ 1 topological
sectors. The Q ¼ 0 sector is free from the anomaly, and
then gives the same contribution to both susceptibilities, but
the Q ¼ 1 sector contributions to χs;m¼0;V and χp;m¼0;V are
opposite. ForNf ≥ 3, however, only theQ ¼ 0 sector gives
a contribution to the scalar χs;m¼0;V and pseudoscalar
χp;m¼0;V susceptibilities in the chiral limit and, therefore,
we get

χs;m¼0;V ¼ χp;m¼0;V ; if Nf ≥ 3: ð42Þ

The expansion of the mean value of the chiral condensate
in powers of m for Nf ¼ 3,

hSðxÞiθ¼χs;m¼0;Vm−sin2
θ

3
ðχs;m¼0;V−χp;m¼0;VÞmþOðm2Þ;

ð43Þ

is therefore θ independent at order m, its first θ-dependent
contribution being of the order of m2. In general the first
θ-dependent contribution to the expansion of the scalar
condensate in powers of the quark massm is of the order of
mNf−1 and, therefore, of the order of mNf in the expansion
of the vacuum energy density, analogous to Eq. (33). This is
the reason why the generalization of Eq. (41) to Nf flavors
reads now as follows:

m

��X
f;x

SfðxÞ
�

Q¼1

−
�X

f;x

SfðxÞ
�

Q¼0

�

¼ Nf þOðmÞ: ð44Þ

V. SUMMARY AND CONCLUSIONS

The axion mass, an essential ingredient in the calcu-
lation of the axion abundance in the Universe, is related in
the QCD axion model with the topological susceptibility
χT at θ ¼ 0. The temperature dependence of the topo-
logical susceptibility is, therefore, just that of the axion
mass.

Three papers reporting numerical results for the temper-
ature dependence of the topological susceptibility in
unquenched QCD have been recently published [13–15],
and their conclusions seem not to be in agreement with
each other, reflecting the high level of difficulty in
measuring the topological susceptibility in the high-
temperature regime.
In this paper we have shown that an analysis of some of

the numerical results reported in [15] concerning the mean
value of the chiral condensate at fixed topological charge
suggests that the vacuum energy density is θ independent at
high temperatures, but surprisingly not too high ðT ∼ 2TcÞ;
this result would imply a vanishing topological suscep-
tibility and the absence of all physical effects of the Uð1Þ
axial anomaly at these temperatures. More precisely, we
have shown that the results of the numerical simulations of
QCD at T > Tc in [15,36] are in contradiction with the
results of the large-volume expansion around the saddle
point [(29) and (30)], but in very good agreement with the
analytical perturbative expansion of the chiral condensate
given by Eq. (44).
The only reason for the failure of the saddle-point

expansion is that the main ingredient of this expansion,
the nontrivial θ dependence of the vacuum energy density
Eðβ; mf; θÞ, does not work. Other intermediate solutions,
like a vacuum energy density with nontrivial θ dependence
for jθj ≤ θc, which becomes θ independent at jθj > θc,
would imply the existence of a phase transition at ðT; θcÞ;
such a situation seems to be ruled out if T ≥ Tc, at least in
the pure gauge model, by the results of [9,37], which
show that the critical temperature of the deconfine-
ment phase transition decreases with θ. Therefore a
θ-independent vacuum energy density seems the most
plausible explanation for the failure of the saddle-point
expansion.
In Sec. IV we have made a general assumption con-

cerning the high-temperature phase of QCD, where the
SUðNfÞA symmetry is restored. Basically we assume that
in this phase all correlation lengths are finite in physical
units, no symmetry is spontaneously broken, the model is
free from infrared divergences, and the perturbative
expansion of the chiral condensate in powers of the quark
mass converges. A finite spatial lattice volume of linear
size much larger than the inverse mass gap should be
enough to reproduce the correct physical results, and, in
contrast to what happens in the low-temperature broken
phase, the infinite-volume limit and the chiral limit should
commute. Under this assumption, we have shown that all
effects of the axial anomaly should disappear in the high-
temperature phase of QCD, where the SUðNfÞA symmetry
is restored. The topological susceptibility and all
the θ derivatives of the vacuum energy density should
vanish and the theory should become θ independent at
any T > Tc.

VICENTE AZCOITI PHYSICAL REVIEW D 94, 094505 (2016)

094505-8



Incidentally, the commutativity of the chiral and infinite-
volume limits is implicitly assumed by the authors of
Ref. [15], since their calculations in the high-temperature
regime are based on the assumption that the topological
susceptibility, χT , can be computed in this phase from
the relation VχT ¼ 2Z1

Z0
, which is the result that follows from

the dilute instanton gas approximation in the VχT ≪ 1 limit.
An analysis of the physical implications of these results

on the axion cosmology seems, therefore, worthwhile.
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