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We explore the use of Wilson flow to study the deconfinement transition in SU(3) gauge theory. We use
the flowed Polyakov loop as a renormalized order parameter for the transition, and use it to renormalize the
Polyakov loop. We also study the flow properties of the electric and magnetic gluon condensates, and
demonstrate that the difference of the flowed operators shows rapid change across the transition point.
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I. INTRODUCTION

Wilson flow is a powerful new technique for the study of
non-Abelian gauge theories [1,2]. It has been used for
setting the scale in lattice computations [1,3–6]. It can also
be applied in the construction of renormalized composite
operators, like the energy-momentum tensor [7,8] and
fermion bilinears [9–11]. One example of the use of
operators renormalized this way is the recent attempt to
extract the renormalized pressure and energy density at
finite temperature, T, in SU(3) gauge theory [12]. In this
paper we use Wilson flow to create an order parameter for
the finite-temperature transition in the SU(3) pure gauge
theory, and to examine gluon condensates for T > 0.
The Wilson flow equation

dUμðx; tÞ
dt

¼ −∂x;μS½U� · Uμðx; tÞ; ð1Þ

produces a smeared configuration, Uμðx; tÞ, at any “flow
time” t, given the initial condition Uμðx; 0Þ ¼ UμðxÞ. Here
UμðxÞ is the bare link (x denotes a point in the four-
dimensional Euclidean space-time lattice, and μ denotes
one of the four directions), 1

g2
0

S½U� is the action, and the

derivative is a Hermitian traceless matrix. In this paper we
will use the Wilson action, and our convention will be that

S½U� ¼
X
p

ReTr½1 −UðpÞ�: ð2Þ

Here the plaquette operator,UðpÞ, is the ordered product of
link matrices around a plaquette, and the sum is over all
oriented plaquettes; ∂x;μS½U� in Eq. (1) is the traceless

Hermitian matrix constructed from UðpÞ, the plaquette p
containing the link ðx; μÞ.
Since the flow defined by Eq. (1) is diffusive, the

smeared link operator has a size which is proportional toffiffi
t

p
. If one could choose to work at a flow time t, fixed in

physical units while changing the lattice spacing, then the
fat-link operators Uμðx; tÞ would all be evolved to the same
physical scale, and one would be able to construct
renormalized composite operators from them. We explore
such a construction for the Wilson line here.
A common way to define the scale is through the gluon

condensate [1]:

EðtÞ ¼ t2EðtÞ;

where EðtÞ ¼ −
1

2
TrGμνðx; tÞGμνðx; tÞ: ð3Þ

Gμν is the lattice version of the field strength tensor, and an
average over the 4-volume of the lattice is denoted by the
bar. One selects a value of c and solves the equation

hEðtÞi ¼ c ð4Þ

for t. We will denote such choices of t by tc. The specific
choice c ¼ 0.3 defines the flow time t0.3, which is com-
monly called t0 [1]. Another suggestion has been to use a
derivative of EðtÞ [3]. Systematics of these scale setting
schemes have been studied in detail [4–6].
hEi has widely been used for scale setting purposes in

lattice QCD. In perturbation theory

hEi ¼ 3

16π2
g2ð1þ c1g2 þOðg4ÞÞ ð5Þ

where, for pure gauge SU(3), c1 ¼ 1:0978
4π when g2 ≡

g2
MS

ðμ ¼ 1=
ffiffiffiffi
8t

p Þ [1]. One can also use hEi to define a
new coupling scheme,
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g2flowðtÞ ¼
16π2

3
hEi: ð6Þ

In this paper we investigate the flow of two quantities
which are very sensitive to the deconfinement transition.
First, we look at the Polyakov loop, which is the order
parameter for the deconfinement transition, but is highly
singular as one takes the continuum limit. We discuss in the
next section the use of flow to construct a continuum order
parameter. Renormalization of the Polyakov loop using
Wilson flow has also been considered in Ref. [13], which
considered Polyakov loops in various representations,
though we take a somewhat different approach to renorm-
alizing them than what was done there. In the following
section, we discuss the flow-time behavior of the gluon
condensate and related observables. The gluon condensate
is related to the nonperturbative nature of the QCD vacuum.
As one crosses the deconfinement temperature Tc, the
gluon condensate starts to melt. Also the electric and
magnetic components of the gluon condensate show differ-
ent temperature dependences. We will see that flow
enhances the sensitivity of the gluon condensate to the
onset of the transition.
In order to reduce the dependence of observables on the

ultraviolet scale 1=a, one should choose c such that
a ≪

ffiffi
t

p
. At finite temperature, T, there is also an infrared

scale proportional to T, and one should ideally choose

T ≪
1ffiffi
t

p ≪
1

a
: ð7Þ

Since one also has TNt ¼ 1=a, one sees that the hierarchies
imply 1=Nt ≪

ffiffi
t

p
T ≪ 1. Since in current day finite-

temperature lattice studies Nt is typically ≤ 16, “much
less than”, in practice, becomes at most “smaller by a factor
∼ 4.” As a practical example, when one chooses c ¼ 0.3, so
that the flow scale is t0, then Tc

ffiffiffiffi
t0

p
≈ 0.25 in pure SU(3)

gauge theory [14,15]. Also, in most computations today,ffiffiffiffi
t0

p
=a≲ 2. The process of scanning in T while keeping

1=
ffiffi
t

p
fixed (by fixing c) means that the hierarchy in Eq. (7)

can be preserved only for 1=ðNt
ffiffi
t

p Þ ≪ T ≪ 1=
ffiffi
t

p
. The

suggestion in Ref. [12], that one could keep
ffiffi
t

p
T ¼ b fixed

as one changes T obviously has the limits 1=Nt ≪ b ≪ 1.
We study these questions here as part of our study of the
renormalized Polyakov loop and gluon condensates at
finite temperature.

II. POLYAKOV LOOP

The deconfinement transition is associated with the
breaking of the Z3 center symmetry for SU(3) gauge
theory. The Polyakov loop,

LðT; aÞ ¼ 1

3V

X
x

Tr
YNt

x4¼1

UtðxÞ ð8Þ

transforms nontrivially under the Z3 symmetry and acts as
an order parameter for the transition. Here x ¼ ðx; x4Þ are
the coordinates of the lattice sites, U4ðxÞ are the link
elements at site x in the Euclidean time direction, a is the
lattice spacing, Nt is the number of sites in the Euclidean
time direction, the temperature, T ¼ 1=ðaNtÞ, and the
volume V ¼ N3

s where Ns is the number of sites in the
spatial directions.
hLðT; aÞiT ¼ 0 for temperature T < Tc, where the

center symmetry is unbroken. Here h··iT denotes thermal
averaging. For T > Tc the Z3 symmetry is spontaneously
broken, and hLðT; aÞiT becomes nonzero. At finite volume,
tunneling between the Z3 vacua make hLðT; aÞiT → 0 even
in the deconfinement phase, so we follow the standard
practice of studying

PðT; aÞ ¼ hjLðT; aÞjiT: ð9Þ

P is nonzero below Tc, PjT<Tc
∼ 1

V.
The bare Polyakov loop, as defined in Eq. (9), depends

strongly on the lattice spacing a [16]:

PðT; aÞ ¼ e−fðg2ðaÞÞ=aTPrenðTÞ: ð10Þ

Therefore PðT; aÞ → 0 as a → 0 and needs to be renor-
malized. Various techniques for renormalizing the
Polyakov loop have been proposed in the literature
[17,18]. The renormalized Polyakov loop has also been
calculated to next-to-leading order in perturbation theory
[19]; in the MS scheme,

logPMSðTÞ ¼ 1þ g2CfmE

8πT
þ 3g4Cf

16π2

�
log

mE

T
þ 1

4

�
þ…::

ð11Þ

where g2 is the coupling in the MS scheme at a scale ∼4T
and mE is the electric screening mass. For SU(3) gauge
theory, mE ¼ gT in leading order of perturbation theory.

A. Flowed Polyakov loop

Wilson flow can be used to define an order parameter
that is only mildly dependent on the lattice spacing a, and
has a finite continuum limit: if we flow to a physical
scale t, and define a Polyakov loop, PðT; t; aÞ through
Eq. (8) with the links replaced by flowed links, then
PðT; t; aÞ ¼ PðT; tÞ þOða2=tÞ. Since the Wilson flow
preserves center symmetry, the flowed Polyakov loop
PðT; t; aÞ acts as an order parameter for the deconfinement
transition.
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As discussed in Sec. I, if we flow the fields to time t,
operators constructed out of the flowed fields are smeared
to a radius ∼

ffiffiffiffi
8t

p
. So we expect finite a corrections to be

small for
ffiffiffiffi
8t

p
≫ a. On the other hand, for thermal physics

we require the smearing radius
ffiffiffiffi
8t

p
≪ 1=T. Awindow of t

satisfying both conditions can be obtained for the kind of
lattices commonly used for finite-temperature physics [12].
In Fig. 1, we show the flowed Polyakov loop for three

different lattice spacings, corresponding to Nt ¼ 6, 8 and
10, respectively, at two different temperatures. At t ¼ 0 we
see the strong a dependence indicated by Eq. (10). We see
that this divergence is removed at fairly early flow times,ffiffi
t

p
T ≃ 0.05. The remaining finite a corrections are

suppressed when the flow time increases to
ffiffi
t

p
T ≃ 0.16.

If one does not include the Nt ¼ 6 data, then the figure
shows that this happens at

ffiffi
t

p
T ≃ 0.12. These flow times

saturate the lower bound b > 1=Nt, and correspond toffiffi
t

p
=a≃ 1 on the respective lattices. This is good as a

practical matter, since it implies that the “much less than” in
Eq. (7) can be replaced by “less than.”
In Fig. 2 we explore the temperature dependence of the

flowed Polyakov loop, PðT; t; aÞ, at three different lattice
spacings, where the flow time is fixed to t0.15 (left) and
to t ¼ 1=ð5TÞ2 (right). As discussed in Appendix A the
critical temperature is obtained from the peak of the
susceptibility of the bare Polyakov loop, while T=Tc is
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FIG. 1. Flowed Polyakov loop at 1.5 Tc (left) and 2 Tc (right). The thickness of the lines represent the 1σ bands.
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FIG. 2. The flowed Polyakov loop, PðT; t; aÞ, and its susceptibility density, χPðT; t; aÞ, at fixed t0 (left) and at fixed
ffiffi
t

p
T (right). The

dependence on a is too small to be extracted from these measurements. The thermal transition is identified correctly by both measures as
one can see from the fact that the peak of the susceptibilities coincides with the Tc measurement using the bare Polyakov loop.
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obtained using the flow scale. Since flowing to a fixed
length scale like t0.15 interferes with thermal physics at
sufficiently high temperatures, in the left panel above we
had to stop at a temperature < 1=

ffiffiffiffiffiffiffiffiffiffiffi
8t0.15

p
. We note thatffiffi

t
p

=a is large enough that the difference between the
flowed loops at different a are too small to be seen, for
both these choices of t. Whenever our choice of flow time
allows us to do this, we will suppress the argument a and
refer to PðT; tÞ.
This a-independent flowed Polyakov loop is sufficient to

measure the continuum deconfinement transition in pure
gauge theory. In the lower panels of Fig. 2, we show the
susceptibility density

χPðT; tÞ ¼ hjPðT; tÞj2iT − hjPðT; tÞji2T: ð12Þ
Since SU(3) gauge theory has a first-order transition,
χPðT; tÞ is expected to show a peak at Tc, just like the
susceptibility for the nonflowed loop. Unlike the latter,
however, the flowed susceptibility peak height does not
change with a. The susceptibility VχP is known to scale
like volume at Tc; since this volume scaling is caused by
the two-peak nature of P at the transition point, one expects
a similar scaling to hold here. We do not explicitly check
this volume dependence here.
The symmetries of the Polyakov loop decide which

screening masses can be seen in their correlations. Since the
symmetries of the bare and flowed Polyakov loops are
the same, they would give the same screening masses. The
Polyakov loop correlations are sometimes used to deter-
mine the free energy of an infinitely heavy color source
placed in the gluonic medium. Determining this would
require a renormalized Polyakov loop,whose extraction
from data we turn to next.

B. Renormalized Polyakov loop

For gauge links flowed to a (sufficiently large) flow
time t, fluctuations at a scale ≫ 1=

ffiffi
t

p
are strongly

suppressed and the effective ultraviolet cutoff is ∼1=
ffiffiffiffi
8t

p
[1]. Therefore, similar to Eq. (10) we can write

PðT; tÞ ¼ e−
Rðg2ðtÞÞffi

t
p

T PrenðTÞ ð13Þ
where g2ðtÞ is the coupling evaluated at a scale μ ∼ 1=

ffiffiffiffi
8t

p
.

In leading order in g (see Appendix B 1),

Rðg2ðtÞÞ ¼ 1

3π2

ffiffiffi
π

p
ffiffiffi
8

p g2ðtÞ ð1þOðg2ÞÞ: ð14Þ

Following standard arguments [16,20] we expect that
expðR= ffiffi

t
p

TÞPðT; tÞ≡ PrenðT; tÞ is a function of temper-
ature modulo Oð ffiffi

t
p

TÞ corrections, and has a finite limit
as t → 0.
We first explore perturbative renormalization, using

Eq. (14). The coupling g2
MS

ðμ ¼ 1=
ffiffiffiffi
8t

p Þ is evaluated using
the two-loop formula with Λ

nf¼0

MS
¼ 1.20ð2ÞTc [21], deter-

mined using plaquette values and two-loop perturbation
theory. This value agrees, within error bars, with the value
1.24� 0.10 quoted in Ref. [14] and values in the range
1.18–1.22 obtained in Ref. [15], as well as an earlier
measurement of 1.15� 0.05 [22]. Note that the starting

point of the calculation of Λ
nf¼0

MS
is a lattice observable, and

in the references cited above, two-loop perturbation theory

was used to extract Λ
nf¼0

MS
, so it is only consistent to

calculate the coupling using the two-loop formula.
In the left panel of Fig. 3 we illustrate the perturbative

renormalization by showing PrenðT; tÞ at 2 Tc at different
lattice spacings. One clear lesson from this exercise is that
when b ≲ 1=Nt, the multiplicative renormalization does not
work. This follows from our earlier observation that there
remains an Oða2=tÞ piece which breaks scaling. That this
should be large seems reasonable when one remembers that
at such values of b one has

ffiffi
t

p
=a≲ 1. In this region of flow

time there is a rapid rise in the value of the renormalized
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FIG. 3. (Left) PrenðT; tÞ, Eq. (14) as function of flow time, at a temperature of 2 Tc and different lattice spacings. Shown are the results
using g2M̄Sðμ ¼ 1=

ffiffiffiffi
8t

p Þ (solid lines, see below), g2M̄Sðμ ¼ 1=
ffiffiffiffi
8t

p Þ extracted from E using Eq. (5) (dashed lines, denoted g2MS;flow) and g
2

in the flow scheme (dotted lines). The thickness of the lines shows the error. (Right) PrenðT; tÞ at a few temperatures on Nt ¼ 8 lattices.
Here the two-loop MS coupling has been used. The two lines of the same style define the error band.
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Polyakov loop. A much milder dependence on t is observed
at larger b. In this figure we also make a comparison with
calculations where the coupling is calculated differently, in
particular, calculations where g2

MS
ðμ ¼ 1=

ffiffiffiffi
8t

p Þ is obtained
through Eq. (5) (this is denoted by g2MS;flow in the figure),
and also where the renormalization factor is calculated with
the flow coupling g2flow [Eq. (6)]. In each case the thickness
of the line shows the error bar, combining the statistical
error in the data and the uncertainty in the coupling. The
calculation in the flow scheme is seen to result in a stronger
t dependence. This may indicate that the higher-order
corrections are larger in the flow scheme [23]. The results
are very close (for

ffiffi
t

p
> a) in the two calculations where

g2
MS

ðμ ¼ 1=
ffiffiffiffi
8t

p Þ is obtained from the two-loop perturba-

tion theory using Λ
nf¼0

MS
and where it is defined through

Eq. (5). The coupling g2MS;flow, obtained using Eq. (5) from
data at nonzero a, will have finite lattice spacing effects,
and will also differ from other two-loop evaluations of
g2
MS

ðμ ¼ 1=
ffiffiffiffi
8t

p Þ at Oðg6Þ. The agreement in Fig. 3 indi-
cates that such effects are small at these couplings. As T is
lowered, the agreement at fixed

ffiffi
t

p
T becomes worse, as

one would expect from the increase in coupling.
In the right panel of the same figure, we show the

perturbatively evaluated PrenðT; tÞ at different tempera-
tures, for lattices with spacing a ¼ 1=8T. In this, and
all the following figures where a perturbative coupling is
used, the two-loop MS coupling, calculated using

Λ
nf¼0

MS
¼ 1.20ð2ÞTc, has been used. The growth of the

error band at lower temperatures is because of the increase
in scale dependence of the two-loop coupling. The knee atffiffi
t

p
∼ a can be seen at the different temperatures. Forffiffi

t
p

> a, the dependence of PrenðT; tÞ on flow time is mild
at high temperatures, but less so at lower temperatures.
To illustrate the temperature dependence of PrenðT; tÞ,

we show it in Fig. 4 at both c ¼ 0.15 and b ¼ 0.2. The
remnant t dependence of PrenðT; tÞ is clear by comparing
the two panels of the figure. The corresponding suscep-
tibility densities are also shown in the figure. The value of
Tc, defined by the susceptibility peak, is consistent between
the computations using different flow times. However, the
value of χP depends on the choice of t and the scheme.
The substantial t dependence in PrenðT; tÞ defined

through Eq. (14), in particular at lower temperatures, is
not unexpected, as we are using only a leading-order
renormalization factor in perturbation theory. If one
assumes that the t dependence is due to remnant
Oðg4 ffiffi

t
p

TÞ effects, one can attempt a linear extrapolation
of PrenðT; tÞ to t → 0. This is similar to the strategy of
Ref. [12]. As Fig. 3 reveals, such an extrapolation is
definitely not viable at smaller temperatures, where the t
dependence is strong and complicated. At higher temper-
atures, a linear behavior does not set in at

ffiffi
t

p
=a ∼ 1, but a

linear extrapolation is feasible from a somewhat larger t. As
an illustration of how the result of such a program will look,
in the left panel of Fig. 5 we show the results of such

 0

 0.4

 0.8

 1.2

 1  1.5  2  2.5  3

P
re

n(
T

, μ
=

1/
√8

 t 0
.1

5)

T/Tc

a=1/6T
a=1/8T

a=1/10T
 0

 0.4

 0.8

 1.2

 1  1.5  2  2.5  3

P
re

n(
T

, √
tT

=
0.

2)

T/Tc

a=1/6T
a=1/8T

a=1/10T

 0

 0.04

 0.08

 0.12

 0.95  1  1.05

χ P
r (

T
, t

=
t 0

.1
5)

T/Tc

a=1/6T
a=1/8T

 0

 0.04

 0.08

 0.12

 0.95  1  1.05

χ P
r (

T
, √

t T
=

0.
2)

T/Tc

a=1/6T
a=1/8T

FIG. 4. The renormalized flowed Polyakov loop PrenðT; tÞ (top), at flow times t0.15 (left) and t ¼ ð0.2=TÞ2 (right), and the
corresponding susceptibilities (bottom).
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an extrapolation. For definiteness, here we have chosenffiffi
t

p
T ∈ ð0.2; 0.3Þ for all the fits. This choice of range was

guided by the discussion at the beginning of Sec. II A, as
well as a preference for a fixed range for all lattices, and the
requirement that the result should not change, within errors,
for a small change of the range.
While the perturbative strategy is straightforward, as we

have discussed, it may work only at high temperatures
≳2Tc. By going to higherNt it may be possible to make the
extrapolation more stable at lower temperatures; however, it
will be difficult to push it down to Tc with realistic lattices.
A more viable, nonperturbative strategy to calculate
PrenðTÞ at temperatures close to Tc is to use the fact that
the temperature dependence of the renormalization factor is
simple [Eq. (13)], and therefore, the renormalization factor
at one temperature can be simply obtained from the
renormalization factor at a different temperature modulo
remnant linear

ffiffi
t

p
T corrections, which we expect to be

small if we remain within our window
ffiffi
t

p
T ∈ ð0.2; 0.3Þ. In

order to extract Rðg2ðtÞÞ, we take a baseline value of the
Polyakov loop at a given temperature. In what follows, we
take the value Prenð3TcÞ ¼ 1.0169ð1Þ [18] as the baseline.
This determines Rðg2ð ffiffi

t
p ¼ 1=10TcÞÞ, which can then be

used to calculate Pren to all temperatures up to 2 Tc. This
process is then iterated to calculate Pren at lower

temperatures. This strategy is similar in spirit to that
followed in Ref. [18]; however, the use of flow makes
the calculation simpler, as we do not need to match lattices
at different lattice spacings to the same temperature. The
renormalized Polyakov loop extracted this way is shown in
the right panel of Fig. 5.

III. ELECTRIC AND MAGNETIC CONDENSATE

The nonperturbative nature of the QCD vacuum is char-
acterized by various condensates, which melt across the
deconfinement transition. In the pure glue theory at zero
temperature, E [Eq. (3)] is the only dimension-four, scalar
operator one can form. At finite temperatures Lorentz
symmetry is broken, and two separate rotationally invariant,
positive-parity operators can be constructed out of E:

E ¼ TrG0iG0i; M ¼ 1

2
TrGijGij ð15Þ

which are related to the electric and magnetic gluon con-
densates, respectively. Oð4Þ symmetry at zero temperature
impliesE andM are not independent operators, and in the rest
frame, hEi ¼ hMi ¼ 1

2
hEi.

The flow behaviors of E and M turn out to be quite
interesting. In Fig. 6 we show the dimensionless flowed
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FIG. 6. The electric and magnetic condensate operators t2hM;Ei plotted against flow time, at temperatures of 0.92 Tc (left), 1.09 Tc
(middle), and 2 Tc (right), on lattices with a ¼ 1=8T. We show the 1σ band of the quantities. Also plotted are the zero-temperature
values of the same operators. In the left panel (T < Tc) the three bands almost completely overlap.
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quantities t2hEðT; tÞi and t2hMðT; tÞi immediately below
and above Tc. In the same figures we also show the flow
behavior of the same operator at T ¼ 0, studied on N4

s
lattices at the same a. Below Tc the flow time behavior of
the operators is identical, indicating that even at 0.92Tc,
O(4) symmetry is approximately satisfied in the pure glue
theory. In contrast, just above Tc, the flow behavior of E
and M turn out to be very different from each other. While
at small t, the flow behavior is influenced by the lattice
cutoff and is similar to that seen for E, at longer flow times
the growth of hEðT; tÞi with flow time flattens out while
hMðT; tÞi grows rapidly. Note that this behavior sets in a
very narrow region around Tc. While the breaking of the
O(4) symmetry can already be seen at tree level, the
interacting theory shows a much stronger effect (see
Appendix B 2 and Fig. 10). This dynamical realization
of the O(4) symmetry for all T < Tc, and its abrupt
breaking just above, is consistent with the observation that
both the energy density and the interaction measure vanish
below Tc and are finite just above. A similar realization of
O(4) symmetry at finite temperature below Tc was also
observed in the screening of glueball-like operators [24].
In Fig. 7 we show the difference t2hEðT; tÞ −MðT; tÞi.

The panel on the left shows the flow-time behavior for
different T. For

ffiffi
t

p
T ≳ 1=Nt this quantity is very sensitive

to the deconfinement transition. For T < Tc the quantity
remains small. However, for T > Tc significantly larger
values are observed. Note that the 1=t2 singularity is
canceled between the electric and the magnetic operator
expectation values. This allows us to study the differ-
ence hEðT; tÞ −MðT; tÞi=T4.
Figure 7 shows hEðT; tÞ −MðT; tÞi=T4 as a function of

T=Tc. At t ¼ 0 this is a multiple of the entropy density,
which is known to change abruptly across the pure gauge
transition. At larger t this jump is even more pronounced.
What wewould like to emphasize here is that for the flowed
operator, this sharp jump arises from the flow behavior of
hEðT; tÞi and hMðT; tÞi. The flowed hE −Mi=T4 can be

used as an additional marker for the deconfinement
transition.

A. Connection to electric and magnetic
gluon condensates

The vacuum gluon condensate is defined through the
expression [25]

hG2i ¼
�
8βðgÞ
11g3

TrGμνGμνðT ¼ 0Þ
�

subt

¼
�

1

2π2
ð1þOðg2ÞÞTrGμνGμνðT ¼ 0Þ

�
subt

; ð16Þ

where βðgÞ ¼ μ ∂g
∂μ ¼ −b0g3 − b1g5 − � � � ; b0 ¼ 11

16π2
. We

have earlier used the quartic divergence of hEi to define
the flow scale. Here, the subscript on the vacuum expect-
ation value (VEV) indicates that the hard mode contribution
has been subtracted off. The resulting expectation value is
finite and quantifies an important nonperturbative property
of the vacuum [26].
Much effort has gone into the extraction of this property

of QCD from either experiment or lattice calculations,
but the extraction is still not stable. From analysis of the
decay of the τ lepton, a value of 0.02–0.01 GeV4 has been
quoted for the gluon condensate [27] using a subtraction
point ∼ð2 GeVÞ4, while a recent determination quoted
0.009� 0.007 GeV4 [28]. For SU(3) gauge theory a recent
lattice determination quotes hG2i ¼ 24.2� 8.0Λ4

MS
[29],

where hG2i has been defined after subtraction of the
perturbative part.
A finite-temperature gluon condensate was defined

analogously [30] by merely replacing the VEV in
Eq. (16) by the thermal expectation value:

hG2iT ¼
�
16βðgÞ
11g3

E

�
T;subt

: ð17Þ
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FIG. 7. (Left) Flow time dependence of the operator t2hE −Mi at different temperatures, for lattices with Nt ¼ 8. The two lines of the
same style define the 1σ band. (Right) Temperature dependence of the condensate difference hE −MiðT; tÞ=T4, without the flow and for
two different flow times. Shown are the results for two different sets: the empty symbols correspond to Nt ¼ 8 lattices while the filled
symbols correspond to Nt ¼ 6 lattices.
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The complication of the hard mode subtraction can then be
avoided by studying hG2iT ¼ hG2iT − hG2i. This differ-
ence is obtained simply from the difference of the expect-
ation value of E on a thermal and a zero-temperature lattice
at the same a. hG2iT is proportional to the trace of the
energy-momentum tensor, and has been calculated from the
plaquette operators for SU(3) [31]. In addition, we can also
define the electric and magnetic gluon condensates, hG2

EiT
and hG2

MiT , analogously by replacing E by E and M
respectively in Eq. (17) [31]. Finite-temperature sum rule
calculations use all these condensates [32].
The connection between the flowed condensate oper-

ators and the electric and magnetic gluon condensates can
be extracted from Ref. [7]:

hG2iT
hG2

EiT
hG2

MiT

9>>=
>>;

¼ lim
t→0

RðtÞ ·

8>><
>>:

hEðT; tÞi − hEðT ¼ 0; tÞi
hEðT; tÞi − hEðT ¼ 0; tÞi
hMðT; tÞi − hMðT ¼ 0; tÞi

ð18Þ

where the renormalization constant RðtÞ at leading order is

RðtÞ¼ 1

π2
ð1–2b0s̄2g2ðμ¼ 1=

ffiffiffi
8

p
tÞþOðg4ÞÞ ð19Þ

with s̄2 ¼ 0.055785 [7].

In Fig. 8 we show the renormalized condensates hG2
EiT

and hG2
MiT as a function of flow time. Their sensitivity to

the flow time means that the values of the renormalized
condensates depend on the scale at which they are
extracted. As we discussed before, the extraction of thermal
physics from flowed configurations will require the flow
time

ffiffi
t

p
T to be in a small window: 0.16≲ ffiffi

t
p

T ≪
1=

ffiffiffi
8

p
∼ 0.35. While the lattice spacing dependence is

small within this window, neither a clear linear behavior,
nor a prominent plateau can be seen for us to reliably
extract the condensates using Eq. (18) [33]. There is a hint
of a plateau near the lower end of the window; in order to
get a qualitative idea of the temperature dependence of
the condensates, in Fig. 9 we show the renormalized
condensates from this region, at the flow time

ffiffi
t

p
T ¼

1=6. As the discussion here suggests, this is to get only a
qualitative idea of the dependence of the condensates on
temperature.
The figure shows some interesting features. Both hG2

EiT
and hG2

MiT grow rapidly in magnitude just above the

deconfinement transition, with hG2
EiT increasing more

rapidly. The maxima of their magnitudes occur at approx-
imately the same temperature, just above Tc. This leads to a
sharp dip in hG2iT . After this temperature, the magnitude
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FIG. 8. The renormalized condensates hG2
EiT (left) and hG2

MiT (right) at 2Tc, plotted as functions of flow time, at three different lattice
spacings. The two lines of the same style define the error band.
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MiT (filled symbols) plotted as a function of temperature, at
flow time

ffiffi
t

p
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of both hG2
EiT and hG2

MiT decrease, while their difference
is more stable. This causes the near-flat temperature
dependence of hE −MiðT; tÞ seen in Fig. 7. Eventually
hG2

MiT changes sign (see also Fig. 6). In the leading

order, hG2
EiT ¼ −hG2

MiT [Eq. (B5)]. An indication of the
approach to such behavior is already seen in our highest
temperatures. This leads to a very small value of hG2iT at
these temperatures, and therefore a very sharp drop after
the peak just above Tc. Qualitatively, the behaviors are
similar to that seen in Ref. [31] for analogous operators
calculated from the plaquette, and renormalized using a
nonperturbative β function.

IV. DISCUSSION AND CONCLUSION

In this paper we have discussed the use of Wilson flow
to study the deconfinement transition in SU(3) gauge
theory. In particular, we have emphasized the construction
of operators for studying the onset of the deconfinement
transition. While the explicit computations done here are
for the pure gauge theory, we expect the qualitative
features to be true also for the theory with fermions.
Therefore Wilson flow has the promise of being a
powerful diagnostic tool for the deconfinement transition
in QCD.
In Sec. II we have discussed flowed Polyakov loops, i.e.,

Polyakov loops constructed from links flowed to a fixed
physical distance. Since the flow preserves Z(3) symmetry,
and flowed Polyakov loops do not require renormalization,
they give renormalized order parameters for the deconfine-
ment transition. We have investigated both the cases of the
flowed distance being fixed in terms of temperature or in
terms of a temperature-independent physical length scale.
Their behaviors are discussed in Sec. II A and shown
in Fig. 2.
From the flowed Polyakov loops, renormalized (thin)

Polyakov loops can be obtained. The renormalization
using leading-order perturbation theory, illustrated in
Fig. 4, has remnant dependence on flow time, in particular
close to the transition temperature. This is not entirely
unexpected, as for the flow times we can use (which
is restricted below by the lattice spacing a of our lattices),
the coupling is not small. We therefore turned to a
nonperturbative renormalization. The results for the renor-
malized Polyakov loop are shown in Fig. 5. The use of the
flow allowed us to conveniently do the nonperturbative
matching involved in the renormalization. In principle,
one can use the flow to do a purely perturbative renorm-
alization also; the result of such a computation, with the
leading-order renormalization constant, is also shown.
Perhaps not surprisingly, the perturbative method does
not work very well especially as one comes down in
temperature. Both higher-order calculations and much
finer lattices may be required for the perturbative approach
to work near Tc.

Next we turn to a discussion of condensates of gluonic
operators. At finite temperatures, two rotationally invariant,
positive-parity operators of dimension four can be con-
structed, corresponding to electric and magnetic gluon
operators, Eq. (15). We find that their flow behaviors
are very sensitive to the deconfinement transition: just
around Tc the flow behavior of the electric condensate
changes drastically. As a result, the difference between the
flowed operators acts as a marker of the transition. This is
illustrated in Fig. 7.
An extraction of the renormalized gluon condensate

from these results is difficult, because there is a dependence
on flow time which is not cured by the leading-order
perturbative renormalization constant. Again it is not a
surprise that leading-order perturbation theory does not
work at the lattices used by us. There is a hint of a mild
plateau near the lower end of the window in flow time
where thermal physics can be extracted. We use the results
from this region to illustrate qualitative features of the
thermal behavior of the renormalized gluon condensates in
Fig. 9. The figure shows interesting thermal behavior of
the electric and magnetic condensates, in particular just
above the deconfinement transition.
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APPENDIX A: CALCULATIONAL DETAILS

For the results described in this paper, we calculated
thermal and vacuum expectation values by generating zero-
and finite-temperature lattices using a heat bath/over-
relaxation (HB/OR) algorithm. For the finite-temperature
runs, N3

s × Nt lattices were generated with Nt ≪ Ns.
Thermal averaging requires the gauge fields to be periodic
in the Euclidean time direction. We also imposed periodic
boundary conditions in the spatial directions. At each
value of the gauge coupling, we also performed a zero-
temperature run with N4

s lattices.
One Cabibbo-Marinari pseudo-heat-bath step was fol-

lowed by three over-relaxation steps; we call this combi-
nation a sweep. Autocorrelations get enhanced by Wilson
flow [4,6]. To avoid autocorrelations, configurations were
separated by a large number of sweeps: 500 sweeps for
the finite-temperature lattices and 200–500 sweeps for the
zero-temperature lattices. The Wilson action was used
for the gauge fields. A complete list of the generated
T > 0 lattices is given in Table I.
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For generating the Wilson flow, the fourth-order Runge-
Kutta method was used [1]. See Ref. [4] for an analysis of
the convergence of this scheme. We used dt ¼ 0.01 for our
runs. For setting the temperature scales, the known results
for βc at different Nt were used, and t0.12 was used for the
relative scale at other β.

APPENDIX B: LEADING-ORDER EXPRESSIONS

In the body of the paper we have referred several times to
the behavior in leading order of perturbation theory. Here
we write down the relevant expressions to this order for the
Polyakov loop and the gluon condensates.

1. Polyakov loop

In leading order, the flowed Polyakov loop is given by

logPðT; tÞ ¼ −
g2

4Nc

Z
β

0

dτ1

Z
β

0

dτ2hBaðτ1; ~rÞBaðτ2; ~rÞi

¼ −
g2

4π2
Cf

ffiffiffi
π

p
ffiffiffiffi
8t

p
T
þ g2CfmE

8πT
ez

2

ΦcðzÞ þOðg4Þ

ðB1Þ

where Cf ¼ N2
c−1
2Nc

, z ¼ mE

ffiffiffiffi
2t

p
, with the electric massmE ¼

gT for SU(3) gauge theory, and ΦcðzÞ ¼ 2ffiffi
π

p
R
∞
z e−x

2

dx.

Therefore

Rðg2ðtÞÞ ¼ Cf

4π2

ffiffiffi
π

p
ffiffiffi
8

p g2ðtÞ ð1þOðg2ÞÞ;

logPrenðT; tÞ ¼
g2ðTÞCfmE

8πT
þOðg4ðTÞ; g4 ffiffi

t
p

TÞ: ðB2Þ

2. Gluon condensates

Insight into the flow behavior of the electric and
magnetic condensates can be obtained by looking at their
leading-order expressions. Writing

ffiffi
t

p
T ¼ x, one gets, to

Oðg2Þ,

TABLE I. List of finite-temperature lattices generated for our calculations. Two configurations were separated by 500× ð1HBþ3ORÞ
sweeps. For each finite-temperature set on lattices N3

s × Nt, a set of N4
s lattices at the same β was generated for the vacuum ensemble.

243 × 6 323 × 8 323 × 10
β # conf T=Tc β # conf T=Tc β # conf T=Tc

5.80 107 0.85 6.00 99 0.91 6.10 100 0.85
5.84 105 0.91 6.02 100 0.94 6.20 100 0.98
5.85 101 0.92 6.03 100 0.95 6.34 100 1.20
5.86 101 0.94 6.04 100 0.97 6.50 100 1.50
5.87 101 0.96 6.05 100 0.98 6.55 100 1.60
5.88 101 0.97 6.06 199 0.996 6.65 100 1.81
5.89 105 0.99 6.065 199 1.004 6.73 100 2.00
5.895 105 1.004 6.07 199 1.01 6.80 100 2.21
5.90 105 1.012 6.08 100 1.03
5.91 101 1.03 6.09 100 1.04
5.92 101 1.05 6.10 100 1.06
5.93 101 1.07 6.11 100 1.07
5.94 101 1.085 6.12 99 1.09
5.95 105 1.10 6.20 99 1.23
6.02 105 1.24 6.34 100 1.50
6.14 105 1.49 6.55 103 2.00
6.34 123 2.00 6.65 100 2.26
6.40 105 2.15 6.80 100 2.76
6.55 105 2.67
6.65 105 3.02

 0
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FIG. 10. The finite-temperature condensates t2hM;Ei and their
average, at 2 Tc, from our Nt ¼ 8 lattices (solid lines). Also
shown, with dashed lines, are the corresponding leading-order
expressions, Eqs. (B3) and (B4).
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hMi
T4

¼ 4g2

π2

� ffiffiffi
π

2

r
1

8x3
Θ3ð0; e−8π2x2Þ − hðxÞ

�
þOðg4Þ

hEi
T4

¼ 4g2

π2

� ffiffiffi
π

2

r
1

16x3
Θ3ð0; e−8π2x2Þ þ hðxÞ

�
þOðg4Þ

hðxÞ ¼
ffiffiffi
π

2

r
2π2

x
e−8π

2x2Θ0
3ð0; e−8π

2x2Þ

− 8π4
X
n>0

n3Φcð2
ffiffiffi
2

p
πxnÞ ðB3Þ

where Θ3ð0; yÞ ¼
P

ny
n2 , Θ0

3ð0; yÞ ¼ d
dyΘ3ð0; yÞ. From the

above,

hEþMi
T4

¼ 3g2

4π2x3

ffiffiffi
π

2

r
Θ3ð0; e−8π2x2Þ þOðg4Þ: ðB4Þ

Θ3ð0; e−8π2x2Þ ∼ 1ffiffiffiffi
8π

p
x
as x → 0. Using this, as T → 0

Eq. (B4) reduces to the known leading-order result

t2hEi ¼ limT→0x4
hEþMi

T4 ¼ 3g2

16π2
.

It is illustrative to compare the leading-order expressions
[Eq. (B3)] with data. Such a comparison is shown in
Fig. 10. As the figure shows, the differential flow behavior
of E and M is already seen in leading order; however, the
behavior is much more pronounced in the full theory.
Using Eqs. (B3) and (B4) it is easy to calculate that for

t → 0,

hEðTÞ − EðT ¼ 0Þi ¼ hMðTÞ −MðT ¼ 0Þi

¼ −
g2ðN2 − 1Þπ2

30
T4: ðB5Þ
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