
Precision lattice test of the gauge/gravity duality at large N

Evan Berkowitz,1 Enrico Rinaldi,1 Masanori Hanada,2,3,4 Goro Ishiki,5,6 Shinji Shimasaki,7,8 and Pavlos Vranas1

(Monte Carlo String/M-Theory Collaboration (MCSMC))

1Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory,
Livermore, California 94550, USA

2Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA
3Yukawa Institute for Theoretical Physics, Kyoto University,
Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
4The Hakubi Center for Advanced Research, Kyoto University,
Yoshida Ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan

5Center for Integrated Research in Fundamental Science and Engineering (CiRfSE),
University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

6Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
7Research and Education Center for Natural Sciences, Keio University,

Yokohama, Kanagawa 223-8521, Japan
8KEK Theory Center, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan

(Received 8 July 2016; published 3 November 2016)

We perform a systematic, large-scale lattice simulation of D0-brane quantum mechanics. The large-N
and continuum limits of the gauge theory are taken for the first time at various temperatures 0.4 ≤ T ≤ 1.0.
As a way to test the gauge/gravity duality conjecture we compute the internal energy of the black hole as a
function of the temperature directly from the gauge theory. We obtain a leading behavior that is compatible
with the supergravity result E=N2 ¼ 7.41T14=5: the coefficient is estimated to be 7.4� 0.5 when the
exponent is fixed and stringy corrections are included. This is the first confirmation of the supergravity
prediction for the internal energy of a black hole at finite temperature coming directly from the dual gauge
theory. We also constrain stringy corrections to the internal energy.
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I. INTRODUCTION

The gauge/gravity duality conjecture claims that
superstring theories and certain supersymmetric gauge
theories are equivalent [1–3]. This duality implies that
gauge theories provide us with a nonperturbative
formulation of superstring theories, which will be
essential in understanding the nature of quantum grav-
ity. However, this duality between gauge theories and
gravity is still a conjecture. With the aim to establish a
nonperturbative formulation of superstring theories
based on the duality relation, we must vigorously try
to falsify the duality.
Gauge/gravity duality can be intuitively understood as a

relation between two different descriptions of a system with
some D-branes in a string theory. One description of
D-branes is given by the low-energy effective theory of
open strings, where the D-branes are described by a
supersymmetric Yang-Mills theory defined on the world
volume of the D-branes. On the other hand, D-branes can
also be thought of as solitonic objects in theories of closed
strings, which couple to gravity in the bulk. In this picture,
theD-branes are described as a source of gravity. This leads
to another description of the D-branes in terms of the bulk
gravitational theory.

Though the equivalence between these two descriptions
is naturally expected from the physical viewpoint, no
rigorous proof has been given so far. A major obstacle
is the fact that, in the duality, the perturbative semiclassical
regime of superstring theory is mapped to the nonpertur-
bative regime of the gauge theory, which is very hard to
deal with in an analytical way. In order to study the duality,
one needs a method of analyzing supersymmetric gauge
theories in the strong coupling regime.
Numerical simulations of gauge theories, based on lattice

discretization, for example, are a powerful tool to study
such a regime. By using a discretized lattice theory, one
has a robust framework to work with in order to extract
information about nonperturbative physics. This is what
makes it possible to test the gauge/gravity duality from first
principles.
For the duality based on D0-branes a lot of positive

evidence has been obtained through numerical simulations
of a supersymmetric gauge theory known as D0-brane
quantum mechanics. In this case, the gravity dual geometry
is given by the black 0-brane solution in type IIA super-
gravity (SUGRA) [4]. At finite temperature, the black
0-brane is characterized by thermodynamic quantities such
as entropy and internal energy. In particular, at large-N
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and low temperature, where the SUGRA approximation
becomes valid, the internal energy is given by

E ¼ 7.41N2T14=5; ð1Þ

where, E and T are the dimensionless internal energy
and temperature normalized by appropriate powers of the
’t Hooft coupling of D0-brane quantum mechanics.
In this paper, we test the duality for D0-branes by

performing a systematic, large-scale lattice study of
D0-brane quantum mechanics. In particular, we take
both the continuum limit, by sending the lattice spacing
to zero, and the large-N limit for the first time. This makes
possible a precise comparison with the result (1) in the
SUGRA approximation. We calculate the internal energy
of D0-brane quantum mechanics and confirm that the
internal energy of the black 0-brane (1) is reproduced
from the D0-brane quantum mechanics: our value is
E ¼ ð7.4� 0.5ÞN2T14=5. We also give predictions for
the stringy corrections directly from the gauge theory side.
The rest of this paper is organized as follows. In Sec. II,

we review D0-brane quantum mechanics in more detail and
describe the existing literature. Section III contains the
setup of our lattice simulations and the observables used to
test the gauge/gravity duality. In Sec. IV we discuss our
lattice results and their extrapolation to the continuum and
large-N limits, before comparing them to the SUGRA
expectations in Sec. V.

II. D0-BRANE QUANTUM MECHANICS

We consider D0-brane quantum mechanics [5], which is
the low-energy effective theory of open strings ending onN
D0-branes in ten-dimensional (10D) flat space. The
Lagrangian in the Euclidean signature is

L ¼ 1

g2YM
Tr

�
1

2
ðDtXMÞ2 −

1

4
½XM; XM0 �2 þ iψ̄αDtψ

β

þ ψ̄αγMαβ½XM;ψβ�
�
: ð2Þ

Here, XM ðM ¼ 1; 2;…; 9Þ and ψα (α ¼ 1; 2;…; 16) are
N × N bosonic and fermionic Hermitian matrices, the
covariant derivative Dt is given by Dt ¼ ∂t þ i½At; ·� where
At is theUðNÞ gauge field, and γMαβ are the left-handed parts
of the gamma matrices in (9þ 1) dimensions, which are
16 × 16 matrices. This action can be obtained by dimen-
sionally reducing theN ¼ 1 10D super Yang-Mills (SYM)
or N ¼ 4 four-dimensional SYM to (0þ 1) dimensions.
Historically, this model was also obtained by applying

the matrix regularization to the theory of a single super-
membrane in 11-dimensional flat space in the light-cone
frame [6]. From this perspective, it was conjectured that the
model in Eq. (2) describes second quantized M-theory on
11-dimensional flat space [5]. The coupling constant gYM

and the matrix size N are related to parameters of the M-
theory as g2YMN ∼ R3 and N ∼ pþR, where R is the radius
of the M-circle and pþ is the momentum along the light-
cone direction. In order to realize the decompactified limit
R → ∞ with pþ fixed, one needs to take a very strong
coupling limit of the matrix model.
On the other hand, in this paper, we mainly consider the

’t Hooft limit of the model, where λ ¼ g2YMN is fixed and
N → ∞. Therefore we focus on the gauge/gravity duality to
type IIA superstring theory [4]. The coupling constant λ has
mass dimension three and sets the scale of the theory. In the
following we fix λ ¼ 1without loss of generality, because it
amounts to a rescaling of the fields.
Intuitively, the off-diagonal elements of the matrices are

open strings that connect the D0-branes whose locations
are given by the diagonal elements [7], as sketched in
Fig. 1. Black 0-branes are states where all the D0-branes
form a single bound bunch, which corresponds to generic
noncommuting matrices. Strictly speaking, such a bound
state and a black 0-brane in SUGRA can be equivalent only
at large-N and in the strong coupling limit (low temperature
[8]). However the bound state at generic N and temperature
is connected smoothly to the black 0-brane at large N and
strong coupling. Hence it can be regarded as the stringy
generalization of the black hole. When there is no risk
of confusion, we call such a bound state simply the black
0-brane or black hole.
D0-brane quantum mechanics was first investigated with

Monte Carlo methods in Ref. [10]. (Earlier numerical work
with the same motivation can be found in Ref. [11].)
Previously, there have been attempts to study the internal
energy [10,12–15], the supersymmetric Polyakov loop [16]
and two-point correlation functions [17,18].
The internal energy of the gauge theory, which is the

main target of this paper, has been studied most extensively.
A mean-field approximation was used in Ref. [11], but
the result did not agree well with the gravity prediction (1).
The Monte Carlo method was applied for the first time in
Ref. [10] using a momentum cutoff regularization scheme.
A similar study appeared later in Ref. [14] using a lattice
regularization scheme, analogous to the one used in our

FIG. 1. An intuitive interpretation of the matrices XM. The
diagonal elements correspond to positions of D0-branes and the
off-diagonal elements correspond to the open strings connecting
them. This figure is taken from Ref. [9].

EVAN BERKOWITZ et al. PHYSICAL REVIEW D 94, 094501 (2016)

094501-2



work. In both cases, these early studies did not include a
continuum limit or a large-N extrapolation, while claiming
a qualitative agreement between the gauge theory results
and the supergravity prediction (1). These pioneering
studies were further refined in recent years [12,13], using
parameters closer to the continuum limit and larger values
of N, but without a systematic extrapolation that would
allow a robust test of the conjecture. Attempts at continuum
extrapolations, both with the momentum cutoff regulari-
zation and the lattice regularization, have been presented in
Ref. [19] and Ref. [15], but the accuracy of the results was
not enough to confirm the supergravity prediction of the
internal energy, E=N2 ¼ 7.41T14=5.
In order to achieve high precision, it is of paramount

importance to correctly estimate the discretization errors
and corrections due to finite N. We accomplish this for the
first time in our study.

III. LATTICE SETUP

In order to study the thermodynamic properties the D0-
brane quantum mechanics nonperturbatively, we discretize
the theory in a 0þ 1-dimensional Euclidean spacetime. We
then use the discretized action to calculate the theory’s
partition function by importance sampling field configu-
rations via the rational hybrid Monte Carlo algorithm. By
measuring observables on this ensemble of configurations,
we get an estimate for the observable’s expectation value
with an associated statistical uncertainty. Finally, by meas-
uring on ensembles with different lattice spacings, we can
extrapolate to the continuum limit, removing the lattice
regulator, and get a fully nonperturbative result. As we will
show, achieving a reliable continuum extrapolation requires
a careful study.

A. Discretized action and simulations

Consider D0-brane quantum mechanics (2) on a
Euclidean circle with circumference β. With antiperiodic
boundary conditions for the fermions and periodic boun-
dary conditions for the bosons, β is identified with the
inverse temperature 1=T.
This model consists of nine N × N bosonic Hermitian

matrices XM (M ¼ 1; 2;…; 9), sixteen fermionic matrices
ψα (α ¼ 1; 2;…; 16) and the gauge field At. Both XM and
ψα are in the adjoint representation of the UðNÞ gauge
group, and the covariant derivative Dt acts on them as
DtXM ¼ ∂tXM þ i½At; XM� and Dtψα ¼ ∂tψα þ i½At;ψα�.
The ’t Hooft coupling λ ¼ g2YMN has a dimension of
ðmassÞ3, and can be set to 1 by rescaling time t and the
fields. In other words, all dimensionful quantities can be
made dimensionless by multiplying appropriate powers of
λ. As mentioned before, we choose λ ¼ 1. The action is
given by

SBFSS ¼ Sb þ Sf; ð3Þ

where Sb (the bosonic part) and Sf (the fermionic part) are
given by

Sb ¼ N
Z

β

0

dtTr

�
1

2
ðDtXMÞ2 −

1

4
½XM; XN �2

�
; ð4Þ

Sf ¼ N
Z

β

0

dtTrfiψ̄γ10Dtψ − ψ̄γM½XM;ψ �g ð5Þ

while γM (M ¼ 1;…; 10) represent the 16 × 16 left-handed
parts of the 10D gamma matrices ΓM. Formally, this model
is obtained by dimensionally reducing the ten-dimensional
N ¼ 1 super Yang-Mills theory to one dimension. The
index α of the fermionic matrices ψα corresponds to the
spinor index in ten dimensions, and ψα is Majorana-Weyl in
the ten-dimensional sense.
For numerical efficiency, we adopt the static diagonal

gauge [20],

At ¼
1

β
· diagðα1;…; αNÞ; −π < αi ≤ π: ð6Þ

Associated with this gauge fixing, we add to the action the
corresponding Faddeev-Popov term

SF:P: ¼ −
XN
i<j

2 log

���� sin
�
αi − αj

2

�����: ð7Þ

We regularize the theory by discretizing the Euclidean
time direction over L lattice sites. Our lattice action is

Sb ¼
N
2a

X
t;M

TrfðDþXMðtÞÞ2g

−
Na
4

X
t;M;N

Trf½XMðtÞ; XNðtÞ�2g; ð8Þ

Sf ¼
X
t

Tr

�
iNψ̄ðtÞ

�
0 Dþ
D− 0

�
ψðtÞ

− aN
X
t;M

ψ̄ðtÞγM½XMðtÞ;ψðtÞ�
�
; ð9Þ

SF:P: ¼ −
XN
i<j

2 log

���� sin
�
αi − αj

2

�����; ð10Þ

where the gauge links U ¼ expðiaAtÞ with −π ≤ αi < π.
The covariant derivative D� can be discretized in different
ways which in turn will have different discretization errors.
A first discretization that we call “unimproved” defines D�
as follows:
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DþfðtÞ ¼ Ufðtþ aÞU† − fðtÞ;
D−fðtÞ ¼ fðtÞ −U†fðt − aÞU; ð11Þ

where fðtÞ can be a bosonic or a fermionic field defined at
site t and the gauge link U is t independent due to our
gauge-fixing choice (6). This discretized derivative is
related to the continuum one Dt by D�fðtÞ ¼ aDtfðtÞ þ
Oða2Þ. The discretization of D� that we will use in our
main results has smaller discretization effects, Oða3Þ, and
we call it “improved” to reflect this feature. The exact
lattice definition is

DþfðtÞ ¼ −
1

2
U2fðtþ 2aÞU†2 þ 2Ufðtþ aÞU† −

3

2
fðtÞ;

D−fðtÞ ¼ þ 1

2
U†2fðt − 2aÞU2 − 2U†fðt − aÞU þ 3

2
fðtÞ:
ð12Þ

We calculate with the unimproved and improved lattice
actions with the rational hybrid Monte Carlo algorithm,
tuning the integration step and trajectory length to attain an
acceptance rate of order 80%. We take advantage of
Message Passing Interface (MPI) parallelization, where
each MPI process takes care of l lattice sites and n × n sub-
blocks of matrices. The number of total processes for a
lattice of size L and matrices of size N × N is
ðL=lÞ · ðN=nÞ2. Typically we take n ¼ l ¼ 4 and, for
example, the number of processes is 83 ¼ 512 for
N ¼ L ¼ 32. This setup is very advantageous on large
parallel machines and allows us to simulate very large
values ofN and L by scaling our code to greater numbers of
MPI processes. The simulation code is publicly available
and well documented [21].
An important remark for numerical simulations of the

D0-brane quantum mechanics is that the system has flat
directions, ½XM; XM0 � ¼ 0. At largeN, the flat directions are
lifted dynamically, around the black hole phase. However,
at finite N, the black hole is metastable, and the D0-branes
(the eigenvalues of the matrices) can be emitted and
propagate to infinity. This phenomenon produces an
instability in the Monte Carlo evolution which becomes
more and more severe at smaller N and at lower temper-
atures. In order to obtain meaningful statistical results from
simulations, it is of crucial importance to control these flat
directions and correctly single out the phase under con-
sideration [10,22,23]. If this control is missing, wrong
answers might be obtained, which happened countless
times in the early literature on lattice supersymmetry. In
this study, we overcome the instability by taking N
sufficiently large that our observables do not show signs
of eigenvalue instability over long Monte Carlo histories.

B. Observables

On each configuration we measure different observables.
The most crucial for this work is the internal energy E=N2,

E=N2 ¼ 3

2N2β
ð9ðN2L − 1Þ − 2hSbiÞ: ð13Þ

We also measure the absolute value of the Polyakov
loop,

jPj ¼
���� 1N

XN
j¼1

eiαj
���� ð14Þ

where αj belong to the gauge-fixed link variables, the
average size of the eigenvalue bunch (0-brane) R2,

R2 ≡ 1

NL

X
M;t

TrfX2
Mg ⟶

1

Nβ

Z
dtTrX2

M ð15Þ

and the potential term F2 (analogous to the square of the
field strength),

F2 ¼ −
1

NL

X
M;M0;t

Trf½XM; XM0 �2g

⟶ −
1

Nβ

Z
dtTr½XM; XM0 �2: ð16Þ

C. Phase quenching

One potential issue in simulating this theory is the
infamous sign problem; the Pfaffian that results from
integrating out the fermions can have an oscillating phase,
undermining the probabilistic interpretation of the
Euclidean action in the path integral. In our calculation,
we follow the usual practice [10,12–15] of simply taking
the absolute value of the Pfaffian, quenching the phase.
Several studies have found that the phase of the Pfaffian

remains close to zero in the temperature region we consider,
and the most recent one is Ref. [15]. This means that the
sign problem is mild and quenching the phase does not
distort the results. Previous results were obtained for
relatively small values of N and of the cutoff, but in the
same temperature regime we study here.
In principle, the effect of the phase can be taken into

account by phase reweighting,

hOiF ¼
hO · eiθiPQ
heiθiPQ

; ð17Þ

where h·iF and h·iPQ represent the expectation values
with the full and phase-quenched theories, and eiθ ¼
Pfaffian=jPfaffianj. Interestingly, even when the phase
fluctuations become large, it has been observed that the
phase quenching does not affect the expectation values of
various observables.
A possible mechanism was suggested in Ref. [18].

Let ρðxÞ be the distribution of the observable O in the
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phase-quenched simulation, and let wx be the average of eiθ

when the value of O is fixed to x. Then

hOiPQ ¼
Z

dx xρðxÞ; ð18Þ

hO · eiθiPQ ¼
Z

dx xρðxÞwx; ð19Þ

heiθiPQ ¼
Z

dx ρðxÞwx: ð20Þ

Typically ρðxÞ peaks around the average value, x ¼ hOiPQ.
If wx is constant around this peak, then hO · eiθiPQ ≃
hOiPQ · heiθiPQ, and then Eq. (17) becomes hOiF ≃ hOiPQ.
Because the calculation of the Pfaffian is very costly, it is

difficult to test this scenario directly at large values of N.
However, it is possible to indirectly infer the magnitude of
the phase fluctuations and their impact on the other
observables. In fact, the Polyakov loop has a strong
correlation with the phase factor: the phase disappears
when jPj ¼ 1 (up to discretization effects) and the phase
fluctuations become larger as jPj decreases. In Fig. 2, we
show the correlation between E=N2 and jPj at N ¼ 16,
L ¼ 16 and T ¼ 0.5. The blue and red histograms represent
the distribution of E=N2 and jPj, respectively, with the
other quantity restricted within small bins highlighted in the

two-dimensional plot. The areas of the histograms are
normalized. The E independence of the distribution of jPj,
at least away from the tails, strongly suggests the E
independence of the distribution of the phase, which
justifies the phase quenching via the scenario explained
above. A more detailed study of the distribution of jPj for
various values of the energy, near and away from its
average, is reported in Appendix A.
An explicit calculation of the Pfaffian phase is worth-

while, but we leave it for a future study. In the rest of the
paper we assume that the phase-quenched approximation
does not influence the internal energy results of our
simulations.

IV. RESULTS

In this section we discuss the statistical needs of our
analysis, continuum extrapolations at fixed N (comparing
with other calculations when available) and simultaneous
continuum and large-N extrapolations. In the end we
report a continuum large-N data set that we will use in
Sec. V for a direct comparison to supergravity predictions.
We also collect our measurements for each ensemble in
Appendix B.

A. Statistical requirements

To ensure a faithful estimation of an observable, one
must ensure a large number of independent (decorrelated)
Monte Carlo samples are taken. In Fig. 3 we show an
example Monte Carlo history for the ensemble with
N ¼ 24, L ¼ 32, and T ¼ 0.5. It is apparent that there
are long-lived autocorrelations. Therefore, to achieve many
independent samples, lengthy Monte Carlo ensembles are
required.
Moreover, accounting for autocorrelations is essential for

an accurate estimate of the statistical uncertainty on a given
measurement. For each observable on each ensemble, we
measure the autocorrelation time τcorr using the Madras-
Sokal algorithm and form bins of width 3τcorr. With those
binned measurements we perform a jackknife analysis to
estimate the statistical uncertainty. We also independently
test that the statistical error associated with our final
average is robust by performing different analysis with
smaller and larger jackknife bins and making sure that the
final uncertainty does not change.
In Fig. 4 we study the statistical stability of E=N2 for a

low-temperature ensemble, N ¼ 24, L ¼ 32, and T ¼ 0.5,
with bins 50 trajectories wide. In the left panel we show the
residual effects of keeping measurements from too early in
the Monte Carlo history by using the whole ensemble and
only adjusting the thermalization cut. From the compati-
bility with later cuts, it is clear that this ensemble has no
memory of its initially chosen configuration after 500
trajectories. On each ensemble, we discard 1000 trajecto-
ries as a thermalization cut.

FIG. 2. The correlation between E=N2 and jPj at N ¼ 16, L ¼
16 and T ¼ 0.5 is shown as a two-dimensional histogram where a
darker color corresponds to a higher count. The blue and red
histograms (three per panel) represent the normalized distribution
of E=N2 and jPj, respectively, within the slices on the two-
dimensional plot bounded by dashed lines. The histograms
coming from different slices are almost indistinguishable.
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In the right panel of Fig. 4 we show how many
configurations are necessary for a stable estimate. We start
at trajectory 500 and take the next 1000, 2000, 4000, and
6000 trajectories and perform an independent analysis, and
then slide that window to the next disjoint set of trajecto-
ries. One can see that for this ensemble, 1000 thermalized
trajectories is not enough to achieve a stable statistical
estimate, indicating that there can be sizable fluctuations
over Monte Carlo time that can dramatically shift the
measured value. However, 2000 trajectories seem to be
enough to reliably get the eventual central value within the
uncertainty. Increasing the window size correctly washes
out the effect of lengthy fluctuations and makes each
successive analysis agree more reliably. We are therefore

confident that most of our statistical samples are large
enough to correctly estimate the energy E=N2.
Some ensembles at T ¼ 0.4 are not very lengthy, though

all are longer than 1000 trajectories after the thermalization
cut. To compensate for this shortcoming, we inflated their
statistical uncertainty by 50% and reperformed all the
following analyses. We find very little difference between
the two cases. In what follows, we therefore use the
uninflated errors.

B. Continuum extrapolation at fixed N

To study the continuum theory, one must measure at a
variety of lattice discretizations and extrapolate to the

FIG. 3. TheMonte Carlo history and a corresponding histogram for the energyE=N2, the Polyakov loop jPj, R2, and F2 of the T ¼ 0.5
N ¼ 24 L ¼ 32 ensemble. For each observable, one can see fluctuations that span many Monte Carlo steps.

FIG. 4. A study of the statistical stability of E=N2 for the ensemble N ¼ 16, L ¼ 32, T ¼ 0.5. In the left panel we show different
thermalization cuts, measuring E=N2 on the rest of the configurations. In the right panel we show the importance of large statistical
samples by measuring on consecutive disjoint sets of trajectories. As the statistical sample grows from 1000 configurations (red squares)
to 6000 configurations (blue circles), the central values and uncertainties between sets of configurations become more and more stable
and compatible. In both panels we perform the analysis with bins of 50 configurations. For comparison, we also show our final analysis
and its uncertainty as a black star in both panels, with its error bar displayed as dashed lines on the right panel.
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continuum. In this section, we discuss continuum extrapo-
lation at fixed N using our unimproved and improved
actions [cf. Eqs. (11) and (12)].
As the lattice spacing L−1 gets smaller, one expects an

expansion around L−1 ¼ 0 to get better. So, at fixed N the
energy should follow

E
N2

¼ e0 þ
e1
L
þ e2
L2

þOðL−3Þ ð21Þ

where e0 is the continuum-extrapolated value and the other
ei characterize the lattice artifacts. Based on the naive
scaling of the action with the lattice spacing, we expect
results with the unimproved action to have larger discre-
tization effects and we check this explicitly in the following
for the first time.
In Fig. 5 we show a fixed-N continuum extrapolation for

T ¼ 0.7 N ¼ 16 so that we can directly compare to the
continuum extrapolations of Ref. [22]. One immediately
sees that the region where only the leading L−1 corrections
matter is L≳ 16; with smaller L the subleading correction
is not negligible, so linear fits to lattice data from such small
L will be systematically biased towards larger E=N2. We
have checked this rule of thumb for all T and N, and find
broad consistency with this observation, which means
Refs. [15,22] may suffer from premature extrapolation.
Knowing that to successfully fit down to L ¼ 8 with the

improved action requires a quadratic fit, we expect addi-
tional lattice artifacts to contaminate L ¼ 8 with the
unimproved action, suggesting an additional term is needed
to fit the unimproved action to incorporate that point into
the continuum limit. Indeed, fitting a quadratic to that point

pushes the fit upwards, while fitting a cubic gives perfect
agreement with the improved continuum limit as shown in
Fig. 6 for T ¼ 1.0. Using the improved action allows us to
extrapolate to the continuum in a more controlled manner,
because a successful extrapolation requires fitting fewer
parameters.

C. Simultaneous large-N and continuum extrapolation

In order to test the gauge/gravity duality precisely, it is
important to take the large-N limit. However, taking the
continuum limit at large-N becomes costly even with a
quadratic fit, because at small N the physical instability
may ruin the Monte Carlo history, while numerical cost
grows with L and N.
Large-N corrections appear in powers of N−2, at each

fixed L, because the ’t Hooft counting holds even for the
discretized theory. Thus, at a fixed temperature we expect
E=N2 to be described by a series like the following

E
N2

¼
X
i;j≥0

eij
N2iLj ð22Þ

so that ei0 are physical, continuum-limit quantities at finiteN,
e00 is the continuum, large-N value, and all other coefficients,
eij with j > 0, characterize lattice artifacts. Importantly, by
extrapolating in 1=N2 and 1=L simultaneously, we can take
advantage of significantly more data points without increas-
ing the number of fit parameters dramatically.
We can truncate Eq. (22) in various ways and attempt

to fit a finite set of eij. We attempted a six-parameter fit
with iþ j ≤ 2 and found our data insufficient to character-
ize e11 or e20 without 100% uncertainties, and strong
correlation with the other coefficients. We also performed
five-parameter fits, omitting either e11 and e20 and still
found the other to be very poorly constrained by our data
and highly correlated with the remaining coefficients. Thus,
we settled on a four-parameter fit: next-to-leading order
(NLO) in N−2 and next-to-NLO in L−1, with no mixed term

E
N2

≈ e00 þ
e01
L

þ e02
L2

þ e10
N2

: ð23Þ

We fit this form to all of our measurements at a given
temperature, and find extremely good fit quality together
with a very mild dependence on N and—just as in the
fixed-N case—important dependence on L.
The strong L dependence, which we observe to get

stronger at low temperature, raises the possibility that
Ref. [13], which at low temperature worked only at L ¼
16 and had no continuum limit, and Ref. [22], which at
N ¼ 16 extrapolated from the momentum cutoff Λ ≤ 8,
may be systematically contaminated by discretization
artifacts. However, because those references used different
discretized actions from that used in this work, their
discretization effects may be substantially smaller than in

FIG. 5. A continuum extrapolation for T ¼ 0.7 with fixed N ¼
16 with the improved action. Black stars represent our measure-
ments, open circles our extrapolation, and open squares the
extrapolation from Ref. [22]. Error bars and the error bands on the
extrapolated curves represent 1σ errors. Our linear extrapolation
is only fit to the data at L ≥ 16. The divergence of the linear and
quadratic extrapolations indicate that for this ensemble, linear
extrapolations of lattice data that include data taken at L≲ 16will
be systematically biased.
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our approach. For example, a direct comparison at T ¼ 0.4
N ¼ 32 L ¼ 16 shows that Ref. [13]’s central value is
substantially closer to our continuum limit 0.40(7) than our
data point at those parameters 0.835(7).
In Fig. 7 we show the result of the simultaneous

continuum and large-N extrapolation of the measurements
of the T ¼ 0.5 improved action measurements. We also
show three fixed-N continuum extrapolations and their

subsequent large-N extrapolation. For that ensemble, we fit
13 data points to the four-parameter fit in Eq. (23) and find
a reduced chi-squared (the usual χ2 divided by DOF, the
degrees of freedom in the fit) of 7.2=9 and good compat-
ibility with the sequential extrapolation.
In Table I we show the simultaneous continuum and

large-N extrapolation by the four-parameter fit in
Eq. (23) of data taken with the improved action at various
temperatures. A more complete data set is provided in
Appendix C.

V. SUPERGRAVITY AND BLACK HOLE
INTERNAL ENERGY

To ultimately check the gauge/gravity duality, we want to
compare our gauge-theory calculations with SUGRA and
superstring calculations. As was thoroughly reviewed in
Ref. [22,24], the internal energy of the black 0-brane can be
expanded with respect to T and 1=N2 as

E
N2

¼ ða0T14=5 þ a1T23=5 þ a2T29=5 þ a3T32=5 þ � � �Þ
N0

þ ðb0T2=5 þ b1T11=5 þ � � �Þ
N2

þO
�

1

N4

�

¼ E0ðTÞ
N0

þ E1ðTÞ
N2

þO
�

1

N4

�
ð24Þ

FIG. 6. A comparison between taking the continuum limit for
the unimproved and improved actions for T ¼ 1.0, N ¼ 16. Error
bars and the error bands on the extrapolated curves represent 1σ
errors.

FIG. 7. A simultaneous continuum and large-N extrapolation for T ¼ 0.5 with the improved action. All the data points are fit to a
single two-dimensional surface given by Eq. (23). In the right panel, we show all the data points (slightly offset for visual clarity) and the
(black)N ¼ ∞ slice of the fitted surface. In the left panel, we show all the data points and the (black) continuum extrapolations at eachN
together with their subsequent large-N limit as the dashed line with uncertainties given by the dotted band. We also show the fixed-L
slices of the two-dimensional fit, as well as the (black) L ¼ ∞ slice. In both panels, the black circle represents the result of taking the
large-N limit of the continuum extrapolations at each N, while the best-fit simultaneous continuum- and large-N limit e00 is shown as a
black diamond. Error bars, the error band on the extrapolated surface, and the dotted error band represent 1σ uncertainties.
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where a0 and b0 are known by exact calculations to be
approximately 7.41 and −5.77 respectively. We group the
coefficients at a fixed order in N into the functions EiðTÞ.
On the gauge-theory side of the duality, we would check
how well these functions are reproduced by our coefficients
ei0 reported in Table I.
In this section we will present a variety of fits aimed at

determining the coefficients in Eq. (24) from our extrapo-
lated values in Table I, as well as some of the exponents.
We will summarize our findings in the next section. At each
temperature, we have access to the continuum large-N

behavior (E0 through e00) and the 1=N2 correction (E1

through e10) independently. This allows us to fit the
different orders of N2 in Eq. (24) separately.

A. SUGRA at low temperatures

First, let us check the consistency of our continuum and
large-N data with the SUGRA prediction. In this consis-
tency check our goal is to reproduce the known SUGRA
leading coefficient a0 ¼ 7.41. The agreement between
D0-brane quantum mechanics and SUGRA is our main
result. Checking the value of a0 against lattice simula-
tions is a nontrivial task and is usually hindered by
numerical results with large error bars or with undefined
systematic errors.
We fit the OðN0Þ coefficients, including the leading-

order coefficient known from supergravity. We exclude the
T ¼ 1.0 data point, because the assumption T ≪ 1 is
certainly broken there. In Fig. 8 we show the best fits of
E0ðTÞ, together with previous estimates of the same
function and the SUGRA result.
From our fits we notice that the term with a2 is of the

same order of magnitude as the previous one in the T
expansion and cannot be neglected in the range of temper-
atures we study. The fit for a0, a1 and a2 produces

a0 ¼ 7.4� 0.5; a1 ¼ −9.7� 2.2; a2 ¼ 5.6� 1.8; χ2=DOF ¼ 2.6=3:

Adding an additional term a3 representing a higher-order α0
correction does not modify the above results.
Our value for a0 is entirely consistent with the SUGRA-

predicted value of 7.41 and has a very small uncertainty
∼7%. This agreement is tantalizing: although we fixed the
functional form (24) inspired by the gauge/gravity conjec-
ture, if the D0-brane quantum mechanics and supergravity
results differed, we could have falsified the correspondence.
Our result is the first numerical simulation performed with
sufficient precision to reliably obtain the leading-order
SUGRA coefficient at OðN0Þ. We have also fit a1 and a2
while fixing the known SUGRA value a0 ¼ 7.41 as shown
in Fig. 9. The best fit in this case gives a1 ¼ −10.0� 0.4
and a2 ¼ 5.8� 0.5, describes the data well
(χ2=DOF ¼ 2.6=4), and is in very good agreement with
our best fit when we did not demand the SUGRA value
a0 ¼ 7.41, further bolstering our confidence in that result.
The full form of E0 in Eq. (24) is actually, on the gravity

side, an expansion in α0=R2
BH ¼ T3=5 where α0 is the string

coupling and RBH is the black hole radius. That is,
generically

E0 ¼ A0T14=5 þ A1T17=5 þ A2T20=5 þ A3T23=5

þ A4T26=5 þ A5T29=5 þ � � � : ð25Þ

However, the coefficients A1;2;4 are known to vanish based
on string theory calculations.
We tried a variety of strategies to verify from our data

that those coefficients do indeed vanish: we performed a

TABLE I. The continuum energy coefficients e00 (large-N) and
e10 (leading 1=N2 correction) for different temperatures, the χ2 of
the extrapolating fit, and the degrees of freedom for that fit. In
every case χ2=DOF is between 0.3 and 1.9.

T e00 −e10 χ2 DOF

0.4 0.38� 0.06 5.4� 9.2 1.3 4
0.5 0.74� 0.02 6.7� 1.5 7.2 9
0.6 1.15� 0.02 5.0� 1.8 8.8 8
0.7 1.54� 0.03 3.9� 2.0 8.8 8
0.8 1.99� 0.03 6.2� 2.5 15.1 8
0.9 2.57� 0.04 11.9� 2.9 3.3 8
1.0 3.11� 0.04 8.4� 3.2 8.9 10

FIG. 8. Our best fits of E0 to the data points e00 shown as black
diamonds, including the first two/three/four terms as a cyan
dotted line/blue solid line/purple dot-dot-dashed line with 1σ
error bands. We also show the results from Ref. [13] and Ref. [12]
as green dashed and red dot-dashed lines, respectively. The
SUGRA result is shown in black.
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six-parameter fit to our seven data points, tried fixing A0 to
its known value and also tried fixing A0, A3 and A5 to the
best-fit values found above. In no case did we get a reliable
fit, nor could we empirically confirm that these coefficients
vanish. This is unsurprising, because to distinguish all
these terms we need to sample temperatures where, for
example, T14=5 and T17=5 differ notably, which is difficult in
the temperature range of our data. Indeed, we are fortunate

that those terms vanish, because it is much easier to
distinguish the different nonvanishing powers (as we did
at the beginning of this section) when those powers are
more widely separated. Obtaining information at smaller
temperatures becomes crucial in order to determine higher-
order corrections more precisely.

B. Subleading temperature dependence

Previous work has fit the form

E0ðTÞ ¼ 7.41T14=5 þ a1Tp1 ð26Þ
where the exponent of the first correction is also uncon-
strained, but with a fixed leading behavior. We are unable to
reproduce the known power p1 ¼ 23=5 ¼ 4.6 from this fit,
indicating that the temperatures used in the fit were too high
to identify this dependence alone, or the temperature range is
too wide for the data to be described by simply the next-to-
leading-order power of T and higher-order terms like a2
need to be included, as we have noted in Sec. VA. In fact,
trying to incorporate the next nonzero α0 correction by fitting

E0ðTÞ ¼ 7.41T14=5 þ a1Tp1 þ a2Tp1þ6=5 ð27Þ
produces

p1 ¼ 4.6� 0.3; a1 ¼ −10.2� 2.4; a2 ¼ 6.2� 2.6; χ2=DOF ¼ 2.6=3:

These values for a1 and a2 match very well with the results
of the previous section, where all the powers were fixed,
and p1 matches the predicted value exactly. We remind the
reader that this fit takes advantage of the knowledge that on
the gravity side the energy can be characterized by a power
series in T3=5 as explained in Eq. (25) and that some of the
coefficients vanish.
To avoid incorporating knowledge from the string theory

side, we would prefer to fit the different powers independ-
ently rather than requiring them to differ by 6=5. However,
executing such a fit is extremely tricky without imposing
the qualitative requirement that the two exponents differ
nontrivially. This requires a more sophisticated analysis.
It is interesting to note that, if we fit our data by a single
power law E0ðTÞ ¼ aTp, then E0ðTÞ ¼ ð3.13�
0.03ÞT2.02�0.03 ≈ πT2 describes our continuum large-N
data very well (χ2=DOF ¼ 7.7=5) in the whole temperature
range. We emphasize that this may be a coincidence.
To put our results into context, we summarize previous

attempts at reproducing the subleading temperature
dependence using similar gauge theory simulations. In a
calculation with the momentum cutoff regularization [20] at
N≤17, Ref. [12] obtained a1¼−5.55ð7Þ and p1¼4.58ð3Þ
by using data points at 0.5 ≤ T ≤ 0.7, without an explicit
estimate of the discretization errors the effect of N finite.

More recently, the continuum limit at N ¼ 16 has been
studied in Ref. [19] and we use those continuum, fixed-N
results to perform an additional fit to Eq. (26) which is

FIG. 9. The same as in Fig. 8, but with a0 fixed to its known
SUGRA value, rather than fit.

FIG. 10. Two fits of our continuum large-N values e00 (black
diamonds) for E0ðTÞ. The solid blue line is a fit to Eq. (26) over
0.4 ≤ T ≤ 0.8, while the dotted cyan line is a fit to Eq. (27) over
0.4 ≤ T ≤ 0.9, with their respective (small) error bands. We also
show the results from Hanada et al. [19] and Kadoh and Kamata
[13] as red dot-dashed and green dashed lines, respectively, with
their 1σ uncertainty band as explained in the main text. The
SUGRA result is shown in black.
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reported as “Hanada et al.” in Fig. 10. The resulting
parameters are consistent with the ones at a fixed cutoff
[12], and the function E0ðTÞ overlaps with all our data
points due to the large uncertainty of the fit. However, with
our lattice data extrapolated to the continuum and large-N
limit we have demonstrated that the next-to-leading-order
temperature dependence cannot be singled out with accu-
racy, without accounting for the next α0 correction.
In another lattice study described in Ref. [13], the

authors obtained a1 ¼ −9� 2 and p1 ¼ 4.74� 0.35 from
data at 0.375 ≤ T ≤ 0.475, again without a continuum limit
or an extrapolation to large N. In Fig. 10 we show how their
results compare with our data points and the other fits in the
literature. In the same range of temperatures we only have
one continuum value for e00 which hinders our ability to
reproduce their result from Eq. (26) [25].

C. OðN−2Þ corrections
Because our two-dimensional fits naturally yield e10, the

continuum N−2 contribution to E=N2 at each temperature,
we can extract the NLO N dependence in Eq. (24). In other
words, getting values of e10 allows us to fit E1ðTÞ in
Eq. (24).

We attempted four fits of the parameters b0 (known
exactly from string theory, and approximately −5.77) and
b1: a fit of b0 only, a fit of b1 fixing b0 to its known value,
and a simultaneous fit of both parameters, as well as a fit to
a generic power law b0Tp. Because our data point at T ¼
0.4 has not been determined with high accuracy, we do not
include it in the fits. All fit forms do a good job describing
our data, due to the large uncertainties in the values of e10,
and can be seen in Fig. 11.
We observe general consistency with the known

values, but cannot confidently extract precision values.
The two-parameter fit yields b0 ¼ −5.8� 3.0—the central
value reproducing the known value, but with ∼50%
uncertainty—and a very large uncertainty on b1 ¼
−3.4� 5.7. However, the central value of b1 for that fit
is concordant with the central value of the fit with fixed b0,
−3.5� 2.0, which may give a modicum of confidence to
the two-parameter fit.
Smaller uncertainties on the data points and lower

temperatures are required to perform precision comparisons
between the gravity and gauge theories at OðN−2Þ. One
strategy might be to calculate at smaller N to enhance the
correction terms, but, unfortunately, it is difficult to probe
small N because the Monte Carlo simulations find flat

FIG. 11. Four fits of E1 to our values for e10. In each panel, we show our measurements as black diamonds with 1σ error bars, the fit as
the solid blue curve with a 1σ error band, and the known low-temperature behavior b0 ¼ −5.77 as the black curve. In the top left panel
we fit just b0, with b1 ¼ 0. In the top right panel we fix b0 ¼ −5.77 and fit b1. In the bottom left panel we fit both b0 and b1. In the
bottom right panel we fit b0Tp. All fits have 0.9 < χ2=DOF < 1.3, and cannot be meaningfully distinguished by our data due to the large
uncertainties.
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directions more quickly. This clearly hinders our ability to
observe effects beyond OðN−2Þ [26].

VI. DISCUSSION

We have started a systematic, large-scale lattice simu-
lation of the D0-brane quantum mechanics. In particular,
we have performed the extrapolation of the internal energy
to the continuum limit and to large N in a wide range of
temperatures. This enabled us to do a precision test of the
gauge/gravity duality conjecture. By assuming the form of
the temperature dependence coming from supergravity
calculations

E
N2

¼ ða0T14=5 þ a1T23=5 þ a2T29=5 þ a3T32=5 � � �Þ
N0

þ ðb0T2=5 þ b1T11=5 þ � � �Þ
N2

þO
�

1

N4

�
ð28Þ

we can check the agreement between supergravity and the
D0-brane quantum mechanics, where results for the latter
come from lattice Monte Carlo simulations. The fit results
are summarized in Table II.
With our fitting procedure, described in Sec. VA, we are

able to directly obtain the leading coefficient a0 ¼ 7.4�
0.5 which is consistent with the value known from the
supergravity calculation. This consistency is obtained for
the first time from a lattice simulation on the gauge theory
side of the conjectured gauge/gravity duality. We also
determined the next-to-leading temperature dependence
a1 ¼ −10.2� 2.4 and p1 ¼ 4.6� 0.3 in the continuum
limit, and found agreement with Ref. [13] where the
authors did not attempt a continuum extrapolation.
The precision of our large-N, continuum extrapolated

points makes it hard to believe that dramatic improvements
can be achieved through larger statistical sampling. Instead,
to reduce our ∼7% error on a0 we would require more data
points or simulations at lower temperatures. Unfortunately,
stabilizing the Monte Carlo simulations at lower temper-
atures requires going to even larger values of N which is
numerically costly. For the same reason it is challenging to
obtain a precise determination of E1ðTÞ, the 1=N2 correc-
tions, in the parameter region we considered, where we had

to use N ≥ 16. However, we were able to extract general
agreement with the known b0 ¼ −5.77, albeit with sizable
uncertainty.
We believe that the current results demonstrate the power

of large-scale supercomputer simulations applied to super-
string theory. A number of future directions are definitely
worth investigating. Besides increasing the precision of the
numerical results presented in our study to test the duality
between the D0-brane quantum mechanics and type IIA
superstring theory even more accurately, we will focus on
the very-low-temperature region where the system is
expected to be described by M theory [4–6]. Studying
super Yang-Mills in other spacetime dimensions with an
equally large-scale study is an another important direction.
While testing the duality is crucial, framing quantum

gravitational puzzles in terms of the gauge theory could be
especially rewarding. Can one see the emergence of the
bulk spacetime from the gauge theory? Is there a firewall?
Is it possible to explicitly trace the unitary evaporation of
the black hole? Fascinating frontiers lie ahead.
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APPENDIX A: CORRELATIONS BETWEEN THE
POLYAKOV LOOP AND INTERNAL ENERGY

In this section we analyze the possible presence of
correlations in the distributions of the Polyakov loop jPj
[cf. Eq. (14)] and of the internal energy E=N2 [cf. Eq. (13)].
Our aim is to test how similar the distributions of jPj are for
different values of E=N2. To compare distributions of
samples drawn in the same Monte Carlo simulation, it is
useful to apply the two-sample Kolmogorov-Smirnov (KS)
test. This test is designed to give a statistical measure to the
similarity of two distributions.
In practice, given two data sets of size n1 and n2 with

their corresponding empirical distribution functions Fð1Þ
n1 ðxÞ

and Fð2Þ
n2 ðxÞ, the KS statistic is

TABLE II. A summary of our fit results for E=N2 parametrized
as in Eq. (28), using only knowledge of the powers of the
temperature dependence. These results are described in greater
detail in Secs. VA, and V C. The two columns for each quantity
are the results from the totally free fit and the fit where the leading
behavior is fixed to the known value.

free a0 fixed free b0 fixed

a0 7.4� 0.5 7.41 b0 −5.8� 3.0 −5.77
a1 −9.7� 2.2 −10.0� 0.4 b1 −3.4� 5.7 −3.5� 2.0
a2 5.6� 1.8 5.8� 0.5
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Dðn1; n2Þ≡D ¼ supxjFð1Þ
n1 ðxÞ − Fð2Þ

n2 ðxÞj: ðA1Þ

This statistic tests the hypothesis that the distributions of
the two data sets are the same. If Dðn1; n2Þ is larger than a
critical value, the distributions are not the same with an
associated confidence level. Often the confidence level is
expressed in terms of a p-value [27]. We use the KS test
and reject the hypothesis that two jPj distributions are the
same if the associated p-value is less than 1%.
We compare two distributions that have the same number

of samples—for example 1=12 ∼ 8% of the whole set.
Therefore, we start from our Monte Carlo history of E=N2

and select 8% of the configurations with the smallest
energy. Then we select the next 8% and so on. For each
8% bin of configurations, we look at the distribution of the

Polyakov loop and compare them pairwise. We also repeat
this analysis with bins containing only 4% of the configu-
rations each, noticing no significant differences.
For example, in the case of our N ¼ 16, L ¼ 16 and

T ¼ 0.8 ensemble we find out that the test is successful
> 92% of the time. Two distributions passing the test are
shown in Fig. 12. We also notice that the failing tests occur
for energy intervals near the tail of the energy distribution.
In such cases it is clearly harder to obtain a faithful
sampling of the distribution. Moreover, an equivalence
of the Polyakov loop distributions in the tail of the energy
fluctuations is not strictly required to corroborate our
argument in Sec. III C about the validity of the phase-
quenched approximation of the Pfaffian. An example of the
KS test in the tail of the energy distribution is shown
in Fig. 13.

APPENDIX B: LATTICE MEASUREMENTS

Here we present a summary of our ensembles and
corresponding measured observables.

FIG. 12. The distributions of jPj at N ¼ 16, L ¼ 16 and T ¼
0.8 for different energy intervals reported in the legend. These
energy intervals are close to the average value of E=N2 for this
ensemble. The upper panel shows the normalized probability
distribution, while the lower panel shows the cumulative dis-
tribution as a proxy for the empirical distribution function used in
the KS test. The value of the KS statistic D and its associated p-
value are also shown, giving confidence that the two underlying
distributions are the same.

FIG. 13. Same as Fig. 12, but for energy intervals at the tail of
the energy distribution, instead of around the average. The KS
statistic is larger and the p-value is considerably lower.

T N L action Ncfg E=N2 jPj R2 F2

0.4 24 16 improved 15935 0.827� 0.005 0.72770� 0.00035 3.2504� 0.0015 14.530� 0.002
24 improved 2321 0.719� 0.031 0.72888� 0.00129 3.3459� 0.0039 15.627� 0.011
32 improved 6625 0.657� 0.027 0.72721� 0.00116 3.4110� 0.0020 16.319� 0.008

(Table continued)
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(Continued)

T N L action Ncfg E=N2 jPj R2 F2

32 8 improved 3057 0.903� 0.009 0.74150� 0.00348 4.8789� 0.0967 13.846� 0.006
12 improved 2491 0.907� 0.010 0.72754� 0.00089 3.1663� 0.0024 13.651� 0.005
16 improved 8242 0.835� 0.007 0.72732� 0.00054 3.2387� 0.0012 14.518� 0.003
24 improved 1331 0.692� 0.052 0.72919� 0.00453 3.3414� 0.0025 15.635� 0.012
32 improved 1888 0.629� 0.029 0.72849� 0.00142 3.4016� 0.0018 16.311� 0.008

0.5 16 8 improved 21101 1.229� 0.004 0.78847� 0.00031 3.1104� 0.0026 13.068� 0.003
12 improved 17201 1.140� 0.007 0.79566� 0.00032 3.2304� 0.0014 14.374� 0.003
16 improved 17933 1.081� 0.009 0.79599� 0.00035 3.3086� 0.0012 15.207� 0.004
32 improved 15101 0.907� 0.020 0.79689� 0.00049 3.4747� 0.0017 16.897� 0.006

24 8 improved 20951 1.243� 0.004 0.78964� 0.00028 3.0776� 0.0007 13.038� 0.002
16 improved 19765 1.092� 0.006 0.79718� 0.00020 3.2883� 0.0005 15.194� 0.002
24 improved 14957 0.979� 0.010 0.79741� 0.00029 3.3898� 0.0006 16.240� 0.003
32 improved 10469 0.941� 0.024 0.79727� 0.00051 3.4457� 0.0012 16.851� 0.007

32 8 improved 16253 1.248� 0.003 0.78995� 0.00020 3.0712� 0.0006 13.032� 0.002
12 improved 3569 1.155� 0.010 0.79600� 0.00049 3.2012� 0.0010 14.357� 0.004
16 improved 7885 1.093� 0.009 0.79730� 0.00034 3.2830� 0.0007 15.196� 0.003
24 improved 2873 0.946� 0.047 0.79852� 0.00123 3.3815� 0.0032 16.223� 0.012
32 improved 5469 0.955� 0.023 0.79833� 0.00044 3.4386� 0.0011 16.841� 0.006

0.6 16 8 improved 27221 1.560� 0.005 0.83423� 0.00018 3.1410� 0.0006 13.728� 0.002
12 improved 19051 1.475� 0.007 0.84077� 0.00021 3.2708� 0.0008 15.001� 0.003
16 improved 18141 1.432� 0.010 0.84156� 0.00023 3.3477� 0.0010 15.790� 0.004
24 improved 8977 1.339� 0.021 0.84184� 0.00034 3.4410� 0.0020 16.754� 0.008

0.6 16 32 improved 18677 1.267� 0.021 0.84181� 0.00028 3.4951� 0.0014 17.327� 0.006
24 8 improved 23971 1.569� 0.004 0.83474� 0.00017 3.1290� 0.0005 13.731� 0.002

12 improved 19171 1.481� 0.007 0.84083� 0.00018 3.2602� 0.0007 15.012� 0.003
16 improved 19961 1.429� 0.008 0.84205� 0.00018 3.3349� 0.0006 15.790� 0.003
24 improved 25249 1.346� 0.009 0.84176� 0.00015 3.4262� 0.0006 16.753� 0.003
32 improved 12577 1.276� 0.025 0.84212� 0.00030 3.4780� 0.0012 17.309� 0.007

32 8 improved 19017 1.575� 0.005 0.83539� 0.00024 3.1248� 0.0007 13.731� 0.003
16 improved 10071 1.442� 0.009 0.84182� 0.00022 3.3306� 0.0006 15.787� 0.004

0.7 16 8 improved 30641 1.959� 0.005 0.86564� 0.00013 3.1941� 0.0006 14.377� 0.003
12 improved 20051 1.885� 0.008 0.87096� 0.00014 3.3145� 0.0008 15.579� 0.004
16 improved 20187 1.843� 0.011 0.87181� 0.00015 3.3891� 0.0009 16.333� 0.005
24 improved 10605 1.763� 0.022 0.87126� 0.00024 3.4702� 0.0018 17.214� 0.009
32 unimproved 21633 2.344� 0.031 0.86981� 0.00017 3.5681� 0.0015 18.615� 0.007

improved 19921 1.672� 0.023 0.87191� 0.00021 3.5193� 0.0014 17.739� 0.007
24 8 improved 20701 1.968� 0.005 0.86574� 0.00014 3.1854� 0.0005 14.385� 0.003

12 improved 19997 1.893� 0.008 0.87095� 0.00013 3.3088� 0.0007 15.601� 0.004
16 improved 21451 1.849� 0.007 0.87203� 0.00012 3.3789� 0.0006 16.338� 0.004
24 improved 28925 1.755� 0.011 0.87126� 0.00012 3.4634� 0.0007 17.237� 0.004
32 improved 16135 1.682� 0.025 0.87186� 0.00019 3.5069� 0.0012 17.726� 0.008

32 8 improved 18989 1.966� 0.006 0.86612� 0.00017 3.1837� 0.0007 14.394� 0.004
16 improved 10849 1.850� 0.010 0.87187� 0.00015 3.3771� 0.0008 16.341� 0.004

0.8 16 8 unimproved 19281 3.674� 0.009 0.89048� 0.00013 3.5758� 0.0028 17.845� 0.008
improved 19171 2.400� 0.008 0.88790� 0.00012 3.2468� 0.0007 14.994� 0.004

12 improved 22001 2.356� 0.009 0.89220� 0.00011 3.3601� 0.0008 16.138� 0.005
16 unimproved 24081 3.283� 0.016 0.89113� 0.00011 3.5305� 0.0011 18.305� 0.006

improved 21421 2.309� 0.012 0.89318� 0.00011 3.4295� 0.0010 16.856� 0.005
24 unimproved 21591 3.000� 0.025 0.89069� 0.00012 3.5588� 0.0012 18.663� 0.007

improved 17521 2.214� 0.019 0.89292� 0.00014 3.5070� 0.0013 17.687� 0.008
32 unimproved 14157 2.710� 0.044 0.89119� 0.00017 3.5803� 0.0016 18.880� 0.010
32 improved 20187 2.107� 0.024 0.89261� 0.00015 3.5452� 0.0014 18.131� 0.009

24 8 improved 22151 2.417� 0.006 0.88779� 0.00011 3.2416� 0.0006 15.010� 0.003
0.8 24 12 improved 18175 2.346� 0.009 0.89207� 0.00011 3.3553� 0.0008 16.155� 0.005

16 improved 20721 2.303� 0.010 0.89317� 0.00009 3.4232� 0.0007 16.868� 0.004

(Table continued)
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(Continued)

T N L action Ncfg E=N2 jPj R2 F2

24 improved 9153 2.216� 0.020 0.89239� 0.00015 3.4968� 0.0012 17.681� 0.008
32 improved 13867 2.176� 0.028 0.89287� 0.00015 3.5366� 0.0015 18.134� 0.009

32 8 improved 19213 2.424� 0.007 0.88809� 0.00014 3.2394� 0.0008 15.012� 0.004
16 improved 13495 2.340� 0.017 0.89302� 0.00018 3.4216� 0.0014 16.869� 0.008

0.9 16 8 unimproved 20411 4.221� 0.010 0.90519� 0.00009 3.5113� 0.0012 17.926� 0.005
improved 20401 2.895� 0.009 0.90433� 0.00009 3.3002� 0.0008 15.599� 0.004

12 improved 20501 2.863� 0.011 0.90783� 0.00009 3.4048� 0.0009 16.679� 0.005
16 unimproved 37701 3.710� 0.014 0.90689� 0.00007 3.5475� 0.0007 18.635� 0.005

improved 21461 2.796� 0.014 0.90856� 0.00009 3.4717� 0.0010 17.377� 0.006
24 unimproved 21851 3.450� 0.028 0.90639� 0.00010 3.5807� 0.0013 19.001� 0.008

improved 17955 2.716� 0.021 0.90826� 0.00011 3.5400� 0.0014 18.139� 0.009
32 unimproved 12221 3.243� 0.049 0.90720� 0.00013 3.6037� 0.0019 19.209� 0.012

improved 14601 2.673� 0.031 0.90849� 0.00013 3.5750� 0.0017 18.545� 0.011
24 8 improved 24331 2.931� 0.006 0.90413� 0.00008 3.2958� 0.0006 15.613� 0.004

12 improved 17557 2.872� 0.010 0.90785� 0.00009 3.4025� 0.0009 16.707� 0.006
16 improved 24441 2.822� 0.010 0.90861� 0.00007 3.4658� 0.0007 17.384� 0.005
24 improved 8917 2.761� 0.023 0.90774� 0.00013 3.5349� 0.0014 18.156� 0.009
32 improved 16709 2.719� 0.028 0.90824� 0.00010 3.5663� 0.0014 18.538� 0.009

32 8 improved 18695 2.931� 0.008 0.90441� 0.00011 3.2948� 0.0009 15.620� 0.005
16 improved 12061 2.835� 0.019 0.90836� 0.00016 3.4643� 0.0016 17.388� 0.009

1.0 16 8 unimproved 21291 4.719� 0.011 0.91705� 0.00007 3.5139� 0.0010 18.245� 0.006
improved 20641 3.439� 0.010 0.91672� 0.00008 3.3515� 0.0009 16.185� 0.005

12 improved 20751 3.397� 0.012 0.91968� 0.00008 3.4485� 0.0010 17.217� 0.006
unimproved 25379 4.185� 0.019 0.91907� 0.00007 3.5769� 0.0010 19.034� 0.007

16 improved 21641 3.378� 0.015 0.92033� 0.00008 3.5115� 0.0011 17.876� 0.007
1.0 16 24 unimproved 23391 3.937� 0.030 0.91855� 0.00008 3.6099� 0.0013 19.376� 0.009

improved 17469 3.290� 0.024 0.91979� 0.00009 3.5755� 0.0017 18.600� 0.011
32 unimproved 13503 3.690� 0.054 0.91895� 0.00012 3.6323� 0.0019 19.582� 0.013

improved 15555 3.185� 0.034 0.91985� 0.00011 3.6068� 0.0018 18.971� 0.013
48 unimproved 12026 3.534� 0.092 0.92064� 0.00014 3.6592� 0.0028 19.810� 0.021

improved 5772 3.154� 0.094 0.92101� 0.00025 3.6431� 0.0042 19.401� 0.027
64 unimproved 15024 3.505� 0.112 0.92051� 0.00015 3.6808� 0.0029 19.999� 0.020

improved 7280 3.210� 0.105 0.92070� 0.00021 3.6752� 0.0042 19.715� 0.030
24 8 improved 22605 3.467� 0.007 0.91663� 0.00007 3.3490� 0.0007 16.208� 0.004

12 improved 19817 3.413� 0.011 0.91956� 0.00007 3.4478� 0.0009 17.251� 0.006
16 improved 20655 3.363� 0.013 0.92041� 0.00007 3.5084� 0.0009 17.901� 0.006
24 improved 21725 3.283� 0.019 0.91964� 0.00008 3.5705� 0.0011 18.609� 0.008
32 improved 19383 3.268� 0.028 0.91997� 0.00009 3.5993� 0.0014 18.964� 0.010

32 8 improved 17881 3.469� 0.008 0.91684� 0.00009 3.3482� 0.0009 16.216� 0.006
16 improved 14915 3.386� 0.019 0.92018� 0.00011 3.5078� 0.0013 17.902� 0.009

APPENDIX C: SIMULTANEOUS CONTINUUM LARGE-N EXTRAPOLATIONS

Here we give a more complete version of Table I, summarizing our simultaneous extrapolation to the continuum, large-N
limit via Eq. (23), including the lattice-spacing effects and all the off-diagonal entries of the covariance matrix.

T e00 −e10 e01 −e02 Σ00;10 Σ00;01 Σ00;02 Σ10;01 Σ10;02 Σ01;02 χ2 DOF

0.4 0.38� 0.06 5.4� 9.2 10.0� 1.8 44� 15 −0.1631 −0.11 0.79 −0.36 15.9 −28 1.3 4
0.5 0.74� 0.02 6.7� 1.5 7.2� 0.6 25� 3 þ0.0005 −0.01 0.08 −0.14 0.8 −2 7.2 9
0.6 1.15� 0.02 5.0� 1.8 5.8� 0.6 19� 3 −0.0046 −0.01 0.08 −0.07 0.4 −2 8.8 8
0.7 1.54� 0.03 3.9� 2.0 6.4� 0.7 23� 3 −0.0066 −0.02 0.09 −0.07 0.4 −2 8.8 8
0.8 1.99� 0.03 6.2� 2.5 7.0� 0.8 28� 4 −0.0151 −0.02 0.13 −0.09 0.8 −3 15.1 8
0.9 2.57� 0.04 11.9� 2.9 5.9� 0.9 23� 4 −0.0192 −0.03 0.17 −0.08 0.8 −4 3.3 8
1.0 3.11� 0.04 8.4� 3.2 5.9� 0.9 23� 4 −0.0218 −0.03 0.16 −0.15 1.3 −4 8.9 10
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If measurements of variables xi are normally distributed,
then naively their joint probability distribution P might be

PðxÞ ¼ c e−
1
2

P
i
ðxi−μiσi

Þ2 ðC1Þ
where μi represents the central value, σi is the spread in the
measurement of (i.e. the uncertainty of) variable xi, and c is
a normalization constant. However, more generically the
measurements might be distributed according to

PðxÞ ¼ c e−
1
2
ðx−μÞiΣ−1

ij ðx−μÞj ðC2Þ

where Σ is the covariance matrix, a symmetric positive-
definite matrix. The uncertainty on a single variable xi isffiffiffiffiffiffi
Σii

p
. An off-diagonal entry in the covariance matrix

indicates how the errors on the two variables i and j are
correlated. We use the shorthand that the two subscripts on
Σ are the subscripts on the corresponding e variables.
We determine the best fit by minimizing the usual χ2 fit

metric. We fix the covariant errors by finding the values of
the variables where the minimal χ2 increases by 1 (or,
equivalently, where P decreases by 1=e).
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