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We calculate the rho meson mass in a weak magnetic field using effective ρππ interaction. It is seen that
both ρ0 and ρ� masses decrease with the magnetic field in vacuum. The ρ meson dispersion relation has
been calculated and shown to be different for ρ0 and ρ�. We also calculate the ρππ decay width and spectral
functions of ρ0 and ρ�. The width is seen to decrease with eB and the spectral functions become narrower.
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I. INTRODUCTION

Quantum chromodynamics (QCD) in the presence of a
magnetic field has gained a lot of research interest in recent
years. Apart from being exciting for its own intricacy and
subtleties, the underlying physics of this strongly interact-
ing matter under extreme conditions is enriched with many
remarkable effects [1] like chiral magnetic effect [2–4],
magnetic catalysis [5] as well as inverse magnetic catalysis
effect [6], superconductivity of vacuum [7–9] and many
more. It is also a remarkable fact that noncentral heavy ion
collisions at RHIC and LHC do have the potential to
provide the platform for their experimental verifications. In
a noncentral heavy-ion collision at LHC, magnetic fields of
the order eB ∼ 15m2

π (B ∼ 5 × 1015 Tesla) can be achieved
[10] which is, in fact, higher than the typical QCD scale i.e
eB ∼m2

π . Though in heavy-ion experiments, the fields are
produced for a very short interval of time, they are good
enough to substantially affect the strongly interacting fire-
ball. Moreover, in case of a weak magnetic field limit
the situation becomes almost analogous to the magnetic
fields present inside magnetars which can be as high as
eB ∼ 1 MeV2 [11]. It is to be noted that the word “weak” is
used to emphasize the dominance of QCD scale over the eB
scale. Thus systematic understanding of strong interaction
with a weak magnetic field background can also have
significant applications in physics of neutron stars [12–16]
as well as some other topics of cosmology and the early
Universe. In this context we briefly recall the proceedings
in one of the aforementioned effects, namely magnetic field
induced superconductivity of vacuum.
Though the existence of a vacuum superconductor was

first proposed a few years ago in Ref. [8] with pointlike
vector mesons, recent researches considering internal

(quark) structures of the mesons kept on throwing new
insights into this emerging phenomena. In Ref. [8] it was
shown that nonminimal coupling of ρ mesons to the
electromagnetic field could result in magnetic-field-
induced superconductivity of the cold vacuum along the
magnetic field direction. But due to the Vafa-Witten
theorem [17] and QCD inequalities, Hidaka and
Yamamoto concluded in Ref. [18] that QCD vacuum
structure cannot be changed only by a magnetic field, i.e
magnetic-field-induced charged vector meson condensa-
tion is impossible. Soon after their work it has been argued
in Ref. [19] that ρ� condensation in a magnetic field
background is consistent with the Vafa-Witten theorem
because of the existence of a Higgs-like mechanism and
was supported a year later in Ref. [20] where it was pointed
out that the stronger version of the theorem [18] was
plagued with the prejudiced choice of a generating func-
tional on symmetric vacuum ignoring the other possibilities
of nonsymmetric vacua. However, the authors of Ref. [18]
also performed lattice QCD calculation in support of their
conclusions. An interesting comment about that can be
found in Ref. [21] where it was argued that although the
results of Ref. [18] based on quenched lattice QCD
simulation show a vanishing correlation in the large volume
limit still that cannot be a reason to conclude against
condensation because of the inherent inhomogeneous
nature of the condensate. For example, Fig. 4 of
Ref. [21] clearly demonstrates the fact that the vanishing
of mass at the transition point depends on the order of the
phase transition. In a careful investigation in the framework
of the SU(2) Nambu-Jona-Lasinio (NJL) model Liu et al.
[22] had pointed out that as the estimated critical field for
charged ρ meson condensation is not strong enough, one
needs to take into account the contributions of higher
Landau levels as well, considering which the masses of
charged ρ mesons with Sz ¼ 1 and Sz ¼ −1 do vanish at
eBc ∼ 0.2 GeV2. However, in a very recent work in the
hidden local symmetry approach in a constant magnetic
field [23], it has been found that OðeBÞ2 corrections which
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are arising from the considerations of Oðp6Þ terms of
derivative/chiral expansion, can in fact, change the trend of
the effective mass from a decreasing to an increasing one
resulting in the absence of any massless limit point. Thus it
is obvious that a unanimous agreement on the existence of
vacuum superconductor demands more research work in
this field. In a recent work, the pion mass and dispersion
relations have been calculated in [24] with nonzero eB in
vacuum using an effective Lagrangian (with pseudoscalar
as well as pseudovector pion-nucleon interactions). There it
was shown that, for pseudoscalar coupling pion effective
mass significantly decreases with weak external magnetic
field. However, for pseudovector coupling, only a modest
increase was reported. Using the same methodology, we, in
this work, investigate the problem of ρmeson condensation
with a phenomenological Lagrangian under the influence
of a constant weak magnetic field in vacuum. The modi-
fication of dispersion relations due to finite temperature
effects will be reported in our future work [25].
The paper is organized as follows. In Sec. II we discuss

the formalism for calculating ρ meson self-energy in the
presence of a weak magnetic field. Following similar
approaches as in Ref. [24], we first define the scalar field
Feynman propagators in constant external Abelian gauge
field [26] by Schwinger’s proper time formalism [27] and
then calculate the effective mass up to one-loop order in
self-energy. The results of our calculation are presented in
Sec. III in which the effective mass variations with weak
external field are presented followed by the dispersion
relations. Finally in Sec. IV we conclude with a brief
summary and discussions.

II. FORMALISM

The self-energy resummed ρ meson propagator satisfies
the Dyson-Schwinger equation,

iDμνðkÞ ¼ iD0
μνðkÞ þ iD0

μλðkÞð−iΠλσ
ρ ðkÞÞiDσνðkÞ

ðDμνÞ−1 ¼ ðD0
μνÞ−1 − Πμν; ð1Þ

where the bare propagator for the massive vector field is
given by

iD0
μν ¼

−i
k2 −m2

ρ þ iϵ

�
gμν −

kμkν

m2
ρ

�
: ð2Þ

The pole of the effective propagator leads to the following
dispersion relation:

det½−ðk2 −m2
ρÞgμν þ kμkν − Πμν

ρ � ¼ 0: ð3Þ

The exact form of the propagator of a charged scalar
particle with mass m and charge e in the presence of a
constant magnetic field can be written as [26,27]

DBðx0; x00Þ ¼ ϕðx0; x00Þ
Z

d4p
ð2πÞ4 e

−ip:ðx0−x00ÞDBðpÞ; ð4Þ

where

iDBðpÞ ¼
Z

∞

0

ds
cosðeBsÞ e

is½p2
jj−p

2⊥ðtanðeBsÞ=eBsÞ−m2þiϵ� ð5Þ

and

ϕðx0; x00Þ ¼ exp

�
ie
Z

x0

x00
dxμAμðxÞ

�
: ð6Þ

As the phase factor of the Schwinger’s propagator is
independent of the path, the overall phase of the one-loop
self-energy involving two scalar particles becomes unity.
Thus we can work in momentum space representation of
the scalar propagator as given in Eq. (5). In this paper, we
use the following convention: gμν is decomposed into two
parts as gμν ¼ gμνjj − gμν⊥ , where gμνjj ¼ diagð1; 0; 0;−1Þ and
gμν⊥ ¼ diagð0; 1; 1; 0Þ. Similarly a general four vector can
be written as qμ ¼ qμjj þ qμ⊥ with q2jj ¼ q20 − q23 and

q2⊥ ¼ q21 þ q22. Natural units will be used throughout the
paper. From now on, the iϵ term in the propagator will not
be explicitly written and will be taken care of at the end of
the calculation. The exact propagator in the external
magnetic field can be written as a series in powers of
eB [26]. As we are interested in the weak field regime,
keeping only the lowest order terms we get

iDBðpÞ !eB→0 i
p2
jj − p2⊥ −m2

×

�
1 −

ðeBÞ2
ðp2

jj − p2⊥ −m2Þ2 −
2ðeBÞ2p2⊥

ðp2
jj − p2⊥ −m2Þ3

�
: ð7Þ

The phenomenological Lagrangian corresponding to
ρππ interaction can be written as [28]

Lρππ ¼ −gρππρμ:ðπ × ∂μπÞ

þ 1

2
g2ρππðρμ × πÞ:ðρμ × πÞ; ð8Þ

where the boldfaced ρ and π indicate that they are
isovectors. Expanding the Lagrangian with complex pseu-
doscalar and vector fields, one can easily get the possible
one-loop self-energy diagrams as shown in Fig. 1. In the
following calculation we ignore the mass difference
between neutral π meson and the charged π and denote
the pion mass as mπ . Sometimes the superscript indices
denoting neutral and charged ρ will be written downstairs
for aesthetic reasons.
The part of the interaction Lagrangian which is respon-

sible for the neutral ρ meson self-energy can be explicitly
written as
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Lρ0 ¼ igρππ½ρμ0ð−π−∂μπ
þ þ ∂μπ

−πþÞ�
þ g2ρππρ20π

−πþ; ð9Þ

from which one can find the vertex factor for subdiagram
(a) to be Γμ

a ¼ −igρππð2pþ kÞμ and that for subdiagram
(c) to be Γc ¼ i2!g2ρππ . One loop self-energy for the ρ0
meson is given by

−iΠμν
ρ0 ¼

Z
d4p
ð2πÞ4 ½Γ

μ
aiDBðpþkÞΓν

aiDBðpÞþgμνΓciDBðpÞ�

Πμν
ρ0 ¼ ig2ρππ

Z
d4p
ð2πÞ4 ½ð2pþkÞμð2pþkÞνDBðpþkÞDBðpÞ

−2gμνDBðpÞ�; ð10Þ

where

DBðpÞ ¼ D0ðpÞ − ðeBÞ2
p2
jj þ p2⊥ −m2

π

ðp2 −m2
πÞ4

; ð11Þ

and D0ðpÞ ¼ ½p2 −m2
π�−1 is the free scalar propagator.

It is to be noted here that, as the vacuum part and the
magnetic correction term of the propagator are additive, the
one-loop self-energy of ρ0 can be decomposed into two
parts as

Πμν
ρ0

¼ Πμν
ρ0
ðeB ¼ 0Þ þ Πμν

ρ0
ðeB ≠ 0Þ: ð12Þ

This is true for the charged ρ mesons as well. After
dimensional regularization and renormalization, the vac-
uum part of the self-energy which is finite and scale
dependent can be written as [29,30]

Πμν
ρ0
ðeB ¼ 0Þ ¼ −

�
gμν −

kμkν

k2

�
Πvacðk2Þ

with Πvacðk2Þ ¼
1

3

g2ρππ
16π2

k2
��

1 −
4m2

π

k2

�3
2

ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π=k2
p

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π=k2
p

− 1

�
þ 8m2

π

k2
þ K

�
; ð13Þ

where K contains the mass scale and can be fixed by an additional condition based on physical grounds. Although K is a
constant in the case of pure vacuum, however in the presence of a magnetic field, the additional condition makes it in
principle a function of eB as will be discussed in the next section. We denote the renormalized mass of the ρ meson as mρ

whereas the magnetic field dependent effective mass is denoted as m�
ρ.

In this work we are mainly concerned with the eB dependent one-loop self-energy up toOððeBÞ2Þwhich is reasonable in
the weak field regime. After plugging in the propagators explicitly, the expression for the magnetic field dependent part of
the neutral ρ meson self-energy becomes

Πμν
ρ0
ðeB ≠ 0Þ ¼ −iðeBÞ2g2ρππ

Z
d4p
ð2πÞ4

�
ð2pþ kÞμð2pþ kÞν

×
� p2

jj þ p2⊥ −m2
π

½p2 −m2
π�4½ðpþ kÞ2 −m2

π�
þ
ðpþ kÞ2jj þ ðpþ kÞ2⊥ −m2

π

½p2 −m2
π�½ðpþ kÞ2 −m2

π�4
�
− 2gμν

p2
jj þ p2⊥ −m2

π

ðp2 −m2
πÞ4

�
: ð14Þ

(a) (b)

(c) (d)

FIG. 1. Feynman diagrams for the one-loop self-energy of ρ.
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Thus, we have altogether three integrals. The standard Feynman parametrization technique can be applied to these
integrals one by one. Starting with the first one we find

Z
d4p
ð2πÞ4 ð2pþ kÞμð2pþ kÞν

p2
jj þ p2⊥ −m2

π

½p2 −m2
π�4½ðpþ kÞ2 −m2

π�

¼
Z

1

0

dx4ð1 − xÞ3
Z

d4p
ð2πÞ4

1

ðp2 − ΔÞ5
× ½4½pμ

jjp
ν
jj þ pμ

⊥pν⊥�½p2
jj þ p2⊥ þ x2ðk2jj þ k2⊥Þ� þ ð2x − 1Þ2kμkν½p2

jj þ p2⊥ þ x2ðk2jj þ k2⊥Þ�
þ 4xð2x − 1Þ½kμfpν

jjðpjj · kjjÞ − pν⊥ðp⊥ · k⊥Þg þ kνfpμ
jjðpjj · kjjÞ − pμ

⊥ðp⊥ · k⊥Þg�
−m2

π½4pμpν þ ð2x − 1Þ2kμkν��: ð15Þ

It is worth mentioning that out of all the terms that emerge
after the change of variable p → p − xk, the bracketed
terms are the only nonvanishing ones. Necessary identities
for all the momentum integrations are given in the
Appendix. Interestingly, one can skip the tenure of the
calculation for the second integral by noticing that
p ↔ pþ k transforms it exactly to the first one. Combin-
ing the contribution from the third integral with the
first two, we find the following structure for the one-loop
self-energy of the neutral ρ meson:

Πμν
ρ0

¼ Πμν
ρ0
ðeB ¼ 0Þ þ A0kμkν þ B0gμν þ C0g

μν
⊥

þD0ðkμkν⊥ þ kνkμ⊥Þ ð16Þ
with the structure functions given as follows:

A0 ¼
2

3

g2ρππðeBÞ2
16π2

Z
1

0

dxð1 − xÞ3ð1 − 2xÞ

×

��ð1 − 2xÞðm2
π − 2k2⊥x2 − x2k2Þ
Δ3

�
−
2x
Δ2

�
ð17Þ

B0 ¼
1

3

g2ρππðeBÞ2
16π2

�
1

m2
π
−
Z

1

0

dxð1 − xÞ3

× 2

�
1

Δ
þm2

π − 2k2⊥x2 − x2k2

Δ2

��
ð18Þ

C0 ¼ −
4

3

g2ρππðeBÞ2
16π2

Z
1

0

dx
�ð1 − xÞ3

Δ

�
ð19Þ

D0 ¼
4

3

g2ρππðeBÞ2
16π2

Z
1

0

dx

�
xð1 − xÞ3ð1 − 2xÞ

Δ

�
; ð20Þ

where Δ ¼ xðx − 1Þk2 þm2
π − iϵ. Note the iϵ term in the

expression which takes into account its presence in all the
Feynman propagators, not explicitly mentioned earlier. In a
certain kinematic domain (like k2 ≥ 4m2

π where the unitary
cut begins), the structure constants can have significant real
and imaginary parts.
In the case of ρ� mesons the contributing interaction

Lagrangian is given by

Lρ� ¼ ρ�μ ð�π∓∂μπ0 ∓ π0∂μπ∓Þ þ g2ρππρ−ðπ20 þ π−πþÞρþ:

Following a similar procedure, the magnetic field depen-
dent self-energy of ρ� up to OðeBÞ2 can be written as

Πμν
ρ� ¼ ig2ρππ

Z
d4p
ð2πÞ4 ½ð2pþ kÞμð2pþ kÞνDBðpÞD0ðpþ kÞ − gμνð2D0ðpÞ þ 2DBðpÞÞ�

¼ −iðeBÞ2g2ρππ
Z

d4p
ð2πÞ4

�
ð2pþ kÞμð2pþ kÞν

p2
jj þ p2⊥ −m2

π

½p2 −m2
π�4½ðpþ kÞ2 −m2

π�
− gμν

p2
jj þ p2⊥ −m2

π

ðp2 −m2
πÞ4

�
: ð21Þ

From this structure one can straightforwardly conclude
that

Πμν
ρ� ¼ Πμν

ρ�ðeB ¼ 0Þ þ A�kμkν þ B�gμν

þ C�g
μν
⊥ þD�ðkμkν⊥ þ kνkμ⊥Þ; ð22Þ

where structure functions A�; B�; C�; D are nothing but
half of the A0, B0, C0 and D0 respectively.
The decay width of ρ → ππ in the presence of a magnetic

field is related to the imaginary part of the self-energy
as [30]
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ΓρðeBÞ ¼
ImΠðk0 ¼ m�; eBÞ

m� ; ð23Þ

where Γρ is defined in the rest frame of ρwithΠ ¼ 1
3
Πμ

μ and
m� is the solution of the equation

m�2 −m2
ρ þ ReΠðk0 ¼ m�; eBÞ ¼ 0: ð24Þ

For a given value of eB, m� gives the maximum of the
spectral function which is defined as

ρðk0; eBÞ ¼
ImΠ

ðk20 −m2
ρ þ ReΠÞ2 þ ðImΠÞ2 : ð25Þ

Note that, being a function of both ReΠ and ImΠ it carries
all the essential features of the self-energy.

III. RESULTS

In this section we present the numerical results for the
variation of the effective mass with weak external magnetic
field. We consider the strength of the external field to be
much less than the square of the ρ meson mass, i.e
eB ≪ m2

ρ. In our numerical calculation, we have taken
the coupling constant gρππ as 6.03 which can be obtained
by using the decay width of ρ → ππ as 150 MeV. The
mass of the pion is taken as 0.14 GeV. To get the effective
mass numerically, we set the external three momentum
of Eq. (3) to zero and obtain four mass relations
given by

−m2
ρ þ Ak20 þ B ¼ 0 ð26Þ

k20 −m2
ρ − Πvacðk20Þ þ B − C ¼ 0 ð27Þ

k20 −m2
ρ − Πvacðk20Þ þ B − C ¼ 0 ð28Þ

k20 −m2
ρ − Πvacðk20Þ þ B ¼ 0: ð29Þ

It must be noted here that for a given value of the parameter
eB each of the equations possesses two unknowns, k0 and
the scale hidden in Πvac. It might seem that the scale is
already fixed by the condition employed at eB ¼ 0which is
ReΠvacðk2 ¼ m2

ρÞ ¼ 0. But the physical mass in the pres-
ence of a magnetic field ism�

ρ and not the vacuum massmρ.
Thus we must choose a more general condition
ReΠvacðk2 ¼ m�2

ρ Þ ¼ 0 which correctly reproduces the
vacuum results in the absence of eB. Using the above
condition we get the following mass relations:

−m2
ρ þ Am�2

ρ þ B ¼ 0 ð30Þ

m�2
ρ −m2

ρ þ B − C ¼ 0 ð31Þ

m�2
ρ −m2

ρ þ B − C ¼ 0 ð32Þ

m�2
ρ −m2

ρ þ B ¼ 0; ð33Þ

where the subscripts of A, B, C and m�
ρ are chosen

accordingly. Out of the four relations, the first one gives
an unphysical mode whereas the second and third one
being same, are denoted as mode-1 with the last one
denoted as mode-2. In both of the cases, we find that the
effective mass of ρ0 as well as ρ� decreases with eB as
shown in Fig. 2. To understand the connection between the
modes and the spin states explicitly, one should note that, in
the rest frame of a massive vector particle, the completeness
relation satisfied by the polarization vectors is given as

X3
s¼1

ϵμsϵ�νs ¼ −gμν þ uμuν; ð34Þ
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FIG. 2. Effective mass variations for ρππ coupling as a function of eB. Both of the modes show a decrease in effective mass of ρ0 and
ρ� with the increasing external field. The ratio plotted in the inset demonstrates the difference between the two modes.
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where

ϵμ1ðkÞ ¼
1ffiffiffi
2

p ð0; 1; i; 0Þ

ϵμ2ðkÞ ¼
1ffiffiffi
2

p ð0; 1;−i; 0Þ

ϵμ3ðkÞ ¼ ð0; 0; 0; 1Þ
uμ ¼ ð1; 0; 0; 0Þ: ð35Þ

Using the completeness relation, the self-energy function in
Eq. (16) can be decomposed in terms of the projection
operators Pμν

s ¼ −ϵμsϵ�νs and uμuν. Inverting Eq. (1) one gets
the one-loop corrected propagator as

Dμν ¼ Pμν
1

k20 −m2
ρ − Πvacðk20Þ þ B − C

þ Pμν
2

k20 −m2
ρ − Πvacðk20Þ þ B − C

þ Pμν
3

k20 −m2
ρ − Πvacðk20Þ þ B

þ uμuν

−m2
ρ þ Ak20 þ B

: ð36Þ

This form of the propagator simply indicates that mode-1
physically represents the spin state Sz ¼ �1 whereas
Sz ¼ 0 is represented by mode-2.
Although we started with the same physical mass for

both ρ0 and ρ� which is 770 MeV, in both modes, their
effective masses vary differently showing faster decrease
for m�

ρ0
compared to m�

ρ� . However, if we compare the

variations in the two modes by plotting the ratio of the
effective masses as a function of eB (shown in the inset),
we observe a difference between them which is in fact

relatively more prominent in the case of ρ0. The decreasing
nature indicates the possibility of ρ condensation for higher
magnetic fields. It also indicates that the critical field for ρ0

meson should be smaller in magnitude compared to that for
charged ρ. However, as we are working in the weak field
regime, the prediction about the critical field eBc is beyond
the scope of our approximation. It is to be noted here that
we find a nonzero effective mass for ρ� even at eB ¼
0.2 GeV2 which differs from that predicted in Ref. [22].
Comparing with lattice results in Ref. [31], we find that our
results agree in the case of ρ0 with Sz ¼ 0, ρþ with Sz ¼
þ1 and ρ− with Sz ¼ −1. These are the states for which ρ
mass decreases with the magnetic field. In the rest of the
cases, increase in eB also increases the mass.
In the case of dispersion relations, without any loss of

generality we can reorient our axes such that kμ⊥ ¼
ð0; k1; k2; 0Þ becomes kμ⊥ ¼ ð0; 0; kper; 0Þ. Now, fixing
the value of one of the independent variables in
kμ ¼ ðω; 0; kper; kzÞ, we can find the variation of ω with
respect to the other. In Fig. 3 the first column shows the
variation of ω as a function of kz with kper ¼ 0.3 GeV. The
mode energy increases with the increase of longitudinal
momentum in all three modes tending to coincide with the
vacuum for higher kz values. This behavior is plausible
because, for kz ≫ eB the magnetic corrections do not
contribute significantly resulting in lightlike dispersion.
Similar behavior can be observed from the second column
where kper is varied keeping the longitudinal momentum
fixed at 0.3 GeV. With the increase of eB from 0.1 to
0.2 GeV2, one can notice the downward shift of the
dispersion curves in all three modes.
To calculate the decay width and spectral function in the

rest frame of ρ, we need to know the imaginary parts of A,
B and C. The imaginary parts of those structure functions
can be obtained analytically and are given as follows:

1

2
Im½A� ¼ −

π

2

�
96m4

π

ðk20Þ5=2ðk20 − 4m2
πÞ3=2

−
32m2

π

ðk20Þ3=2ðk20 − 4m2
πÞ3=2

þ 2ffiffiffiffiffi
k20

p
ðk20 − 4m2

πÞ3=2
þ 24m2

π

ðk20Þ5=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − 4m2

π

p −
4

ðk20Þ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − 4m2

π

p
�
ðeBÞ2 ð37Þ

−
1

2
Im½B� ¼ −

π

2

�
24m4

π

ðk20Þ3=2ðk20 − 4m2
πÞ3=2

−
6m2

πffiffiffiffiffi
k20

p
ðk20 − 4m2

πÞ3=2
þ

12 m2
π

k2
0

− 4

2
ffiffiffiffiffi
k20

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − 4m2

π

p
�
ðeBÞ2 ð38Þ

−
1

4
Im½C� ¼ −

π

2

� 12m2
π

k2
0

− 4

2
ffiffiffiffiffi
k20

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − 4m2

π

p
�
ðeBÞ2; ð39Þ

where the expressions are scaled by the overall common
factor g2ρππ=48π2 for ρ0 and half of that for ρ�. Using the
definition given in Eq. (23) we obtain the decay width for

ρ → ππ as shown in the left panel of Fig. 4. It has been
found that Γρ decreases with the external magnetic field
both for ρ0 and ρ�. However, the rate of decrease being
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small, it never vanishes even for eB ¼ 0.2 GeV2 which we
have taken to be the maximum limit of the external field as
mentioned earlier. The fact indicates that, in the weak
field limit, there exists suppression in the decay channel of

ρ → ππ but the prediction for complete blockage of the
channel is beyond the scope of its applicability.
Spectral functions are plotted in the right panel with two

nonzero values of eB. As soon as the magnetic field is
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FIG. 3. Dispersion relations of ρ0 and ρ� for two different values of eB in the weak field regime. The left panel shows the variation
with kz for a fixed value of kper. The right panel instead shows the dispersion as a function of kper keeping the kz fixed.
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turned on, the vacuum spectral function splits into two,
corresponding to different self-energies of ρ0 and ρ�. It is
the interplay between k0 and eB dependencies of ImΠ
which makes the spectral function narrower and taller as it
shifts towards the condensation. The shift is the manifes-
tation of decreasingm� which is the k0 value corresponding
to the maximum of the spectral function. These features of
the spectral function are consistent with the qualitative
discussions given in [8]. However, unlike [8], the shift for
ρ0 in our case is more in comparison with that of ρ� which
is expected from our results of mρ

� and Γρ.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have investigated the charged and
neutral ρ meson condensation in the external magnetic
field. We restricted ourselves to the weak field regime and
used the series form of the scalar propagator in the
magnetic background taking into consideration the leading
order magnetic correction term. Starting from the phenom-
enological Lagrangian, we explicitly calculated the mag-
netic correction to the one-loop self-energy up to OðeBÞ2.
Using the standard Dyson-Schwinger equation, we have
calculated the effective mass variations for ρ0 and ρ�. In
this case we find two independent physical modes both of
them showing decreasing nature which indicates the
possibility of ρ condensation. However, because of our
restriction to the weak field regime, we cannot predict the
exact value of critical field at which the effective mass
vanishes but we do find nonzero m�

ρ� for eB ¼ 0.2 GeV.

The trend shows that the critical field for the ρ meson (both
ρ0 and ρ�) will be higher than the prediction made in [22].
Moreover, in our case ρ0 mass falls faster than ρ� with
increasing B which differs from the result of Liu et al. [22].
In addition to that we have also presented the modified

dispersion relations of the ρmeson for three distinct modes.
The imaginary parts of the structure functions have been
obtained analytically. We have also explicitly calculated the
spectral function for the first time. The shift in the spectral
function with the increasing magnetic field is in agreement
with what has been anticipated in [8] based on qualitative
arguments. Another important difference of our work in
comparison with that of Ref. [22] is that, in the NJL model,
the quarks are affected by the magnetic field. That means
the magnetically corrected propagators appearing in the
self-energy should be fermionic propagators. But in our
case, pionic fields contribute to the ρ self-energy. Thus
bosonic propagators contain the magnetic corrections.
Now, the essential difference between the two is that in
weak field expansion, fermionic propagators possess cor-
rections of eB order [32] but in the case of bosons, the
leading order correction is OððeBÞ2Þ [26]. Thus, one can
expect that no eB order correction can be introduced with
it. It is true that depending upon the interactions, even if one
uses OðeBÞ corrected fermionic propagators, the leading
order contribution to self-energy may not be ofOðeBÞ [24].
However, the discussions in [22] clearly indicate that at
least in the case of mρ� with Sz ¼ �1, the magnetic
correction of OðeBÞ exists and it is the only mode for
which a decrease in mass has been observed. Our spin
decomposition in the rest frame is similar to that of [22].
We are also not considering the lowest Landau level (LLL)
approximation. Thus we find that the possibility of obser-
vation of ρ meson condensation in the weak magnetic field
depends upon the interaction terms used in the Lagrangian
and undoubtedly demands further investigation.
At this point it is necessary to mention that our

phenomenological Lagrangian considers only the ρππ
interaction which takes into account, in fact, the largest
decay channel (∼100 percent) of rho meson which is
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FIG. 4. The left panel shows the variation of decay width of ρ mesons with external magnetic field. Γρ for both ρ0 and ρ� decreases
with magnetic field but remains finite even at a maximum value of eB ¼ 0.2 GeV2. Spectral functions are plotted in the right panel for
eB ¼ f0; 0.1; 0.2g GeV2. It becomes narrower and taller as it shifts towards the lower values of k0.
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ρ → ππ. Nevertheless, because of its simplicity, our phe-
nomenological Lagrangian can be implemented at finite
temperature calculations as well, which will be discussed
elsewhere [25].
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APPENDIX: USEFUL IDENTITIES

Here we list all the identities necessary to perform the
momentum integrations of Eq. (15). All through the section
we use Δ ¼ xðx − 1Þk2 þm2

π .
Identity 1:

Z
d4p
ð2πÞ4

1

ðp2 − ΔÞ5 ¼ −i
1

ð4πÞ2
1

ðΔÞ3
Γ½3�
Γ½5�

¼ −
i
12

1

ð4πÞ2
1

Δ3
: ðA1Þ

Identity 2:

Z
d4p
ð2πÞ4

pμpν

ðp2 − ΔÞ5 ¼
gμν

4

Z
d4p
ð2πÞ4

p2

ðp2 − ΔÞ5

¼ gμν

4

i
ð4πÞ2

1

ðΔÞ2
Γ½3�
Γ½5�

¼ i
48

1

ð4πÞ2
1

ðΔÞ2 g
μν: ðA2Þ

Identity 3:

Z
d4p
ð2πÞ4

p2
jj

ðp2 − ΔÞ5 ¼ i
Z

d2p⊥
ð2πÞ2

Z d2pEjj

ð2πÞ2
p2
Ejj

ðp2
Ejj þ ΔjjÞ5

¼ i
1

4π

Z
d2p⊥
ð2πÞ2

1

ðp2⊥ þ ΔÞ3
Γ½3�
Γ½5�

¼ i
1

ð4πÞ2
1

Δ2

Γ½2�
Γ½3�

Γ½3�
Γ½5�

¼ i
24

1

ð4πÞ2
1

Δ2
: ðA3Þ

Identity 4:

Z
d4p
ð2πÞ4

p2⊥
ðp2−ΔÞ5 ¼−i

Z
d2p⊥
ð2πÞ2p

2⊥
Z d2pEjj

ð2πÞ2
1

ðp2
Ejj þΔjjÞ5

¼−
i
4π

Z
d2p⊥
ð2πÞ2p

2⊥
1

ðp2⊥þΔÞ4
Γ½4�
Γ½5�

¼−
i

ð4πÞ2
1

Δ2

1

Γ½4�
Γ½4�
Γ½5�

¼−
i
24

1

ð4πÞ2
1

Δ2
: ðA4Þ

Identity 5:

Z
d4p
ð2πÞ4

pμ
jjp

ν
jj

ðp2 − ΔÞ5 ¼
gμνjj
2

Z
d4p
ð2πÞ4

p2
jj

ðp2 − ΔÞ5

¼ gμνjj
i
48

1

ð4πÞ2
1

Δ2
: ðA5Þ

Identity 6:

Z
d4p
ð2πÞ4

pμ
⊥pν⊥

ðp2 − ΔÞ5 ¼
gμν⊥
2

Z
d4p
ð2πÞ4

p2⊥
ðp2 − ΔÞ5

¼ −gμν⊥
i
48

1

ð4πÞ2
1

Δ2
: ðA6Þ

Identity 7:

Z
d4p
ð2πÞ4

p2
jjp

μ
jjp

ν
jj

ðp2−ΔÞ5 ¼
gμνjj
2

Z
d4p
ð2πÞ4

p4
jj

ðp2−ΔÞ5

¼−i
gμνjj
2

Z
d2p⊥
ð2πÞ2

Z d2pEjj

ð2πÞ2
ðp2

Ejj Þ2
ðp2

Ejj þΔjjÞ5

¼−i
gμνjj
2

Z
d2p⊥
ð2πÞ2

1

4π

1

ðp2⊥þΔÞ2
Γ½3�
Γ½5�

¼−gμνjj
i
24

1

ð4πÞ2
1

Δ
: ðA7Þ

Identity 8:
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Z
d4p
ð2πÞ4

p2⊥p
μ
jjp

ν
jj

ðp2−ΔÞ5¼
gμνjj
2

Z
d4p
ð2πÞ4

p2
jjp

2⊥
ðp2−ΔÞ5

¼ i
gμνjj
2

Z
d2p⊥
ð2πÞ2p

2⊥
Z d2pEjj

ð2πÞ2
p2
Ejj

ðp2
Ejj þΔjjÞ5

¼ i
gμνjj
2

Z
d2p⊥
ð2πÞ2p

2⊥
1

4π

1

ðp2⊥þΔÞ3
Γ½3�
Γ½5�

¼ i
gμνjj
2

1

ð4πÞ2
1

Δ
1

Γ½3�
Γ½3�
Γ½5�

¼ gμνjj
i
48

1

ð4πÞ2
1

Δ
: ðA8Þ

Identity 9:
Z

d4p
ð2πÞ4

p2
jjp

μ
⊥pν⊥

ðp2 − ΔÞ5 ¼
gμν⊥
2

Z
d4p
ð2πÞ4

p2
jjp

2⊥
ðp2 − ΔÞ5

¼ gμν⊥
i
48

1

ð4πÞ2
1

Δ
: ðA9Þ

Identity 10:Z
d4p
ð2πÞ4

p2⊥p
μ
⊥pν⊥

ðp2−ΔÞ5¼
gμν⊥
2

Z
d4p
ð2πÞ4

p4⊥
ðp2−ΔÞ5

¼−i
gμν⊥
2

Z
d2p⊥
ð2πÞ2p

4⊥
Z d2pEjj

ð2πÞ2
1

ðp2
Ejj þΔjjÞ5

¼−i
gμν⊥
2

Z
d2p⊥
ð2πÞ2p

4⊥
1

4π

1

ðp2⊥þΔÞ4
Γ½4�
Γ½5�

¼−i
gμν⊥
2

1

ð4πÞ2
1

Δ
Γ½3�
Γ½4�

Γ½4�
Γ½5�

¼−gμν⊥
i
24

1

ð4πÞ2
1

Δ
: ðA10Þ

Identity 11:

Z
d4p
ð2πÞ4

pμ
jjðpjj · kjjÞ
ðp2 − ΔÞ5 ¼ i

48

1

ð4πÞ2
1

Δ2
kμjj: ðA11Þ

Identity 12:

Z
d4p
ð2πÞ4

pμ
⊥ðp⊥ · k⊥Þ
ðp2 − ΔÞ5 ¼ −

i
48

1

ð4πÞ2
1

Δ2
kμ⊥: ðA12Þ

Identity 13:

Z
d4p
ð2πÞ4

p2
jj

ðp2 −m2
πÞ4

¼ −
i

ð4πÞ2
1

6

1

m2
π
: ðA13Þ

Identity 14:

Z
d4p
ð2πÞ4

p2⊥
ðp2 −m2

πÞ4
¼ i

ð4πÞ2
1

6

1

m2
π
: ðA14Þ

Identity 15:

Z
d4p
ð2πÞ4

1

ðp2 −m2
πÞ4

¼ i
ð4πÞ2

1

6

1

ðm2
πÞ2

: ðA15Þ
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