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We study ground states and excitations of light octet and decuplet baryons within the framework of
Dyson-Schwinger and Faddeev equations. We improve upon similar approaches by explicitly taking into
account the momentum-dependent dynamics of the quark-gluon interaction that leads to dynamical chiral
symmetry breaking. We perform calculations in both the three-body Faddeev framework and the quark-
diquark approximation in order to assess the impact of the latter on the spectrum. Our results indicate that
both approaches agree well with each other. The resulting spectra furthermore agree one-to-one with
experiment, provided well-known deficiencies of the rainbow-ladder approximation are compensated for.
We also discuss the mass evolution of the Roper and the excited Δ with varying pion mass and analyze the
internal structure in terms of their partial wave decompositions.
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I. INTRODUCTION

Understanding the baryon excitation spectrum of QCD is
one of the key elements in unraveling the structure of the
strong interaction. In the past years, significant experimen-
tal progress has been made by the analysis of data from
photo- and electroproduction experiments at JLAB, ELSA
and MAMI [1–3]. As a result, a number of new radial and
orbital excitations of the ground state octet baryons have
been added to the PDG [4].
Despite this progress, there are still long-standing issues

with the baryon spectrum that are not well understood. One
of these is the prediction of many excited states by the
quark model which, however, have not been observed yet.
This “missing resonances” problem has been debated at
length in the literature but remains an open issue. One of the
proposed solutions has been a quark-diquark picture of
baryons, with a strongly bound and therefore hard to excite
diquark that prevents the appearance of many states present
in the constituent three-quark model, see [5,6] for reviews.
In practice, it may be hard to reconcile such strongly bound
diquarks with the underlying QCD forces, and it is a
nontrivial question whether baryons made of loosely
correlated diquarks with nontrivial internal structure can
be distinguished in their spectrum from genuine three-body
states. This is one of the topics of this work.
Another long-standing issue is the level ordering

between the first radially excited state in the IðJPÞ ¼
1
2
ð1
2
þÞ sector (the Roper resonance [7]) and the ground

state in the orbitally excited channel IðJPÞ ¼ 1
2
ð1
2
−Þ:

whereas quark model calculations typically favor the

“natural” ordering of a lower 1
2
− state [8–11], the measured

mass of the Roper is much lower than the quark model
prediction and the level ordering reversed. Thus it was
conjectured that the inner structure of the Roper may be
more complicated than that of a “simple” radial excitation.
Further indications in this direction may be inferred from its
large decay width and the large branching fractions in the
πN and σN decay channels.
An interesting possibility connected with the latter

observation has been discussed in [12]: a radial excitation
of the nucleon with an initial (or “bare”) mass much larger
than the experimental onemay receive large corrections from
coupled channel effects in the πN, ππN and ηN channels.
The resulting mass of the Roper resonance observed in the
data is then substantially lowered and may be pushed below
the one of the negative parity ground state. In this picture the
internal structure and the properties of the resulting dressed
state may be very different than those of the initial bare state.
In fact, the reaction dynamics may even be strong enough to
generate the Roper purely dynamically without a bare seed,
as demonstrated in [13–15].
Additional insight into the nature of the Roper may be

gained from lattice QCD. However, excited states in general
pose a challenge for the lattice as the extraction of their
masses from Euclidean correlators is an intricate statistical
problem. The computational cost involved in unquenched
simulations of excited states often necessitates the use
of unphysically heavy light quark masses. In addition, the
spectrum is complicated by the appearance of discrete
multiparticle scattering states generated by the finite volume
on the lattice. As a consequence, contemporary lattice data
from several groups on the mass evolution of the first radial
excitation of the nucleon seem to differ both quantitatively
and qualitatively [16–22].
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In the framework of Dyson-Schwinger, Bethe-Salpeter
and Faddeev equations (see [23–27] for reviews) the proper-
ties of the Roper resonance have been analyzed so far on two
levels of sophistication [28–31]. Both of these approaches
convert the three-body system into a two-bodyquark-diquark
picture assuming strong quark-quark correlations inside
baryons. In addition, one of them [28–30] employs an
NJL-type,momentum-independent vector-vector interaction
between the quarks which leads to momentum-independent
wave functions for the diquark constituents and the resulting
baryons, thereby neglecting parts of the underlying QCD
dynamics. In a recent second study [31] momentum-
dependent model Ansätze for the quark propagator and
the diquark wave functions were employed to study their
impact on the properties of the nucleon’s excitations. While
both approaches agree in their general conclusions, they
differ considerably in their description of the internal proper-
ties of the Roper resonance.
In thisworkwe improve upon the situation in two respects.

First, we use a well-established momentum-dependent
effective quark-gluon interaction as a starting point and
determine all propagators and wave functions self-consis-
tently from their Dyson-Schwinger and Bethe-Salpeter
equations (DSEs and BSEs). This procedure serves to
eliminate unwanted freedom in modeling and takes care
of the preservation of chiral symmetry via the axial Ward-
Takahashi identity. Second, we do not rely on the quark-
diquark approximation. Instead, we provide first solutions
for the excited state spectrum of the three-body Faddeev
equation. In parallel, we also solve the bound-state equation
for baryons in the quark-diquark system using the same
underlying interaction. We are therefore in a position to
systematically compare the results in both approaches and
assess their qualitative and quantitative differences.We apply
this formalism to nucleon and Δ baryons with quantum
numbers JP ¼ 1=2� and 3=2� and discuss implications for
the interpretation of the experimental spectrum.
This work is organized as follows. In the next section we

discuss the details of the three-body Faddeev approach to
baryons and the quark-diquark BSE, and we specify the
quark-gluon interaction used in this work. We present and
discuss our results in Sec. III and conclude in Sec. IV.

II. THREE-BODY FADDEEV EQUATIONS VS.
QUARK-DIQUARK APPROXIMATION

In functional frameworks the masses and wave functions
of baryons are extracted from their gauge-invariant poles in
the (gauge-dependent) quark six-point Green function.
There is an intimate relation to the corresponding procedure

in lattice QCD, see Ref. [25] for detailed explanations. As a
result, one arrives at the covariant three-body Faddeev
equation in Fig. 1 which is an exact equation in QCD.
It determines the baryon’s three-quark Faddeev amplitude
from the irreducible two- and three-body interactions
between the dressed valence quarks. It is also much more
complicated than the analogous two-body equations for
mesons, partially due to the structure of the baryon
amplitude which depends on three independent momenta
and many more tensor structures than the meson case.
Sophisticated methods based on permutation-group sym-
metries have been developed to deal with the complexity of
this equation, see Refs. [32,33] for state-of-the-art solution
techniques.
The structure of the baryon Faddeev amplitudes is

discussed in Ref. [25,32,34,35] and shall not be explicitly
repeated here for brevity. For later use we just state that
the 64 different tensor structures representing a J ¼ 1=2
baryon can be grouped into eight s-wave components, 36 p
waves and 20 d waves. Analogously, the 128 tensor
structures of a J ¼ 3=2 Faddeev amplitude comprise four
s waves, 36 p waves, 60 d waves and 28 f waves. The
multiplicity of these components is certainly not in one-to-
one relation with their relative importance in the baryon’s
amplitude; we come back to this issue in the results section
below.
The Faddeev equation in Fig. 1 contains irreducible

three-body forces in the last diagram on the rhs whose
influence on the spectrum has not yet been fully explored.
However, from a diagrammatic viewpoint it seems
plausible that they only play a minor role. The leading
diagram in a skeleton expansion is one with a dressed three-
gluon-vertex with gluon propagators attached to each of the
three quarks. It has been shown, however, that this con-
tribution vanishes trivially due to the color algebra, with the
leading nontrivial terms identified and explored in [36].
Therefore it seems not unreasonable to neglect irreducible
three-body forces altogether and evaluate the three-body
problem with two-body interactions only. This is the
strategy followed so far in Refs. [32,34,35,37–42], and
we will also adopt it in this work. As will become apparent
in Sec. III, our results will justify this approximation
a posteriori. The Faddeev equation then takes the form

Γ ¼
X3
i¼1

Γi ¼
X3
i¼1

KiG0Γ; ð1Þ

where the Faddeev components Γi correspond to the three
individual diagrams in Fig. 1. The Ki are the two-body

FIG. 1. Three-quark Faddeev equation.
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kernels and G0 refers to the product of two quark
propagators. Equation (1) constitutes the first of the two
frameworks that we employ below to calculate the baryon
spectrum.
The second is the quark-diquark approach, which is

motivated by the assumed smallness of irreducible three-
body contributions. We can eliminate the two-body kernels
in Eq. (1) in favor of the two-body T-matrices Ti, which are
related to each other via Dyson’s equation,

Ti ¼ ð1þ TiG0ÞKi: ð2Þ

Applying this to the Faddeev equation gives

TiG0Γ ¼ ð1þ TiG0ÞΓi ⇒

Γi ¼ TiG0ðΓ − ΓiÞ ¼ TiG0ðΓj þ ΓkÞ ð3Þ
with fi; j; kg an even permutation of f1; 2; 3g. The result-
ing equation is shown in the upper left panel of Fig. 2; so far
no further approximation has been made. However, its
structure motivates to expand the quark-quark scattering
matrix that appears therein in terms of separable diquark
correlations. The sum of diquarks is then dominated by
those with smallest mass scales, namely, scalar and
axialvector diquarks in the positive parity sector as well
as pseudoscalar and vector diquarks with negative parity. In
our calculations below we take all of these into account.
The quark-quark scattering matrix then reads

½Tðq; q0; pdÞ�αγ;βδ ≃
X

½Γμ…
D ðq; pdÞ�αβ

×Dμ…ν…ðp2
dÞ½Γν…

D ðq0; pdÞ�δγ;
½Γiðp; q; PÞ�αβγσ ≃

X
½Γμ…

D ðq; pdÞ�αβ
×Dμ…ν…ðp2

dÞ½Φν…ðp;PÞ�γσ: ð4Þ

Here, Γμ…
D is the diquark Bethe-Salpeter amplitude and Γμ…

D
its charge conjugate; the diquark propagator is Dμ…ν…; pd
is the diquark momentum and q, q0 are the relative quark
momenta in the diquark amplitudes. In the second line the
same assumption was made for the Faddeev components,

thus introducing the quark-diquark Bethe-Salpeter ampli-
tude Φν…ðp; PÞ.
We therefore arrive at a coupled system of quark-diquark

bound-state equations [43–45], which are illustrated in the
upper right panel of Fig. 2

½Φμ…ðp;PÞ�ασ ¼
Z

d4k
ð2πÞ4 ½K

μ…ν…
Q-DQ �αβ

× ½SðkqÞ�βγDν…ρ…ðkdÞ½Φρ…ðk;PÞ�γσ; ð5Þ

and the quark-diquark kernel is given by

Kμ…ν…
Q-DQ ¼ Γν…

D ðkr; kdÞSTðqÞΓμ…
D ðpr; pdÞ: ð6Þ

Here, P is the baryon’s total momentum, p is the quark-
diquark relative momentum and the remaining momenta
can be inferred from the figure (see Sec. V. 2 in [46] for
details). The dressed quark propagator is denoted by SðqÞ
and “T” is a matrix transpose.
In this picture the baryon is bound by quark exchange

between the quark and the diquark [43,47,48]. This,
however, does not mean that gluons have been eliminated
from the problem: they still appear explicitly in the DSE for
the quark propagator, the BSEs for the diquark Bethe-
Salpeter amplitudes ΓD, and in the equations for the
diquark propagators which are all displayed in the bottom
panel of Fig. 2. The diquark BSEs read

½Γμ1…μJ
D ðp; PÞ�αβ ¼

Z
d4q
ð2πÞ4 ½Kðp; q; PÞ�αγ;βδ

× ½SðqþÞΓμ1…μJ
D ðq; PÞSTð−q−Þ�γδ ð7Þ

and contain the same two-body interaction kernel K as the
three-body Faddeev equation.
Although diquarks are not observable because they carry

color, the rainbow-ladder truncation does generate diquark
poles in the two-quark scattering matrix which justifies the
approximation (4) and allows one to compute diquark
properties in close analogy to those of mesons from their

FIG. 2. Simplification of the Faddeev equation in Eq. (3) (top left) to the quark-diquark Bethe-Salpeter equation (5) (top right). The
bottom panel shows the ingredients that enter in the equation and are calculated beforehand: the quark propagator, diquark Bethe-
Salpeter amplitudes and diquark propagators.
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BSEs (7). In a simpler model it has been shown that the
addition of crossed ladder exchange removes the diquark
poles from the spectrum [49], but it was recently argued
that an effective resummation of such diagrams can also
bring them back again [50]. In any case, diquark correla-
tions may well persist in one form or another simply due to
the colour attraction: it is conceivable that the qq scattering
matrix has some complicated singularity structure that
allows one to identify diquark mass scales, and in that
sense Eq. (4) will remain a reasonable ansatz.
The quark-diquark equation is a considerable simplifi-

cation, both in terms of kinematic variables and tensor
structures. In turn, much of the complexity is now distrib-
uted among the underlying equations which we solve
beforehand as described in Refs. [46,51–53]: the (scalar,
axialvector, pseudoscalar, vector) diquark amplitudes for
complex relative momenta including the full set of tensor
structures, and the respective diquark propagators for
complex total momenta. In any case, the rather mild
assumptions required to derive the quark-diquark BSE
suggest that it may still capture the essential dynamics
of the three-body system, which will be one of the issues
that we explore in this work.
The common underlying dynamics of the three-quark and

quark-diquark equations is encoded in the two-body scatter-
ing kernel K and, related, the quark-gluon interaction. The
latter also appears in the quark DSE which determines the
fully dressed quark propagator SðpÞ. The quark self-energy
is related to the two-body scattering kernel K via the
axialvector Ward-Takahashi identity which ensures chiral
symmetry and, in combination with its correct dynamical
breaking pattern, the Goldstone-boson nature of the pseu-
doscalar meson octet. A frequently used approximation that
satisfies this identity is the rainbow-ladder truncation which
we also use in this work. Its basic idea is to approximate
all effects of the quark-gluon vertex by its primal tensor
structure γμ dressedwith a function that depends on thegluon
momentum only. This function is then combined with the
dressing function of the gluon propagator into a so-called
effective coupling. In the large momentum regime this
quantity is well-known from resummed perturbation theory
whereas in the infrared it ismodeled.A detailed discussion of
rainbow-ladder and other approximation strategies for the
DSE/BSE system can be found in Ref. [25].
One of the more frequently used effective interactions is

that of Maris and Tandy [54],

αðk2Þ ¼ πη7x2e−η
2x þ αUVðk2Þ;

αUVðk2Þ ¼
2πγmð1 − e−k

2=Λ2
t Þ

ln ½e2 − 1þ ð1þ k2=Λ2
QCDÞ2�

ð8Þ

with x ¼ k2=Λ2. The UV term with parameters Λt ¼
1 GeV, ΛQCD ¼ 0.234 GeV, and γm ¼ 12=25 for four
active quark flavours ensures the correct perturbative
running but is otherwise not essential; one could neglect

it without causing serious damage in the spectrum of the
light-quark sector [55]. The nonperturbative physics is
encoded in the first term, which is characterised by two
parameters1: an infrared scale Λ and a dimensionless
parameter η. Since the scale Λ ¼ 0.72 GeV together with
the renormalized quark masses mu=dð19 GeVÞ ¼ 3.7 MeV
are fixed to experimental input (namely the pion decay
constant fπ and the pion mass), only one free parameter η
remains to which many observables are insensitive within
the range 1.6 < η < 2.0. We discuss this point further in
Sec. III.
In the following we will use Eq. (8) both in the three-

body and quark-diquark BSEs in order to systematically
compare the results of the two frameworks using the same
underlying basis. In both cases one first solves the DSE for
the quark propagator, thus determining the quark dressing
functions in the complex momentum plane. In the three-
body framework one then directly proceeds to the three-
body Faddeev equation, where the kernel K is a gluon
exchange diagram dressed with the effective interaction (8).
In the quark-diquark framework one has to make a detour
by first determining the masses, Bethe-Salpeter amplitudes
and propagators of the diquarks using their BSEs with the
same two-body kernelK. The resulting diquark amplitudes
and propagators together with the quark propagators then
serve as input for the quark-diquark BSE for baryons.
In order to solve Bethe-Salpeter equations, they are

treated as eigenvalue problems. One uses the baryon mass
as an external parameter and solves for the eigenvalues of
the BSE matrix. If, for a certain baryon mass, one of the
eigenvalues equals unity the corresponding eigenvector
gives the Bethe-Salpeter amplitude. In order to extract the
spectrum of excited states in the three-body Faddeev
framework we use an implementation of the Arnoldi
algorithm [56]. Like all Krylov subspace methods, the
Arnoldi algorithm allows one to find only a small number
of eigenvalues of large matrices, selected by a certain
criterion. The computational cost increases proportionally
to the number of eigenvalues sought. Unfortunately, we
found that numerical artifacts (such as the discretization of
integrals) results in the appearance of spurious complex
conjugated pairs of eigenvalues which make the search for
real eigenvalues extremely costly.
For the quark-diquark approach it turns out that a QR

decomposition is possible due to the drastically reduced
structure of the baryon wave functions. This enables one to
store the kernel matrix as a whole and extract all eigen-
values at once, thereby giving access to higher excited
states without the large numerical effort needed for the
Arnoldi algorithm in the three-body system. We are thus in
a position to present a much more complete spectrum for
this case.

1The relationship with the parameters fω; Dg used in Ref. [54]
is ω ¼ Λ=η and D ¼ ηΛ2.
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III. RESULTS

A. Rainbow-ladder

Before we embark on our discussion we would first like
to make clear what we can expect from the rainbow-ladder
approximation. To this end it is useful to recapitulate what
has been found in the meson sector of QCD. In the
following we summarize a discussion presented in more
detail in the review [25].
It has been argued within Coulomb-gauge QCD that

rainbow-ladder is especially good in the heavy quark region
where, in fact, it becomes exact in the limit of very heavy
quarks [57]. It seems reasonable to expect a similar sim-
plification in Landau gauge used in this work. Comparing
rainbow-ladder results in the heavy quark regime [58–60]
with those in the light quark sector [55,61,62] supports this
notion. In the heavy quark regime one finds an overall
reasonable agreement of the rainbow-ladder results with the
experimentally measured bound states beyond the DD
thresholds. The agreement is especially good for the pseu-
doscalar and vector mesons including their ground states and
radial excitations. In the quark model these are the “s wave”
states with vanishing orbital angular momentum. Of the
remaining states, the scalars and axialvectors show the
largest discrepancies [62].
In the light meson sector the spin-dependent parts of the

quark-antiquark interaction kernel become even more
important and the deficiencies of the (vector-vector) rain-
bow-ladder interaction become apparent. Whereas the light
pseudoscalar (nonsinglet) mesons, governed by dynamical
chiral symmetry breaking, are automatically reproduced in
the symmetry-preserving rainbow-ladder scheme, also the
vector mesons are in good agreement with experiment [54].
However, large deviations occur for scalar and axialvector
states (the “p waves” in the quark model), which are only
remedied in much more intricate truncations [63,64]. In the
language of the quark potential models (strictly valid
only in the heavy quark region) evidence suggests that
rainbow-ladder calculations roughly reproduce the size of
the spin-spin contact part of the potential and the spin-orbit
part, but materially overestimates the binding in the tensor
part of the spin-spin interaction.
For baryons this has interesting consequences. In the

quark-model language also the ground-state octet and
decuplet baryons—in our case, theNð1=2þÞ andΔð3=2þÞ—
are quark-model s waves, and therefore we may expect
rainbow-ladder to provide a reliable framework for the
nucleon, the Δ and their excitations. Other spin-parity
channels, however, may be significantly affected by
rainbow-ladder deficiencies, and we expect masses that
are too small, similar to the meson case.
Let us first discuss the Nð1=2þÞ and Δð3=2þÞ channels.

For the ground states, results in the three-body framework
[32,34,35] and the quark-diquark approach [51–53] have
been found in very good agreement with experiment.

Also the mass evolutions with varying current quark mass
or, correspondingly, varying pion mass have been discussed
already and compare well with results from lattice QCD.
The new element in our present work is that we are now in a
position to also add the respective excited states. In the
three-body framework we find the masses

mN� ¼ 1.45ð5Þ GeV; mΔ� ¼ 1.49ð6Þ GeV ð9Þ
at the physical point. The first is close to the experimental
Nð1440Þ, the Roper, and the second agrees with the lower
edge of the range of PDG values for the Δð1600Þ [4]. The
systematic errors correspond to the range 1.6 ≤ η ≤ 2.0 for
the width parameter in the effective interaction (8). We
verified that these states are indeed the first radial excita-
tions by inspection of their Faddeev amplitudes, which
display a node when plotted over one of the relative
momenta between the three quarks.
Due to the tremendous amount of CPU time involved in

extracting excited states in the three-body framework we
are only able to give the first radial excitation in these
channels. By contrast, in the quark-diquark approach the
complexity of the Faddeev amplitudes is considerably
smaller and enables us to calculate the full spectrum below
∼2 GeV. Here we extend the setup in Refs. [46,52] by
implementing not only scalar and axialvector diquarks but
also the pseudoscalar and vector diquarks with IðJPÞ ¼
0ð0−Þ and 1ð1−Þ, respectively, as they turn out to be
quantitatively important for several states [65]. The result-
ing masses are

mN� ¼ 1.50ð9Þ GeV; mΔ� ¼ 1.73ð12Þ GeV; ð10Þ
where the errors refer to the same η variation as described
above. Although the η dependence for these two states is
considerably larger than in the three-body case, both
masses are still compatible with the PDG range.
As expected, in the remaining spin-parity channels we

find masses that are significantly smaller than experiment.
In Fig. 3 we compare the rainbow-ladder results to the PDG
values. The parity partner of the nucleon is underestimated
by 20%, leading to the wrong level ordering between the
Roper and the Nð1535Þ. This is true both in the three-body
and the quark-diquark approach; note in particular that the
three states (nucleon, Roper and parity partner) agree very
well in the two frameworks. In the nucleon channels with
JP ¼ 3=2� the situation is a little better but still not good;
here we only have the quark-diquark results at our disposal
because we were not able to extract corresponding states
from the three-body equation. A similar pattern can also be
observed in the Δ sector, although the spread between the
three-quark and quark-diquark results is somewhat larger.
For the ground and excited states with JP ¼ 3=2þ we find
again agreement with experiment, whereas the parity
partners and the states with JP ¼ 1=2� are clearly off.
The situation is not improved by varying the only

parameter in the system: within the range of 1.6 ≤ η ≤ 2.0
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we find the variations for the Roper and the excited Δ
quoted above, whereas all ground states but also the excited
states in the other channels are less sensitive.The nucleon and
Δ ground states hardly move at all with η and the typical
variations for the remaining states are of the order of
∼50 MeV.
There are a couple of important conclusions that can be

drawn from these findings. First, both approaches essen-
tially agree with each other, especially in the nucleon
channels and to a lesser extent also in the Δ channels,
which justifies the separable diquark approximation for the
quark-quark interactions inside baryons. The agreement
with the experimental data in the “good” nucleon
(JP ¼ 1=2þ) and Δ channels (JP ¼ 3=2þ) furthermore
indicates that the omitted irreducible three-body forces
indeed only play a minor role for the formation of baryon
bound states at least for these cases. Secondly, however, the
disagreement in the “bad” channels (all the others) between
our results and the experimental values confirms that parts
of the interaction between the quarks are misrepresented in
the rainbow-ladder truncation underlying both frameworks.
In the three-body approach this can be attributed to the
vector-vector character of the effective gluon exchange,
which misrepresents some of the spin-dependent parts of
the interaction as discussed in the beginning of this section.

B. A glimpse beyond rainbow-ladder

To better understand the deficiencies of the rainbow-
ladder approximation, it is worthwhile to take a closer look
at the underlying quark-diquark structure as it provides a

link between the meson and baryon spectra. After working
out the Dirac, color and flavor structure the rainbow-ladder
diquark BSEs (7) become identical to their meson counter-
parts except for a factor 1=2—diquarks are “less bound”
than mesons. This entails that pseudoscalar, vector, scalar
and axialvector mesons will exhibit similar features as their
respective scalar, axialvector, pseudoscalar and vector
diquark partners. Pseudoscalar and vector meson properties
are well reproduced in rainbow-ladder and thus the same
can be said for scalar and axialvector diquarks and the
baryons made of them; hence these represent the “good"
channels. On the other hand, the deficiencies of rainbow-
ladder in the (“bad”) scalar and axialvector meson channels
will translate into similar problems for pseudoscalar and
vector diquarks. Indeed, the typical mass scales obtained
with rainbow-ladder calculations are about 800 MeV for
scalar diquarks and 1 GeV for axialvector diquarks,
whereas pseudoscalar and vector diquarks are only slightly
heavier: about 1 GeV for pseudoscalar and 1.1 GeV for
vector diquarks [65,66]. (The diquark masses also strongly
depend on the η parameter in contrast to the ρ meson,
cf. Fig. 4.) Hence, states with significant pseudoscalar and
vector diquark content, such as the parity partners of the
nucleon and the Δ [65], are expected to suffer from too
strong binding.
To remedy this problem, we follow the idea employed in

Refs. [28,30] in the context of the NJL-like contact-
interaction model: we adjust the interaction strength in
the “bad” meson and diquark channels by a common
constant factor 0 ≤ c ≤ 1 that multiplies the interaction
(8). This increases the corresponding diquark masses and
consequently decreases their influence in the quark-quark
interaction. Thus, dialing c allows one to moderate the
binding effects in the quark-diquark BSE to the correct

FIG. 3. Nucleon and Δ baryon spectrum for JP ¼ 1=2� and
3=2� states determined within rainbow-ladder. The three-body
results (open boxes) are compared to the quark-diquark spectrum
with full diquark content for η ¼ 1.7 (filled boxes), together with
the PDG values and their experimental uncertainties [4]. The
widths of our results represent an error estimate based on the
corresponding eigenvalue curves (see the Appendix for details).

FIG. 4. Left: Vector, scalar and axialvector meson masses
calculated in rainbow-ladder as functions of the η parameter.
For the scalars and axialvectors we employed c ¼ 0.35 in order to
shift the a1 and b1 masses towards their experimental values
(shown by the horizontal band). Right: Analogous plot for the
diquark masses.
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magnitude and thereby mimic beyond rainbow-ladder
effects. We gauge this factor in the meson sector by
adjusting to the splitting of the vector/axialvector parity
partners, leaving the mass of the ρ meson unchanged but
increasing the masses of the a1 and b1; the corresponding
value is c ≈ 0.35 (see Fig. 4).
This provides us with the following perspective: scalar

and axialvector diquarks contribute the underlying basis in
all baryon channels (for the Δ baryons only axialvector
diquarks participate due to isospin combinatorics); but
except for the Nð1=2þÞ and Δð3=2þÞ these baryons are
additionally “contaminated” by pseudoscalar and vector
diquarks which are bound too strongly in rainbow-ladder.
We demonstrate this explicitly in the appendix by consid-
ering a setup with all four diquarks included (c ¼ 1) and
one where we omit the pseudoscalar and vector diquarks
(c ¼ 0). The “bad” diquarks almost have no impact on the
“good” baryon channels whereas they substantially influ-
ence the masses in the other channels, which leads to the
unrealistically light baryon masses in Fig. 3. This can also
reconcile the contact-interaction studies of Refs. [28,30],
where negative-parity baryon spectra were calculated using
pseudoscalar and vector diquarks only, with quantum-
mechanical diquark models [67,68] using scalar and
axialvector diquarks only. As we will see, one has to
aim for a middle ground.
The resulting spectrum for c ¼ 0.35 is shown in Fig. 5.

We find a drastic improvement in the problematic channels,
with hardly any changes in those that have been good
before. The overall spectrum is now in very good agree-
ment with experiment, with a one-to-one correspondence of
the number of observed to calculated states in all cases and
discrepancies below the 3% level. Considering that there
are only three relevant parameters involved, the scale Λ

fixed via fπ, the factor c fixed by the ρ − a1 splitting, and
the parameter η with only a small influence on the
spectrum, the overall agreement is remarkable.
As an example, the level ordering between the Roper and

the Nð1535Þ is now correct— the latter had been polluted
by the pseudoscalar and vector diquarks whereas the former
was not. Also the first radial excitation in the Nð3=2þÞ
channel nicely agrees with the experimental Nð1900Þ,
which is a state that traditionally did not emerge from
quark-diquark potential models [69].
Our findings are also interesting in view of the fact that

the resulting baryons are still bound states without hadronic
decay widths. Ultimately the meson-baryon dynamics
(which are beyond rainbow-ladder effects) will shift their
poles into the complex plane and produce thresholds. It is
often assumed that this comes in combination with large
attractive mass shifts or even a dynamical generation of
resonances. From our point of view two statements can be
made in this respect:
(i) Beyond rainbow-ladder effects can compete non-

trivially and they also affect fπ. Because we fixed the scale
Λ to reproduce the experimental pion decay constant, those
contributions that affect the masses and fπ by the same
amount would drop out from our plots and only the net
effects remain visible, such as for example chiral non-
analyticities. To this end, elastic and transition form factors
should provide much better signatures for “meson-cloud
effects” because they are not affected by the scale setting.
(ii) Although rainbow-ladder generates bound states, one

can still calculate decaywidths from their transition currents:
for example, the Δ → Nπ decay is the residue of the
pseudoscalar N → Δ transition form factor at the pion pole
(Q2 ¼ −m2

π), and existing calculations yield quite reason-
able values for such decays [25,70]. Ultimately, these decay
mechanisms would have to be backfed into the baryon
bound-state equations and this is what would shift their
T-matrix poles into the complex plane and thereby generate
the desired widths. However, it would mainly represent a
“correction” that comes on top of dynamically generating
baryons as three-quark systems in the first place. Our results
then suggest that the quark-gluon dynamics are indeed
sufficient to produce all observed levels below 2 GeV,
whereas coupled-channel interactions would have compa-
ratively mild effects that leave the real parts of the masses
essentially unchanged (or, alternatively, affect them all by a
similar percentage together with fπ).
Unfortunately, in the three-body framework a simple

change of the interaction that is selective between “good”
and “bad” contributions is not possible. Explicit diquark
degrees of freedom no longer appear therein because the
equation implicitly sums over all diquarks. Thus, in order to
achieve similar results one would truly need to go beyond
the rainbow-ladder approximation. First such calculations
are available for ground state nucleon and Δ masses in
the three-body framework [41], although the technical

FIG. 5. Nucleon and Δ spectrum with reduced strength in the
pseudoscalar and vector diquark channels; see text for a detailed
discussion.
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and numerical effort to solve the corresponding Faddeev
equations is substantial. A convenient gauge of the quality
of such truncations is of course already the meson spectrum
because scalar and axialvector mesons need to acquire a
larger mass. A systematic truncation based on the 3PI
formalism that generates this effect has been discussed
recently in [64]. Making it available also in the three-body
framework is a major task that is left for the future.
In any case, our analysis shows that the Nð1=2þÞ and

Δð3=2þÞ as well as their first radial excitations are
insensitive to the addition or removal of pseudoscalar
and vector diquarks. Our line of arguments then suggests
that they should also be stable when going beyond rainbow-
ladder, and hence their rainbow-ladder results can be
considered reliable.

C. Current-mass evolution

Returning to the three-body equation, we show in Fig. 6
the evolution of the calculated ground and first excited
states of the nucleon and Δ with the squared pion mass and
compare them with lattice QCD results. The shaded bands
reflect the variation of our results with the parameter
1.6 ≤ η ≤ 2.0. Whereas the ground states are almost
independent of η, the excited states show a larger variation
which is similar to observations made in the meson
spectrum, see e.g. [59,62]. Below a pion mass of about
m2

π ¼ 0.15 GeV2 the masses rise approximately quadrati-
cally with mπ , whereas above this value the behavior
eventually becomes linear. For the nucleon this is in
agreement with chiral perturbation theory in the region
where the chiral expansion can be safely applied, see e.g.
[71] and references therein, and with the linear behavior
seen in lattice QCD for larger pion masses.

Whereas the lattice data on the mass evolution of the
nucleon nicely agree with each other, the situation for the
Roper is somewhat different and the results are much more
scattered. We find that, within error bars, our results agree
very well with those from the χQCD group [20]. On the
other hand, it has been recently argued [79] that the
differences of the Roper mass evolution results from the
JLab HSC [19], CSSM [21,74] and Cyprus groups [17,73]
visible in the plot can be accounted for and brought to
consensus with each other, and that this consensus deviates
from the χQCD result. In general it seems fair to state that
there may not be an overall agreement in the lattice
community concerning the status of the Roper, and it will
be very interesting to see how this issue will be clarified in
the future. In the Δ channel the situation is even less clear.
While for the ground state reasonable agreement may be
claimed between our results and the lattice evolution, the
existing lattice data for the excited state gives values too
high to be visible in our plot. This situation needs to be
resolved.
It is also interesting to study the internal structure of the

radially excited states. As discussed above, the tensor
structures for the nucleon and the Δ can be grouped in s,
p, d, and f waves and their relative importance can be
assessed by their relative weight in the normalization
procedure of the Faddeev amplitudes. Our results are shown
in Table I. Whereas the ground-state nucleon and Δ are
dominated by s-wave components accompanied by sizeable
p-wave contributions, the excited states have a different
internal structure. The Roper is dominated by p-wave
components and even the d waves are stronger than the s-
wave contribution. For the excited Δ baryon it is even the d
waves that dominate and sizeable f-wave contributions are
stronger than the swaves. It will be very interesting to probe

FIG. 6. Mass evolution of the nucleon and Roper resonance (left) and the Δ and its first excited state (right). The bands are results
obtained in the three-body rainbow-ladder Faddeev framework with 1.6 ≤ η ≤ 2.0. In the left plot they are compared with lattice data for
the nucleon and its first excitation [17,19–21,72–74]. In the right plot, only lattice data for the Δ ground state are shown; data for the
excited Δ give values too high to be visible in the plot [75–78].
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these different internal structures in elastic and transition
form factor calculations, which will be the subject of
future work.

IV. CONCLUSIONS

We have presented and discussed first results for the
ground and excited states of the light baryon spectrum
in a Dyson-Schwinger/Bethe-Salpeter/Faddeev framework
based on a momentum-dependent rainbow-ladder trunca-
tion. Using the same underlying effective quark-gluon
coupling, we systematically compared results for the
three-body and the quark-diquark framework. Due to
restrictions in terms of numerical complexity a full spec-
trum of excited states in all channels could only be obtained
in the latter, whereas in the three-body framework we were
restricted to the Roper and the Δð1600Þ.
Our results can be summarized as follows. First, for those

ground and excited states that are numerically accessible in
both frameworks we found reasonable to good agreement
between the approaches. Second, the quark-diquark spec-
trum for JP ¼ 1=2� and 3=2� states of nucleon and Δ type
agrees with the one from the PDG [4] on a qualitative basis;
once well-understood deficiencies in the rainbow-ladder
framework are remedied, the resulting spectrum is even
in very good quantitative agreement with experiment.
In particular, we could reproduce the masses of all
experimental states below 2 GeVat the 3% level, including
the correct level ordering between the Roper and the parity
partner of the nucleon. This agreement is highly nontrivial
and relies on intricate and channel-dependent cancellations
between the effects of different diquarks, which are
nevertheless fully controlled by one parameter only. It
thus appears that the quark-diquark picture of baryons
(with fully momentum-dependent diquarks) works very
efficiently at least for the states considered in this work.
It will be interesting to see whether a similar agreement is
possible for the decay widths; a first study of gNΔπ
discussed in Ref. [70] indeed points in such a direction.
In general, we did not find any arguments from the

spectrum calculated so far that could distinguish between a
three-body or a realistic, momentum-dependent quark-
diquark picture of baryons. It remains to be seen whether
this is still the case in an extended calculation beyond the
channels presented here and for higher excitations. Note,
however, that subleading components of electromagnetic

form factors may indeed be able to discriminate between
the two [25].
A special case of further interest is still the Roper. Within

our framework we find that it is well represented as the first
radial excitation of the nucleon with a mass close to
experiment. This may indicate that potential quantitative
corrections stemming from beyond rainbow-ladder contri-
butions can either be absorbed in the scale setting, or that
they are small and only marginally affect the real part of the
mass. In order to shed light on this question we also
determined the mass evolution of the Roper with varying
current-quark mass or, correspondingly, varying pion mass
up to the region where dynamical coupled-channel effects
should no longer play a role. Unfortunately, the comparison
of the mass evolution with lattice data remains inconclusive
due to the spread in the available lattice results from
different groups. The good agreement with the results of
χQCD may (or may not) be accidental, and this issue needs
to be explored further in the future.
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APPENDIX: EIGENVALUE SPECTRA

In the following we provide details on the eigenvalue
spectra extracted from the quark-diquark calculation. Bethe-
Salpeter equations such as the quark-diquark BSE in Eq. (5)
are homogeneous eigenvalue equations:KG0Γ ¼ λΓ, where
G0 abbreviates the combination of quark and diquark
propagators and we introduced an artificial eigenvalue
λðP2Þ. Since P2 ¼ −M2 is an external parameter, the
eigenvalue spectrum λiðP2Þ of the kernel KG0 allows one
to read off the masses Mi of the ground and excited states
from the intersections λiðP2 ¼ −M2

i Þ ¼ 1.
In Fig. 7 we plot the resulting (inverse) eigenvalue

spectra 1=λi as functions ofM for the eight baryon channels
we investigated. The parameter c controls the interaction
strength in the pseudoscalar and vector diquark channels.
The left columns show the results with all diquarks
included (c ¼ 1) and the right columns with scalar and
axialvector diquarks only (c ¼ 0). The spectra for c ¼ 0.35
cannot be calculated directly because the first complex
conjugate pole pair in the quark propagator defines a
parabola mass limit mP ∼ 0.55 GeV, where meson and
diquark masses above 2mP can only be extrapolated (unless
we performed residue calculus); cf. the discussion around
Figs. 3.8–3.9 in Ref. [25]. This happens for c≲ 0.75;
below that value the pseudoscalar and vector diquark

TABLE I. Magnitude of the orbital angular momentum con-
tributions for the nucleon, Roper, Δ, and excited Δ.

% N N�ð1440Þ Δ Δ�ð1600Þ
s wave 66 15 56 10
p wave 33 61 40 33
d wave 1 24 3 41
f wave − − <0.5 16
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masses exceed the contour limit 2mP. We find, however,
that the masses are approximately linear in c which allows
us to perform linear interpolations for the baryon masses
between the cases c ¼ 1 and c ¼ 0.
Although the QR algorithm returns all eigenvalues, only

the first ten or so are stable within our numerical accuracy
whereas the remaining ones require increasing resolution.
The quark-diquark equation defines another contour limit,
namely the sum of the quark parabola mass mP and the
lowest diquark mass in the system: mP þmsc ≈ 1.35 GeV
for the nucleons with isospin I ¼ 1=2 and mP þmav ≈
1.55 GeV for the Δ baryons with I ¼ 3=2. Baryon masses
above those limits are extrapolated as shown in Fig. 7.

The dots are the calculated eigenvalue spectra, and for their
extrapolation to λi ¼ 1 we used polynomial fits with
80% confidence bands.
The results in Fig. 7 lead us to the following observa-

tions. The case c ¼ 1 with all diquarks included generally
produces rather dense eigenvalue spectra, leading to the
masses in Fig. 3 which are typically too low compared to
experiment. By comparison, the eigenvalues for c ¼ 0 are
rather sparse and produce states that are too high. From the
directly calculable cases between c ¼ 1…0.75 we find that
the eigenvalue curves gradually expand when lowering c,
resulting in just a few eigenvalues at c ¼ 0 that are relevant
for states below 2 GeV. The eigenvalues shown for c ¼ 0

FIG. 7. Inverse eigenvalue spectra 1=λiðMÞ for the four nucleon (left) and four Δ channels (right). In both cases the left panels show
the results with all diquarks included and the right panels those with scalar and axialvector diquarks only.
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typically exhaust the depicted plot range whereas for c ¼ 1
there would be further higher-lying curves which we do not
show because they extrapolate to masses above 2 GeV.
In all channels we obtain both real and complex

conjugate eigenvalues, although the imaginary parts are
small and shrink with the numerical accuracy so their
complex nature is presumably just a numerical artifact (see
also [80]). What occasionally happens, however, is that
complex conjugate eigenvalues can branch into two real
ones, as is visible in the Nð1

2
�Þ, Δð3

2
þÞ and Δð1

2
þÞ channels.

This does not appear to change with better numerics but it
usually also does not affect the mass extraction, with the
exception of the Nð1535Þ where two such branches
extrapolate to a common point, and the Nð1880Þ and
Δð1910Þ where we averaged over the branches to perform
the extrapolation.
The parity partner of the nucleon is an interesting case

also for another reason: for c ¼ 1 the largest eigenvalue (or
smallest inverse eigenvalue) produces a state at ∼1.2 GeV,
whereas the same eigenvalue for c ¼ 0 extrapolates to
2 GeV. The intercept at c ¼ 0.35 generates two nearby
states which are also seen experimentally; our analysis
suggests that it is actually the second state at c ¼ 1 that
should be identified with the Nð1535Þ. In all other cases the

sensitivity to the pseudoscalar and vector diquarks is less
severe. Observe in particular that the nucleon and Δ
themselves, together with their first excitations including
the Roper resonance, are almost insensitive to the pseu-
doscalar and vector diquark content.
The results shown here (and the corresponding Figs. 3

and 5) correspond to the value η ¼ 1.7 in the effective
interaction (8). We repeated the analysis for different values
up to η ¼ 2.0 but the eigenvalue curves do not materially
change (although the diquark masses vary considerably in
this range, cf. Fig. 4) and the resulting baryon spectra
remain similar. Notable exceptions are the nucleon and Δ
excitations in the first row of Fig. 7, where the Roper
resonance and Δð1600Þ move within the range in Eq. (10).
Furthermore, those eigenvalues that split into two branches
are found in all cases although the branching may set in at
different values for M (or even in the reverse direction),
which also helps us identify and connect them between the
limits c ¼ 1 and c ¼ 0.
Finally, we also calculated the eigenvalue spectra for

larger pion masses but also here we did not find any
qualitative changes: the states evolve similarly to those in
Fig. 6 with the current-quark mass, and the level ordering
between the “Roper” and “Nð1535Þ” remains intact.

[1] I. G. Aznauryan et al., Electroexcitation of nucleon reso-
nances from CLAS data on single pion electroproduction,
Phys. Rev. C 80, 055203 (2009).

[2] I. G. Aznauryan et al., Studies of nucleon resonance
structure in exclusive meson electroproduction, Int. J.
Mod. Phys. E 22, 1330015 (2013).

[3] A. V. Sarantsev et al., New results on the roper resonance
and the P11 partial wave, Phys. Lett. B 659, 94 (2008).

[4] K. A. Olive et al., Review of particle physics, Chin. Phys. C
38, 090001 (2014).

[5] M. Anselmino, E. Predazzi, S. Ekelin, S. Fredriksson, and
D. B. Lichtenberg, Diquarks, Rev. Mod. Phys. 65, 1199
(1993).

[6] E. Klempt and J.-M. Richard, Baryon spectroscopy, Rev.
Mod. Phys. 82, 1095 (2010).

[7] L. D. Roper, Evidence for a P-11 Pion-Nucleon Resonance
at 556 MeV, Phys. Rev. Lett. 12, 340 (1964).

[8] L. Ya. Glozman and D. O. Riska, The spectrum of the
nucleons and the strange hyperons and chiral dynamics,
Phys. Rep. 268, 263 (1996).

[9] N. Isgur and G. Karl, Positive parity excited baryons in a
quark model with hyperfine interactions, Phys. Rev. D 19,
2653 (1979); Erratum Phys. Rev. D 23, 817(E) (1981).

[10] U. Loring, B. C. Metsch, and H. R. Petry, The light baryon
spectrum in a relativistic quark model with instanton
induced quark forces: The nonstrange baryon spectrum
and ground states, Eur. Phys. J. A 10, 395 (2001).

[11] U. Loring, B. C. Metsch, and H. R. Petry, The light baryon
spectrum in a relativistic quark model with instanton
induced quark forces: The strange baryon spectrum, Eur.
Phys. J. A 10, 447 (2001).

[12] N. Suzuki, B. Julia-Diaz, H. Kamano, T. S. H. Lee, A.
Matsuyama, and T. Sato, Disentangling the Dynamical
Origin of P-11 Nucleon Resonances, Phys. Rev. Lett.
104, 042302 (2010).

[13] P. C. Bruns, M. Mai, and U. G. Meißner, Chiral dynamics of
the S11(1535) and S11(1650) resonances revisited, Phys.
Lett. B 697, 254 (2011).

[14] M. Doring, C. Hanhart, F. Huang, S. Krewald, and U.-G.
Meißner, Analytic properties of the scattering amplitude and
resonances parameters in a meson exchange model, Nucl.
Phys. A829, 170 (2009).

[15] Z.-W. Liu et al., Hamiltonian effective field theory study of
the N�ð1440Þ resonance in lattice QCD, arXiv:1607.04536.

[16] C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis, and G.
Koutsou, Baryon spectrum with Nf ¼ 2þ 1þ 1 twisted
mass fermions, Phys. Rev. D 90, 074501 (2014).

[17] C. Alexandrou, T. Korzec, G. Koutsou, and T. Leontiou,
Nucleon excited states in Nf ¼ 2 lattice QCD, Phys. Rev. D
89, 034502 (2014).

[18] C. Alexandrou, J. W. Negele, M. Petschlies, A. V.
Pochinsky, and S. N. Syritsyn, Study of decuplet baryon
resonances from lattice QCD, Phys. Rev. D 93, 114515
(2016).

LIGHT BARYONS AND THEIR EXCITATIONS PHYSICAL REVIEW D 94, 094033 (2016)

094033-11

http://dx.doi.org/10.1103/PhysRevC.80.055203
http://dx.doi.org/10.1142/S0218301313300154
http://dx.doi.org/10.1142/S0218301313300154
http://dx.doi.org/10.1016/j.physletb.2007.11.055
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1103/RevModPhys.65.1199
http://dx.doi.org/10.1103/RevModPhys.65.1199
http://dx.doi.org/10.1103/RevModPhys.82.1095
http://dx.doi.org/10.1103/RevModPhys.82.1095
http://dx.doi.org/10.1103/PhysRevLett.12.340
http://dx.doi.org/10.1016/0370-1573(95)00062-3
http://dx.doi.org/10.1103/PhysRevD.19.2653
http://dx.doi.org/10.1103/PhysRevD.19.2653
http://dx.doi.org/10.1007/s100500170105
http://dx.doi.org/10.1007/s100500170106
http://dx.doi.org/10.1007/s100500170106
http://dx.doi.org/10.1103/PhysRevLett.104.042302
http://dx.doi.org/10.1103/PhysRevLett.104.042302
http://dx.doi.org/10.1016/j.physletb.2011.02.008
http://dx.doi.org/10.1016/j.physletb.2011.02.008
http://dx.doi.org/10.1016/j.nuclphysa.2009.08.010
http://dx.doi.org/10.1016/j.nuclphysa.2009.08.010
http://arXiv.org/abs/1607.04536
http://dx.doi.org/10.1103/PhysRevD.90.074501
http://dx.doi.org/10.1103/PhysRevD.89.034502
http://dx.doi.org/10.1103/PhysRevD.89.034502
http://dx.doi.org/10.1103/PhysRevD.93.114515
http://dx.doi.org/10.1103/PhysRevD.93.114515


[19] R. G. Edwards, J. J. Dudek, D. G. Richards, and S. J.
Wallace, Excited state baryon spectroscopy from lattice
QCD, Phys. Rev. D 84, 074508 (2011).

[20] K.-F. Liu, Y. Chen, M. Gong, R. Sufian, M. Sun, and A. Li,
The Roper puzzle, Proc. Sci., LATTICE2013 (2014) 507.

[21] M. S. Mahbub, W. Kamleh, D. B. Leinweber, P. J. Moran,
and A. G. Williams, Roper resonance in 2þ 1 flavor QCD,
Phys. Lett. B 707, 389 (2012).

[22] D. S. Roberts, W. Kamleh, and D. B. Leinweber, Wave
function of the Roper from lattice QCD, Phys. Lett. B 725,
164 (2013).

[23] R. Alkofer and L. von Smekal, The infrared behavior of
QCD Green’s functions: Confinement dynamical symmetry
breaking, and hadrons as relativistic bound states, Phys.
Rep. 353, 281 (2001).

[24] A. Bashir, L. Chang, I. C. Cloet, B. El-Bennich, Y.-X. Liu,
C. D. Roberts, and P. C. Tandy, Collective perspective on
advances in Dyson-Schwinger equation QCD, Commun.
Theor. Phys. 58, 79 (2012).

[25] G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer,
and C. S. Fischer, Baryons as relativistic three-quark bound
states, Prog. Part. Nucl. Phys. 91, 1 (2016).

[26] C. S. Fischer, Infrared properties of QCD from Dyson-
Schwinger equations, J. Phys. G 32, R253 (2006).

[27] C. D. Roberts and A. G. Williams, Dyson-Schwinger
equations and their application to hadronic physics, Prog.
Part. Nucl. Phys. 33, 477 (1994).

[28] C. Chen, L. Chang, C. D. Roberts, S. Wan, and D. J. Wilson,
Spectrum of hadrons with strangeness, Few-Body Syst. 53,
293 (2012).

[29] C. D. Roberts, I. C. Cloet, L. Chang, and H. L. L. Roberts,
Dressed-quarks and the Roper resonance, AIP Conf. Proc.
1432, 309 (2012).

[30] H. L. L. Roberts, L. Chang, I. C. Cloet, and C. D. Roberts,
Masses of ground and excited-state hadrons, Few-Body
Syst. 51, 1 (2011).

[31] J. Segovia, B. El-Bennich, E. Rojas, I. C. Cloet, C. D.
Roberts, S.-S. Xu, and H.-S. Zong, Completing the Picture
of the Roper Resonance, Phys. Rev. Lett. 115, 171801
(2015).

[32] G. Eichmann, Nucleon electromagnetic form factors from
the covariant Faddeev equation, Phys. Rev. D 84, 014014
(2011).

[33] G. Eichmann, C. S. Fischer, and W. Heupel, Four-point
functions and the permutation group S4, Phys. Rev. D 92,
056006 (2015).

[34] G. Eichmann, R. Alkofer, A. Krassnigg, and D. Nicmorus,
Nucleon Mass from a Covariant Three-Quark Faddeev
Equation, Phys. Rev. Lett. 104, 201601 (2010).

[35] H. Sanchis-Alepuz, G. Eichmann, S. Villalba-Chavez, and
R. Alkofer, Delta and omega masses in a three-quark
covariant Faddeev approach, Phys. Rev. D 84, 096003
(2011).

[36] H. Sanchis-Alepuz and R. Williams (to be published).
[37] G. Eichmann and C. Fischer, Nucleon axial and pseudo-

scalar form factors from the covariant Faddeev equation,
Eur. Phys. J. A 48, 9 (2012).

[38] H. Sanchis-Alepuz and C. S. Fischer, Octet and decuplet
masses: A covariant three-body Faddeev calculation, Phys.
Rev. D 90, 096001 (2014).

[39] H. Sanchis-Alepuz and C. S. Fischer, Hyperon elastic
electromagnetic form factors in the space-like momentum
region, Eur. Phys. J. A 52, 34 (2016).

[40] H. Sanchis-Alepuz, C. S. Fischer, and S. Kubrak, Pion
cloud effects on baryon masses, Phys. Lett. B 733, 151
(2014).

[41] H. Sanchis-Alepuz and R. Williams, Probing the quark-
gluon interaction with hadrons, Phys. Lett. B 749, 592
(2015).

[42] H. Sanchis-Alepuz, R. Williams, and R. Alkofer, Delta and
omega electromagnetic form factors in a three-body covar-
iant Bethe-Salpeter approach, Phys. Rev. D 87, 096015
(2013).

[43] R. T. Cahill, C. D. Roberts, and J. Praschifka, Baryon
structure and QCD, Aust. J. Phys. 42, 129 (1989).

[44] G. Hellstern, R. Alkofer, M. Oettel, and H. Reinhardt,
Nucleon form-factors in a covariant diquark-quark model,
Nucl. Phys. A627, 679 (1997).

[45] M. Oettel, G. Hellstern, R. Alkofer, and H. Reinhardt, Octet
and decuplet baryons in a covariant and confining diquark—
quark model, Phys. Rev. C 58, 2459 (1998).

[46] G. Eichmann, Ph.D. thesis, University of Graz, 2009.
[47] R. T. Cahill, Hadronization of QCD, Aust. J. Phys. 42, 171

(1989).
[48] H. Reinhardt, Hadronization of quark flavor dynamics,

Phys. Lett. B 244, 316 (1990).
[49] A. Bender, C. D. Roberts, and L. Von Smekal, Goldstone

theorem and diquark confinement beyond rainbow ladder
approximation, Phys. Lett. B 380, 7 (1996).

[50] G. Mishima, R. Jinno, and T. Kitahara, Diquark bound states
with a completely crossed ladder truncation, Phys. Rev. D
91, 076011 (2015).

[51] G. Eichmann, I. C. Cloet, R. Alkofer, A. Krassnigg, and
C. D. Roberts, Toward unifying the description of
meson and baryon properties, Phys. Rev. C 79, 012202
(2009).

[52] G. Eichmann, A. Krassnigg, M. Schwinzerl, and R. Alkofer,
A covariant view on the nucleons’ quark core, Ann. Phys.
(Amsterdam) 323, 2505 (2008).

[53] D. Nicmorus, G. Eichmann, A. Krassnigg, and R. Alkofer,
Delta-baryon mass in a covariant Faddeev approach, Phys.
Rev. D 80, 054028 (2009).

[54] P. Maris and P. C. Tandy, Bethe-Salpeter study of vector
meson masses and decay constants, Phys. Rev. C 60,
055214 (1999).

[55] R. Alkofer, P. Watson, and H. Weigel, Mesons in a Poincare
covariant Bethe-Salpeter approach, Phys. Rev. D 65,
094026 (2002).

[56] R. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’
Guide (Society for Industrial and Applied Mathematics,
1998).

[57] P. Watson and H. Reinhardt, Bethe-Salpeter equation at
leading order in Coulomb gauge, Phys. Rev. D 86, 125030
(2012).

[58] M. Blank and A. Krassnigg, Bottomonium in a
Bethe-Salpeter-equation study, Phys. Rev. D 84, 096014
(2011).

[59] C. S. Fischer, S. Kubrak, and R. Williams, Spectra of heavy
mesons in the Bethe-Salpeter approach, Eur. Phys. J. A 51,
10 (2015).

EICHMANN, FISCHER, and SANCHIS-ALEPUZ PHYSICAL REVIEW D 94, 094033 (2016)

094033-12

http://dx.doi.org/10.1103/PhysRevD.84.074508
http://dx.doi.org/10.1016/j.physletb.2011.12.048
http://dx.doi.org/10.1016/j.physletb.2013.06.056
http://dx.doi.org/10.1016/j.physletb.2013.06.056
http://dx.doi.org/10.1016/S0370-1573(01)00010-2
http://dx.doi.org/10.1016/S0370-1573(01)00010-2
http://dx.doi.org/10.1088/0253-6102/58/1/16
http://dx.doi.org/10.1088/0253-6102/58/1/16
http://dx.doi.org/10.1016/j.ppnp.2016.07.001
http://dx.doi.org/10.1088/0954-3899/32/8/R02
http://dx.doi.org/10.1016/0146-6410(94)90049-3
http://dx.doi.org/10.1016/0146-6410(94)90049-3
http://dx.doi.org/10.1007/s00601-012-0466-3
http://dx.doi.org/10.1007/s00601-012-0466-3
http://dx.doi.org/10.1063/1.3701237
http://dx.doi.org/10.1063/1.3701237
http://dx.doi.org/10.1007/s00601-011-0225-x
http://dx.doi.org/10.1007/s00601-011-0225-x
http://dx.doi.org/10.1103/PhysRevLett.115.171801
http://dx.doi.org/10.1103/PhysRevLett.115.171801
http://dx.doi.org/10.1103/PhysRevD.84.014014
http://dx.doi.org/10.1103/PhysRevD.84.014014
http://dx.doi.org/10.1103/PhysRevD.92.056006
http://dx.doi.org/10.1103/PhysRevD.92.056006
http://dx.doi.org/10.1103/PhysRevLett.104.201601
http://dx.doi.org/10.1103/PhysRevD.84.096003
http://dx.doi.org/10.1103/PhysRevD.84.096003
http://dx.doi.org/10.1140/epja/i2012-12009-6
http://dx.doi.org/10.1103/PhysRevD.90.096001
http://dx.doi.org/10.1103/PhysRevD.90.096001
http://dx.doi.org/10.1140/epja/i2016-16034-1
http://dx.doi.org/10.1016/j.physletb.2014.04.031
http://dx.doi.org/10.1016/j.physletb.2014.04.031
http://dx.doi.org/10.1016/j.physletb.2015.08.067
http://dx.doi.org/10.1016/j.physletb.2015.08.067
http://dx.doi.org/10.1103/PhysRevD.87.096015
http://dx.doi.org/10.1103/PhysRevD.87.096015
http://dx.doi.org/10.1071/PH890129
http://dx.doi.org/10.1016/S0375-9474(97)00514-9
http://dx.doi.org/10.1103/PhysRevC.58.2459
http://dx.doi.org/10.1071/PH890171
http://dx.doi.org/10.1071/PH890171
http://dx.doi.org/10.1016/0370-2693(90)90078-K
http://dx.doi.org/10.1016/0370-2693(96)00372-3
http://dx.doi.org/10.1103/PhysRevD.91.076011
http://dx.doi.org/10.1103/PhysRevD.91.076011
http://dx.doi.org/10.1103/PhysRevC.79.012202
http://dx.doi.org/10.1103/PhysRevC.79.012202
http://dx.doi.org/10.1016/j.aop.2008.02.007
http://dx.doi.org/10.1016/j.aop.2008.02.007
http://dx.doi.org/10.1103/PhysRevD.80.054028
http://dx.doi.org/10.1103/PhysRevD.80.054028
http://dx.doi.org/10.1103/PhysRevC.60.055214
http://dx.doi.org/10.1103/PhysRevC.60.055214
http://dx.doi.org/10.1103/PhysRevD.65.094026
http://dx.doi.org/10.1103/PhysRevD.65.094026
http://dx.doi.org/10.1103/PhysRevD.86.125030
http://dx.doi.org/10.1103/PhysRevD.86.125030
http://dx.doi.org/10.1103/PhysRevD.84.096014
http://dx.doi.org/10.1103/PhysRevD.84.096014
http://dx.doi.org/10.1140/epja/i2015-15010-7
http://dx.doi.org/10.1140/epja/i2015-15010-7


[60] T. Hilger, C. Popovici, M. Gomez-Rocha, and A. Krassnigg,
Spectra of heavy quarkonia in a Bethe-Salpeter-equation
approach, Phys. Rev. D 91, 034013 (2015).

[61] C. S. Fischer, S. Kubrak, and R. Williams, Mass spectra and
Regge trajectories of light mesons in the Bethe-Salpeter
approach, Eur. Phys. J. A 50, 126 (2014).

[62] A. Krassnigg, Survey of J ¼ 0; 1mesons in a Bethe-Salpeter
approach, Phys. Rev. D 80, 114010 (2009).

[63] L. Chang and C. D. Roberts, Sketching the Bethe-Salpeter
Kernel, Phys. Rev. Lett. 103, 081601 (2009).

[64] R. Williams, C. S. Fischer, and W. Heupel, Light mesons in
QCD and unquenching effects from the 3PI effective action,
Phys. Rev. D 93, 034026 (2016).

[65] G. Eichmann, Progress in the calculation of nucleon
transition form factors, Few-Body Syst. 57, 965 (2016).

[66] P. Maris, Effective masses of diquarks, Few-Body Syst. 32,
41 (2002).

[67] M. De Sanctis, J. Ferretti, E. Santopinto, and A. Vassallo,
Electromagnetic form factors in the relativistic interacting
quark-diquark model of baryons, Phys. Rev. C 84, 055201
(2011).

[68] E. Santopinto and J. Ferretti, Strange and nonstrange baryon
spectra in the relativistic interacting quark-diquark model
with a Grsey and Radicati-inspired exchange interaction,
Phys. Rev. C 92, 025202 (2015).

[69] V. A. Nikonov, A. V. Anisovich, E. Klempt, A. V. Sarantsev,
and U. Thoma, Further evidence for N(1900) P(13) from
photoproduction of hyperons, Phys. Lett. B 662, 245 (2008).

[70] V. Mader, G. Eichmann, M. Blank, and A. Krassnigg,
Hadronic decays of mesons and baryons in the Dyson-
Schwinger approach, Phys. Rev. D 84, 034012 (2011).

[71] L. Alvarez-Ruso, T. Ledwig, J. Martin Camalich, and M. J.
Vicente-Vacas, Nucleon mass and pion-nucleon sigma term

from a chiral analysis of lattice QCD data, Phys. Rev. D 88,
054507 (2013).

[72] C. Alexandrou, T. Korzec, G. Koutsou, C. Lorce, J. W.
Negele, V. Pascalutsa, A. Tsapalis, and M. Vanderhaeghen,
Quark transverse charge densities in the Δ (1232) from
lattice QCD, Nucl. Phys. A825, 115 (2009).

[73] C. Alexandrou, T. Leontiou, C. N. Papanicolas, and E.
Stiliaris, Novel analysis method for excited states in lattice
QCD: The nucleon case, Phys. Rev. D 91, 014506 (2015).

[74] M. S. Mahbub, W. Kamleh, D. B. Leinweber, P. J. Moran,
and A. G. Williams, Low-lying odd-parity states of the
nucleon in lattice qcd, Phys. Rev. D 87, 011501 (2013).

[75] S. Aoki et al., 2þ 1 Flavor lattice QCD toward the physical
point, Phys. Rev. D 79, 034503 (2009).

[76] G. P. Engel, C. B. Lang, D. Mohler, and A. Schaefer, 2013.
QCD with two light dynamical chirally improved quarks:
Baryons, Phys. Rev. D 87, 074504 (2013).

[77] C. Gattringer, C. Hagen, C. B. Lang, M. Limmer, D.
Mohler, and A. Schäfer, Hadron spectroscopy with dynami-
cal chirally improved fermions, Phys. Rev. D 79, 054501
(2009).

[78] A. Walker-Loud et al., Light hadron spectroscopy using
domain wall valence quarks on an Asqtad sea, Phys. Rev. D
79, 054502 (2009).

[79] D. Leinweber, W. Kamleh, A. Kiratidis, Z.-W. Liu, S.
Mahbub, D. Roberts, F. Stokes, A. W. Thomas, and J.
Wu, N� Spectroscopy from Lattice QCD: The Roper
Explained in 10th International Workshop on the Physics
of Excited Nucleons (NSTAR 2015) JPS Conf. Proc. 10,
010011 (2016).

[80] B. El-Bennich, G. Krein, E. Rojas, and F. E. Serna, Excited
hadrons and the analytical structure of bound-state inter-
action kernels, Few-Body Syst. 57, 955 (2016).

LIGHT BARYONS AND THEIR EXCITATIONS PHYSICAL REVIEW D 94, 094033 (2016)

094033-13

http://dx.doi.org/10.1103/PhysRevD.91.034013
http://dx.doi.org/10.1140/epja/i2014-14126-6
http://dx.doi.org/10.1103/PhysRevD.80.114010
http://dx.doi.org/10.1103/PhysRevLett.103.081601
http://dx.doi.org/10.1103/PhysRevD.93.034026
http://dx.doi.org/10.1007/s00601-016-1134-9
http://dx.doi.org/10.1007/s00601-002-0111-7
http://dx.doi.org/10.1007/s00601-002-0111-7
http://dx.doi.org/10.1103/PhysRevC.84.055201
http://dx.doi.org/10.1103/PhysRevC.84.055201
http://dx.doi.org/10.1103/PhysRevC.92.025202
http://dx.doi.org/10.1016/j.physletb.2008.03.004
http://dx.doi.org/10.1103/PhysRevD.84.034012
http://dx.doi.org/10.1103/PhysRevD.88.054507
http://dx.doi.org/10.1103/PhysRevD.88.054507
http://dx.doi.org/10.1016/j.nuclphysa.2009.04.005
http://dx.doi.org/10.1103/PhysRevD.91.014506
http://dx.doi.org/10.1103/PhysRevD.87.011501
http://dx.doi.org/10.1103/PhysRevD.79.034503
http://dx.doi.org/10.1103/PhysRevD.87.074504
http://dx.doi.org/10.1103/PhysRevD.79.054501
http://dx.doi.org/10.1103/PhysRevD.79.054501
http://dx.doi.org/10.1103/PhysRevD.79.054502
http://dx.doi.org/10.1103/PhysRevD.79.054502
http://dx.doi.org/10.7566/JPSCP.10.010011
http://dx.doi.org/10.7566/JPSCP.10.010011
http://dx.doi.org/10.1007/s00601-016-1133-x

