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We address qqQ̄Q̄ exotic tetraquark bound states and resonances with a fully unitarized and microscopic
quark model. We propose a triple string flip-flop potential, inspired by lattice QCD tetraquark static
potentials and flux tubes, combining meson-meson and double Y potentials. Our model includes the color
excited potential, but neglects the spin-tensor potentials, as well as all the other relativistic effects. To search
for bound states and resonances, we first solve the two-body mesonic problem. Then we develop fully
unitary techniques to address the four-body tetraquark problem. We fold the four-body Schrödinger
equation with the mesonic wave functions, transforming it into a two-body meson-meson problem with
nonlocal potentials. We find bound states for some quark masses, including the one reported in lattice
QCD. Moreover, we also find resonances and calculate their masses and widths, by computing the T matrix
and finding its pole positions in the complex energy plane, for some quantum numbers. However,
a detailed analysis of the quantum numbers where binding exists shows a discrepancy with recent lattice
QCD results for the llb̄b̄ tetraquark bound states. We conclude that the string flip-flop models need further
improvement.
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I. INTRODUCTION

A long-standing problem of QCD is the search for
localized exotic states [1] and the corresponding decay
to the hadron-hadron continuum. There is no QCD theorem
preventing the existence of exotic hadrons, say two-gluon
glueballs, hybrids, tetraquarks, pentaquarks, three-gluon
glueballs, hexaquarks, and the scientific community con-
tinues to search for clear exotic candidates. However, this
problem turned out to be much harder than expected.
In this work, we develop fully unitary techniques to solve

some of the theoretical problems of multiquarks, and we
predict multiquark bound states and resonances. We
continue a previous unitary study of tetraquarks—here
understood as any q1q2q̄3q̄4 bound state or resonance,
independently of its color state—with a simplified two-
variable toy model [2], now fully solving the tetraquark
problem, of the Schrödinger equation for two quarks and
two antiquarks, while still employing a completely non-
relativistic framework. We specialize in systems that are
clearly exotic tetraquarks, which cannot have a significant
mesonic quark-antiquark component, i.e., where the quan-
tum numbers or the S matrix pole and decay amplitudes
clearly show it is a tetraquark.
In particular, as a benchmark, we study in detail the light-

light-antiheavy-antiheavy systems that are expected to
produce tetraquarks. From basic principles of QCD, it is

clear that a system with two light quarks and two heavy
antiquarks, for instance with flavor udb̄b̄, should form a
bound state if the antiquarks are heavy enough [3–13]. To
understand why binding should occur, it is convenient to
use the Born-Oppenheimer [14] perspective, where the
wave function of the two heavy antiquarks is determined
considering an effective potential integrating the light quark
coordinates. At very short b̄b̄ separations r, the b̄ quarks
interact with a perturbative one-gluon-exchange Coulomb
potential, while at large separations the light quarks totally
screen the interaction and the four quarks form two rather
weakly interacting B mesons as discussed in Ref. [15].
Thus a screened Coulomb potential is expected. This
potential clearly produces a bound state, providing the
antiquarks b̄b̄ are heavy enough.
We leave a comparison of our work with previous

tetraquark studies in the literature for Sec. II. We discuss
the searches for tetraquarks in experiments, in dynamical
lattice QCD, in semidynamical lattice QCD with quantum
mechanical techniques, and in quark models. In Sec. III we
describe our triple string flip-flop potential, where our
system is open to the continuum in the meson-meson
directions and is confined in the diquark-diantiquark direc-
tion. Our string flip-flop potential also includes the first color
excitation. In Sec. IV, we address the meson-meson scatter-
ing problem, occurring when we solve the Schrödinger
equation. We detail our numerical techniques, utilized to
solve both our bound state and scattering problems. In
Sec. V we show our results with the state of the art triple
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string flip-flop potential, exhibiting tetraquark bound states,
and resonances. For the resonances, with our fully unitarized
computation, we calculate the pole position and thus find
their decay widths. We also consider, to compare with our
full computation, simplified potentials. In Sec. VI we
compare our results to the existing lattice QCD results for
the light-light-antiheavy-antiheavy system and conclude. We
find excessive binding, concluding that the flip-fop poten-
tials need further improvement. Nevertheless, our technique
can be applied to other potentials that may be developed in
the future. Moreover, in Appendix A, as a benchmark
calculation, we compare the results of our variational basis
for the binding energy with the one of Ref. [13].

II. COMPARING OTHER STUDIES OF
TETRAQUARKS WITH THE PRESENT WORK

A. The experimental search for tetraquarks

This is a very difficult problem experimentally, since
exotic candidates are resonances immersed in the excited
hadron spectra, and moreover, they usually decay to several
hadrons.
For instance, the observation [16] of a π1ð1600Þ reso-

nance with exotic JPC ¼ 1−þ quantum numbers is con-
sistent with an hybrid meson or a tetraquark. But it has not
been confirmed yet, and similar π1 candidates have been
criticized in the past [17,18].
More related to our study of double-heavy tetraquarks,

the charged Z�
c and Z�

b are cryptoexotic, but technically
they can be regarded as essentially exotic tetraquarks if we
neglect cc̄ or bb̄ annihilation. There are two Z�

b observed
only by the BELLE Collaboration at KEK [19], slightly
above the B B̄� and B� B̄� thresholds, the Zbð10610Þþ and
Zbð10650Þþ. Their nature is possibly different from the two
Zcð3940Þ� and Zcð4430Þ�, where the masses are well
above the DD threshold [20]. The Z�

c has been observed
with very high significance and has received a series of
experimental observations by the BELLE Collaboration
[21,22], the Cleo-C Collaboration [23], the BESIII
Collaboration [24–28], and the LHCb Collaboration
[29]. This family is possibly related to the closed-charm
pentaquark recently observed at LHCb [30]. Notice that,
using very approximate resonant group method calcula-
tions, in 2008, we predicted [31] a partial decay width to
πJ=ψ of the Zcð4430Þ− consistent with the recently
observed experimental value [29]. However, to establish
a new resonance it is necessary to study with an accurate
level of confidence all its properties, including its mass and
width as determined by its S matrix pole and all relevant
partial decay widths. Thus our option is to leave the
detailed study of this complex family of double-heavy
tetraquarks, with closed charm or closed bottom tetra-
quarks, for future studies.
We first want to address more constrained double-heavy

tetraquarks with identical fermions, where the Pauli

symmetry applies. It has already been predicted that
double-charm hadrons can be produced experimentally
[32,33].

B. The lattice QCD search for tetraquarks

1. Lattice QCD studies with dynamical
and quenched quarks

In lattice QCD, the study of exotics is presently even
harder than in the laboratory, since the techniques and
computer facilities necessary to study resonances with
many decay channels remain under development.
Thus lattice QCD started by searching for the expected

bound state in light-light-antiheavy-antiheavy channels
[34,35]. Using dynamical quarks, the only heavy quark
presently accessible to lattice QCD simulations is the
charm quark. No evidence for bound states in this family
of tetraquarks, say for a udc̄c̄, was found.
Lattice QCD also searched for evidence of a large

tetraquark component in the closed charm, the
Zcð3940Þ− candidate [36,37]. The difficulty of the study
of the Z−

c , a resonance well above threshold, is due to its
many two-meson coupled channels. The authors consid-
ered 22 two-meson channels, corresponding to lattice QCD
interpolators OM1M2 . In addition, they considered 4 tetra-
quark channels, corresponding to diquark-antidiquark
interpolators with flavor and color ½c̄ū�3 ½cd�3̄. Evidence
for the tetraquark resonance candidate was investigated in
the full coupled correlator matrix of hadron operators.
Finally, after switching on and off the 4 tetraquarklike

channels, the authors [36,37] found no significant deviation
in the 13 lowest channels, which span the energy range
from the lowest threshold to the Zcð3940Þ− candidate.
Thus, the authors concluded there is no robust evidence of a
Z�
c tetraquark resonance.
However, the direct proof for, or against, a tetraquark

resonance in lattice QCD would require the study of the S
matrix. The technique to perform phase shift analysis in
lattice QCD is still under development [38,39]. From the
phase shift analysis, inasmuch as with experimental data,
the poles of the S matrix can be extracted. But phase shift
analysis of the tetraquark Zþ

c has not yet been done with
lattice QCD data. For absolute evidence, the different
partial decay widths should be computed as well in lattice
QCD.
In lattice QCD and with present computers, only

resonances with a number of open decay channels of the
order of unity have been studied with sufficient detail [40].
Recently the method of extracting the phase shifts from the
spectrum of harmonic waves in a box started to be extended
to inelastic (more than one open channel) coupled channels
[41]. However, tetraquarks are excited resonances,
decaying into many, ∼30, different channels for the last
experimental Z−

c candidates. This is unattainable by present
computers and codes, but we expect lattice QCD to be on

P. BICUDO and M. CARDOSO PHYSICAL REVIEW D 94, 094032 (2016)

094032-2



the way to reach, in the future, the level of experimental
data analysis.

2. Lattice QCD studies with two light quarks
and two static antiquarks

The difficulties of using four dynamical quarks can be
relaxed when one uses a hybrid approach with both
numerical and quantum mechanics techniques.
Recently, the potentials between two mesons, each

composed of a light quark and a static (or infinitely heavy)
antiquark, have been computed in lattice QCD [42,43]. A
static antiquark constitutes a good approximation to a spin-
averaged b̄ bottom antiquark. The potential between the
two light-static mesons can then be used, with the Born-
Oppenheimer approximation [14], as a B − B potential,
where the higher order 1=mb terms including the spin-
tensor terms are neglected. According to the quantum
numbers of the two dynamical light quarks, either attraction
or repulsion is found. The attraction/repulsion can be
understood with the screening mechanism [15] leading
to the screened Coulomb ansatz,

VðrÞ ¼ −
α

r
exp

�
−
�r
d

�
p
�
þ V0: ð1Þ

Utilizing the potential of the channel with larger attrac-
tion, occurring in the isospin ¼ 0 and spin ¼ 0 quark-quark
system, together with the Born-Oppenheimer approxima-
tion [14] to produce a Schrödinger equation for the heavy
quarks, the possible bound states of the heavy antiquarks
are then investigated with quantum mechanics techniques.
Recently, this approach indeed found evidence for a
tetraquark udb̄b̄ bound state [15,44], while no bound states
have been found for states where the heavy quarks are c̄b̄ or
c̄c̄ (consistent with full lattice QCD computations [34,35])
or where the light quarks are s̄s̄ or c̄c̄ [45]. The b̄b̄
probability density in the only binding channel has also
been computed in Ref. [15].
Important for the present study, the attraction and

repulsion found in lattice QCD are consistent with the
screening model:

(i) In some channels we find attraction, and in others we
find repulsion.

(ii) As expected from the short range one-gluon
exchange proportional to the Gell-Mann λi · λj

Casimir operator, the b̄ and b̄ are attracted only if
they are in a triplet 3, not a sextet 6.

(iii) Thus the light quarks qq must as well be in a color
antitriplet 3̄.

(iv) Because of the Pauli principle this is indeed con-
sistent with an s-wave, I ¼ 0, and S ¼ 0 diquark.

These results [45] for repulsion, attraction, or binding are
very important for our study; in particular, our quark model
results should comply with them.

C. Quark model approaches to exotic tetraquarks

A detailed theoretical understanding of the properties of
exotic hadrons is important to support the experimental and
lattice QCD searches of exotics. In our study we utilize
solutions already adopted to address different theoretical
problems of exotic hadrons.

1. On the early quark models

Already at the onset of QCD, the bag model predicted
many tetraquarks [1]. However, as soon as lattice QCD was
able to compute static quark potentials and color electro-
magnetic fields, it was realized that quark confinement was
not baglike, but stringlike, due to color flux tubes.
Inspired by lattice QCD linear confining potentials, the

relativized quark model potential was developed [46,47],
after the authors fitted the spectra of all known hadrons in
the 1980s. Notice that a correctly calibrated quark model
needs many terms and many parameters, say of the order of
∼20 parameters.
Nevertheless, the relativized quark model still lacks

two crucial effects, leading up to 400 MeV deviations
from its spectrum. Chiral symmetry breaking has since then
been included in the Dyson-Schwinger approach [48,49],
and coupled channels/unquenching that have also been
included, for instance, in effective meson or baryon
models [50,51].

2. Extra binding with four-body flux tube potentials

Moreover, since tetraquarks are always open to decays
into a meson-meson pair, tetraquark resonances or bound
states may exist only if a mechanism provides binding
specific to tetraquarks. Here we explore a mechanism
observed in lattice QCD static potentials: the confining
four body potential [52,53], produced by double Y
or butterfly shaped flux tubes or strings, observed in
Ref. [54–56]. This mechanism is related to the Jaffe-
Wilczek model [57–59], which proposed the tetraquark
would form a diquark-antidiquark system.
We acknowledge other mechanisms may exist to support

binding; however, they are quite complex to implement,
and it is not clear, from lattice QCD, how they work
quantitatively. For instance, attraction may also be due to
quark-antiquark annihilation; however, this turned out to be
insufficient to bind a proposed pentaquark [60,61]. Another
mechanism is the hyperfine spin-dependent potential uti-
lized in the original bag model [1]; however, the spin-tensor
potentials have only been computed in lattice QCD for
mesons [62]. For baryons they are model dependent, while
for multiquarks the details of the spin-tensor potentials
remain an open problem. Moreover, both quark-antiquark
annihilation and the hyperfine potential are also important
for chiral symmetry breaking. To avoid the complexity of
quark-antiquark annihilation, spin-tensor quark-quark
interactions, and chiral symmetry breaking, we specialize
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in a family of tetraquarks where they can be neglected. Our
tetraquark masses or poles should be seen as spin-averaged
results.
Here we consider purely exotic tetraquarks only. In

contradistinction to cryptoexotics, in pure exotics quark-
antiquark annihilation does not occur directly. Cryptoexotic
tetraquarks are also less clear in the sense they always
have a mesonic component (as well as a multimeson
component). They are never a pure exotic.
Thus we consider only tetraquarks with absolutely exotic

flavor. Moreover, as a first study, we neglect chiral
symmetry breaking effects. Nevertheless, we implement
the unitarization in the tetraquark systems, since unquench-
ing is unavoidable when studying resonances.

3. Solving the Van der Waals force problem
with string flip-flop potentials

Clearly, tetraquarks are always coupled to meson-meson
systems, and we must be able to address correctly the
meson-meson interactions.
Notice confining two-body potentials with the SU(3)

color Casimir invariant ~λi · ~λj suggested by the one-gluon-
exchange potential, and possibly compatible with lattcie
QCD, lead to a Van der Waals potential,

VVan der Waals ¼
V0ðrÞ
r

× T; ð2Þ

where T is a polarization tensor. This would lead to an
extremely large Van der Waals [63–68] force between
mesons or baryons, which clearly is not observed exper-
imentally. Thus two-body confinement dominance is ruled
out for multiquark systems.
The string flip-flop potential for the meson-meson

interaction was developed [57,69–72] to solve the problem
of the Van der Waals forces produced by the two-body
confining potentials.
Traditionally, the string flip-flop potential considers that

the potential is the one minimizing the energy of the
possible two different meson-meson configurations, say
M13M24 or M14M23. This removes the intermeson poten-
tial, and thus solves the problem of the Van der Waals force.
Here we consider an upgrade the string flip-flop poten-

tial, including a third possible configuration [73], the
tetraquark one, say T12;34, where the four constituents
are linked by a connected string [13,74]. We study whether
the tetraquark attractive flux tube may induce further
binding of tetraquarks.
The three configurations differ in the strings linking the

quarks and antiquarks, and this is illustrated in Fig. 1.
When the diquarks qq and q̄q̄ have small distances,
the tetraquark configuration minimizes the string energy.
When the quark-antiquark pairs qq̄ and qq̄ have small
distances, the meson-meson configuration minimizes the
string energy.

4. Previous quark model results with
string flip-flop potentials

Tetraquark resonances are quite subtle, since the Fock
space of tetraquarks is the same as its decay channels, the
meson-meson channels, and moreover, a potential barrier is
absent. A priori it is not intuitive whether this system may
produce resonances.
Nevertheless, there is an argument [57] suggesting

multiquarks with angular excitations may gain a centrifugal
barrier, leading to narrower decay widths.
With a triple string flip-flop potential, bound states

below the threshold for hadronic coupled channels have
been found [13,74–76].
On the other hand, the string flip-flip potentials allow

fully unitarized studies of resonances [71,72,77]. Utilizing
analytical calculations with a double flip-flop harmonic
oscillator potential [77], and using the resonating group
method again with a double flip-flop confining harmonic
oscillator potential [71,72], resonances and bound states
have already been predicted. These studies suggest tetra-
quark bound states or resonances are plausible.
Thus we apply fully unitarized techniques adapted to

state of the art potentials, in order to do a quark-model
study of tetraquark resonances and bound states.

III. POTENTIAL

A. Ground state string flip-flop potential

We know from lattice computations for static quarks
[52–55] that the ground state potential for a system
composed of two quarks and two antiquarks is well fitted
by a string flip-flop potential,

V0
FF ¼ minðVMM; VMM0 ; VYYÞ; ð3Þ

FIG. 1. Triple string flip-flop potential. While the previous
string flip-flop potentials choose the minimum of two different
meson pair potentials, we consider as well the double Y (or
butterfly) potential [2].
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where, for simplicity, we neglect possible mixings at the
transition regions. In Eq. (3), VMM and VMM0 are two
possible potentials of a pair of mesons, given by the sum of
the intrameson potentials VMMðxiÞ ¼ VMðjx1 − x3jÞ þ
VMðjx2 − x4jÞ and VMM0 ðxiÞ ¼ VMðjx1 − x4jÞ þ
VMðjx2 − x3jÞ. The intrameson potential is well described
by the funnel potential,

VMðrijÞ ¼ K −
γ

rij
þ σrij; ð4Þ

where rij ¼ jxi − xjj and where we include a constant term
K, the short range Coulomb potential − γ

r, and the long
range confining potential σr. Here we use the indices 1 and
2 to refer to the quarks and 3 and 4 to refer to the
antiquarks. xi are the positions of the quarks/antiquarks.
Moreover, the double Y (or butterfly) potential VYY is

VYYðxiÞ ¼ 2K −
X4
1¼i<j

Cij
γ

rij
þ σLminðxiÞ; ð5Þ

where Cij ¼ 1=2 for quark-quark and antiquark-antiquark
interactions, while Cij ¼ 1=4 for quark-antiquark inter-
actions. Lmin is the minimal distance linking the four
particles,

LminðxiÞ ¼ r15 þ r25 þ r56 þ r36 þ r46; ð6Þ

where 5 and 6 are the indices of the two Fermat-Torricelli-
Steiner points [13,74,78] of the tetraquark. We compute the
position of these two points with the numerical technique of
Ref. [78]. This potential generalizes the earlier string flip-
flop potential models by introducing a third possible branch
in the potential where the four particles are all linked by a
confining string.

B. Color states

Moreover, Refs. [79–83] have pointed out that we also
need a potential for color excited states; otherwise there
would be solutions that would not respect color
confinement.
With two quarks and two antiquarks, two linearly

independent color singlets can be constructed. Different
color bases can be used, but we find it more convenient
(rather than choosing a basis composed by singlet-singlet
and octet-octet, or including the triplet-antitriplet) to have a
color basis corresponding to the two possible asymptotic
meson-meson systems MM and MM0. These two color
states are

jCIi≡ j113124i ¼
1

3
δc1c̄3δc2c̄4 jc1c2c̄3c̄4i;

jCIIi≡ j114123i ¼
1

3
δc1c̄4δc2c̄3 jc1c2c̄3c̄4i: ð7Þ

Notice these two states are not orthogonal,

h113124j114123i ¼
1

3
: ð8Þ

An orthogonal basis can be constructed by considering
the antisymmetric antitriplet-triplet and symmetric sextet-
antisextet color combinations of these two states,

j3̄12334i ¼
ffiffiffi
3

4

r
ðj113124i − j114123iÞ;

j6126̄34i ¼
ffiffiffi
3

8

r
ðj113124i þ j114123iÞ; ð9Þ

and inversely,

j113124i ¼
ffiffiffi
2

3

r
j6126̄34i þ

1ffiffiffi
3

p j3̄12334i;

j114123i ¼
ffiffiffi
2

3

r
j6126̄34i −

1ffiffiffi
3

p j3̄12334i: ð10Þ

We also introduce two other useful color states, in which
quarks and antiquarks form two SUð3Þ octets while we
globally still have a color singlet,

j813824i ¼
1

16
λac1c̄3λ

a
c2c̄4 jc1c2c̄3c̄4i;

j814823i ¼
1

16
λac1c̄4λ

a
c2c̄3 jc1c2c̄3c̄4i: ð11Þ

These states are important, because of the property

h813824j113124i ¼ 0;

h814823j114123i ¼ 0; ð12Þ

which will be used later. Again, while we define six
different color states with singlets, octets, triplets, and
sextets, only two of them are necessary to describe the color
state of the system, since there are only two independent
color singlets.

C. Completing the color dependent potential

Since we have two independent color singlets, the
potential must be given by a 2 × 2 matrix that can be
reconstructed by knowing its eigenvalues vi and eigenvec-
tors juii

V ¼ v0ju0ihu0j þ v1ju1ihu1j: ð13Þ

Note that both the eigenvalues and the eigenvectors depend
on the quark positions.
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The lowest eigenvalue of the matrix should correspond
to VFF defined in Eq. (3), while the corresponding
eigenvectors ju0i are the following:

(i) when VFF ¼ VMM, we have ju0i ¼ j113124i ;
(ii) when VFF ¼ VMM0 , ju0i ¼ j114123i ;
(iii) when VFF ¼ VYY , ju0i ¼ j3̄12334i.
The eigenvector ju1i of the color excited potential must

be orthogonal to ju0i since the potential has to be
Hermitian. So, in the three cases, we have the following
eigenvectors:

(i) when VFF ¼ VMM, ju1i ¼ j813824i;
(ii) when VFF ¼ VMM0 , ju1i ¼ j814823i;
(iii) when VFF ¼ VYY , ju1i ¼ j6126̄34i.
To complete the construction of the potential matrix, we

only need to know the highest eigenvalue. In the lattice
QCD results of Refs. [55,82], as illustrated in Figs. 2 and 3,
in the transition region, are consistent with an exchange

between the ground state and the first excited state. Namely,
in region A (where VA is the ground state) close to the
transition to region B (where VB is the ground state), the
ground state’s potential is v0 ¼ VA and the first excited
state v1 ¼ VB. When we enter region B, then we have
v0 ¼ VB and v1 ¼ VA. This way, the first excited state
should be the second lowest of the three potentials close to
the transitions. We assume that this result is valid in
general, i.e.,

v1 ¼ min½maxðVMM; VMM0 Þ;maxðVMM; VYYÞ;
maxðVMM0 ; VYYÞ�: ð14Þ

Joining all this information into a single equation, the
potential is

V ¼ ΘðVMM − VYYÞΘðVMM0 − VYYÞðVYY j3̄12334ih3̄12334j þminðVMM; VMM0 Þj6126̄34ih6126̄34jÞ
þ ΘðVYY − VMMÞΘðVMM0 − VMMÞðVMMj113124ih113124j þminðVYY; VMM0 Þj813824ih813824jÞ
þ ΘðVYY − VMM0 ÞΘðVMM − VMM0 ÞðVMM0 j114123ih114123j þminðVYY; VMMÞj814823ih814823jÞ; ð15Þ

where Θ is the Heaviside step function.

D. Other models

For comparison, we also use two other models. One of
them is similar to this color structure dependent triple flip-
flop model, but with the double Y sector removed from the
potential. So, the ground state’s potential is just

v0 ¼ minðVMM; VMM0 Þ; ð16Þ

and the excited state is

v1 ¼ maxðVMM; VMM0 Þ; ð17Þ

(a) (b)

FIG. 2. Lagrangian density plots for static quark-quark-antiquark-antiquark flux ground state tubes computed in lattice QCD [55]. The
density and the coordinates are in lattice spacing units [55]. Three different flux tubes occur for different geometries of the four-body
system.
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with the corresponding eigenvectors being constructed the
same way as before.
This potential is then given by

V ¼ ΘðVMM0 − VMMÞðVMMj113124ih113124j
þ VMM0 j813824ih813824jÞ
þ ΘðVMM − VMM0 ÞðVMMj114123ih114123j
þ VMM0 j814823ih814823jÞ: ð18Þ

A third model we also compare with is the colorless
double flip-flop. In this model, the potential is simply
given by

V ¼ minðVMM; VMM0 Þ: ð19Þ
This potential does not depend on the color degrees of
freedom of the system and so is not physically complete.
However, this model, and its extension including the double
Y sector, has been used by several authors [71,72,77]. It can
be interpreted as the limit of a color structure dependent
model, when the two color eigenstates of the potential are
degenerate (v0 ¼ v1).

IV. OUR UNITARY TECHNIQUE TO SOLVE THE
MESON-MESON SCATTERING AND FIND

TETRAQUARK BOUND STATES AND
RESONANCES

A. Meson-meson scattering equation

Let us start with the microscopic Hamiltonian,

Ĥ ¼ T̂Q þ V̂Q; ð20Þ

where the Q subscript means we are dealing with the
kinetic and potential energy of the quarks and not of the
mesons. Folding the Hamiltonian, left and right, with
the two CA color states, we get the Schrödinger equation

ðgABTQ þ VQ
ABÞΨB ¼ EgABΨB; ð21Þ

where

g ¼
�

1 1=3

1=3 1

�
: ð22Þ

In matrix form the Hamiltonian is given by

HAB ¼
�

TQ þ VI;I
1
3
TQ þ VI;II

1
3
TQ þ VII;I TQ þ VII;II

�
AB

: ð23Þ

Our goal is the study of meson-meson scattering because
the mesons (not the quarks) are the asymptotic states of the
theory. We thus need the meson kinetic energy operator to
show explicitly in the Schrödinger equation. The kinetic
energy of the meson-meson systems for each sector is

TMM ¼ TQ þ VMM;

TMM0 ¼ TQ þ VMM0 : ð24Þ

Since these two operators are different and the asymptotic
meson-meson states are not orthogonal, we must solve the
problem of finding the kinetic energy and potential energy
operators for the interacting two meson states.

(a) (b)

FIG. 3. Lagrangian density plots for static quark-quark-antiquark-antiquark first excitation flux tubes computed in lattice QCD [55].
The density and the coordinates are in lattice spacing units [55]. We show the first excitation of the different ground state flux tubes
shown in Fig. 2. In (a) the excitation of a meson-meson flux tube is similar to the other meson-meson flux tube. In (b) the excitation of a
tetraquark flux tube is similar to a meson-meson flux tube.
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A naive guess would be to consider the kinetic energy
operator,

�
1 1

3

1
3

1

��
TMM

TMM0

�
; ð25Þ

to allow theMM andMM0 components to decouple for this
operator, since the g matrix would cancel. However, this
operator is not Hermitian as can easily be seen by
evaluating the matrix product.
To solve this, we consider the Hermitian part of Eq. (25),

1

2
g

�
TMM

TMM0

�
þ 1

2

�
TMM

TMM0

�
g; ð26Þ

as the kinetic energy operator of our scattering problem.
Proceeding, we decompose the Hamiltonian of (23) into
two Hermitian operators

H ¼ TS þ VS ð27Þ

given by

TS ¼
�

TMM
TMMþTMM0

6

TMMþTMM0
6

TMM0

�
ð28Þ

and

VS ¼
 

VI;I − VMM VI;II −
VMMþVMM0

6

VII;I −
VMMþVMM0

6
VII;II − VMM0

!
: ð29Þ

This is the Hamiltonian operator we use to study the
meson-meson scattering problem.
Dropping the S subscript, we get the Schrödinger

equation,

TABΨB þ VABΨB ¼ EgABΨB; ð30Þ

where we expand the components of the wave function
ΨA as

ΨI ¼
X
i

ΦI
jðρ13; ρ24Þψ I

iðr1324Þ;

ΨII ¼
X
i

ΦII
j ðρ14; ρ23Þψ II

i ðr1423Þ; ð31Þ

and where we define as four-body Jacobi coordinates,

ρ13 ¼ x1 − x3;

ρ24 ¼ x2 − x4;

r1324 ¼
m1x1 þm3x3

m1 þm3

−
m2x2 þm4x4

m2 þm4

;

ρ14 ¼ x1 − x4;

ρ23 ¼ x2 − x3;

r1423 ¼
m1x1 þm4x4

m1 þm4

−
m2x2 þm3x3

m2 þm3

: ð32Þ

We denote as ΦA
i the eigenfunctions of the Hamiltonian

of the two noninteracting mesons,

ðTA þ VAÞΦA
i ¼ E0iΦA

i : ð33Þ

The eigenfunctions must comply with

lim
ρ1→∞

ΦA
i ðρ1; ρ2Þ ¼ lim

ρ2→∞
ΦA

i ðρ1; ρ2Þ ¼ 0; ð34Þ

because the quarks in each meson are confined.
Substituting Eq. (31) into Eq. (30) and integrating the

confined degrees of freedom, (i.e., the ρi coordinates), we
obtain the multichannel equation,

T̂αβψ
β þ V̂αβψ

β ¼ Eĝαβψβ: ð35Þ

Here, we employ Greek indices to denote both the color
structure and the internal quantum numbers.
The operators T̂αβ, V̂αβ, and ĝαβ are local between states

with the same color structure but are nonlocal between
states with different color structures. Let us now analyze in
detail the nonlocal operators. Consider the nondiagonal
term of the g matrix, folding it with ΨI and ΨII ,

hΨIjgI;IIjΨIIi ¼ 1

3

X
ij

Z
d3ρ13d3ρ24d3r1324

× ΦI
iðρ13; ρ24Þ�ψ Iðr1324Þ�

× ΦII
j ðρ14; ρ23Þψ IIðr1423Þ: ð36Þ

Changing the integration variables to r1324, r1423, and

r1234 ¼
m1x1 þm2x2

m1 þm2

−
m3x3 þm4x4

m3 þm4

; ð37Þ

in order to isolate functions of r1324 and r1423, the integral
becomes

1

3

Z
d3r1324d3r1423ψ I

iðr1324Þ�γijðr1324; r1423Þψ II
j ðr1423Þ:

The function γijðr1324; r1423Þ is given by
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γij ¼ Δ
Z

d3r1234ΦI
iðρ13; ρ24Þ�ΦII

j ðρ14; ρ23Þ; ð38Þ

where

Δ ¼
�
M12M34M13M24M14M23

2m1m2m3m4M2

�
3

; ð39Þ

with Mij ¼ mi þmj and M ¼Pimi. In this way, since ĝ
acts on a function as

ĝαβψβ ¼
Z

d3rβgαβðrα; r0βÞψβðr0βÞ; ð40Þ

we have

gIi;Ijðr1324; r01324Þ ¼ δijδ
3ðr1324 − r01324Þ;

gIi;IIjðr1324; r01423Þ ¼
1

3
γijðr1324; r01423Þ;

gIIi;Ijðr1423; r01324Þ ¼
1

3
γjiðr01324; r1423Þ�;

gIIi;IIjðr1324; r01423Þ ¼ δijδ
3ðr1423 − r01423Þ: ð41Þ

The potential V̂ has a similar structure,

VAi;AjðrA; r0AÞ ¼ VAA
ij ðrAÞδ3ðrA − r0AÞ;

VIi;IIjðr1324; r01423Þ ¼ vijðr1324; r01423Þ;
VIIi;Ijðr1324; r01324Þ ¼ v�jiðr01324; r1423Þ; ð42Þ

with

VII
ij ¼

Z
d3ρ13d3ρ24ΦI

iðρ13;ρ24Þ�ðVI;I −VIÞΦI
jðρ13;ρ24Þ;

VIIII
ij ¼

Z
d3ρ14d3ρ23ΦI

iðρ14;ρ23Þ�ðVII;II −VIIÞΦI
jðρ14;ρ23Þ;

vij¼Δ
Z

d3r1234

×ΦI
iðρ13;ρ24Þ�

�
VI;II −

VIþVII

6

�
ΦII

j ðρ14;ρ23Þ:

ð43Þ

Note, because of Eq. (34), both γij and vij have the property

lim
r1→∞

γijðr1; r2Þ ¼ lim
r2→∞

γijðr1; r2Þ ¼ 0: ð44Þ

The color structure preserving elements of T̂ are just
common kinetic energy operators,

T̂Ai;Aj ¼ δij

�
EA
0i −

ℏ2

2μAi
∇2

A

�
; ð45Þ

while the elements between states with different color
structures are given by

T̂Ii;IIj ¼
1

6
γijðr1324; r1423Þ

�
EII
0i −

ℏ2

2μIIj
∇2

1423

�

þ 1

6

�
EI
0i −

ℏ2

2μIj
∇2

1324

�
γijðr1324; r1423Þ: ð46Þ

B. T matrix

We now construct the T matrix. The T matrix poles
correspond to the bound states and resonances of the
system. Bound states correspond to real poles, and we
check our code by comparing them with the bound state
energies obtained solving the Schrödinger equation. To find
the resonances we search for the T matrix poles on the
complex plane. The imaginary part of the pole is −iΓ=2,
where Γ is the total decay width of the resonance.
Since T̂, V̂, and ĝ are Hermitian, we apply the continuity

equation (for stationary states),

ℑ½ψα�T̂αβψ
β� ¼ 0; ð47Þ

or, in integral form,

X
α

Φα ¼ 0; ð48Þ

where the fluxes Φα are

Φα ¼
X
β

Z
d3rα2ℑ½ψαT̂αβψ

β�; ð49Þ

and the 2 factor is to get the usual flux definition.
Using the structure of T̂ and the asymptotic behavior of

γij given by Eqs. (45), (46), and (44) we can easily prove
that nondiagonal terms on Eq. (47) do not contribute to the
fluxes Φα. In this way, we get

Φα ¼
Z

dSn̂α ·
ℏ

2iμα
ðψα�∇αψ

α − ψα∇αψ
α�Þ: ð50Þ

Expanding each component ψα as

ψαðrÞ ¼ uαðrÞ
r

Ylmðθα;φαÞ; ð51Þ

and taking the r → ∞ limit, we obtain

Φα ¼ lim
r→∞

ℏ
μα

ℑ

�
uα�

duα

dr

�
: ð52Þ

To compute the T matrix of the system, we first note that
the wave function can be expanded as
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uαðrÞ ¼
X
i

ciuαi ðrÞ; ð53Þ

where each uαi ðrÞ can be decomposed into two parts,

uαi ðrÞ ¼ uα0iðrÞ þ vαi ðrÞ: ð54Þ

The function uα0iðrÞ comes from the eigenfunction ψα
0 of T̂

and has the asymptotic limit

uα0iðrÞ → Aiα

ffiffiffiffiffi
μα
kα

r
sin

�
kαr −

lαπ
2

þ φiα

�
; ð55Þ

where the term φiα appears because T̂ mixes the different
channels, while viα is the scattered component and has the
asymptotic behavior

vαi → fiαeikαr−
lαπ
2 : ð56Þ

The uα0i can be chosen to form an orthonormal basis,

hu0iju0ji ¼
π

2
δðEi − EjÞδij; ð57Þ

which imposes that the parameters Aiα and φiα must
comply with the relation

X
α

AiαAjα cosðφiα − φjαÞ ¼ δij: ð58Þ

Replacing Eqs. (53) and (56) in Eq. (52), we get

X
α

ffiffiffiffiffi
kα
μα

s
Aiαe−iφiαfjα − Ajαe−iφjαfiα

2i
¼
X
α

kα
μα

f�iαfjα:

ð59Þ

We note that the left side of this equation has the form
consistent with

Tij − T�
ji

2i
≡
�
T − T†

2i

�
ij
; ð60Þ

which is consistent with the definition for the T matrix,

Tij ¼
X
α

ffiffiffiffiffi
kα
μα

s
Aiαe−iφiαfjα: ð61Þ

To verify Eq. (61) is correct, we use the relation

X
k

AkαAkβeiðφkα−φkβÞ ¼ δαβ; ð62Þ

which is proved using the completeness relation,

X
n

jψnihψnj ¼ 1̂; ð63Þ

of the eigenvectors of the kinetic energy T̂ operator. With
Eq. (62), we calculate T†T, and indeed we prove that it is
equal to the right side of Eq. (59),

T†T ¼
X
α

kα
μα

f�iαfjα: ð64Þ

Therefore, by the definition of T and the previous relation,
we can write Eq. (59) as

ImT ¼ T†T; ð65Þ

thus proving we comply with the unitarity of the S matrix
defined by S ¼ 1þ 2iT.

C. Identical quarks and identical antiquarks

So far, our framework is general for four-quark systems.
We now specialize our study to a system of two identical
quarks and two identical antiquarks, which is our
case study.
The total wave function must be antisymmetric under the

quark-exchange P12 and antiquark exchange P34,

P12Ψ ¼ −Ψ;

P34Ψ ¼ −Ψ: ð66Þ

Given a generic wave functionΨwe construct a completely
antisymmetric one, ΨA, by applying a projection operator

ΨA ¼ N ð1 − P12 − P34 þ P12P34ÞΨ: ð67Þ

In this work, our Hamiltonian is spin independent, and so
we ignore spin effects in the dynamics of the system. With
this approximation, the spin part of the wave function
factorizes, and we can neglect its existence for everything
except for the symmetry of the wave function. Now, let us
consider the wave function,

Ψ ¼ ϕαðρ13Þϕβðρ24Þψðr1324ÞCIΣ; ð68Þ

where CI is the color part and Σ is the spin part of the wave
function, and where ψ has parity

ψð−rÞ ¼ ð−1ÞLrψðrÞ: ð69Þ

To impose the correct antisymmetry, we use Eq. (67) and
we obtain the wave function,
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ΨA ¼ N ½ϕαðρ13Þϕβðρ24Þψðr1324ÞCI
− ð−1Þ1þS12þLrϕαðρ23Þϕβðρ14Þψðr1423ÞCII
− ð−1Þ1þS34ϕαðρ14Þϕβðρ23Þψðr1423ÞCII
þ ð−1ÞS12þS34þLrϕαðρ24Þϕβðρ13Þψðr1324ÞCI�Σ;

ð70Þ

where S12 and S34 are, respectively, the spins of the 12 and
34 diquarks. We assume that Σ is an eigenfunction of both
Ŝ12 and Ŝ34. This is consistent with our approximation of
neglecting all spin related interactions, which implies that
all spin operators commute trivially with the Hamiltonian.
Defining

s≡ ð−1ÞS12þS34þLr ;

ξ≡ ð−1ÞS34 ; ð71Þ

ΨA simplifies to

ΨA ¼ N ½Φðρ13; ρ24Þψðr1324ÞCI
þ ξΦðρ14; ρ23Þψðr1423ÞCII�Σ; ð72Þ

where the function Φðx; yÞ is defined as

Φðx; yÞ ¼ ϕaðxÞϕbðyÞ þ sϕaðyÞϕbðxÞ ð73Þ

and has the symmetry

Φðy;xÞ ¼ sΦðx; yÞ: ð74Þ

Since both Ŝ12 and Ŝ34 are conserved in the nondynamic
spin approximation, we diagonalize our Hamiltonian by
blocks with fixed values of these two operators. This is
done by substituting Eq. (70) in Eq. (35). We obtain the
scattering equation

T̂αβψ
βðrÞ þ VD

αβψ
βðrÞ þ ξ

Z
d3r0vαβðr; r0Þψβðr0Þ

¼ E
�
ψα þ ξ

Z
d3r0γαβðr; r0Þψβðr0Þ

�
: ð75Þ

Moreover, the total orbital angular momentum L̂ and parity
are also conserved. Thus we can determine several quantum
numbers for our system. For instance, for S12 ¼ S34 ¼ 0,
we only have J ¼ L states. In this case, ξ ¼ 1 and
s ¼ ð−1ÞLr . For S12 ¼ S34 ¼ 1, we have ξ ¼ −1 and still
s ¼ ð−1ÞLr . The total angular momentum J can range from
jL − 2j to Lþ 2, as shown in Table I. In Table II we show
an example of the channels we use in a particular system.

D. Numerical technique

We consider the intramesonic potential to be of the
funnel type, with no other corrections, and the kinetic
energy completely nonrelativistic.
Moreover, we neglect all other relativistic effects on

our model, such as quark-antiquark annihilation and spin-
spin and spin-orbit interactions. Besides, we assume that
we are well below the threshold for decay into a baryon-
antibaryon system. In this way we can neglect all the
baryon-antibaryon channels and consider just the meson-
meson ones.
For the potential, we fix its parameters by fitting lowest

charmonium and bottomonium to the weighted average
mass of the pseudoscalar and vector states

M̄ ¼ 1

4
MPS þ

3

4
MV: ð76Þ

We thus use the quark masses mc ¼ 1.3 GeV and
mb ¼ 4.7 GeV, together with the parameters K ¼ 0,
γ ¼ 0.41, and σ ¼ 0.19 GeV2.
It is trivial to compute the meson states with our

potential. We calculate the wave functions of the mesons.
We use an harmonic oscillator variational basis, where each
function is given by

ϕβ
nlmðr; θ;φÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n!β3

Γðnþ lþ 3
2
Þ

s
ðβrÞlLlþ1=2

n ðβ2r2Þ

× e−
1
2
β2r2Ylmðθ;φÞ: ð77Þ

TABLE I. Quantum numbers of the qqQ̄Q̄ system.

S12 S34 ξ sð−1ÞLr J

0 0 þ1 þ1 L
0 1 −1 −1 jL − 1j to Lþ 1
1 0 þ1 −1 jL − 1j to Lþ 1
1 1 −1 þ1 jL − 2j to Lþ 2

TABLE II. Scattering channels used in this work for the 0þ

ccb̄b̄ system.

n1 L1 n2 L2 Lr s

0 0 0 0 0 þ1
0 0 0 1 1 −1
0 0 1 0 0 þ1
0 0 2 0 2 þ1
0 1 0 1 0 þ1
0 1 0 1 2 þ1
0 0 1 1 1 −1
0 0 0 3 3 −1
1 0 0 1 1 −1
0 0 2 0 0 þ1
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Llþ1=2
n are generalized Laguerre polynomials and β is a

variational parameter with the value we choose as
β ¼ ð4mσ

3
ffiffi
π

p Þ1=3. We compute the meson Hamiltonian matrix

elements in this basis, and then we diagonalize the matrix.
We list the lowest energy meson in Table III.

1. Computation of meson-meson interaction

With the meson eigenfunctions ϕβ
nlmðr; θ;φÞ, we calcu-

late the local VAA
ij and nonlocal vij parts of the meson-

meson potential, defined by Eq. (43) and the nonlocal parts
of the metric matrix γij defined by Eq. (38). We calculate
these seven- (nonlocal) or eight- (local) dimensional
integrals using Lebedev quadrature [84] in the angular
coordinates and the Gauss-Laguerre quadrature for the
radial coordinates.
This is the most numerical intensive part of our study. We

thus develop CUDA language parallel codes to compute
these multidimensional integrals and run them in our
servers with NVIDIA GTX graphics processing units. The
resulting functions depend on one radial coordinate in the
local case and on two radial coordinates in the nonlocal
case. So, in both cases, the functions are evaluated on a
nine-dimensional space.

2. Meson-meson scattering

Wemust solve Eq. (35) to obtain the asymptotic behavior
of the wave function and compute the T matrix.
This is done by discretizing the radial scattering coor-

dinates on a finite box. We first solve the “free” equation

T̂Ψ0 ¼ EgΨ0: ð78Þ
This is not as simple to solve as it may seem, since we
cannot solve this equation separately for each channel,
given the form of the kinetic T̂ matrix and of the color g
matrix, which link all the channels. Our system is more
cumbersome than systems where there is only one type of
quark combinations in mesons, e.g., only ðq1q̄3Þðq2q̄4Þ and
not ðq1q̄4Þðq2q̄3Þ [2].
For each energy, we can generate different wave func-

tions by varying the boundary conditions of the open

channels. Note the generated numerical solutions are not
yet fully orthogonal, and we still have to orthogonalize
them. We stress we must be particularly careful in deter-
mining the asymptotic behavior of the functions. We cannot
consider the internal product of two wave functions to be
just given by the values on the finite box used for numerics,

hujvi ¼
X
i

u�i vi; ð79Þ

because, although the two functions u and v are orthogonal
in the box, the continuations of them beyond the box ~u and
~v are not necessarily orthogonal h ~uj ~vi ≠ 0.
Instead, we must utilize an inner product that takes into

account the behavior of the wave function continued
outside the box. To achieve this, we consider the inner
product of two functions to be given by

huijuji ¼
X
α

AiαAjα cosðφiα − φjαÞ ð80Þ

in accordance with Eq. (58). The parameters Aiα and φiα are
given by Eq. (55) and are computed from the value of the
wave function components at the boundary of the box.
Having generated our basis of Nopen (the number of open

channels) eigenfunctions of T̂ for a given energy, we
orthogonalize the basis with the Gram-Schmidt procedure,
using the inner product of Eq. (80).
Then, for each function of the orthogonalized basis, we

solve the scattering Eq. (35) considering Ψi ¼ Ψ0i þ χi. In
this way the equation becomes

ðT̂ þ V̂Þχi ¼ Egχi − VΨ0i: ð81Þ
We solve this equation numerically by discretizing the
position space, using suitable boundary conditions for χi.
We then calculate the values of fiα from the behavior of χiα
at the boundary of the box. We evaluate the T matrix
utilizing Eq. (61).

3. Finding bound states

To find the bound states of our system we do not need to
calculate the T matrix. We directly solve Eq. (35) and
search for states with energy smaller than the first
threshold.
We solve Eq. (35) with finite differences, discretizing it

in a position space box. Naively, one would use Dirichlet
boundary conditions, but they are acceptable only if the
spatial extent of the bound state is much smaller than the
box on which we are solving the equation. When this does
not happen, the wave function can become highly distorted
by the forced boundary conditions, and the energy can even
be moved above the threshold, hiding the nature of the
state. In this work, we find some bound states with a very
small biding energy. Thus, instead of using Dirichlet
boundary conditions, we consider boundary conditions

TABLE III. Masses M0 of the ground states of the qQ̄ mesons
used on this work.

mq½GeV� mQ̄½GeV� M0½GeV�
0.4 1.3 2.433
0.7 1.3 2.592
1.0 1.3 2.818
1.3 1.3 3.072
0.4 4.7 5.766
0.7 4.7 5.893
1.0 4.7 6.094
1.3 4.7 6.326
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that depend on the energy and match the expected behavior
of the wave functions at large distances.
With this method, we have to solve the matrix equation,

½H þ FðEÞ�u ¼ Egu; ð82Þ
where FðEÞ is a matrix that fixes the boundary conditions.
This is not a simple eigenvalue problem as the matrix
depends on the eigenvalue itself. To solve this equation, we
consider it as a root finding problem det½H þ FðEÞ −
Eg� ¼ 0 and use Newton’s method,

xðnþ1Þ ¼ xðnÞ −
fðxðnÞÞ
f0ðxðnÞÞ ; ð83Þ

to solve it. Applying this method to Eq. (82), we obtain the
iteration procedure

Eðnþ1Þ ¼ EðnÞ −
1

Tr½ðH þ FðEÞ − EgÞ−1ðF0ðEÞ − gÞ� ;

ð84Þ
and we use it to calculate the bound state energy. Iteratively,
we compute the wave function by solving Eq. (82), which
is a simple linear system.
With this numerical method, we find the bound states for

the qqb̄b̄ systems detailed in Sec. V.

4. Finding resonances

To find the resonances in our qqb̄b̄ systems, we extend
the T matrix to the complex energy plane. Resonances
correspond to complex poles of the S (or T) matrix. Thus,
to find resonances, we search for zeros of the quantity,

yðEÞ ¼ 1=TrðTÞ: ð85Þ
Indeed, at a pole, the T matrix is divergent and so is its
trace; therefore yðEÞ ¼ 0. Numerically, to find a T matrix
pole, we apply Newton’s method to Eq. (85).

V. RESULTS

A. Bound states

We apply the method detailed in Sec. IV to find bound
states in the qqb̄b̄ system. We study different values of the
light quark mass, for angular momentum L ¼ 0, and we are
able to find bound states for quark masses ranging from
mq ¼ 0.4 to mq ¼ 1.3 GeV. We find the bound states with
sð−1ÞLr ¼ þ1, ξ ¼ þ1, listed in Table IV. The bound state
is weakly bound for mq ¼ 1.3 GeV, i.e., for the charm
mass (see Table II for the respective channels), and
becomes more strongly bound as mq decreases. Wave
functions for the first dominant channel are given in Fig. 4.
Now, comparing Table I, these bound states have

S12 ¼ S34 ¼ 0, and hence L ¼ 0 and J ¼ 0. If the lightest
quarks are u and d quarks, we also have to consider the

isospin symmetry, contributing an additional ð−1ÞI12þ1

factor for the P12 symmetry of the wave function. In this
way, the previous results are unchanged if I12 ¼ 1.
However, if I ¼ 0, the flavor wave function is antisym-
metric, and so the spin wave function has to change its
symmetry in order for the total wave function to be
completely antisymmetric. So, for I12 ¼ 0, we also have
S12 ¼ 1, and hence S ¼ 1 and J ¼ 1.
To summarize, we obtain tetraquark bound states on the

qqb̄b̄ system, with quantum numbers 0þ for s and c quarks,
or light quarks with I12 ¼ 1. For light quarks with I12 ¼ 0,
we obtain bound states with quantum numbers 1þ.
We also tried to find bound states for the qqc̄c̄ system,

but we were unable to find them when the lightest quarks
have constituent masses equal to or larger than the ones of
light quarks mq ≥ 400 MeV.

B. Resonances

We also compute the T matrix and search for poles in the
S matrix, for the qqb̄b̄ system.
For the ccb̄b̄ systemwithL ¼ 0,P ¼ þ, and ξ ¼ þ1, we

find several poles of the S matrix in the complex energy
plane, corresponding to resonances between all threshold
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x
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x
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FIG. 4. Wave functions of the bound states we find in the qqb̄b̄
system.

TABLE IV. Bound states in the system qqb̄b̄ with L ¼ 0 and
P ¼ þ. We use mb ¼ 4.7 GeV. The radius presented here is
estimated from the long range exponential decay of the lowest
wave function component ∼e−qr.

mq½GeV� B½MeV� R ¼ 1
q0
½fm�

1.30 0.4 4.12
1.00 1.4 2.24
0.70 4.2 1.31
0.40 20.3 0.61
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intervals considered, as listed in Table V and shown in
Fig. 5. We list the pole positions corresponding to the two
narrowest resonances of each threshold interval. The nar-
rowest of all resonances appear between the opening of the
second and third channels (that Nopen ¼ 2 open channels),
respectively, with widths of 9 MeVand 20 MeV. As for the
resonances found on the other two intervals, the narrowest
of them all has a width of 150 MeV, much larger than the
ones found for Nopen ¼ 2. Note that the second channel is
the only one, among the four considered channels, having
an orbital angular momentum between the final state
mesons. It is possible that the centrifugal barrier between
the mesons slows the decay of these tetraquark resonances,
according to the mechanism discussed in Ref. [2].
In Table VI, we list the two narrowest resonances

between the second and third thresholds, for different
mq in the 0þ ccb̄b̄ system. Depending on the mass of
the lightest quark, the width of these resonances can be
smaller than 5 MeV or larger than 90 MeV.
Broader resonances can also be found. In Fig. 5 we show

a plot of the phase of TrðTÞ for complex energies with real
parts between the second and third thresholds and negative

imaginary parts. Four resonances can be observed, all of
them with widths smaller than 120 MeV. It is interesting to
note the position of the four resonances in the complex
plane, approximately forming a straight line.
Doing the same study for ξ ¼ −1, we also find several

resonances. In Table VII, we compare these resonances and
those with ξ ¼ þ1, for Nopen ¼ 2 and mq ¼ mc.
Interestingly, in contrast to what happens for the bound
states, not only do resonances exist for ξ ¼ −1, but they
also have similar energies to the ones of the ξ ¼ þ1
resonances. The real parts of the pole positions are very
close, and the imaginary parts are of the same order of
magnitude. This result can be understood if we note that
what makes the results differ for the two values of ξ is the
presence of the nonlocal potential. When we are above
the threshold, the wave function becomes oscillatory and
the convolution of the wave function with the nonlocal
potential in Eq. (43) vanishes if the potential varies slowly.
In this way, only the local potential becomes important well
above the threshold, and, consequently, the behavior of two
resonances becomes similar.
For the qqc̄c̄ we are also able to find some resonances.

The narrowest of them were between the opening of the
second and third channels, similar to what happens on the
qqb̄b̄ system. A study of these resonances for Nopen ¼ 2

and varying mq is presented in Table VIII. We find that the
most stable of the two resonances has a width that does not
vary much with mq, having always a value in the range of
35–41 MeV. The width of the second in contrast increases
monotonically from 76 MeV to 108 MeV as the mass mq

decreases from 1.3 GeV to 0.4 GeV. Broader resonances
also exist here, as we show in Fig. 6.

C. Comparison with other models

We compare our model (C) with two other models for
this system, defined in Sec. III D, namely one similar to our
triple string flip-flop potential, but without a double Y
sector in the potential (B) and the simple colorless flip-flop
model (A). The results of these three models are compared
in Table IX. When we remove the double Y sector from our
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FIG. 5. Plot of TrðTÞ, between the second and third thresholds
(Nopen ¼ 2), for the ccb̄b̄ systemwithL ¼ 0,P ¼ þ, and ξ ¼ þ1.
Note the existence of four resonances with Γ=2 < 60 MeV.

TABLE V. Resonances in the 0þ ccb̄b̄ system, with ξ ¼ þ1,
for different numbers of open channelsNopen. En and Enþ1 are the
energies of the two thresholds.

Nopen E½GeV� En Enþ1

1 12.7011 − 0.2293i 12.6519 13.0413
12.8003 − 0.3370i

2 13.0505 − 0.0090i 13.041 13.2093
13.0693 − 0.0201i

3 13.2183 − 0.0743i 13.2093 13.3144
13.3003 − 0.0901i

TABLE VI. Resonances in the 0þ qqb̄b̄ system, with ξ ¼ þ1,
with varying quark mass mq. E2 and E3 are the energies of the
thresholds of the second and third channels.

mq½GeV� E½GeV� E2 E3

1.30 13.0505 − 0.0090i 13.041 13.2093
13.0693 − 0.0201i

1.00 12.7679 − 0.0011i 12.5854 12.7686
12.5945 − 0.0080i

0.70 12.2054 − 0.0043i 12.1998 12.4065
12.2234 − 0.0256i

0.40 12.0028 − 0.0264i 11.9836 12.2342
12.0471 − 0.0463i
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model, we still have bound states, for sufficiently small
quark masses. For the color independent simple flip-flop
model, the binding is even bigger than in our model, even
though the double Y sector is not present at all.
Therefore, we see that the presence of a doubleY sector in

the four-quark potential is not necessary for the existence
of bound states with exotic tetraquark quantum numbers.
This result has been observed by other authors, namely

[71,72,77] where bound states are found for a string flip-flop
potential without including any double Y configuration.
All these bound state results are for sð−1ÞLr ¼ þ1 and

ξ ¼ þ1 (see Table I), which correspond to S12 ¼ S34 ¼ 0,
and so JP ¼ 0þ for s, c and b quarks and for light quarks
with I12 ¼ 1. However, for I12 ¼ 0, exchange symmetry
imposes S12 ¼ 1, which gives quantum numbers 1þ.

VI. DISCUSSION AND CONCLUSION

In this work we briefly review recent experimental and
lattice QCD results on tetraquarks, to motivate our
approach to unitarize the tetraquark studies. We extend
the existing techniques to solve tetraquarks in quark
models, fully unitarizing for the first time the triple string
flip-flop potential to study bound states and resonances in
light-light-antiheavy-antiheavy systems qqQ̄Q̄. Consistent
with the previous computations with simpler flip-flop
potentials, we find several tetraquark bound states and
resonances [71,72,77].
Comparingwith recent lattice QCD results [15,45,85,86],

which found bound states but are not yet able to address
resonances, we find a qualitative dynamical agreement in the
sense that binding is favored when the light quark q gets
lighter and the heavy antiquark Q̄ gets heavier.
However, concerning the symmetry and quantum num-

bers, our results contradict the very recent lattice QCD
results in Refs. [15,45,85,86]. In lattice QCD, attraction is
only found in scalar isosinglet and vector isotriplet chan-
nels, while here we only find bound states (and hence the
maximum attraction) for S12 ¼ 0 and I ¼ 1 (scalar iso-
triplet) or S12 ¼ 1 and I ¼ 0 (vector isosinglet) channels.
Also note that the lattice results are consistent with the
theoretical predictions of bound qqQ̄Q̄ systems with Q̄
heavy enough [3–13], which imply the heavy antidiquark
Q̄Q̄ color wave function is a triplet 3.
Notice we verified that the presence of the double Y

sector in the flip-flop potential is not required for our
tetraquark bound states. Indeed, we note that the solutions
with ξ ¼ þ1 are mostly color symmetric, while those
with ξ ¼ −1 are mostly color antisymmetric. This means
our bound states are mostly color symmetric, contrary to
what one would expect, but consistent with the fact that

TABLE VII. Comparison of pole positions found for ξ ¼ þ1

and ξ ¼ −1 for the 0þ ccb̄b̄ system.

E½GeV�
Nopen ξ ¼ þ1 ξ ¼ −1

1 12.7011 − 0.2293i 12.7355 − 0.2522i
12.8003 − 0.3370i 12.8505 − 0.3733i

2 13.0505 − 0.0090i 13.0503 − 0.0113i
13.0693 − 0.0201i 13.0765 − 0.0268i

3 13.2183 − 0.0743i 13.2361 − 0.0673i
13.3003 − 0.0901i 13.3057 − 0.0822
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FIG. 6. Plot of TrðTÞ, between the second and third thresholds
(Nopen ¼ 2), for the ccc̄c̄ system with L ¼ 0, P ¼ þ, and
ξ ¼ þ1. Note the existence of three resonances with
Γ=2 < 90 MeV.

TABLE VIII. Resonances for the 0þ qqc̄ c̄ system, with
ξ ¼ þ1 and varying quark mass mq.

mq½GeV� E½GeV� E2 E3

1.30 6.5744 − 0.0225i 6.5530 6.7545
6.6226 − 0.0475i

1.00 6.0787 − 0.0250i 6.0547 6.2675
6.1319 − 0.0538i

0.70 5.6450 − 0.0272i 5.6179 5.8493
5.7035 − 0.0639i

0.40 5.3650 − 0.0275i 5.3373 5.6059
5.4351 − 0.0848i

TABLE IX. Binding energies (in MeV) for the 0þ qqb̄b̄
system, ξ ¼ þ1, with three different models: A—color-
independent simple flip-flop; B—color-dependent simple flip-
flop; and C—color-dependent triple flip-flop.

mq½GeV� A B C

1.60 29.5 � � � � � �
1.30 32.3 � � � 0.4
1.00 36.6 0.3 1.4
0.70 45.8 2.4 4.2
0.40 85.9 17.3 20.3
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removing the double Y sector from the potential does not
destroy all the bound states. As for the lattice results, they
are indeed color antisymmetric as one would expect. The
attractive channels have the same symmetry for spin and
isospin as they are either scalar isosinglet (S12 ¼ 0 and
I ¼ 0) or vector isotriplet (S12 ¼ 1 and I ¼ 1), and so, as
the space symmetry is even, the color symmetry has to be
negative for the total wave function to be antisymmetric.
Let us analyze the mechanism why we obtain attraction

for the color symmetric case and repulsion in the color
antisymmetric case. For the qqQ̄Q̄ system, if we consider
only two channels (related by quark and antiquark
exchange), the scattering equation becomes

T̂ψðrÞ þ VDψðrÞ þ ξ

Z
d3r0vðr; r0Þψðr0Þ

¼ E

�
ψðrÞ þ ξ

Z
d3r0γðr; r0Þψðr0Þ

�
; ð86Þ

calculated from Eq. (43). We see that it depends on
VI;II −

VIþVII
6

. When the ground state is v0 ¼ VI , we have
VI;II ¼ 1

3
VI , and so this becomes VI−VII

6
. Since VI is the

ground state, we have VI < VII , and therefore

VI − VII

6
< 0: ð87Þ

Since the function Φ in the integrand is nodeless (because it
is the ground state),

Φðρ13; ρ24Þ�Φðρ14; ρ23Þ > 0: ð88Þ
Therefore, in this limit we have

vðr; r0Þ < 0 ð89Þ
for r0 → ∞ and fixed r. The same result occurs if we
exchange r and r0. Then, in Eq. (86) the nonlocal potential
will be mostly attractive for ξ ¼ þ1 and mostly repulsive
for ξ ¼ −1. This confirms our results.
To summarize, we develop fully unitarized techniques to

study tetraquarks with quark models, and to search for
bound states and resonances. Asymptotically, the four
quark system with a string flip-flop potential reduces to
coupled two-body meson-meson systems, with nonlocal
potentials that vanish at long distances, thus solving the
Van der Waals problem. However, we find that the string
flip-flop potential still remains attractive enough to produce
qqQ̄Q̄ bound states with quantum numbers not observed in
recent lattice QCD computations.
It should be noted that different solutions to remove the

excessive attraction exist [87,88]. For instance, attraction
may change if the nonlocal potentials change signs in the
region where r1 ∼ r2, and the presence of the gαβ operator
cancels in part the effect of vαβ. We expect that our results
will motivate future studies of different solutions to this
excessive attraction.
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FIG. 7. Binding energy B in natural dimensionless units for the
potential minðVMM; VMM0 Þ in the case of γ ¼ 0 and M=m ¼ 5.
The dots show the evolution of B as a function of the size Nc of
variational basis. As a benchmark, the solid line represents the
binding energy computed by Ref. [13].
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APPENDIX: VARIATIONAL BASIS BENCHMARK

Using as a benchmark the results in Ref. [13] for the
tetraquark binding energy, we test the convergence of our
variational basis. Our variational basis is exact in the limit
ofNc → ∞, but in practice we have to truncate the basis for
a finite number of components Nc, and we want to verify
the number of components we are using is correct.
We find that the convergence of our variational basis is

slower for the case of the unphysical simple flip-flop
potential, but very fast for the color-structure dependent
triple flip-flop potential used in this work.
In Fig. 7 we compare the computed binding energy of an

exotic system in which M=m ¼ 5 and σ ¼ 1 and compare
the result with the one of Refs. [13,88]. To obtain a better
binding energy than the one obtained with the variational
ansatz of Ref. [13], we need at least 50 channels.
Nevertheless, this is not a problem with our variational

basis in general but rather an inadequacy of it applied
to the simple flip-flop potential. Indeed, our basis was

constructed to obtain the correct asymptotic behavior of
any q1q2q̄3q̄4 system. The simple flip-flop potential does
not exhibit the correct asymptotic behavior because, since
the potential does not depend on color structure, it may
produce an asymptotic two-meson state with the incorrect
color wave function. Therefore, it is no surprise that the
convergence of our basis is so slow for the colorless flip-
flop potential.
For our color dependent flip-flop potential, the conver-

gence is much faster. Convergence becomes even faster for
a larger M=m quotient. For instance, in the case of qqb̄b̄
withmq ¼ 0.70 GeV, the binding energy computed for just
one scattering channel is already 96% of the value obtained
with Nc ¼ 10 (where the convergence is excellent), and
with Nc ¼ 2 it is 99%.
Comparison of the convergence of the method for the

color-dependent flip-flop potential here presented and the
simple flip-flop potential is presented in Fig. 8, in the ccb̄b̄
system.
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