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With the chiral susceptibility criterion, we obtain the phase diagram of strong-interaction matter in terms
of temperature and chemical potential in the framework of Dyson-Schwinger equations of QCD. After
calculating the pressure and some other thermodynamic properties of the matter in the Dyson-Schwinger
method, we get the phase diagram in terms of temperature and baryon number density. We also obtain the
interface tension and the interface entropy density to describe the inhomogeneity of the two phases in the
coexistence region of the first-order phase transition. After including the interface effect, we find that
the total entropy density of the system increases in both the deconfinement (dynamical chiral symmetry
restoration) and the hadronization (dynamical chiral symmetry breaking) processes of the first-order phase
transitions and thus solve the entropy puzzle in the hadronization process.
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I. INTRODUCTION

The phase transitions of strong-interaction matter (QCD
phase transitions) with respect to temperature T and chemi-
cal potential μ have been investigated for a long time
(see, e.g., Refs. [1–6]). On the theoretical side, the studies
include effective model calculations (see, e.g., Refs. [1,7–
22]), the Dyson-Schwinger equation method (see, e.g.,
Refs. [23–42]), functional renormalization group approach
(see, e.g., Refs. [43–48]), and lattice QCD simulations (see,
e.g., Refs. [49–73]). Based on these, it has been widely
accepted that at physical quark mass the chiral phase
transition is a crossover at low chemical potential, while
it is a first-order phase transition at high chemical potential.
Meanwhile, the confinement-deconfinement phase transi-
tion coincides with the chiral phase transition (see, e.g.,
Refs. [22,37,41,42]).
The first-order phase transition is generally described by

process of either nucleation or explosive spinodal decom-
position [74]. With the chiral susceptibility criteria (see, e.g.,
Refs. [17,20,28,30,75]), one usually finds the phase tran-
sition as a nucleation process which is defined as the
transition from a metastable phase to a stable phase, and
the stable phase boundary and themetastable phase boundary
determine the coexistence region. Astrophysical observables
of compact stars also favor the nucleation of quark matter
[74,76–80].When the first-order phase transition takes place,
the two phases with different thermal properties, the dynami-
cal chiral symmetry breaking (DCSB or Nambu) phase and
the dynamical chiral symmetry preserved (DCS or Wigner)
phase, meet at an interface. This interface effect, which is

measured by the interface tension and related quantities such
as the interface entropy and the critical size of the bubble
[81,82], has been investigated by latticeQCDsimulation [83]
and many effective model calculations [74,76–82,84–90].
On the other hand, it has been found for a long time that in the
hadronization process there exists a so-called entropy puzzle;
that is, the entropy density of the quark-gluon phase is always
larger than that of the hadron phase in both the hadronization
(DCS to DCSB) process and the deconfinement (DCS
restoration) process [81,86,91–93], and thus the hadroniza-
tion process seems to be impossible according to the
increasing entropy principle. Effective model calculations
have provided hints for that considering the interface entropy
might solve this puzzle [81,86]. To make this solid, it is
imperative to study the problem and solve the puzzle via a
sophisticated continuum QCD approach.
It has been known that the Dyson-Schwinger equations

(DSEs), a nonperturbative method of QCD [94–96], are
successful in describing QCD phase transitions (e.g.,
Refs. [23–42,96,97]) and hadron properties (for reviews,
see Ref. [96]). We then, in this paper, take the DSE method
to calculate the uniform entropy density directly and
include the interface entropy in the free-energy expression
approximation with the particle number density determined
by the DSE method being the input. We find that the
interface entropy induced by the interface production is
significant to solve the entropy puzzle. As the interface part
is taken into account, the total entropy density of the two
phases switches into the right order, which drives the quark-
gluon phase into the hadron phase during the hadronization
process. We also find that the interface entropy is propor-
tional to the area, and this leads to a natural explanation to
the area law of the entropy [98,99].*yxliu@pku.edu.cn
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The remainder of this paper is organized as follows.
In Sec. II, we describe briefly the framework of DSEs of
QCD at finite temperature T and finite chemical potential μ.
In Sec. III, we display the results on the phase transitions
and the thermodynamic properties. Then, we introduce the
interface thermodynamics and depict the results in Sec. IV.
Finally, Sec. V provides a summary and remark.

II. QUARK GAP EQUATION AND
THERMODYNAMIC PROPERTY

In the framework of DSEs, the quark gap equation at
finite temperature and quark chemical potential reads

Sð~p; ~ωnÞ−1 ¼ i~γ · ~pþ iγ4 ~ωn þm0 þ Σð~p; ~ωnÞ; ð1Þ

Σð~p; ~ωnÞ ¼ T
X∞
l¼−∞

Z
d3q
ð2πÞ3 g

2Dμνð~p − ~q;Ωnl;T; μÞ

×
λa

2
γμSð~q; ~ωlÞ

λa

2
Γνð~q; ~ωl; ~p; ~ωnÞ; ð2Þ

where m0 is the current quark mass and ~ωn ¼ ωn þ iμ with
ωn ¼ ð2nþ 1ÞπT being the quark Matsubara frequency, μ
the quark chemical potential, andΩnl ¼ ωn − ωl.Dμν is the
dressed-gluon propagator, and Γν is the dressed quark-
gluon interaction vertex.
The gap equation’s solution can be decomposed as

Sð~p; ~ωnÞ−1 ¼ i~γ · ~pAð~p2; ~ω2
nÞ

þ iγ4 ~ωnCð~p2; ~ω2
nÞ þ Bð~p2; ~ω2

nÞ: ð3Þ

The dressed-gluon propagator has the form

g2Dμνð~k;ΩnlÞ ¼ PT
μνDTð~k2;Ω2

nlÞ þ PL
μνDLð~k2;Ω2

nlÞ; ð4Þ

where PT;L
μν are, respectively, the transverse and longi-

tudinal projection operators, and

DTðkΩÞ ¼ Dðk2Ω; 0Þ; DLðkΩÞ ¼ Dðk2Ω; m2
gÞ; ð5Þ

wheremg is the thermal mass of the gluon and can be taken
as m2

g ¼ 16=5ðT2 þ 6μ2=ð5π2ÞÞ according to perturbative
QCD calculations [100,101].
We employ the infrared constant model (Qin-Chang

model) [102] for the dressed-gluon propagator that quali-
tatively reproduces the features of the results of modern
DSE calculations and lattice QCD sinulations [103–114],
which reads

Dðk2Ω; m2
gÞ ¼ 8π2D

1

ω4
e−sΩ=ω

2

þ 8π2γm
ln½τ þ ð1þ sΩ=Λ2

QCDÞ2�
F ðsΩÞ; ð6Þ

with F ðsΩÞ¼ð1−expð−sΩ=4m2
t ÞÞ=sΩ, sΩ¼Ω2þ ~k2þm2

g,
τ¼e2−1,mt¼0.5GeV, γm¼12=25, andΛQCD¼0.234GeV.
To include the temperature screening effect

which would screen the interaction when we calculate
the thermodynamic properties of QCD, we remedy the
coupling D to DðT; μÞ in a similar way as in
Refs. [31,33],

DðT; μÞ ¼
�D; T < Tp;

a
bðμÞþln½T 0=ΛQCD� ; T ≥ Tp;

ð7Þ

where T 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ 6μ2=ð5π2Þ

p
and Tp is the temperature

at which the thermal screening effect emerges. At μ ¼ 0,
we take Tp ¼ Tcðμ ¼ 0Þ with Tc the chiral phase
transition temperature and a ¼ 0.029 GeV2, b ¼ 0.432,
and while the phase transition temperature TcðμÞ would
change as the chemical potential changes, herein we
still apply Tp ¼ TcðμÞ and adjust the value of b at every
chemical potential to make the coupling strength
DðTcðμÞ; μÞ ¼ D.
For the quark-gluon interaction vertex, we take the

approximation Γνð~q; ~ωl; ~p; ~ωnÞ ¼ γν, which has been
widely implemented in Dyson-Schwinger equation calcu-
lations and shown to be quite a good approximation in
studying hadron properties [115–126] and QCD phase
transitions (for a comparison with the result in a sophis-
ticated vertex, see, e.g., Ref. [42]).
The quark pressure is given by the tree-level

auxiliary-field effective action [127] in stationary phase
approximation,

P½S� ¼ T
V
lnZ ¼ T

V

�
Tr ln ½βS−1� − 1

2
Tr½ΣS�

�
; ð8Þ

where β ¼ 1=T and the self-energy Σ ¼ S−1 − S−10 with S0
the free quark propagator. However, this definition holds
ultraviolet divergence, which should be subtracted to get
the physical pressure. Herein, we take the subtraction
scheme according to the relation [128]

T
X∞
n¼−∞

fðp0 ¼ iωn þ μÞ

¼
Z

i∞

−i∞

dp0

2πi
fðp0Þ þ

I
dp0

2πi
fðp0Þ

−
Z

i∞þμþϵ

−i∞þμþϵ

dp0

2πi
fðp0Þ

1

eðp0−μÞ=T þ 1

−
Z

i∞þμ−ϵ

−i∞þμ−ϵ

dp0

2πi
fðp0Þ

1

e−ðp0−μÞ=T þ 1
; ð9Þ

with the integral contour shown in Fig. 1. The second
contour integration on rhs in Eq. (9) is a term independent
of temperature. This term will get a finite value if there is
singularity within the contour. For the Nambu solution of
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the gap equation, owing to the dynamical mass, there
is no singularity within the contour,1 and thus it con-
tributes only in the Wigner phase. The last two terms
represent the temperature effect, and it can be seen that
the exponential damping factor ensures that there is no
additional divergence when including the temperature
effect. The first integration term on the rhs in Eq. (9)
contains the divergence of the effective action, and hence
the thermal properties could be obtained by subtracting
this integration from the numerical data, the lhs. The
practical algorithm to fulfill the subtraction is straight-
forward [41]: solve the quark gap equation at a given
ðμ; TÞ pair for a large number of Matsubara frequencies;
at each ðμ; TÞ, obtain smooth interpolations in p0 for
the three scalar functions in Eq. (3); and then compute
the difference between the sum, lhs, and the first
integration, rhs.

III. PHASE DIAGRAM AND UNIFORM
THERMAL PROPERTIES

We first give the phase diagram in the μ-T plane of the
two flavor system with renormalization-group-invariant
current-quark mass mu;d ¼ 6 MeV via the chiral suscep-
tibility criterion with the susceptibility being defined in the
framework of DSEs as [30,42]

χq ¼
∂Bð~p2 ¼ 0; ~ω2

nÞ
∂m0

: ð10Þ

In the calculation, the parameter(s) taken is (are), as in
many previous works, ω ¼ 0.5 GeV with the restric-
tion Dω ¼ ð0.8 GeVÞ3.
It has been known that, in the first-order phase transition

region, the susceptibility of the DCSB phase and that of the
DCSphase diverge at different locations. The set of the states
for the susceptibility of each phase to diverge identify a
boundary. The region between the two boundaries is just the
coexistence region which consists of a stable phase and a
metastable phase (in detail, the DCSB phase changes from
stable to metastable, and the DCS phase varies from
metastable to stable, as the chemical potential increases at
a certain temperature). In the crossover region, the suscep-
tibility does not diverge, and thus, as usual, we define the
location for the susceptibility to take its maximum as the
phase transition point. Since the critical end point (CEP)
connects the two regions and thus will combine both the
characters, that is, the susceptibilities of the two phases
diverge at the same location. The obtained phase diagram is
shown in Fig. 2. It is evident that the crossover takes place in
the low chemical potential region.Beyond the location of the
CEP ðμχ;Eq ; Tχ;EÞ ¼ ð111; 128Þ MeV, the chiral phase tran-
sition of QCD becomes a first-order transition. Since the
nucleation process describes the phase transition from a
metastable phase to a stable phase, we find that the chiral
phase transition takes place at different locations for differ-
ent processes [81]. TheDCSB to DCS phase transition takes
place at higher chemical potential until the higher bound of
the coexistence region, while for the opposite process, the
hadronization process is accomplished at low chemical
potential until the lower bound of the coexistence region.
The phase diagram could be converted into the plane of

temperature and baryon number density nB with the relation

nB ¼ 1

3
nq ¼

1

3

∂P
∂μq ; ð11Þ

FIG. 1. Sketch of the integral contour in Eq. (9).

FIG. 2. Obtained phase diagram in terms of temperature and
quark chemical potential.

1Herein, there exists in fact a problem that, because the
propagator of the physical quark in the Nambu phase will always
have a certain mass pole structure, the quark propagator of the
Nambu phase may involve singularities within the contour.
However, if we take the Mð~p2 ¼ 0;ω0Þ in Euclidean space as
an approximation of the physical mass poles, we find that for the
Nambu phaseMð~p2 ¼ 0;ω0; μÞ is always larger than the μ in the
case beyond the chiral limit. This fact leads us then to this
argument. Meanwhile, in our practical calculation, due to the
fact we mentioned in the follows and the numerical data in
Euclidean space manifest, only the first term of the formula enters
in the regulation procedure. We neglect then the contribution of
the singularities of the quark propagator of Nambu phase
temporarily.
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where μq refers to the quark chemical potential and nq is the
quark number density.
The obtained result is displayed in Fig. 3. The number

densities of the two phases in the hadronization process are
shown as the dashed curve, while those for the opposite
process are depicted as the dotted curve. For each curve,
there are two values at every certain temperature corre-
sponding to the different number densities of the two
phases. The larger one is the number density of the DCS
phase, and the smaller one is that of the DCSB phase.
As the temperature increases, they converge gradually at
the CEP and become identical as the phase transition
becomes a crossover. The energy density at the CEP is
Eg ¼ 0.377 GeV · fm−3, and the baryon number density at
the CEP is nB ¼ 2.02n0 with n0 ¼ 0.16 fm−3, the satu-
ration baryon number density of nuclear matter.
After that, we obtain the entropy density with the

Duhem-Gibbs relation:

sV ¼ 1

T
ðϵþ P − μnÞ ¼ ∂P

∂T : ð12Þ

The obtained results are shown in Fig. 4. It is evident
that, for the phase transition from the DCSB to the DCS
phase, the entropy density increases; while in the opposite

process, the hadronization process, the entropy density of
the DCS phase is still larger than that of the DCSB phase. It
is apparent that this result violates the increasing entropy
principle and hence makes it impossible for the phase
transition from DCS to DCSB (hadronization) to take place
automatically as temperature decreases, which is just the
so-called entropy puzzle in the hadronization process.
People might assume that after the hadronization process
the released energy will increase the volume of system and,
in turn, the total entropy still increases even though the
entropy density of the system decreases. However, during
the phase transition process, when the hadron bubble
emerges in the DCS state, the interface tension constrains
the increase of the bubble’s volume. Thus, at this moment,
the key to solving the entropy puzzle would be the
inhomogeneity, i.e., the interface between the distinct
phases of the system [81]. When the phase transition takes
place, the two phases meet at an interface, which gives
additional interface entropy. With this part retrieved for the
total entropy, we may find that the total entropy density
increases in the hadronization process.

IV. THERMODYNAMICS INCLUDING THE
INTERFACE EFFECT

As mentioned above, with the Duhem-Gibbs relation, we
can only get the thermodynamic properties of uniform bulk
matters. Reference [81] provides a hint that, to solve the
entropy puzzle, it is necessary to consider the effect of the
interface. As the contribution of the interface is taken into
account, the total free-energy variance of the matter around
the interface holds,

dF ¼ −ΔPdV − SAdT þ γdA; ð13Þ

where ΔP is the pressure difference between the two
phases, SA is the interface entropy, γ is the interface
tension, and A is the interface area. For a stable interface,
with the Maxwell relation, we obtain straightforwardly the
relation between the interface entropy SA and interface
tension as

SA ¼ A · sA ¼ A

�∂SA
∂A

�
V;T

¼ −A
�∂γ
∂T

�
V;T

; ð14Þ

where sA is the interface entropy density.
The total entropy density of the system could then be

written as

stotðTÞ ¼ sV þ A
V
sA; ð15Þ

where V and A are, respectively, the volume of the system
and the area of the interface. The ratio A=V is hard to obtain
completely and accurately. However, we can intuitively
make an assumption that the system is composed of lattices

FIG. 3. Obtained phase diagram in terms of temperature and
baryon number density.

FIG. 4. Obtained variation behavior of the sV of the two phases
in the first-order phase transition region with respect to temper-
ature. Left panel: in the process from the DCS to DCSB phase;
right panel: in the process from the DCSB to DCS phase.
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with length 2R, and each of the lattices includes a spherical
bubble with radius R. Then, the relation between the A
and the V can be approximately given as A=V ≈ π=ð2RÞ,
where the R is the average radius of the bubbles formed
during the phase transition process. Such a radius can be
extracted from the stationary condition of free energy
[combining the geometric property and the result from
Eq. (13)] as

3

π
R ¼ dV

dA
¼ γ

ΔP
: ð16Þ

Taking the phenomenological expansion of the free-
energy density for the first-order phase transition system
[82], we have

fð~rÞ ¼ nμþ 1

2
Cð∇nÞ2; ð17Þ

where C ¼ a2

n2B
Eg. To evaluate the free energy of our

interested system in the DSE calculation, we take nB
and Eg to be the baryon number density and the energy
density at the CEP. For the parameter a, the measure of the
interface’s thickness, we choose it to be 0.33 fm as that in
Refs. [81,87].
The density distribution could be obtained through the

variation of free energy under the restriction of normali-
zation according to the equilibration condition,

0 ¼ δ

Z �
nð~rÞμT ½n� þ

1

2
Cð∇nÞ2 − μ0nð~rÞ

�
d~r; ð18Þ

where μT ½n� and μ0 are the distribution of chemical
potential and uniform chemical potential, respectively.
The equation of motion for the spherical case could be

written as

ΔfT þ 1

2
C

�∂n
∂r

�
2

¼ 0; ð19Þ

where ΔfT ¼ fTðnÞ − fMðnÞ is the difference between the
free-energy densities of the uniform matter at different
conditions defined in Ref. [82] and fM is the Maxwell
construction of the free energy defined as

fMðnÞ ¼ fTðnLÞ þ
fTðnHÞ − fTðnLÞ

nH − nL
ðn − nLÞ; ð20Þ

where nH and nL are the densities of the two coexisting
phases. ΔfT vanishes at the boundary and is positive in
between and thus can be considered as the free energy
gained by undergoing a phase mixture. The interface
tension which is the deficit in free energy per unit interface
area could then be expressed as

γðTÞ ¼
Z

∞

−∞
ΔfTdx ¼

Z
nH

nL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C
2
ΔfTðnÞ

r
dn: ð21Þ

The equation of motion has been used to obtain the
second relation in Eq. (21). This relation is significant since
it indicates that the interface tension is independent of the
size scale of the system and thus an intensive quantity. With
the relation in Eq. (14), we find that the interface entropy is
proportional to the area of the interface. Generally, entropy
is an extensive quantity with S ∼ R3, but the interface
entropy satisfies SA ∼ R2. Especially in the strong coupling
limit, the uniform entropy of strongly interacting particles
is small, and thus the interface part takes up a great
proportion. The total entropy of the system will then tend
to satisfy the area law in the limit. Therefore, the area law
for the entropy indicates that the system becomes strongly
coupled, and the interface effect decides most of the thermal
properties of the system. Our present result provides
evidence for the area law of the entropy [98,99] directly
from the view of strong-interaction theory (QCD).
After solving the equation of motion, we get directly the

density distribution at every temperature from the DSE
approach. The obtained results of the baryon number density
distribution are exhibited in Fig. 5. It is apparent that, for the
process from the DCS phase to the DCSB phase, the
hadronization process, the DCSB phase grows up inside
the bubble as the radius gets larger, and the DCS phase plays

FIG. 5. Obtained baryon number density distribution at some
temperature T in the two processes. Upper panel: for the process
from the DCS to DCSB phase; lower panel: for the process from
the DCSB to DCS phase.
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the role of the surrounding. While for the process from
DCSB to DCS phase, the feature is just in the opposite.
The interface tension could be obtained straightforwardly

through Eq. (21). In Fig. 6, we show our results of the
temperature dependence of the interface tension for the two
processes. It is evident that the interface tension of the
hadronization process is smaller than that of the opposite at a
certain temperature, due to the fact that the particle density
distribution regions are different. The interface tension at
zero temperature is 25.4 MeV=fm2 for the hadronization
process and 40.0 MeV=fm2 for the opposite. Such results
coincide with those given in other calculations (e.g.,
Refs. [76,81,82]) excellently. As the temperature increases,
the interface tension decreases monotonically and vanishes
near the CEP. For the convenience of being able to imple-
ment it elsewhere, we give approximately the temperature
dependence of the interface tension in the form

γðTÞ ¼ aþ beðc=Tþd=T2Þ; ð22Þ
with parameters listed in Table. I.
We take then the first-order derivative of the interface

tension with respect to temperature and obtain the interface
entropy density. The obtained results of the temperature
dependence of the interface entropy density in the two
phase transition processes are shown in Fig. 7. Our above
discussion manifests that the interface tension and the
interface entropy make a contribution in the coexistence
region, owing to the difference of the particle number
densities of the two phases; thus, it vanishes at the CEP.
Figure 7 shows obviously that, in both processes, the
interface entropy densities experience a rapid increase at
intermediate temperature and tend to be zero at zero
temperature and at the CEP, as expected in general.

After that, we identify the bubble size to obtain the total
entropy density. The typical bubble size during the phase
transition could be estimated through Eq. (16). We illustrate
the obtained results as the solid lines in Fig. 8. It is apparent
that the radius barely changes at low temperature, until
about T ∼ 110 MeV, and the radius increases drastically
thereafter in both the processes. In more detail, the radius in
hadronization (from DCS to DCSB) process is smaller at
the same temperature since the process takes place at lower
chemical potential (density).
Combining the results obtained above, we can get even-

tually the contribution of the interface entropy to the total
entropy density (AV sA ¼ π

2R sA) of the system. In Sec. III, we
have the entropy density of the bulk matter without the
interface,which shows that, in both the processes, the entropy
density of the DCS phase is larger than that of the DCSB
phase, which violates the increasing entropy principle during
the hadronization process. After adding the contribution of
the interface entropy density to the total entropy density, we
find that the total entropy density of the system increases in
both the phase transition processes as shown in Fig. 9.
Recalling Eq. (16) and the derivation process, one can

notice that we have not yet considered the thickness of the

FIG. 6. Obtained variation behavior of the interface tension
with respect to temperature. Left panel: for the process from the
DCS to DCSB phase; right panel: for the process from the DCSB
to DCS phase.

TABLE I. Fitted parameters of interface tension in Eq. (22).

a=ðMeV=fm2Þ b=ðMeV=fm2Þ c= MeV d=GeV2

DCS → DCSB 25.4 −1.5 736 −0.048
DCSB → DCS 40.0 −8.1 399 −0.025

FIG. 7. Obtained temperature dependence of the interface
entropy density in the two processes. Left panel: for the process
from the DCS to DCSB phase; right panel: for the process from
the DCSB to DCS phase.

FIG. 8. Obtained temperature dependence of the bubble size in
the two process. Left panel: in the process from the DCS to
DCSB phase; right panel: in the process from the DCSB to
DCS phase.
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bubble’s surface except for introducing a parameter in the
free-energy expansion to determine the interface tension.
The above mentioned method is usually denoted as the
thin-wall approximation. In fact, one can determine the
bubble size directly from the density distribution, that is,
namely, that beyond the thin-wall approximation, where the
size reads as the radius corresponding to the steepest
change of the density distribution (the results at some
temperatures have been displayed in Fig. 5). With such a
definition of the bubble size, we can also get the radius of
the bubble (shown as the dashed line in Fig. 8) and the
interface entropy density. In turn, we obtain the temperature
dependence of the total entropy density as illustrated in

Fig. 10. It manifests evidently that, when altering the
definition of the size, the total entropy density in each
of the two phase transition processes changes quantita-
tively, but not qualitatively. In both cases, the interface
effect modifies the total entropy density of the system and
makes the hadronization process coincide with the increas-
ing entropy principle.

V. SUMMARY

In summary, we studied some thermodynamic properties
of QCD matter, especially those in the first-order phase
transition region via the Dyson-Schwinger equations
approach. We obtained the phase diagram of the chiral
phase transition in terms of the temperature and the
chemical potential and that in terms of temperature and
baryon number density with a proper subtraction scheme to
get the quarks’ pressure and the related thermal quantities
of the system. We calculated the entropy densities of both
the DCSB and the DCS phases in the first-order phase
transition region and found that the entropy density of the
DCS phase is always larger than that of the DCSB phase in
both the phase transition processes of uniform bulk matter.
We then took the free-energy expansion scheme with the
particle number density distribution obtained in the DSE
calculation being the input and included the contribution of
the interface demonstrating the inhomogeneity of the
coexistence region. We calculated further the interface
tension and the interface entropy density and found an
area law for the interface entropy. After taking the interface
effect into account, we observed that the total entropy
density increases in both the DSCB to DCS and the DCS to
DCSB processes of the first-order phase transition and thus
solved the entropy puzzle in the hadronization process. In
addition, we would like to mention that our present work
provides evidence for the violation of the increasing
entropy principle in some processes possibly resulting
from having not taken all the effects, for instance, the
structure and the entanglement among the ingredients,
completely.
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