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We analytically investigate the thermodynamic variables of a hot and dense system, in the framework of
the Tsallis nonextensive classical statistics. After a brief review, we start by recalling the corresponding
massless limits for all the thermodynamic variables. We then present the details of calculation for the exact
massive result regarding the pressure—valid for all values of the q parameter—as well as the Tsallis T, μ,
and m parameters, where the former characterizes the nonextensivity of the system. The results for other
thermodynamic variables, in the massive case, readily follow from appropriate differentiations of the
pressure, for which we provide the necessary formulas. For the convenience of the reader, we tabulate all of
our results. A special emphasis is put on the method used in order to perform these computations, which
happens to reduce cumbersome momentum integrals into simpler ones. Numerical consistency between our
analytic results and the corresponding usual numerical integrals are found to be perfectly consistent.
Finally, it should be noted that our findings substantially simplify calculations within the Tsallis
framework, which is extensively used in many different fields including high-energy nucleus collisions;
thus, we hope to shed light on a number of possible applications.
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I. INTRODUCTION

Phenomena best described by power law distributions
are present in various branches of physics [1–3], and the
Tsallis power law distribution [4] is able to describe a
number of those [5].
One of the interesting features of this distribution is

that it bridges the power law type of distributions to the
exponential ones. As can be seen from Sec. II, the Tsallis
distribution itself is a power law for values of the q
parameter greater than one, while it reproduces the usual
Boltzmann-Gibbs distribution in the limit q → 1.
This framework is then extensively used in order to

describe transverse momentum distributions in high-energy
collisions. The PHENIX and STAR Collaborations [6–8]
at the Relativistic Heavy Ion Collider (RHIC) in BNL and
the ALICE, ATLAS, and CMS Collaborations [9–14] at the
Large Hadron Collider (LHC) in CERN have indeed
pioneered the use of this distribution in the field of
experimental particle physics. Successful descriptions of
the experimental transverse momentum distribution, the
longitudinal momentum fraction distribution, as well as the
rapidity distribution of hadrons off the eþe− and p − p
collisions have been obtained in Refs. [15–21].
The distribution is essentially described by two param-

eters: the first one, namely q, allows for interpolating
between a powerlike behavior and an exponential one,
while the second is the Tsallis temperature T. It is also

possible to supplement the parameters with a mass m and
a set of chemical potentials. In the present work, we will
restrict ourselves to one species, but the generalization to
a finite number of species is straightforward. Interpreting
the q and T parameters in terms of the parameters of the
usual Boltzmann-Gibbs distribution—a question of much
conceptual interest—has been investigated and we point
out Ref. [22] for more information on the matter.
Before proceeding further, we would like to draw the

attention of the reader to the longstanding latent con-
troversy about potential conceptual problems within this
framework. The predictive power of the framework, for
example, did receive some attention in Refs. [23–25].
This question was raised upon the release of an
interesting paper [26] where it was explicitly shown,
in two specific examples only, that some distributions
expected to be powerlike actually turned out to be
exponential. As a matter of fact, the present work is
intentionally void of any such investigations, as we do
not aim at these questions at all. Instead, we take this
framework as a starting point and use a rigorous method
in order to access analytic results regarding the under-
lying thermodynamics. As it is presently widely used,
we hope that our work will be able to help in a number
of related applications and investigations.
As previously mentioned, the Tsallis thermodynamics

defined for q ≥ 1 reduces to the Boltzmann-Gibbs one
in the limit q → 1. And just like for the Boltzmann
statistics, one can describe Tsallis thermodynamic var-
iables such as the number density, the energy density,
the pressure, and the entropy density for values of q
above one. We refer to Sec. II for a more detailed
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introduction on this topic. As is well known, analytical
expressions for the Boltzmann thermodynamic variables
can be represented in terms of modified Bessel func-
tions. There have been attempts to obtain their counter-
parts in the Tsallis framework, in the massive case, by
Taylor expanding and further truncating the distribution
[27–29] prior to integrating over the momentum. Up to
recently, the state-of-the-art was an expansion up to and
including the order Oðq − 1Þ2. However, such an early
truncation of the series automatically affects the con-
vergence properties of the results, which makes them
ultimately restricted by ratios typically depending on
values of the energy, the temperature, and q [28], where
the latter is usually obtained by fitting actual exper-
imental data, and there is no control on the range of
values for q. Unfortunately, the typical q fitted values
are most often beyond reach in respect to the con-
vergence of the truncated expansion. This is one of the
main reasons for analytically investigating the full
massive results, valid for all q.
In this article, we then give explicit analytical

representations for the Tsallis pressure in the massive
case (from which one can obtain any thermodynamic
variables by simple differentiations), making use of the
well-known Mellin-Barnes (MB) contour integral rep-
resentation (see Ref. [30] and Refs. [31,32] for reviews
and references on this topic), applied to the Tsallis
distribution prior to integrating over the momentum. In
this way, the typically cumbersome momentum integral
is drastically simplified by means of mapping to the
complex plane. It is then rather simple to perform this
integration which, upon a careful choice in wrapping the
contour onto one side of the real axis, finally leads to a
series of residues involving the gamma function. This
type of series usually admits analytic closed forms in
terms of hypergeometric functions. For the sake of
cross-checking, the numerical integration of these var-
iables, using, for example, MATHEMATICA, matches
perfectly the numerical evaluation of the analytic for-
mulas. As a consequence, we particularly hope that our
exact results will replace lengthy and time-consuming
subroutines among usual fitting procedures and regard-
ing a number of phenomenological uses, especially (but
not only) those relevant to the LHC and RHIC.
This paper is organized as follows. We start with a

brief review of the definitions for the Tsallis thermody-
namic variables in the next section II, based on a form of
the Tsallis distribution described in detail in Refs. [33–36].
In Sec. III, we tabulate all of our forthcoming results,
before explicitly calculating the Tsallis thermodynamic
variables in the massless limit in Sec. IV. We then
generalize the calculation to the massive case and give
the full details of the computation for the corresponding
Tsallis pressure in Sec. V. Finally, in Sec. VII, we present a
summary of our results.

II. REVIEW OF THE TSALLIS
THERMODYNAMICS

The Tsallis thermodynamic quantities, for a system of
massive particles, can be written as integrals over certain
combinations of the Tsallis distribution f, the modulus of
the momentum p≡ jpj, and the energy Ep ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
.

The distribution is defined for any q ≥ 1 by

f ≡
�
1þ ðq − 1ÞEpðmÞ − μ

T

�− 1
q−1
; ð1Þ

which, aside from q and T, contains also the chemical
potential μ as a parameter. It is now obvious that the above
reduces to the Boltzmann-Gibbs exponential distribution in
the limit q → 1.
It can be shown (see Ref. [34] for more details) that the

total entropy S, the total particle number N, the total energy
E, and the pressure P are given by

S ¼ sV ≡ −gV
Z

d3p
ð2πÞ3 ½f

qlnqf − f�; ð2Þ

N ¼ nV ≡ gV
Z

d3p
ð2πÞ3 f

q; ð3Þ

E ¼ ϵV ≡ gV
Z

d3p
ð2πÞ3 Epfq; ð4Þ

P≡ g
Z

d3p
ð2πÞ3

p2

3Ep
fq; ð5Þ

where we note that the lowercase letters stand for the
corresponding densities, with V being the volume and g the
degeneracy factor. Let us, from now on, use the variable
δq≡ q − 1 instead of q, as it will turn out to simplify most
of our expressions.
We notice that the lnq function, present in Eq. (2), is a

specific q logarithm defined for δq ≥ 0 by

lnqx≡ 1 − x−δq

δq
: ð6Þ

It interpolates between polynomial functions and reduces to
the natural logarithm when δq → 0. We further notice that
the q logarithm and the distribution must satisfy the relation
below, for any δq ≥ 0; that is, both functions must be
inverse of each other, like their analogs, and

lnqf ≡ 1 − ð½1þ δqX� 1
−δqÞ−δq

δq
¼ −X; ð7Þ

where in practice X ≡ ðEp − μÞ=T.
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We see that the above obviously holds for δq ¼ 0, as the
q functions become, respectively, the natural logarithm and
the exponential function, where the latter is the argument of
the former, and the natural logarithm does not lay onto the
branch cuts as the exponential is always positive regardless
of the sign of X. However, when δq > 0, the nature of the
involved functions changes drastically. Thus, we see that
for Eq. (7) to hold, we need 1þ δqX > 0 so that both q-
power functions are single valued for noninteger values of
the respective powers. When δq > 0, this requirement
amounts to the condition that either Ep ≥ μ or m ≥ μ, or
else m < μ and δq < T=ðμ − EpÞ if Ep < μ.
Therefore, we see that in order to keep the q logarithm

statistically meaningful (as related to the entropy), we
basically need to restrict ourselves from asymptotically
dense systems or enforce a specific constraint on the δq
variable. We shall then assume all the necessary conditions
to be fulfilled throughout the rest of the paper. Notice that
the simpler case m ≥ μ is by far more common in most of
the practical situations. From now on, we will focus on that
situation unless probing the massless limit. However, we
point out that the analysis of our computations and results,
especially regarding the convergence regions for δq,
relevant to the case m < μ, can also be readily obtained.
Now, given the definitions (2), (3), (4), and (5), it is very

easy to show, using integration by parts, that these integrals
correspond to the physical quantities and, hence, must obey
the fundamental equation of thermodynamics,

ϵþ P ¼ Tsþ μn; ð8Þ

only if δq is constrained to be strictly smaller than 1=3. We
will come back later to this constraint on δq, as it will
explicitly appear when working out the analytic structures
of the corresponding integrals in the massless case.
Therefore, from now on, we shall keep in mind that the

consistency of the framework requires that we have 0 ≤
δq < 1=3 together with the above constraints on the
parameters, namely, the mass and the chemical potential
which we chose to be m ≥ μ. We point out that the latter is
consistent with most of the physical situations that are to be
encountered when applying the present results.
One can also show [34] that the use of fq instead of f in

order to define the thermodynamic variables leads to the
usual thermodynamic consistency conditions such as

T ¼ ∂ϵ
∂s

����
n
; μ ¼ ∂ϵ

∂n
����
s
; n ¼ ∂P

∂μ
����
T
; s ¼ ∂P

∂T
����
μ

: ð9Þ

From the first of the above equations, it is obvious that
the variable T appearing in Eq. (1) is a thermodynamic
temperature, hence, more than just another parameter.
Using the Tsallis distribution, the particle spectrum can

be written by means of more appropriate variables, e.g., in
the context of high-energy physics (HEP), as

dN
dpTdy

¼ gV
ð2πÞ2 pTmT cosh y

×

�
1þ δq

mT cosh y − μ

T

�
−1þδq

δq

; ð10Þ

where pT ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
and mT ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
T þm2

p
are the

transverse momentum and the transverse mass, respec-
tively, with m being the bare mass.
Since the value of δq is usually quite close to 0 in HEP,

the Tsallis distribution can be Taylor expanded [27–29] to
yield analytical approximations of the Tsallis thermody-
namic variables. However, as previously mentioned, the
(too early) termination of the series implies a certain
number of constraints on the energy, the temperature,
and the δq values. This is, of course, due to the fact that
a Taylor expansion of such a function, around δq ≈ 0,
effectively amounts to a Taylor expansion around
δqðmT cosh y − μÞ=T ≈ 0 (see Ref. [28] for more details).
Another simplification is possible, in the massless limit,

where the Tsallis thermodynamic variables have been
found to be analytically computable (see Appendix A of
Ref. [37] for a detailed computation), and that will be the
subject of our discussion in Sec. IV. Before doing so, let us
summarize all of our results for the convenience of the
readers interested in direct applications.

III. READY-TO-USE FORMULAS

A. Thermodynamic variables for m = 0 and μ= 0

Below we list the final results for the main thermody-
namic variables in the massless case and with vanishing
chemical potential. Those read

P ¼ gT4

6π2
1

ð1 − δqÞð1
2
− δqÞð1

3
− δqÞ ; ð11Þ

ϵ ¼ gT4

2π2
1

ð1 − δqÞð1
2
− δqÞð1

3
− δqÞ ; ð12Þ

s ¼ 2gT3

3π2
1

ð1 − δqÞð1
2
− δqÞð1

3
− δqÞ ; ð13Þ

n ¼ gT3

2π2
1

ð1 − δqÞð1
2
− δqÞ : ð14Þ

All results are valid for 0 ≤ δq < 1=3, as required by the
consistency of the framework.

B. Thermodynamic variables for m = 0 and μ ≠ 0

Below we list the final results for the main thermody-
namic variables in the massless case, but with a finite
chemical potential. Those read
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P ¼ gT4

6π2
ð1 − δq μ

TÞ
3δq−1
δq

ð1 − δqÞð1
2
− δqÞð1

3
− δqÞ ; ð15Þ

ϵ ¼ gT4

2π2
ð1 − δq μ

TÞ
3δq−1
δq

ð1 − δqÞð1
2
− δqÞð1

3
− δqÞ ; ð16Þ

s ¼ gT3

6π2
ð4 − μ

T − δq μ
TÞð1 − δq μ

TÞ
2δq−1
δq

ð1 − δqÞð1
2
− δqÞð1

3
− δqÞ ; ð17Þ

n ¼ gT3

2π2
ð1 − δq μ

TÞ
2δq−1
δq

ð1 − δqÞð1
2
− δqÞ : ð18Þ

Again, all results are valid for 0 ≤ δq < 1=3 as required by
the consistency of the framework, and this time the addi-
tional constraint δq < T=μ needs to be supplemented
(which happens to guarantee the absence of branch cuts,
given the δq power functions containing ratios of the
combination δqμ=T).

C. Pressure for m ≠ 0 and μ ≠ 0 in the
upper δq region

Below we display the final result for the full pressure in
the massive case, with a finite chemical potential, evaluated
in the upper δq region,

PU ¼ gm4

16π
3
2

�
T

δqm

�1þδq
δq

"
Γð1−3δq

2δq Þ
Γð1þ2δq

2δq Þ × 2F1

�
1þ δq
2δq

;
1 − 3δq
2δq

;
1

2
;

�
δqμ − T
δqm

�
2
�

þ 2

�
δqμ − T
δqm

�
×
Γð1−2δq

2δq Þ
Γð1þδq

2δq Þ
× 2F1

�
1þ 2δq
2δq

;
1 − 2δq
2δq

;
3

2
;

�
δqμ − T
δqm

�
2
�#

; ð19Þ

which is valid for 0 ≤ δq < 1=3, required by the consistency of the framework, and δq > T=ðmþ μÞ by the convergence of
the Gauss hypergeometric functions.

D. Pressure for m ≠ 0 and μ ≠ 0 in the lower δq region

Below we display the final result for the full pressure in the massive case, with a finite chemical potential, evaluated in the
lower δq region,

PL ¼ gm4

π
3
2

�
T=2

T − μδq

�1þδq
δq
�

δq2ð2 − δqÞΓð 1δqÞ
ð1 − 3δqÞð1 − 2δqÞð1 − δqÞΓð2þδq

2δq Þ

�

× 2F1

�
1þ 2δq
2δq

;
1þ δq
2δq

;
2 − δq
2δq

; 1 −
�

δqm
T − μδq

�
2
�
; ð20Þ

which is valid for 0 ≤ δq < 1=3 required by the consis-
tency of the framework and δq ≤ T=ðmþ μÞ by the
convergence of the Gauss hypergeometric function.

IV. THERMODYNAMIC VARIABLES IN THE
MASSLESS LIMIT

Let us define a more general integral, encompassing all
variables in the massless limit present in the literature, and
reproducing Eqs. (2), (3), (4), and (5), by

Iðα; βÞ≡ g
Z

d3p
ð2πÞ3

pβ−2

½1þ δq p−μ
T � αδq ; ð21Þ

where, here, α and β are nothing but just handy variables,
with the former being set to either 1þ δq or 1 at the end in
order to recover the thermodynamic variables.
The above integral is built to converge, in three dimen-

sions, upon some constraints on the various parameters.

Those encompass the fact that the integrand shall only
assume real values and the usual infrared and ultraviolet
convergence conditions. The conditions for the massless
case turn to be

1þ ReðβÞ > 0; ReðαÞ > 0; ð22Þ

T > δqμ; δq <
ReðαÞ

1þ ReðβÞ ; ð23Þ

for which we see that the first two are trivially accom-
plished, given the actual relevant set of integrals we wish to
compute. The last two, on the other hand, are not trivial at
all. Given the usual α and β values we are interested in, e.g.,
some combinations of α ¼ 1þ δq; 1 and β ¼ 2, 3, we see
that δqmust indeed be bounded at least by δq < 1=3, as we
previously mentioned. This being said, the remaining
constraint on the T and μ parameters is either not needed
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in the case of Ep ≥ μ, or fulfilled if m < μ with δq <
T=ðμ − EpÞ and Ep < μ (herem ¼ 0 in both cases). Notice
that this last constraint brings an overall limit for the
chemical potential, which is μ < 3T. Thus, we see again
that this framework must be kept away from asymptotically
dense systems.
We are now going to investigate the general integral that

one can use to both express all the thermodynamic
variables and account for the different massless variables
used in the literature. Before doing so, let us notice that
n ¼ Iðα ¼ 1þ δq; β ¼ 2Þ for the particle number
density, ϵ ¼ Iðα ¼ 1þ δq; β ¼ 3Þ for the energy density,
and P ¼ Iðα ¼ 1þ δq; β ¼ 3Þ=3 for the pressure.

A. Computing the general massless integral

After having performed the angular momentum integra-
tion, and upon redefining the variable p such that
p0 ≡ 1þ δqðp − μÞ=T, we can compute (21) using an
integral representation for the so-called beta function,

Bða; bÞ≡ ΓðaÞΓðbÞ
Γðaþ bÞ ¼

Z
∞

0

du ua−1ð1þ uÞ−ðaþbÞ; ð24Þ

where the last equality is only valid for strictly positive real
parts of both parameters. Doing so, we obtain

Iðα; βÞ ¼ gT1þβ

2π2
ð1 − δq μ

TÞ1þβ− α
δq

δq1þβ

×
Γð αδq − 1 − βÞΓð1þ βÞ

Γð αδqÞ
; ð25Þ

with the set of constraints (22) and (23). We then notice our
result agrees with the one previously derived in [37].

B. Number density

In the massless limit, the number density can then be
obtained from Eq. (25) by setting α ¼ 1þ δq and β ¼ 2.
Simplifying the arguments of some of the gamma func-
tions, we then arrive at

n ¼ gT3

2π2
ð1 − δq μ

TÞ
2δq−1
δq

ð1 − δqÞð1
2
− δqÞ : ð26Þ

From the above expression, wee see that the number
density is divergent at δq ¼ 1=2; 1, which in the
light of the previous discussion implies that the con-
dition of convergence for the corresponding integral is
0 ≤ δq < 1=2. However, we recall that for δq above 1=3,
other thermodynamic quantities do not make sense
anymore, as we are going to see in the next subsections.
Therefore, the physically relevant range remains
0 ≤ δq < 1=3, which is enough to encompass values
relevant to HEP.

C. Energy density

Similarly, the massless energy density can be obtained
from Eq. (25) by setting α ¼ 1þ δq and β ¼ 3. Using the
same tricks as above, we then arrive at

ϵ ¼ gT4

2π2
ð1 − δq μ

TÞ
3δq−1
δq

ð1 − δqÞð1
2
− δqÞð1

3
− δqÞ : ð27Þ

This time, from the above expression, wee see that the
energy density diverges at δq ¼ 1=3; 1=2; 1, which again
shows that the condition of convergence for the corre-
sponding integral is 0 ≤ δq < 1=3, precisely the physically
relevant range that we just mentioned.

D. Pressure

In the massless limit, the pressure can be obtained from
Eq. (25) by setting α ¼ 1þ δq and β ¼ 3 and dividing by
3. Using the same methods as above, this gives us

P ¼ gT4

6π2
ð1 − δq μ

TÞ
3δq−1
δq

ð1 − δqÞð1
2
− δqÞð1

3
− δqÞ ; ð28Þ

and we see that for a system of massless free classical
particles following the Tsallis statistics, we indeed have
P ¼ ϵ=3. In this case also, divergences arise at
δq ¼ 1=3; 1=2; 1, and the range of convergence is the
physically relevant one 0 ≤ δq < 1=3.

E. Entropy density

Finally, we note from Eq. (2) that the entropy density can
also be straightforwardly obtained as

s ¼ 1þ δq
δq

Iðα ¼ 1; β ¼ 2Þ − Iðα ¼ 1þ δq; β ¼ 2Þ
δq

:

ð29Þ

By doing so, we get

s ¼ gT3

6π2
ð4 − μ

T − δq μ
TÞð1 − δq μ

TÞ
2δq−1
δq

ð1 − δqÞð1
2
− δqÞð1

3
− δqÞ ; ð30Þ

again with divergences at δq ¼ 1=3; 1=2; 1, which are
avoidable if δq is in the physically relevant range
0 ≤ δq < 1=3. Notice that the above result matches the
entropy obtained by plugging in all the results except the
entropy to the fundamental thermodynamic equation (8).
We finally notice that the above results satisfy the

fundamental equation of thermodynamics and that each
variable is related to the pressure via the relevant derivative,
as it should be.
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V. THE PRESSURE FOR SYSTEMS WITH
MASSIVE PARTICLES

Unlike usual situations when applying MB techniques,
we will not keep the number of spatial dimensions arbitrary
as our integrals are defined to be convergent in the
physically acceptable range 0 ≤ δq < 1=3.
In the following, we shall always assume the above

constraint, consistent with the Tsallis statistics, to be true

(see Sec. II for more details). We also choose, for the sake
of argument, m ≥ μ—keeping in mind that situations with
bigger chemical potential than the mass can easily be
implemented as well.
We now turn toward the integral in Eq. (5), integrate

over the angular part, and perform the change of variable
p → k≡ p=m. Doing so, the expression for the massive
pressure can be rewritten as

P ¼ gm4

6π2

Z
∞

0

dk

"
k4ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p ×
1

½f1 − δq μ
Tg þ fδq m

T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
g�1þδq

δq

#
: ð31Þ

We then recall the MB contour integral representation (again, see [31], [32], and [30] for more details),

1

ðX þ YÞλ ¼
Z

ϵþi∞

ϵ−i∞
dz=ð2iπÞ

�
Γð−zÞΓðλþ zÞ

ΓðλÞ
Yz

Xλþz

�
; ð32Þ

valid here for ReðλÞ > 0 and ReðϵÞ ∈ ð−ReðλÞ; 0Þ. Notice that in the present case, λ has no imaginary part.
We can now apply the above formula to the δq-dependent denominator in (31), since ð1þ δqÞ=δq > 0 is fulfilled

given the previous assumptions. We do so with X ¼ δqm=T
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
, Y ¼ 1 − δqμ=T, and λ ¼ ð1þ δqÞ=δq, change the

order between the contour and the momentum integrals relying upon the convergence of the involved expressions, and
finally obtain

P ¼ gm4ðδq m
TÞ−

1þδq
δq

2π2Γð1þδq
δq Þ

Z
ϵþi∞

ϵ−i∞
dz=ð2iπÞ

"�
T − δqμ
δqm

�
z
Γð−zÞΓ

�
zþ 1þ δq

δq

�Z
∞

0

dk

"
k4

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
Þ1þ2δq

δq þz

##
: ð33Þ

We now want to perform the momentum integral in (33).
We see that this integral introduces another parameter,
namely z, for which another constraint will be needed.
Given the constraint, which as previously seen naturally
introduces an upper bound δq < 1=3, we see that for the
above momentum integral to be convergent, we only
further need ReðzÞ ≥ 0. This new constraint clearly indi-
cates that for further performing the last z integral by
wrapping the contour onto one of the two sides of the real
axis, only one side will be allowed if we are not to
analytically continue prior to wrapping the contour—the
one for which ReðzÞ ≥ 0. Before wrapping the contour
then, we shall keep the parameters, especially δq, arbitrary,
in such a way that the momentum integral remains
convergent (basically, δq is kept far from δq ¼ 0). Then,
when the contour is wrapped, we will be able to relax this
arbitrary constraint.
In addition, unlike with usual MB representations, one of

our parameters, namely, δq, is present both as a power and
as a multiplicative factor that must control the convergence
of the series of residues when wrapping the contour to
explicitly compute the z integral. This last factual point
significantly complicates the use of this procedure, as it
effectively introduces a nontrivial restricted range of
validity for δq, within the physically acceptable range

0 ≤ δq < 1=3 if we are to obtain a closed-form expression
for the thermodynamic functions valid at least somewhere
in the physical range.
Within the usual MB procedures, as the dimension of the

space D is kept arbitrary, one can actually analytically
continue the integrand of the contour integral as a function of
D, prior to wrapping the contour onto the side which was
originally forbidden by the constraint on z, and obtain the
corresponding closed form in the complementary part of the
restricted range for δq. Note that if we do so, we could access
the originally forbidden δq region and obtain the corre-
sponding analytic result, only at the cost of not obtaining a
closed-form expression, as in the present case. Consequently,
as we choose not to keep the dimension arbitrary, we cannot
proceed in the usual manner. However, this does not mean
that we will not be able to access the complementary part of
the restricted range over δq and in the end obtain a set of
closed forms for the massive pressure within the whole
physical range for δq. To do so, in the forthcoming
subsection, we will have to analytically continue the final
closed result for the pressure—and not the integrand prior to
wrapping the contour—to the complementary δq region. In
this way, we will obtain a set of two formulas valid in two
different ranges within 0 ≤ δq < 1=3, which are both
complementary to each other.
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Following the above procedure, and keeping in mind that we must have δq ≥ 0 such that the momentum integral does not
diverge before wrapping the contour on the right positive part of the real z axis, we obtain

P ¼ 3gm4

16π
3
2ðδq m

TÞ
1þδq
δq Γð1þδq

δq Þ

Z
ϵþi∞

ϵ−i∞
dz=ð2iπÞ

��
T − δqμ
δqm

�
z
×
Γð−zÞΓðzþ 1þδq

δq ÞΓðz
2
þ 1−3δq

2δq Þ
Γðz

2
þ 1þ2δq

2δq Þ

�
; ð34Þ

where we recall that we must close the contour onto the
right side, keeping ReðzÞ ≥ 0. The need to close the
contour onto the right side, leads to an additional condition
for the power inside the integrand whose absolute value
must then be smaller than one if we are to obtain a
convergent subsequent series over residues. This further
constraint amounts to considering δq such that

δq >
T

mþ μ
; ð35Þ

given our choice m ≥ μ, and with the overall requirement
that δq still belongs to the physical region 0 ≤ δq < 1=3.
Wewill name (35) the upper δq region investigated in the

next subsection, its counter part being the lower δq region
which we will further investigate in the following sub-
section VB.
At last for now, we shall perform the change of variable

z → 2z and apply the so-called duplication formula to some
of the gamma functions, in order to simplify their argu-
ments. Doing so, Eq. (34) then becomes

P ¼ 3gðδq m
2TÞ−

1þδq
δq

32π
5
2m4Γð1þδq

δq Þ

Z
ϵþi∞

ϵ
2
−i∞

dz=ð2iπÞ
��

T − δqμ
δqm

�
2z
×

1

Γðzþ 1
2
þ 1þδq

2δq Þ
ð36Þ

× Γð−zÞΓ
�
1

2
− z

�
Γ
�
zþ 1þ δq

2δq

�
Γ
�
1

2
þ zþ 1þ δq

2δq

�
Γ
�
z − 2þ 1þ δq

2δq

��
; ð37Þ

a representation which will be used for closing the contour
to the right side for which ReðzÞ ≥ 0 in the subregion of
0 ≤ δq < 1=3 for which (35) is fulfilled and, of course,
given the previous assumptions on the mass and the
chemical potential.
Notice that we should then encounter two distinct series

of residues from the poles of Γð−zÞ and Γð1=2 − zÞ,

respectively, when closing the contour onto the right side
as will be detailed in the next subsection.

A. Pressure in the upper q region

Closing the contour onto the right side in (37) and further
simplifying the integrand, the resulting series representa-
tion for the pressure turns to be

PU ¼ gm4ðδq m
2TÞ−

1þδq
δq

32π
5
2Γð1þδq

δq Þ
X∞
k¼0

�ð−1Þk
k!

�
T − δqμ
δqm

�
2k
Γ
�
1

2
− k

�
Γ
�
kþ 1þ δq

2δq

�
Γ
�
k − 2þ 1þ δq

2δq

��

þ gm4ð1 − δq μ
TÞ

64π
5
2Γð1þδq

δq Þðδq m
2TÞ

1þ3δq
2δq

×
X∞
k¼0

�ð−1Þk
k!

�
T − δqμ
δqm

�
2k
Γ
�
−
1

2
− k

�
Γ
�
kþ 1

2
þ 1þ δq

2δq

�
Γ
�
k −

3

2
þ 1þ δq

2δq

��
; ð38Þ

valid in the upper δq region (35) of 0 ≤ δq < 1=3, given the previous assumptions on m and μ.
Finally, the above series representation admits the following closed form, which we “aesthetically improved”,

PU ¼ gm4

16π
3
2

�
T

δqm

�1þδq
δq
�Γð1−3δq

2δq Þ
Γð1þ2δq

2δq Þ × 2F1

�
1þ δq
2δq

;
1 − 3δq
2δq

;
1

2
;

�
δqμ − T
δqm

�
2
�

þ 2

�
δqμ − T
δqm

�
×
Γð1−2δq

2δq Þ
Γð1þδq

2δq Þ
× 2F1

�
1þ 2δq
2δq

;
1 − 2δq
2δq

;
3

2
;

�
δqμ − T
δqm

�
2
��

; ð39Þ
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in terms of the so-called Gauss hypergeometric function.
This is the first closed formula for the pressure in the
massive case, and it is valid in the upper δq region (35) of
0 ≤ δq < 1=3, in the present case, given the previous
assumptions on the mass and chemical potential. We notice
that the above formula can be extended outside the
physically relevant region, as long as it remains inside
the region (35), and up to the few isolated poles such as
δq ¼ 1=3, δq ¼ 1=2, and δq ¼ 1. However, the resulting

analytic result cannot be interpreted as the Tsallis pressure
anymore since the fundamental thermodynamic relation (8)
is not satisfied.

B. Pressure in the lower q region

Using the analytic continuation of the hypergeometric
functions from [38], we get the pressure in the region δq ≤
T=ðmþ μÞ which reads, after some more simplifications,

PL ¼ gm4

π
3
2

�
T=2

T − μδq

�1þδq
δq
� δq2ð2 − δqÞΓð 1δqÞ
ð1 − 3δqÞð1 − 2δqÞð1 − δqÞΓð2þδq

2δq Þ

�

× 2F1

�
1þ 2δq
2δq

;
1þ δq
2δq

;
2 − δq
2δq

; 1 −
�

δqm
T − μδq

�
2
�
; ð40Þ

provided that δqμ < T, which is automatically satisfied
since in this region we have ðmþ μÞδq ≤ T.

VI. OTHER THERMODYNAMIC VARIABLES

Other thermodynamic variables like the number density
(n), the entropy density (s), and the energy density (ϵ) can
be obtained using the following relations:

n ¼ ∂P
∂μ

����
T
; s ¼ ∂P

∂T
����
μ

;

ϵ ¼ T
∂P
∂T

����
μ

þ μ
∂P
∂μ

����
T
− P: ð41Þ

The derivatives of the hypergeometric functions (with
respect to T or μ) appearing inside the analytical expression
of pressure can be computed using the following chain rule
(here for the temperature only),

∂2F1½a; b; c; fðT; μÞ�
∂T ¼ ∂2F1½a; b; c; fðT; μÞ�

∂f
∂f
∂T ; ð42Þ

noticing the fact that

∂2F1½a; b; c; f�
∂f ¼ ab

c 2F1½aþ 1; bþ 1; cþ 1; f�: ð43Þ

VII. SUMMARY

The thermodynamic variables which arise in Tsallis
nonextensive thermodynamics have been investigated ana-
lytically. For the massless case with zero chemical

potential, simple analytic expressions were obtained and
presented in Eqs. (11)–(14), as well as in Eqs. (15)–(18)
when considering a nonzero chemical potential. Limits on
the nonextensive variable q have been presented, leading to
a physically meaningful range of 0 ≤ q < 4=3. The case of
massive particles turns out to be considerably more
involved and use was made of the Mellin-Barnes contour
integral representation.
Explicit and detailed analytic results have been presented

for the pressure in Eqs. (19) and (20). The corresponding
results for the number density, the energy density, and
the entropy density can be obtained in a straightforward
manner by taking appropriate derivatives of the pressure.
The results obtained reduce cumbersome momentum inte-
grals, so far performed numerically, into simpler analytic
expressions. The consistency between our analytic results
and the numerical integrals has been checked.
Finally, our findings simplify calculations within the

Tsallis framework used in high-energy nucleus collisions
and in other fields of research, where nonextensive statistics
happen to be relevant.
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