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We calculate the gluon Sivers function of the proton in the valence-x region using a light-cone spectator
model with the presence of the gluon degree of freedom. We obtain the values of the parameters by fitting
the model resulting gluon density distribution to the known parametrization. We find that our results agree
with the recent phenomenological extraction of the gluon Sivers function after considering the evolution
effect. We also estimate the mean transverse momentum of the gluon in a transversely polarized proton and
find that it is within the range implied by the Burkardt sum rule.
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I. INTRODUCTION

The Sivers function [1] is a leading-twist transverse
momentum dependent (TMD) distribution function
which describes the asymmetric distribution of unpolar-
ized partons in a transversely polarized proton. It is of
great interest because it can give rise to azimuthal
asymmetries of final-state particles in various high
energy processes involving a transversely polarized
nucleon, also because it encodes a nontrivial partonic
structure in the transverse plane through spin-orbital
correlation.
In recent years, the quark Sivers function f⊥q

1T ðx; k2⊥Þ
has been extensively studied from both theoretical and
experimental sides and much progress has been made.
A significant Sivers effect in semi-inclusive deep inelastic
scattering was measured by the HERMES [2,3],
COMPASS [4–6], and the JLab Hall A Collaborations
[7]. The data on the Sivers single spin asymmetries (SSAs)
were further utilized by different groups [8–12] to extract
the quark Sivers functions of the proton within the TMD
factorization [13]. On the other hand, there are a number of
calculations on the quark Sivers function using various
QCD-inspired models [14–23]. Furthermore, TMD evolu-
tion [24–27] of the quark Sivers function is found to be
important to consistently describe the SSA data measured
at different energy scales [28].
Compared to the quark Sivers function, the knowledge of

the gluon Sivers function f⊥g
1T (for a review, see Ref. [29]) is

still limited. Even so, model calculations of f⊥g
1T ðx; k2⊥Þ

have been performed in the literature, mainly focusing on
the small x region by means of the dipole formalism
[30,31], or by employing a quark target model [32] which is

different from the realistic case of the proton target.
Besides, Burkardt [33] derived a useful constraint on
f⊥g
1T , the so-called Burkardt sum rule, which states that

the total transverse momentum of all partons in a trans-
versely polarized proton should vanish. In terms of the
Sivers function, it means that the sum of the first transverse
moments of all the quark, antiquark, and gluon Sivers
functions is zero. Very recently, the authors of Ref. [34]
performed a phenomenological estimate on f⊥g

1T ðx; k2⊥Þ
using the midrapidity data on the transverse SSA measured
in the pp → π0X process at RHIC [35].
In this work, we study the gluon Sivers function of the

proton from an intuitive model concerning the gluon
structure of the nucleon. The purpose of the study is to
provide information on f⊥g

1T in the valence-x region, which
is complementary to the phenomenological analysis on
the experimental data as well as the dipole calculation. The
main difficulty in the calculation is how to generate the
gluon degree of freedom, since in the naive parton model
the proton is composed by three valence quarks. As a first
estimate, here we consider a Fock state for a transversely
polarized proton that contains a gluon, and we group the
three valance quark as a spectator particle. We then present
the wave functions for the Fock state in the light-cone
formalism [36]. The underlying model is used to reproduce
the collinear gluon density distribution fg1ðxÞ and to obtain
the values of the parameter. Based on this, we calculate the
Sivers function using the overlap representation of the
light-cone wave functions. The final-state interaction nec-
essary to produce the nonzero phase for the gluon Sivers
function is properly taken into account through an inter-
action kernel. As a check, we also compare our numerical
result with the extracted f⊥g

1T in Ref. [34] and estimate the
mean transverse momentum of the gluon in a transversely
polarized proton.
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II. CALCULATION OF THE GLUON SIVERS
FUNCTION IN AN OVERLAP REPRESENTATION

The unpolarized gluon TMD distribution fg1ðx; k2⊥Þ and
the gluon Sivers function f⊥g

1 ðx; k2⊥Þ appear in the decom-
position of the correlation function Φgðx; k⊥; SÞ [32,33,37]

Φgðx; k⊥; SÞ ¼
1

xPþ

Z
dξ−

2π

d2ξ⊥
ð2πÞ2 e

ik·ξhP; SjFþi
a ð0Þ

×Wþ∞;abð0; ξÞFþi
b ðξÞjP; Sijξþ¼0þ

¼ fg1ðx; k2⊥Þ −
ϵij⊥ki⊥S

j
⊥

M
f⊥g
1T ðx; k2⊥Þ; ð1Þ

where Fμν is the field strength tensor of the gluon, and
Wþ∞;ab is the Wilson line ensuring the gauge invariance of
the correlator. The symbol “þ” in the subscript denotes that
the Wilson line in the operator definition of the correlator is
future pointing, which is appropriate for defining TMD
distributions in SIDIS.
In Refs. [32] and [37], the authors calculated the gluon

TMD distributions for a quark target using perturbative
QCD, in which the gluon is produced from the radiation
off the parent quark. In the case where the target is a proton,
the presence of the gluon degree of freedom is not obvious.
TheminimumFock state for the proton that contains gluon is
jqqqgi. As the four-body system is very complicated, here
we resort to a more phenomenological approach to assume
that the three quarks can be grouped into a spectator particle.
Thus, in thismodel inwhich the degree of freedomof a gluon
is present, the proton can be viewed as a composite system
formed by a gluon and a spectator particle X:

jP; Si ↦ jgsgXsXðuudÞi; ð2Þ
with sg and sX the spin indices for the gluon and the spectator
particle. In principle, the spectator has the spin quantum
number sX ¼ 1=2 or 3=2. In this work we only consider the
spin-1=2 component, that is, we assume that the contribution
from the spin-3=2 component is negligible for simplicity.
Therefore, in the casewhere the gluon is the active parton, the
Fock-state expansion of the proton with Jz ¼ þ1=2 has the
following possible form:

jΨ↑
two particleðPþ;P⊥ ¼ 0⊥Þi

¼
Z

d2k⊥dx
16π3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

×

�
ψ↑
þ1þ1

2

ðx; k⊥Þ
����þ 1;þ 1

2
; xPþ; k⊥

�

þ ψ↑
þ1−1

2

ðx; k⊥Þ
����þ 1;−

1

2
; xPþ; k⊥

�

þ ψ↑
−1þ1

2

ðx; k⊥Þ
���� − 1;þ 1

2
; xPþ; k⊥

�

þ ψ↑
−1−1

2

ðx; k⊥Þ
���� − 1;−

1

2
; xPþ; k⊥

��
; ð3Þ

where ψ↑
szgs

z
X
ðx; k⊥Þ are the wave functions corresponding to

the two-particle states jszg; szX; xPþ; k⊥i. Here szg and szX
denote the z components of the spins of the constituent gluon
and spectator, respectively, and x is the longitudinal momen-
tum fraction of the gluon. Motivated by the wave function of
the electron Fock state [36], the Fock state of which is
composed of a spin-1 photon and a spin-1=2 electron, we
propose that the light-cone wave functions appearing in
Eq. (3) have the following forms:

8>>>>>>>><
>>>>>>>>:

ψ↑
þ1þ1

2

ðx; k⊥Þ ¼ −
ffiffiffi
2

p ð−k1⊥þik2⊥Þ
xð1−xÞ φ;

ψ↑
þ1−1

2

ðx; k⊥Þ ¼ −
ffiffiffi
2

p �
M − MX

ð1−xÞ
�
φ;

ψ↑
−1þ1

2

ðx; k⊥Þ ¼ −
ffiffiffi
2

p ðþk1⊥þik2⊥Þ
x φ;

ψ↑
−1−1

2

ðx; k⊥Þ ¼ 0;

ð4Þ

where M and MX are the masses of the proton and the
spectator state, respectively, and φ≡ φðx; k⊥Þ is the wave
function in the momentum space

φðx; k⊥Þ ¼
λ=

ffiffiffi
x

p
M2 − ðk2⊥ þM2

gÞ=x − ðk2⊥ þM2
XÞ=ð1 − xÞ ;

ð5Þ

with λ the coupling of the nucleon-gluon-spectator vertex
and Mg, the gluon mass. In principle, a gluon is a massless
gauge boson. Here we keepMg in our formula following the
convention used in Ref. [36]. As shown in the next section,
we fix Mg ¼ 0 GeV in our numerical calculation.
Although thewave functions in Eq. (4) are similar to those

of the electron, there are several differences between them.
The first one is that the mass of the spectator particle MX
could be different from the mass of the proton, while in the
electron case, the spectator fermion is the same as the
electron. The second one is that the coupling for the electron
wave function e is a constant, whereas the coupling λ is not
necessary to be a constant, since there is nonperturbative
color interaction involved in the nucleon-gluon-spectator
vertex. In order to simulate the nonperturbative physics for
the vertex, we adopt the Brodsky-Hwang-Lepage prescrip-
tion [38] for the coupling λ:

λ → Nλ exp

	
−
M2

2β21



: ð6Þ

Here Nλ is a constant parameter which represents the
strength of the proton-gluon-spectator vertex, β1 a cutting
off parameter, andM the invariant mass of the two-particle
system:

M2 ¼ k2⊥ þM2
g

x
þ k2⊥ þM2

X

1 − x
: ð7Þ
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Similarly, the Fock-state expansion for a proton with
Jz ¼ −1=2 has the form

jΨ↓
two particleðPþ; ~P⊥ ¼ ~0⊥Þi

¼
Z

d2k⊥dx
16π3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

×

�
ψ↓
þ1þ1

2

ðx; k⊥Þ
����þ 1;þ 1

2
; xPþ; k⊥

�

þ ψ↓
þ1−1

2

ðx; k⊥Þ
����þ 1;−

1

2
; xPþ; k⊥

�

þ ψ↓
−1þ1

2

ðx; k⊥Þ
���� − 1;þ 1

2
; xPþ; k⊥

�

þ ψ↓
−1−1

2

ðx; k⊥Þ
���� − 1;−

1

2
; xPþ; k⊥

��
; ð8Þ

where

8>>>>>>>><
>>>>>>>>:

ψ↓
þ1þ1

2

ðx; k⊥Þ ¼ 0;

ψ↓
þ1−1

2

ðx; k⊥Þ ¼ −
ffiffiffi
2

p ð−k1⊥þik2⊥Þ
x φ;

ψ↓
−1þ1

2

ðx; k⊥Þ ¼ −
ffiffiffi
2

p �
M − MX

ð1−xÞ
�
φ;

ψ↓
−1−1

2

ðx; k⊥Þ ¼ −
ffiffiffi
2

p ðþk1⊥þik2⊥Þ
xð1−xÞ φ:

ð9Þ

Having the light-cone wave functions of the proton, we
can directly calculate the unpolarized gluon TMD distri-
bution fg1ðx; k2⊥Þ using the overlap representation

fg1ðx; k2⊥Þ ¼
X
szgs

z
X

Z
d2k⊥
16π3

ψ↑⋆
szgs

z
X
ðx; k⊥Þψ↑

szgs
z
X
ðx; k0⊥Þ;

which yields the following result:

fg1ðx; k2⊥Þ ¼
2N2

λ

16π3x
exp

	
−
k2⊥ þ L2

2ðxÞ
β21xð1 − xÞ




×
½ð1þ ð1 − xÞ2Þk2⊥ þ x2ðð1 − xÞM −MXÞ2�

ðk2⊥ þ L2
1ðxÞÞ2

;

ð10Þ

with

L2
1ðxÞ ¼ ð1 − xÞM2

g þ xM2
X − xð1 − xÞM2;

L2
2ðxÞ ¼ ð1 − xÞM2

g þ xM2
X:

After the transverse momentum k⊥ is integrated out, the
unpolarized distribution of the gluon has the form

fg1ðxÞ ¼
N2

λ

8π2x
exp ð−2aL2

2ðxÞÞ

×
�
x2ðð1 − xÞM −MSÞ2 − ð1þ ð1 − xÞ2ÞL2

1ðxÞ
L2
1ðxÞ

þ ðð1þ ð1 − xÞ2Þð2aL2
1ðxÞ þ 1Þ

− 2ax2ðð1 − xÞM −MSÞÞ

× expð2aL2
1ðxÞÞΓð0; 2aL2

1ðxÞÞ
�
; ð11Þ

where a ¼ 1=ð2xð1 − xÞβ21Þ, and

Γðn; xÞ ¼
Z

∞

x
dt

e−t

t1−n
ð12Þ

is the incomplete gamma function.
In the overlap representation, the gluon Sivers function

may be calculated from the expression [19,20]

k1⊥ − ik2⊥
2M

f⊥g
1 ðx; k⊥Þ ¼ i

X
szgs

z
X

Z
d2k0⊥
16π3

ψ↑⋆
szgs

z
X
ðx; k⊥Þ

×Gðx; k⊥; k0⊥Þψ↓
szgs

z
X
ðx; k0⊥Þ; ð13Þ

where Gðx; k⊥; k0⊥Þ is the interaction kernel which simu-
lates the gluon rescattering between the active parton and
the spectator. Originally, the overlap representation is
applied to calculate various form factors of the nucleon,
as well as the nucleon anomalous magnetic moment.
Recently, it has also been adopted to calculate the quark
Sivers functions [19,20] and quark Boer-Mulders function
[20] in the spectator model. In this work we adopt the form
of Gðx; k⊥; k0⊥Þ as follows:

Gðx; k⊥; k0⊥Þ ¼
−iCAαSðkL⊥ − k0L⊥ Þ
4πxðk⊥ − k0⊥Þ2

; ð14Þ

which is extracted from the calculation of the gluon Sivers
function in the quark target model [32,37]. Of course the
final-state interaction kernel should be model dependent.
Here we assume that the kernel in our spectator model is the
same as that in the quark target model, since in the quark
target model the spectator is also a spin-1=2 particle.
Substituting Eq. (14) into Eq. (13) and performing the

integration over k0⊥, we arrive at the result of the gluon
Sivers function in the spectator model:

f⊥g
1T ðx; k2TÞ ¼

ð1 − xÞCAαSN2
λ

8π3
Mðð1 − xÞM −MSÞ
k2⊥ðk2⊥ þ L2

1ðxÞÞ
× ðΓð0; aL2

1ðxÞÞ − Γð0; aðk2⊥ þ L2
1ðxÞÞÞÞ

× exp ð−að2L2
2ðxÞ þ k2⊥ − L2

1ðxÞÞÞ; ð15Þ

where we have used the following integration formula:

GLUON SIVERS FUNCTION IN A LIGHT-CONE … PHYSICAL REVIEW D 94, 094022 (2016)

094022-3



Z
d2k0⊥ expð−ak02⊥Þ

k2⊥ − k⊥ · k0⊥
ðk0⊥ − k⊥Þ2ðk02⊥ þ bÞm

¼ π expðabÞðΓð1 −m; abÞ − Γð1 −m; aðk2⊥ þ bÞÞÞ:
ð16Þ

III. NUMERICAL RESULTS

To present the numerical result for the gluon Sivers
function, we need to specify the values of the parameters
Nλ,MX, β1, andMg in our model. As the unpolarized gluon
distribution fg1ðxÞ in the valence region is fairly known, we
fit the spectator model result of fg1ðxÞ to the existed
parametrization for fg1ðxÞ to determine the values of the
above parameters. We will choose the GRV98 parametri-
zation [39] to perform two different fits for comparison. We
note that the same parametrization has been applied in
Ref. [34] to extract the gluon Sivers function. We select 80
data points in the interval 0.01 ≤ x ≤ 0.80 with a step value
of 0.01. We have tried to include the gluon parton
distribution function (PDF) in the smaller x region or in
the larger x region in the fit, However, we find that in this
case a good fit cannot be achieved. This indicates that our
model is applicable in the x region which is not so small
and not so large. In the first fit (denoted as fit 1) we apply
the leading order (LO) set of GRV98 gluon PDFs, while in
the second fit (denoted as fit 2) we adopt the next-to-
leading order (NLO) set of GRV98 gluon PDFs.
Furthermore, when doing the fit, we have to choose an

energy scaleQ2
0 at which our model can be compared to the

parametrization. Here we consider the scale Q2
0 as a special

parameter of the model, which means that we also search
theQ2 region of the GRV98 PDF to find the lowest χ2. The
best results for the parameters from the two fits are shown
in Table. I. In both fits we fix the parameterMg to be 0 GeV,
since the gluon should be massless. For the mass of the
spectator, we requiredMX > M, which is necessary to form
a stable proton state. In fit 1 we find that the lower possible
scale is always preferred by the fit. Therefore, in this fit we
choose the lowest allowed scale of GRV98 parametrization
as the model scale, which is 0.8 GeV2. In fit 2, the model
scale is slightly larger than the lowest allowed scale.
In Fig. 1, we plot the fitted gluon PDF fg1ðxÞ (solid line)

in our model and compared it with the GRV98 para-
metrization (dashed line). The left and right panels show

the results from fit 1 and fit 2, respectively. As the GRV98
parametrization does not provide the uncertainties for
PDFs, we cannot deduce from the fit the corresponding
errors of the model parameters. Here we assume that the
error for our model resulting in fg1ðxÞ is 30% and show the
error band in Fig. 1. Although our spectator model is
simple, we find that in both fits, the GRV98 gluon PDF can
be well described by our model with four parameters. One
can also see that a better agreement between the model
results and the parametrization is obtained in fit 1.
Using the values of the parameters obtained in the fits,

we calculate the numerical result of the Sivers function at
the model scale, and show x k⊥

M f⊥g
1T ðx; k2⊥Þ versus k⊥ ≡ jk⊥j

at x ¼ 0.15 and 0.3 in Fig. 2. For comparison, we also show
the k⊥ dependence of fg1ðx; k2⊥Þ (timed with −x). For the
strong coupling αS needed in the calculation, we adopt its
value provided by the GRV98 code for consistency. That is,
we choose αLOS ðQ2

0;LOÞ ¼ 0.47 in fit 1 and αNLOS ðQ2
0;NLOÞ ¼

0.41 in fit 2, respectively. We find that the k⊥ dependence
of the gluon TMD distribution functions changes when x
changes. More specifically, the peak of the curves shifts
from the lower k⊥ region to higher k⊥ when x increases.
The first transverse moment of the gluon Sivers function

is defined as

f⊥ð1Þg
1T ðxÞ¼

Z
d2k⊥

k2⊥
2M2

f⊥g
1T ðx;k2⊥Þ¼−ΔNfð1Þ

g=p↑ðxÞ: ð17Þ

Here the notion ΔNfð1Þ
g=p↑ðxÞ is the one used in Ref. [34].

In the left and right panels of Fig. 3 we plot xf⊥ð1Þg
1T ðxÞ as a

function calculated from the parameters in fit 1 and fit 2,
respectively. We find that the first transverse moment of the
gluon Sivers function in our model is negative, which is
consistent with the result extracted in Ref. [34], and

f⊥ð1Þg
1T ðxÞ calculated from fit 2 at the model scale is around

30% larger than that from fit 1.
We also compare our model with the extracted gluon

Sivers function in Ref. [34]. Since the result in Ref. [34] is
given at the scale Q2 ¼ 2 GeV2, which is higher than our
model scale, it is necessary to evolve the gluon Sivers
function given at different scales to that at the same scale

for comparison. At the tree level, the f⊥ð1Þg
1T ðxÞ can be

related to the twist-3 tri-gluon function TGðx; xÞ
f⊥ð1Þg
1T ðxÞ ∝ TGðx; xÞ=M; ð18Þ

whereas the complete QCD evolution for TGðx; xÞ is given
in Ref. [40]. However, its evolution is rather complicated,
i.e., it also mixes with the more general function TGðx; x0Þ
with x ≠ x0, the quark-gluon Qiu-Sterman function [41]
TFðx; x0Þ, and so on. Here we only consider the homog-
enous term in the evolution to assume the following
evolution kernel:

PggðzÞ − Ncδð1 − zÞ − Ncð1 − zÞ
	
1þ 1

z



; ð19Þ

TABLE I. Values of the parameters in the spectator model
obtained from fitting the model to the LO (second column) and
NLO (third column) sets of the GRV98 gluon PDF.

Parameters Fit 1 (LO) Fit 2 (NLO)

Nλ 5.026 5.865
MX (GeV) 0.943 1.023
β1 (GeV) 2.092 2.307
Mg (GeV) 0 (fixed) 0 (fixed)
Q2

0 (GeV2) 0.80 0.85
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where PggðzÞ is the LO evolution kernel of the gluon to
gluon splitting function for fg1ðxÞ. We expect that the
approximation adopted here will not change the result

qualitatively. In Fig. 4, we show the evolved −f⊥ð1Þg
1T ðxÞ at

Q2 ¼ 2 GeV2 from fit 1 and fit 2, and compare it with the
gluon Sivers function extracted in Ref. [34] at the same

scale. We find that the evolution effect for f⊥ð1Þg
1T ðxÞ is

substantial. In particular, the evolution from lower scale to

higher scale increases the magnitude of f⊥ð1Þg
1T ðx;Q2Þ in the

region x < 0.2, while it decreases the magnitude of

f⊥ð1Þg
1T ðx;Q2Þ in the larger x region. However, the scale

dependence of f⊥ð1Þg
1T ðx;Q2Þ is weaker than that of

fg1ðx;Q2Þ, because of the additional terms in Eq. (19).
We also find that the in the region x < 0.1, the gluon Sivers

FIG. 1. The fitting of the model results to the GRV98 LO (left panel) and NLO (right panel) gluon density distribution fg1ðxÞ. The solid
and dashed lines represent the model results and the GRV98 parametrizations, respectively. The band corresponds to the 30% error
assigned to the model.

FIG. 2. The k⊥ dependence of the gluon TMD distribution functions in the spectator model at the model scale. The thin and thick lines
denote −xfg1ðx; k2⊥Þ and x k⊥

M f⊥g
1T ðx; k2⊥Þ, while the solid and dotted lines show the results at x ¼ 0.15 and 0.3, respectively.

FIG. 3. The first transverse moment of the gluon Sivers function f⊥ð1Þg
1T (timed with x) in the spectator model at the model scale.

The left and right panels correspond to the results calculated from the parameters obtained in fit 1 and fit 2, respectively.
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function from fit 1 is comparable with the SIDIS2 set in
Ref. [34] after the 10% tolerance band is considered. In the
region 0.1 < x < 0.5, the gluon Sivers function from both
fits qualitatively agrees with the SIDIS1 set in Ref. [34].
Finally, we calculate the average transverse momentum

of the gluon inside a transversely polarized proton:

hkg⊥i ¼
Z

d2k⊥k⊥Φgðx; k⊥; SÞ

¼ −M
Z

1

0

dxf⊥ð1Þg
1T ðxÞðS × P̂Þ

¼ hkg⊥iðS × P̂Þ: ð20Þ
The quantity hkg⊥i can be constrained by the Burkardt sum
rule and the average transverse momentum of quarks and
antiquarks. In Ref. [12], using the extraction of the Sivers
distribution functions for quarks and antiquarks, the authors
provided a determination on the allowed range of hkg⊥i at
Q2 ¼ 2.4 GeV2:

−10 MeV < hkg⊥i < 48 MeV: ð21Þ
We evolve the gluon Sivers function in our model to the
scale Q2 ¼ 2.4 GeV2 and estimate hkg⊥i in the two fits

fit 1∶ hkg⊥i ¼ 38 MeV; fit 2∶ hkg⊥i ¼ 51 MeV:

Our results show that the average transverse momentum of
the gluon from fit 1 agrees with the bound on hkg⊥i given
in Ref. [12].
A very important theoretical constraint on the Sivers

function is the positivity bound [42,43]

k⊥
M

jf⊥g
1T ðx; k2⊥Þj ≤ fg1ðx; k2TÞ: ð22Þ

We have checked that the gluon Sivers function from
our model satisfies the above inequality in the region

k⊥ ≡ jk⊥j < 2 GeV. This is similar to the quark sector
of the Sivers function in the quark-diquark model, for
which a violation of the positivity bound is observed [44]
at high k⊥. As explained in Ref. [45], the violation of the
inequality for T-odd TMDs may be due to the fact that
T-odd TMDs are evaluated to OðαsÞ, while T-even TMD
distributions are truncated at Oðα0sÞ in model calculations.
However, we find that in our model the gluon TMD
distributions are very small (less than 10−4) in the region
where the positivity bound is violated. Besides, 2 GeV is
much larger than the mean transverse momentum of the
gluon in our model. Therefore, the fact that in our model
the inequality only holds in the region k⊥ < 2 GeV is an
acceptable result, as our model is assumed to be valid in
the region where k⊥ is not so large.

IV. CONCLUSION

In this work, we studied the gluon Sivers function using a
light-cone spectator model. We treat the Fock state of the
proton state as a composite system formed by a gluon and a
spin-1=2 spectator particle, in the case the active parton is a
gluon. Using the overlap representation, we calculated the
unpolarized gluon distribution function fg1ðx; k2⊥Þ and the
gluons Sivers function f⊥1Tðx; k2⊥Þ. In the calculation, we
adopted thewave functions of the proton Fock statemotivated
by the wave functions of the electron Fock state. Besides, we
choose the Brodsky-Huang-Lepage prescription for the wave
functions in themomentum space. Furthermore, in the case of
the Sivers function, we adopt an interaction kernel that
simulates the final-state interaction between the gluon and
the spectator. The values of the parameters in the model are
determined by fitting the model resulting in fg1ðxÞ with the
GRV98 parametrization. Specifically, the LOandNLOgluon
PDF sets are adopted to obtain two sets of fit. Our numerical
calculations show that the first transverse moment of the

gluon Sivers function f⊥ð1Þg
1T in our model is negative, and is

several percent in magnitude. We also compared our model

results with the recent extraction of f⊥ð1Þg
1T and find that our

result can coincide with the parametrization of f⊥ð1Þg
1T in

Ref. [34]. In the estimate we taken into account the evolution
of the gluon Sivers function, and find that it is important to
include the evolution effect in order to compare model
calculations with phenomenological analysis given at differ-
ent energy scales. Finally, ourmodel can be suitably extended
to estimate the gluon helicity distribution and we leave it as a
future study. In conclusion, our study may provide useful
information of the gluon Sivers function from an intuitive
model concerning the gluon structure of the nucleon.
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FIG. 4. The first transverse moment of the Sivers function
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