PHYSICAL REVIEW D 94, 094020 (2016)
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We present a quark-diquark model for the nucleons where the light front wave functions are constructed
from the soft-wall AdS/QCD prediction. The model is consistent with the quark counting rule and
Drell-Yan-West relation. The scale evolution of unpolarized parton distribution functions (PDFs) of protons
is simulated by making the parameters in the PDF scale dependent. The evolution of the PDFs are
reproduced for a wide range of evolution scale. Helicity and transversity distributions for the proton
predicted in this model agree with phenomenological fits. The axial and tensor charges are also shown to
agree with the experimental data. The model can be used to evaluate distributions like generalized parton
distributions, transverse momentum dependent distributions, etc., and their scale evolutions.
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I. INTRODUCTION

In recent years, there have been many activities investigat-
ing the three-dimensional structure of protons. Different
model investigations have given many interesting insights
into the nucleon structure and interrelations among different
distribution functions like transverse momentum dependent
distributions (TMDs), generalized parton distributions
(GPDs), Wigner distributions, etc., and their properties.
There have been many model calculations for integrated
parton distribution functions (PDFs), but for TMDs and
Wigner distributions, only a few such model calculations
are available. Since different experiments produce data at
different energy scales, predictions of the scale evolutions of
these different distributions are also very important. In this
paper, we build a simple but phenomenological quark-diquark
model for the nucleons that can be used to calculate all these
distributions and their interrelations, and at the same time we
also evaluate the scale evolutions of different distributions.

The quark-diquark model describes a nucleon as a
composite of a diquark spectator with a definite mass
and an active quark. The model assumes the factorization of
short-distance (hard) and long-distance (soft) dynamics in
high energy scattering and assumes that the lepton basically
scatters off a single quark in a nucleon; the other two
quarks can be treated as a composite diquark spectator.
The diquarks are the effective degrees of freedom and
the nonperturbative gluon exchanges between the two
spectator quarks are taken into account by considering
an invariant mass of the diquark. This simple model of
nucleons is very successful in describing many interesting
phenomena. There are many different variations or para-
metrizations of the quark-diquark model in the literature
[1-4]. Here we want to construct a quark-diquark model
for protons with light front wave functions, which should
not only include the valence structure but also some
of its nonperturbative ingredients. Light front AdS/QCD
provides one such choice. Light front AdS/QCD predicts a
general form of two-particle bound state wave function that
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cannot be derived from valence quarks alone [5]. One needs
an infinite number of Fock states to have that wave function
and thus it includes nonperturbative information. Recently,
the light front wave functions for the nucleons in quark-
scalar-diquark models [6,7] have been constructed from the
light front AdS/QCD prediction. These models have been
applied to evaluate many interesting properties of protons,
e.g., GPDs, Wigner distributions, TMDs etc. [8,9].
Recently, some interesting relations among the GPDs
and TMDs have been investigated [10] in the scalar diquark
model [6] with the light front wave functions modeled
from a soft-wall AdS/QCD wave function. Though the
models successfully describe many nucleon properties,
they include only the scalar diquark state. In the quark
model, the nucleons consist of three quarks of two different
flavors u and d (p = |uud),n = |udd)). In the quark-
diquark picture, we can schematically write, for example,
the proton state p = |u(ud)) + |d(uu)), where (ud) and
(uu) are the diquark states. With spin-flavor symmetry, the
diquark can be either scalar or axial vector, and hence both
of them are required to build a model. Scalar diquarks alone
cannot give the complete picture of a nucleon.

In this work, we construct a quark-diquark model with
SU(4) spin-flavor structure for the nucleons with the light
front wave functions modeled from the AdS/QCD pre-
diction, including both the scalar and axial vector diquarks.
The model is consistent with the quark counting rule and
Drell-Yan-West relation. The parameters are fitted to proton
form factors and unpolarized PDF data at the initial scale
Ho. We consider the leading order QCD evolution of the
unpolarized PDF for the proton and set the initial scale to
o = 0.313 GeV [6,11]. The scale evolution of the PDFs
are simulated by introducing scale dependence in the
parameters. The model reproduces the PDF scale evolution
up to a very high scale. The helicity distribution g; (x, u)
and transversity distribution &, (x, u) are predicted in this
model at different scales . We can also get numerical
estimation of different physical quantities to match with the
available data. We show that the predictions of tensor and
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axial charges in this model are in good agreement with the
observed data.

In Sec. II, we describe the quark-diquark model with
detailed expressions of the light front wave functions. The
parameters in the model are fitted to the proton form factors
and the details are discussed in Sec. III. In Sec. IV, we
discuss the scale evolution of the unpolarized PDFs. In
Sec. V, we discuss the polarized PDFs and the axial and
tensor charges predicted in our model. Finally, we present a
brief summary and conclusion in Sec. VI.

II. DIQUARK MODEL

In the diquark model, we assume that the virtual
incoming photon is interacting with a valence quark and
two other valence quarks form a diquark of definite mass
with spin 0, called a scalar diquark, or with spin 1, called a
vector diquark. The spin-0 diquarks are in a flavor singlet
state and spin-1 diquarks are in a flavor triplet state. The
proton state is written as a sum of isoscalar-scalar diquark
singlet state |uS%), isoscalar-vector diquark state |uA°), and
isovector-vector diquark state |dA') [3,4]. The proton state
is written in the spin-flavor SU(4) structure as

CyyldAY)*, (1)

) = Cs|uS®)* + Cy|uA®)*

where S and A represent the scalar and vector diquarks
having isospin as their superscript. Under the isospin
symmetry, the neutron state is given by the above formula
with u < d.

We use the light-cone convention x* = x% £ x°. We
choose a frame where the transverse momentum of protons

vanishes, i.e., P = (P, P+ 20 ), where the momentum of

the struck quark is p = (xPﬂ%,p 1) and that of
diquark is Py = ((1 —x)P*,Py,—p, ). Here x = p™/P*
is the longitudinal momentum fraction carried by the
struck quark. The two-particle Fock-state expansion for
J¢ = +1/2 with the spin-0 diquark is given by

dXdsz |: +(u) 1
us jE:/ “(x, +—s;xPT,
| > 2(271_)3 x(l _x) W+ ( pL)' 2 pJ_>

1
Sy )| =g )| 2)
and the light-front wave functions (LFWFs) with spin-0
diquark, for J = +1/2, are given by [12]

y (e pL) = Nso\ (x,p.),

1 )
u p +ip u
9 ps) = Ns (=) )

.2
—(u p —1ip u
ll'+( )(9@ p.)=Ns (7)4’5 )(X,PL),

xM

w=(x,p,) = Nso\" (x.p.), (3)
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where [A,Ag;xP",p,) is the two-particle state having a
struck quark of helicity 4, and a scalar diquark having
helicity Ag =s (the spin-O singlet diquark helicity is
denoted by s to distinguish it from that of the triplet
diquark). The state with a spin-1 diquark is given as [13]

d.xdsz_ +(v) 1
IvA>i=/—[w++ (x.po)|[+5+1:xP*py)
2(27)* \/x(1-x) 2

(

i (x ,pL>|——+1 XPTp )y (xpL)
1 y
30 p )y (6. =305 p )
v 1
+wf(-)(x,m)| +§— LxPt.p,)

1
+wf£”)(x,p¢)l—5—1;xP+,pL>}’ (4)

where |1,Ap: xP", p | ) represents a two-particle state with a
quark of helicity 4, = :t% and a vector diquark of helicity
Ap = £1,0(¢ripler). The LFWFs are, for J = +1/2,

+(v) w [2(pP —ip7\ w
Vit (x.pL) = N1 \/;( M )fﬂz (x,p1),

v 12 2 12
v ) = M0 ).

1w
vis (eps) = =Ny 300 (epo),

v v 1 p1+ip2 v
‘I’J—r<() >(X’PL) = Né)\@(W fﬂy(% PL).

l//i@(% pL) =0,
wW(x,p) =0, (5)

and for J = —1/2,

- v 1 pl _iP2 v
1//+E)>(X’IM) :N(())\/;<x—M </J<2)(x,m),
—\v v 1 14
vl (xpu) = Ng >\/§¢§ (xpL),

=\ v 2 v
v (xp1) = =N >\/§¢i (x.po).

—(v v 2 P1+iP2 v
v (x.p) = N, \@(—M o5 (xpL). (6)

having flavor index v = u, d. The LFWFs go(-”) (x,p,)area

1

modified form of the soft-wall AdS/QCD prediction [6]
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log(1/x) .

(e = 2 [ 1oy
Z log(1
X exXp [—6” %7(05(_ i;cz)] ) (7)

The wave functions ¢*(i = 1,2) reduce to the AdS/QCD
prediction [5] for the parameters a} = b? = 0 and 6" = 1.0.
We use the AdS/QCD scale parameter x = 0.4 GeV as
determined in [14] and the quarks are assumed to be
massless.

III. FORM FACTOR FITTING

In the light front formalism, for a spin-% composite
particle system the Dirac and Pauli form factors are defined
as [15]

(P +q;+] (+> |Pi+) = Fi(q”) (8)
2P
(0) Loy Fald?)
P P;-)=—-(q — ,
(P+q;+| 2P+| )=-q"—ig")— = )
where ¢? is the square of the momentum transferred

to the nucleon of mass M. The normalizations of form
factors for protons and neutrons are given as F7(0) = 1,
F5(0)=x?=1.793, and F}(0)=0, F5(0)=x"=-1913,
respectively. Considering the charge and isospin symmetry,
we can decompose the nucleon form factors into flavor
form factors as [16] F*") = ¢, F*“ 4 ¢, F!".
In the SU(4) structure, flavored form factors are written
in terms of scalar and vector diquarks as [4]
F(Q) =

FOQ) + R (%), (10)

F(0%) = ¢, F"(02). (11)

In the quark-diquark model, Dirac and Pauli form factors
for quarks can be written in terms of LFWFs as

(

0[S
+ T (x, p! )y +()(x p.)l. (12)
Q)= / /16;; M ep i ep)
Ayt (e’ w=™ (xp ). (13)

for the scalar diquark and
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dpJ_ +b
2
Q //163

+y T p

+W+(())

(e p v Y (x.p.)

(x, pL)
(x.p1)
(x,p1)],

O

(x, Pl)llfi

T e p Y

//dpll/ﬁ
q'—iq? 1673 10

Y (e vy (np )]

< s

(14)

(=}

(e vy (xpL)

(15)

A
3 (0?)

for the vector diquark, where p’, =p, + (1 —x)q . The
superscript A =V, VV for the isoscalar-vector diquark
and isovector-vector diquark, respectively. We consider
the frame where ¢ = (0,0,q,) and Q> = —¢*> = ¢3.

In this model, the Dirac and Pauli form factors read

FP(0%) = N3R(0%) (16)
F$(0%) = N3RY (0) (17)
AO@) = (sa SN )R 9
F7(0) = =3 Ny "Ry (Q%) (19)
F'(0?) = GN” +§N< ) ‘(0% (20)
Q) = - NPRD@), @)

where the superscripts S, V, and VV represent the
contributions with isoscalar-scalar diquark, isoscalar-vector
diquark and isovector vector diquarks, respectively.

R (0?) and R\ (0?) are defined as

_x)?
R (@)= [[ax| ) U5

(1—-x)* S
(6)? M*log(1/x)

v ()2 2
x (1 _541<Q2 log(l/x))] exp {—5’“3{21%(1/)‘)} .

(22)

+T5) (x)

(1-x)°
5

2
RY(0?) = / dx2Ty (x) exp [—5” ﬁzlog(l/ﬂ] :

(23)
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FIG. 1.
where
Ty (x) = 22 (1 = )17, (24)
Tg')(x) _ xzag—z(l _x)2b;—1, (25)
Tg”) (x) = x¥+a-1(] — x)PH-1 (26)

We find the values of the parameters a; and b; by fitting the
Dirac and Pauli form factors data taken form Refs. [16,17].
The parameters are listed in Table I. Figure 1 shows the form
factor fittings in our model.

The normalization conditions are defined as

Py 2 oy
Adxfl (x)=F;’(Q 0) = n,, (27)

1
/ dxE" (x,0) = F{(Q* =0) =«x,.  (28)
0

/ e f () = FO(@ =0)=ns (29)

0

1
/ dxE\"(x,0) = F\(Q*=0) =x,.  (30)
0

where f*(x) is the unpolarized PDF and E®(x, Q?) is the
helicity flip GPD corresponding to the valence quark of
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Flavor form factors fitting in the light front diquark model. Data are taken from Refs. [16,17].

flavor v = u, d, and according to the quark counting rules
n, =2 and ny; = 1 for protons. From isospin symmetry,
the anomalous magnetic moments for u and d quarks are
K, = 1.673 and x; = —2.033, respectively. The coefficients
C? are then determined as

C2 = 13872,
C2 = 0.6128,
c3y = 1. (31)

The flavor decomposition of any distribution function
follows the Egs. (10)—(11), with C? given above in Eq. (31).

The normalized constants N7 are found considering the
following normalizations [4]:

/ dxfO () =F0) =1, / dxf) () = F (0) = 1,
/dxfgw) (x)= Fﬁvv) 0)=1;

and the values are Ng=20191, NY =3.2050,
N = 59423, N\ = 0.9895, N\) = 1.1616. To demon-
strate the accuracy of the model, in Fig. 2, the flavor form
factors multiplied with Q2 are compared with the available
data. Even at large Q°, the model predictions are within
error bars of the experimental data.
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FIG. 2. Dirac and Pauli form factors multiplied by Q> for u and d quarks and compared with the data [16,17].

The Sachs form factors for nucleons (i = p, n) are
defined as

GH(0?) = FI(0) - S5 R0, ()
G(Q) = FI(O) + FY(0D). ()

In Fig. 3, the Sachs form factors G and G, for protons and
neutrons in this model are shown to have excellent agree-
ment with the experimental data, except for G’,. The ratios
R’ = u;G%,/G!, for protons and neutrons are also shown in
Fig. 4. They agree with the experimental data quite well.
In Fig. 4(a), our results agree with the experimental data
obtained in the Rosenbluth method, which involve one-
photon exchange, while at large O, they deviate from the
data [18] from the polarization transfer method, which
involves two-photon exchange. We also calculate the
electromagnetic radii of nucleons from

. dGL(q?
v =-6Te| 3
2Ni 6 dGil(qz)
<rM> - G;W(O) sz Q2:0, (35)

in this model. The radii given in Table II show quite good
agreement with measured data. The proton charge radius rf,
in our model is in better agreement with the muonic
hydrogen data r. = 0.84087(39) fm [19].

IV. UNPOLARIZED PDF EVOLUTION

The parton distribution function is defined as

1 dz= .
q)F@)(x) = E/mew /2

x (P: Sl (0)Ty ) ()| P S) (36)

|z+:zT:07
which depends only on the light-cone momentum fraction
x = p*/P". The proton state |P; S), having spin S, is given
in Eq. (1). For different Dirac structures we get different
PDFs, e.g., for I' = y*,yy°, ic/*y> we have the unpolar-
ized PDF f(x), helicity distribution g; (x), and transversity
distribution A (x), respectively.

The leading order QCD evolution of the unpolarized
PDF is given as [11]

1 /28, 1
[ averniem = (‘W) ) [ s
0 0

Ay (MO)

(37)
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FIG. 3. Sachs form factors GZ(")(QZ) and Gﬁw(Qz) for protons [(a) and (c)] and neutrons [(b) and (d)], respectively. The data are
taken from Refs. [20-25] for G5(Q?), Refs. [26-32] for G%(Q?), Refs. [22,33] for G},(Q?), and Refs. [34-38] for G%,(0?).
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FIG. 4. Ratio of Sachs form factor R’ = y,G%/G!, for protons [18,23-25,39-43] and neutrons [26,27,29-31,44-47].

where the anomalous dimension is given

O = 2, (3 +

at the leading order, is given as

as

n+1

2 1
(n+1)(n+2) _4;%)’ (38)

with Cp = 4/3 and S, = 9. The strong coupling constant,

B A
PoIn(p?/ AéCD)

with AQCD = 0.226 GeV. In [11], for pion PDF evolution,
the initial scale in leading order evolution was found to be
1o = 0.313 GeV. For protons, we use the same initial scale.

The LFWFs are independent of the hard evolution scale
u. Generally, the models of LFWFs are defined at the

a;(u) (39)
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lowest scale [4] and then the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi equation determines the PDF scale evolu-
tion. Thus, in the LFWF overlap representation, the
unpolarized PDFs in the light front diquark model at the
initial scale u, are obtained as

70 = [ @ vt ep )P + e p )P,

— N2 |:1x 1(] _x)2b3‘+1
S5t
+ x2a (1 _ x)Zb“-H Kz , (40)
(8“)2M? In(1/x)

for the scalar diquark, and

90 = [ @ ep P + )P

Y e p )P+ Wl (p )]

1 V)2 2 V)2
1 v v
X |:§x2‘11(] _x)2b|+1
22 (] - )2 K (41)
()M In(1/x)

for the vector diquark, where A represents the isoscalar-
vector (V) diquark corresponding to the u quark and the
isovector-vector (VV) diquark corresponding to the d quark.

We simulate the scale evolution of the PDF by making the
parameters in the PDF scale dependent, such that the values
of the parameters at 4 are the same as in the LFWFs. Thus,
at a scale y, we parametrize the expressions for the PDFs as

(8) 2 1 2a" (u) 2b% (u)+1
f X, H) = N M |:—u XN — x)=Pr

PHYSICAL REVIEW D 94, 094020 (2016)

The assumption is that, not only does a set of parameters exist
at every scale to reproduce the desired PDFs but we can also
define an evolution formula for each of these parameters
consistent with PDF evolution, starting from the initial
scale .

The flavor decomposed PDFs are given as, from
Egs. (10)—(11),

Filen) = GAY o) + G ). (44)

Fin) = o™ (o). (45)

The PDF f% (x, ) at a scale y can be written in our model
as

fxop) = N®(u) LXZalf(ﬂ)(l _ x)zb;(ﬂ)ﬂ
& (u)
2
+ x205(W=2(] — x)2b5()+3 K .
(8“(#))*M? In(1/x)

(46)

The evolution of the parameters should be such
that the PDF satisfies the master evolution equation,

Eq. (37). The overall constants N (u)=(CiN?(u)+
u)2 u)2 d)2

CY (NG () +3N (1)) and N () = Cy (4Ng" () +

%Ngdﬂ(y)) for u and d quarks, respectively. All the

normalization constants at scale u are determined by

the normalization conditions defined in Egs. ((27)-(30).

To fit the PDF data from NNPDF21(NNLO) [48], we

find that the scale dependence of the parameters can be
written as

a;(u) = at(uo) + A%(u), (47)

2 4C a, (u?
4 2] _ g K | 8100 = i) = 8500 L Fn (25T (as)
(8" (u))>M>1n(1/x) Bo  \ay(up)
42 3
. o 2 ) 50) = expldinG2 /)%, (49
7O = (585700 + 590 )
where the a¥(uo) and b¥(p,) are the parameters at u = py,
L oww | 26 () +1 given in Table I. The parameter 6* becomes unity at y for
5V(M)x ] ( —x) ] both u and d quarks, as shown in Table I. The scale-
2 s 2 dependent parts A¥(u) and BY(u) evolve as
+ xR (] — x)=2 W .
( ) (8“(u))*M? In(1/x) PUw) = aty {1 (T)]ﬁu (50)
l.'u:a’hu}’,;n_ R
(43) ’ 6 =12
TABLE I. The fitted parameters for # and d quarks.
v ay by as by o
u 0.280 £ 0.001 0.1716 £ 0.0051 0.84 +£0.02 0.2284 + 0.0035 1.0

d 0.5850 £ 0.0003 0.7000 £ 0.0002

0. 64+0 .0082 1.0

+0.0017
0'9434—0.0013 —0.0022
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TABLE II. Electromagnetic radii of nucleon in this model
compared with measured data [49].

Quantity Our result Measured data [49]
rh (fm) 0.830 +£0.025 0.877 £ 0.005
rhy (fm) 0.779 £ 0.007 0.777 £0.016
(r%)” (fm?) —0.064 +0.018 —0.1161 £ 0.0022
riy (fm) 0.758 + 0.005 0.8627 0005

where the subscript P in the right-hand side of the
above equation stands for P = A, B, corresponding to
PY(u) = AY(u), BY (), respectively. Note that at p = p,
P%(uy) = 0. The unpolarized PDF data are fitted for
u> =1, 6, 16, 30, 65, and 150 GeV>. The evolution
parameters ap ;, fp;, and yp; are given in Table III and

the §/’s are given in Table IV with the least y? per degrees
of freedom (y?/d.o.f.) corresponding to the PDF fit. The
variation of a¥(u), b¥(u), and 8”(u) with scale y is shown
in Figs. 5 and 6, respectively. At the initial scale y, the
strong coupling constant is large, a,(uy)/2z ~ 0.34, and
hence parameters evolve very fast for scales near the
initial point. The rate of evolution decays down at higher
scales where the coupling constant becomes small. In
Appendix A, we have listed the parameters at different
scales and shown the fitting of the parameters at the
above-mentioned scales.

With the fitted parameters, we predict the unpolarized
PDF at other scales and compare with NNPDF21(NNLO),
HERAPDF15(NNLO), and MSTW2008(NNLO) results
in Fig. 7. Although, to determine the evolution, we used
up to u?> =150 GeV?, Fig. 7 shows that the model
reproduces the PDF quite accurately at very high scales.
According to the Drell-Yan-West relation [50,51], the
quark distribution should go like (1 —x)” as x — 1 at
large 4 and the Dirac form factor F(Q?) ~ 1/(Q?)(+1/2
as 0% — oo, where p is related to the number of valence
quarks. For, protons, the number of valence quarks is
three, which also gives p = 3. In our model, we observe
that for u-quarks the unpolarized PDF at large u® goes as
fé~(1=x)*% as x > 1 [for d quarks, f¢ ~ (1 —x)>%],

PHYSICAL REVIEW D 94, 094020 (2016)
TABLE IV. PDF evolution parameter 6, and ¢4 for v = u, d.

& (p) & & y*/d.of.
5" 0.015 + 0.008 1.667 + 0.032 1.16
54 0.212 £ 0.0566 0.5444 + 0.1504 0.81

and F,(Q?) ~ 1/(Q%)*'° at large Q?, which are consistent
with the Drell-Yan-West relation.

With these above PDF evolution parameters we can
generate the scale evolution of the other distribution
functions, e.g., helicity distribution, transversity distribu-
tion, GPDs, TMDs, etc. Now we show that the model can
predict the helicity and transversity distributions at different
scales.

V. MODEL PREDICTIONS

A. Helicity distributions and axial charges

The polarized PDFs are evaluated as predictions of the
model. In terms of the light front wave functions, the
helicity distribution g;(x) in the quark-diquark model at
the initial scale y is defined as

1 . .
o700 = [ @ v e = @ pa) P

(51)

A 1 v v
o0 = [ oo pn)P - Y p) P

T p )P - P p )P, (52)

for scalar and vector diquarks, respectively. The scale
evolutions of the polarized PDFs are simulated by the
same scheme as the unpolarized PDF. The scale evolutions
of the parameters are the same as given in Egs. (47)—(50).
Thus, the flavor-dependent helicity distributions at a scale y
are given by

TABLE III. PDF evolution parameters with 95% confidence bounds.

P (p) % P vi 2*/dof.
Al —0.2058 + 0.0187 ~0.0318 4 0.0209 0.405 +0.0937 0.23
Bl 1.5517003 0.0598 4 0.0057 —0.4291 +0.0242 0.02
Al —0.1637 +£0.0179 —0.0066 + 0.0245 03758 +0.1111 0.13
BY 1.426 + 0.320 0.07780.0605 —0.763470 0731 0.07
Ad 0.0061 + 0.0098 —0.1535 +0.0257 1.39110748 0.14
BY 2072 +0.0193 —0.008*0%21 0.1728 +0.0972 0.10
AS —0.2493 + 0.0456 —0.0116 + 0.0408 0.1371 +0.1783 0.29
BY 0.1399 +0.0737 0.0247 4 0.1086 05733100317 0.10
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FIG. 8. Helicity PDF at 4> = 1 GeV? compared with Ref. [55]. The (yellow) error bands in our model come from the errors in the

evolution parameters given in Table III.

Helicity PDFs g,(x) are shown in Fig. 8, at scale
u?> =1 GeV?, for u and d quarks. Following [4,54], we
include a constant relative error of 10% to gf and 25%
to g‘f in the data taken from [55]. The errors in the model
predictions are due to the uncertainties in the parameters as
listed in Table V. The model predicts the helicity PDF for u
quarks quite well.

The axial charges that are obtained from the first moment
of the helicity distributions are given in Table V and
compared with the measured data [56]. The axial charge
of the proton is defined as

ga = 9ga — gﬁ‘ (55)

The model prediction is in excellent agreement with the
experimental data. The second moments of the helicity
distributions are also presented in the table, where

QZU) _ fol dxxg(x) and ggl) is defined as

o = / ' dax(gh () — g1 ).

In Fig. 9(a), the scale evolution of the axial charges for u
and d quarks are shown. The top panels in Fig. 9(a)
represent the axial charge of the proton, g,. Results from
other models and experimental data are shown in the same
plot for comparison. Results from other models, e.g.,
NQM, LFCQM, and LEyQSM [57] at u?> = 0.26 GeV?
are in agreement with our model prediction, and again our
model predicts the experimental data at u> = 1 GeV?
(shown in red in Fig. 9) quite well. In Fig. 9(b), the scale

(56)

evolution of the second moment of the helicity distributions
for both u and d quarks are shown and compared with other
model predictions and experimental data. The top panel
in the plot represents g&l). Our model predictions show
excellent agreement with the experimental data available

at u? =1 GeV>.

B. Transversity distributions and tensor charges

The transversity distributions in this model read
hi(x.p)

| | "
- (C§N§(u) — G} =N %») S (1 — )2

Y3 5
(57)
1 1
(e, t) = =Chy g Ng' () o0 (1 = x)10+1. (58)

Transversity PDFs £ (x) are shown in Fig. 10, at scale
u> =1 GeV?, for u and d quarks. The model predictions
are shown to agree with the experimental data [58]. The
first moment of the transversity distribution gives the tensor
charge gr. The model again predicts the tensor charges
quite accurately as shown in Table VI. For both u and d
quarks, we have |¢4| <|g4]. In Fig. 11(a), we have
compared our model predictions of the tensor charge for
both # and d quarks with other models along with the
phenomenological fit of experimental data [58]. Similar
comparisons are given in studies by Anselmino ez al. [58]

TABLE V. Axial charge and second moment of helicity distribution at the scale 4> = 1 GeV? and compared with
the Leader-Sidorov-Stamenov fit to experimental data [56].

9a g4 9a g1 g1 gy
Our result 0.71 £ 0.09 -0.547013 1257038 0.18£0.15  —0.05275%% 0.2310:13
Measured data [56] 0.82£0.07 -045+£0.07 127+£0.14 0.19+£0.07 -0.06+0.07 0.25+0.14
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(a) Scale evolution of axial charge in the range x> = 0.1 to 1.6 GeV?2. We compare our result with other models, e.g., NQM,

LFCQM, LFyQSM [57] for x> = 0.26 GeV? and also with the experimental value at 4> = 1.0 GeV? [56]. (b) The second moment of
helicity and a comparison with measured value [56] at u> = 0.26, 1.0 GeV?. The top panels in the plots represent (a) the total proton
axial charge and (b) the second moment of the total helicity distribution.
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FIG. 10. The transversity distribution at u> = 2.4 GeV? for (a) u quarks and (b) d quarks. Our results are compared with Anselmino

et al. [58].

and Wakamatsu [59]. Our predictions fall within the
uncertainty bands of the phenomenological fits for both
u and d quarks. The ratio of the two tensor charges |g%/ g4 |
is totally scale independent and a better quantity to compare
with other models. Figure 11(b) shows the comparison of

TABLE VI. Tensor charge at the scale y> = 0.8 GeV2. Our
results are compared with measured data [64].

gr 9‘11 gr

Our result

that ratio with other model predictions. Our model predicts
|g¢/g%| = 0.38, which is very close to the phenomeno-
logical prediction.

This model also satisfies the Soffer bound, which at an
arbitrary scale y is defined as [65]

MGl <51 Cen) + e (59)

In Fig. 12 we show the lhs and rhs of the above equation
multiplied by x for both v = u, d and at both low and
high scales. According to the Soffer bound, the lhs should

Measured data [64]

0.59%513

—0. 14j§;§§
—0.2025

0.51j§;£
0.7919, T
920 in Fig. 12.
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The proton momentum fraction carried by valence
quarks can be estimated from the unpolarized PDFs at
different scales u:

&W:/wmwaﬁwW@+@mm@L

- / drxlf (e p) + £ o). (60)

The values of P, with the scale are shown in Table VII. The
momentum carried by the valence quarks decreases as the
value of y” increases.

TABLE VII. Proton momentum fraction carried by valence
quarks P, with the scale . The value given within square bracket
is the ZEUS result [66] at the scale > = 7 GeV?.

W2 (Gevy) 02 0.6 1.0 7.0 10 20
P 0.60 048 045 0.38[0.55] 037 0.35

q

VI. SUMMARY AND CONCLUSION

Light front AdS/QCD has predicted many interesting
nucleon properties. Light front AdS/QCD predicts a par-
ticular form of wave function for a two-body bound state
[5]. In this paper, we have developed a quark-diquark model
for protons in which the light front wave functions are
constructed from the AdS/QCD predictions. The model is
consistent with the quark counting rule and Drell- Yan-West
relation. The model has SU(4) spin-flavor structure and
includes the contributions from scalar (S = 0) and axial
vector (S = 1) diquarks. The evolution of f (x) is simulated
by introducing scale-dependent parameters in the PDF. The
scale evolutions of the parameters are determined by
satisfying the PDF evolution in the range u?>=
0.09 GeV? to 150 GeV?2. We have given the explicit scale
evolution of each parameter in the model, so the distribu-
tions can be calculated at any arbitrary scale. Though PDF
data up to u?> = 150 GeV? are used to determine the scale

094020-13
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evolution, we have shown that our model can accurately
predict the PDF evolution up to a very high scale
(u*> = 10* GeV?). The helicity and transversity PDFs are
calculated as predictions of the model and are shown to
satisfy the Soffer bound and have good agreement with the
available data. Our model reproduces the experimental
values of axial and tensor charges quite well. It will be
interesting to study the other proton properties like GPDs,
TMDs, Wigner distributions, GTMDs, etc., and their scale
evolutions in this model, and to compare with other model
predictions.
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APPENDIX: PARAMETER FITTING
FOR PDF EVOLUTION

Scale evolutions of AY and BY are parametrized by the
parameters o7, %, and y¥ and that of 6" is parametrized
by & and &. f(x,u) is given by Eq. (46) along with
Eqgs. (47)—(49) and Eq. (50). Here we list the parameters
AY,BY, and ¢" fitted at different scales 42 in Tables VIII
and IX. The last column in each table indicates the least >
error in the PDF estimation. Each y?/d.o.f. has been
evaluated from 100 data points for different x(0 < x < 1);
i.e., for the five-parameter fit, we have 100 — 5 = 95 degrees
of freedom. The fittings of the parameters at y> = 1, 6, 16,
30, 65, and 150 GeV? are shown in Figs. 13 and 14. The data
points are extracted from the PDF data. The error bars shown
in the plots are the errors in the extracted values of the
parameters due to the uncertainties in the PDF data.

TABLE VIII.  Fitting of the PDF f/(x) at various scales for u quarks.
u? GeV? A B AY BY 5 x*/d.o.f.
1 —0.29+£0.009  1.084+0.009 —0.225+0.008 075097  1.087 £0.029 1.41
6 -0343+£0.003 0.94+0.007 -0275+0.004 055+0013 1.176+0.027 48
16 —0.365+0.001 091 +0.007  —0.2953993 0.529913  1.234+0.014 1.8
30 —0.375+£0.004 0979019 —0.3120 00 049 +£0.005  1.298 £0.018 1.2
65 —0.386+£0.002  0.89+0.004  —032379%2  047+0.009 138940025  0.54
150 -0392+£0.001  0.89+0.002  —0.3347000%  046+0.008 1515+0034 029
TABLE IX. Fitting of the PDF f,(x) at various scales for d quarks.
2 GeV? Af B Ag BY 5 x*/do.f.
1 0.02+0.007 24709 —0.2810017 0.2370011 1.43 +0.085 0.21
6 0.03£0.007  26t002 —0.297070¢ 0.3210 04 1.54 4 0.065 0.38
16 0.036+0.005  2.687007  —0.298+0.001 0.3870.0% 1.65 + 0.044 0.40
30 0.042+£0.001 2743585 —0.305 +0.002 04273998 1.75 £ 0.030 0.49
65 0.044+£0.002 2781000 —0308+0.001  046+0.010  1.82+0.048 0.59
150 0.0454+0.001 28707  —0.309+0.0008 0.491018 1.86 + 0.036 0.77
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Using Eq. (50), the data of Table VIII are fitted by varying evolution parameters o} ;, fp ;, and v ;, for u quarks [(a)-(d),

respectively]. Similar data fitting plots for d quarks (Table IX) are shown in (e)—(h).
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