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Direct CP violation in charmless three-body hadronic decays of B mesons is studied within the
framework of a simple model based on the factorization approach. Three-body decays of heavy
mesons receive both resonant and nonresonant contributions. Dominant nonresonant contributions to
tree-dominated and penguin-dominated three-body decays arise from the b → u tree transition and b → s
penguin transition, respectively. The former can be evaluated in the framework of heavy meson chiral
perturbation theory with some modification, while the latter is governed by the matrix element of the
scalar density hM1M2jq̄1q2j0i. Resonant contributions to three-body decays are treated using the isobar
model. Strong phases in this work reside in effective Wilson coefficients, propagators of resonances, and
the matrix element of scalar density. In order to accommodate the branching fraction and CP
asymmetries observed in B− → K−πþπ−, the matrix element hKπjs̄qj0i should have an additional
strong phase, which might arise from some sort of power corrections such as final-state interactions. We
calculate inclusive and regional CP asymmetries and find that nonresonant CP violation is usually much
larger than the resonant one and that the interference effect between resonant and nonresonant
components is generally quite significant. If nonresonant contributions are turned off in the
KþK−K− mode, the predicted CP asymmetries due to resonances will be wrong in sign when
confronted with experiment. In our study of B− → π−πþπ−, we find that ACPðρ0π−Þ should be positive
in order to account for CP asymmetries observed in this decay. Indeed, both BABAR and LHCb
measurements of B− → πþπ−π− indicate positive CP asymmetry in the mðπþπ−Þ region peaked at mρ.

On the other hand, all theories predict a large and negative CP violation in B− → ρ0π−. Therefore, the
issue with CP violation in B− → ρ0π− needs to be resolved. Measurements of CP-asymmetry Dalitz
distributions put very stringent constraints on the theoretical models. We check the magnitude and the
sign of CP violation in some (large) invariant mass regions to test our model.

DOI: 10.1103/PhysRevD.94.094015

I. INTRODUCTION

The primary goal and the most important mission of B
factories built before millennium is to search for CP
violation in the B meson system. BABAR and Belle
Collaborations have measured direct CP asymmetries in
many two-body charmless hadornic B decay channels,
but only ten of them have significance larger than 3σ:
B−=B̄0 → K−πþ; πþπ−; K−η; K̄�0η; K�−πþ; K−f2ð1270Þ;
π−f0ð1370Þ; K−ρ0; ρ�π∓ [1,2], and B− → K�−π0 [3]. In
the Bs system, directCP violation in B̄0

s → Kþπ− with 7.2σ
significance was measured by LHCb [4]. As for three-body
B decays, BABAR and Belle Collaborations had measured
partial rate asymmetries in various charmless three-body
modes (see [1,2] or Table I of [5]) and failed to see any
evidence.
Recently, LHCb has measured direct CP violation in

charmless three-body decays of B mesons [6–8] and

found evidence of inclusive integrated CP asymmetries
Aincl

CP in Bþ → πþπþπ− (4.2σ), Bþ → KþKþK− (4.3σ), and
Bþ → KþK−πþ (5.6σ), and a 2.8σ signal of CP violation
in Bþ → Kþπþπ− (see Table I). Direct CP violation in
two-body resonances in the Dalitz plot has been seen at B
factories. For example, both BABAR [9] and Belle [10]
Collaborations have claimed evidence of partial rate
asymmetries in the channel B� → ρ0ð770ÞK� in the
Dalitz-plot analysis of B� → K�π∓π�. The inclusive
CP asymmetry in three-body decays results from the
interference of the two-body resonances and three-body
nonresonant decays and from the tree-penguin interfer-
ence. CP asymmetries in certain local regions of the phase
space are likely to be greater than the integrated ones.
Indeed, LHCb has also observed large asymmetries in
localized regions of phase space (see Table I for Alow

CP )
specified by [6,7]
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Alow
CP ðKþK−K−Þ; form2

KþK−high < 15 GeV2; 1.2 < m2
KþK−low < 2.0 GeV2;

Alow
CP ðK−πþπ−Þ; for m2

K−πþhigh < 15 GeV2; 0.08 < m2
πþπ−low < 0.66 GeV2;

Alow
CP ðKþK−π−Þ; for m2

KþK− < 1.5 GeV2;

Alow
CP ðπþπ−π−Þ; for m2

πþπ−low < 0.4 GeV2; m2
πþπ−high > 15 GeV2: ð1:1Þ

Hence, significant signatures of CP violation were found in
the above-mentioned low mass regions devoid of most of
the known resonances. LHCb has also studied CP asym-
metries in the rescattering regions of mπþπ− or mKþK−

between 1.0 and 1.5 GeV, where the final-state πþπ− ↔
KþK− rescattering is supposed to be important in this
region. The measured CP asymmetries Aresc

CP for the
charged final states are given in Table I.
In two-body B decays, the measured CP violation is just

a number. But in three-body decays, one can measure the
distribution of CP asymmetry in the Dalitz plot. Hence, the
Dalitz-plot analysis of ACP distributions can reveal very
rich information about CP violation. Besides the integrated
CP asymmetry, local asymmetry can be very large and
positive in some region and becomes very negative in the
other region. The sign of CP asymmetries varies from
region to region. A successful model must explain not only
the inclusive asymmetry but also regional CP violation.
Therefore, the study of three-body CP-asymmetry Dalitz
distributions provides a great challenge to the theorists.
LHCb has measured the raw asymmetry Araw distributions
in the Dalitz plots defined by [8]

Araw ¼ NB− − NBþ

NB− þ NBþ
ð1:2Þ

in terms of numbers of B− and Bþ signal events NB− and
NBþ , respectively. The relation between Araw and ACP is
given in [6–8]. Two-body invariant-mass projection plots
are available in Figs. 4–7 of [8]. ForCPDalitz asymmetries
in high invariant mass regions, see [11].
Three-body decays of heavy mesons are more compli-

cated than the two-body case as they receive both resonant
and nonresonant contributions. The analysis of these
decays using the Dalitz plot technique enables one to
study the properties of various vector and scalar resonan-
ces. Indeed, most of the quasi-two-body decays are

extracted from the Dalitz-plot analysis of three-body ones.
In this work, we shall focus on charmless B decays into
three pseudoscalar mesons.
Contrary to three-body D decays, where the nonreso-

nant signal is usually rather small and less than 10% [1],
nonresonant contributions play an essential role in
penguin-dominated three-body B decays. For example,
the nonresonant fraction of KKK modes is of order
70%–90%. It follows that nonresonant contributions to
the penguin-dominated modes should be also dominated
by the penguin mechanism. It has been shown in [5,12]
that large nonresonant signals arise mainly from the
penguin amplitude governed by the matrix element of
scalar densities hM1M2jq̄1q2j0i. We use the measure-
ments of B̄0 → KSKSKS to constrain the nonresonant
component of hKK̄js̄sj0i [12].
Even for tree-dominated three-body decays such as

B− → π−πþπ−, the nonresonant fraction is about 35%.
In this case, dominant nonresonant contributions arise from
the b → u tree transition, which can be evaluated using
heavy meson chiral perturbation theory (HMChPT)
[13–15] valid in the soft meson limit. The momentum
dependence of nonresonant b → u transition amplitudes is
parametrized in an exponential form e−αNRpB·ðpiþpjÞ so
that the HMChPT results are recovered in the soft meson
limit where pi, pj → 0. The parameter αNR is fixed by the
measured nonresonant rate in B− → πþπ−π−.
Besides the nonresonant background, it is necessary to

study resonant contributions to three-body decays.
Resonant effects are conventionally described using the
isobar model in terms of the usual Breit-Wigner formalism.
In this manner we are able to identify the relevant
resonances which contribute to the three-body decays of
interest and compute the rates of B → VP and B → SP,
where the intermediate vector meson contributions to three-
body decays are identified through the vector current, while
the scalar meson resonances are mainly associated with the

TABLE I. LHCb results of direct CP asymmetries (in %) for various charmless three-body B− decays. The superscripts “incl” “low”
and “resc”denote CP asymmetries measured in full phase space, in the low invariant mass regions specified in Eq. (1.1) and in the
rescattering regions with 1.0 < mπþπ−;KþK− < 1.5 GeV, respectively. Data are taken from [6,7] forAlow

CP and from [8] forAincl
CP andAresc

CP .

πþπ−π− KþK−π− K−πþπ− K−KþK−

Aincl
CP 5.8� 0.8� 0.9� 0.7 −12.3� 1.7� 1.2� 0.7 2.5� 0.4� 0.4� 0.7 −3.6� 0.4� 0.2� 0.7

Alow
CP 58.4� 8.2� 2.7� 0.7 −64.8� 7.0� 1.3� 0.7 67.8� 7.8� 3.2� 0.7 −22.6� 2.0� 0.4� 0.7

Aresc
CP 17.2� 2.1� 1.5� 0.7 −32.8� 2.8� 2.9� 0.7 12.1� 1.2� 1.7� 0.7 −21.1� 1.1� 0.4� 0.7
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scalar density. They can also contribute to the three-body
matrix element hP1P2jJμjBi.
The recent LHCb measurements of integrated and local

direct CP asymmetries in charmless B → P1P2P3 decays
(see Table I) provide a new insight of the underlying
mechanism of three-body decays. The observed negative
relative sign of CP asymmetries between B− → π−πþπ−
and B− → K−KþK− and between B− → K−πþπ− and
B− → π−KþK− is in accordance with what expected from
U-spin symmetry which enables us to relate the ΔS ¼ 0
amplitude to the ΔS ¼ 1 one. However, symmetry argu-
ments alone do not tell us the relative sign of CP
asymmetries between π−πþπ− and π−KþK− and between
K−πþπ− and K−KþK−. The observed asymmetries (inte-
grated or regional) by LHCb are positive for h−πþπ− and
negative for h−KþK− with h ¼ π or K. The former usually
has a larger CP asymmetry in magnitude than the latter.
This has led to the conjecture that πþπ− ↔ KþK− rescat-
tering may play an important role in the generation of the
strong phase difference needed for such a violation to
occur [8].
After the LHCb measurement of direct CP violation in

three-body charged B decays, there are some theoretical
works in this regard [5,16–27]. In the literature, almost
all the works focus on resonant contributions to the rates
and asymmetries. This is understandable in terms of the
experimental observation that 90% of the Dalitz plot events
has mðhþh−Þ2 < 3.0 GeV2 [28]. The events are concen-
trated in low-mass regions, implying the dominance of
charmless decays by resonant contributions. Nevertheless,
in [5], we have examined CP violation in three-body
decays and stressed the crucial role played by the non-
resonant contributions. Indeed, if the nonresonant term is
essential to account for the total rate, it should play some
role to CP violation. In this work, we would like to study
asymmetries arising from both resonant and nonresonant
amplitudes and their interference. This will make it clear
the relative weight of both contributions and their
interference.
It has been argued in [24] that the amplitude at the Dalitz

plot center is expected to be both power and strong
coupling αs suppressed with respect to the amplitude at
the edge. The perturbative regime in the central region gets
considerably reduced for realistic value of mB. That is, the
Dalitz plot is completely dominated by the edges. Since the
nonresonant background arises not just from the central
region, the above argument is not inconsistent with the
experimental observation of dominant nonresonant signals
in penguin-dominated three-body decays.
There are several competing approaches for describing

charmless hadronic two-body decays of B mesons, such
as QCD factorization (QCDF) [29], perturbative QCD
(pQCD) [30], and soft-collinear effective theory (SCET)
[31]. Unlike the two-body case, to date we still do not have
theories for hadronic three-body decays, though attempts

along the framework of pQCD and QCDF have been made
in the past [22,24,32]. In this work, we shall take the
factorization approximation as a working hypothesis rather
than a first-principles starting point as factorization has not
been proven for three-body B decays. That is, we shall
work in the phenomenological factorization model rather
than in the established QCD-inspired theories.
The layout of the present paper is as follows. In Sec. II,

we discuss resonant and nonresonant contributions to three-
body B decays. The predicted rates for penguin-dominated
B → VP modes are generally too small compared to
experiment. We add power corrections induced by penguin
annihilation to these modes to render a better agreement
with the data. Section III is devoted to direct CP violation.
We consider inclusive and regional CP asymmetries arising
from both resonant and nonresonant mechanisms. The
effect of final-state rescattering is discussed. Comparison
of our work with others available in the literature is made in
Sec. IV. Section V contains our conclusions.

II. THREE-BODY DECAYS

Many three-body B decays have been observed with
branching fractions of order 10−5 for penguin-dominated
B → Kππ; KKK decays, and of order 10−6 for tree-
dominated B → πππ; KKπ. The charmless three-body
channels that have been measured are [1]

B− → πþπ−π−; K−πþπ−; K̄0π−π0; KþK−π−;

KþK−K−; K−π0π0; K−KSKS; KSπ
−π0;

B̄0 → πþπ−π0; K̄0πþπ−; K−πþπ0; KþK−π0;

K0K−πþ; K̄0Kþπ−; KþK−K̄0; KSKSKS;

B̄0
s → K0πþπ−; K0KþK−; K̄0K−πþ; K0Kþπ−:

ð2:1Þ

In B− and B̄0 three-body decays, the b → sqq̄ penguin
transitions contribute to the final states with odd number of
kaons, namely, KKK and Kππ, while b → uqq̄ tree and
b → dqq̄ penguin transitions contribute to final states with
even number of kaons, e.g., KKπ and πππ. For B̄0

s three-
body decays, the situation is the other way around.
Consider the three-body decays B → P1P2P3. The b

quark decays into three energetic quarks, q1q2q̄3. There
exist four possible physical configurations depicted in
Fig. 1: (a) all three produced mesons are moving energeti-
cally, (b) two of the energetic mesons, say P1 and P2, are
moving collinearly to each other, (c) P3 is formed from
q1q̄3 or q2q̄3, while P2 contains the spectator quark which
becomes hard after being kicked by a hard gluon, and (d) is
the same as (c) except that P2 is soft. Configurations (b) and
(c) mimic quasi-two-body decays. In the Dalitz plot of
Fig. 2, configuration (a) appears in the central region,
while configurations (b)–(d) manifest along the edges of
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the Dalitz plot. The two mesons P1 and P2 in (b) move
collinearly, recoiling against P3. Hence, the invariant mass
squared m2

12 is minimal, while the momentum p3 of P3 is
maximal. Likewise, configuration (c) has minimal m2

13.
Resonances show up in configurations (b) and (c), corre-
sponding to quasi-two-particle decays. Therefore, the Dalitz
plot for three-body B decays can be divided into several
subregions with distinct kinematics and factorization proper-
ties, which have been investigated in [24]. Especially, the
regions containing the configuration (b) or (c) can be
described in terms of two-meson distribution amplitudes
and B → P1P2 form factors [33–35].
With the advent of heavy quark effective theory, non-

leptonic B decays can be analyzed systematically within
the QCD framework. There are three popular approaches

available in this regard: QCDF, pQCD, and SCET. Theories
of hadronic B decays are based on the “factorization
theorem” under which the short-distance contributions to
the decay amplitudes can be separated from the process-
independent long-distance parts. In the QCDF approach,
nonfactorizable contributions to the hadronic matrix ele-
ments can be absorbed into the effective parameters ai

AðB → M1M2Þ ¼
GFffiffiffi
2

p
X

λiaiðM1M2ÞhM1M2jOijBifact;

ð2:2Þ

where ai are basically the Wilson coefficients in conjunc-
tion with short-distance nonfactorizable corrections such as
vertex, penguin corrections, and hard spectator interactions,
and hM1M2jOijBifact is the matrix element evaluated under
the factorization approximation. Since power corrections
of order ΛQCD=mb are suppressed in the heavy quark limit,
nonfactorizable corrections to nonleptonic decays are
calculable. In the limits of mb → ∞ and αs → 0, naive
factorization is recovered in both QCDF and pQCD
approaches.
Unlike hadronic two-body B decays, established theories

such as QCDF, pQCD, and SCET are still not available for
three-body decays, though attempts along the framework of
pQCD and QCDF have been made in the past [22,24,32].
This is mainly because the aforementioned factorization
theorem has not been proven for three-body decays. Hence,
we follow [5,12] to take the factorization approximation
as a working hypothesis rather than a first-principles
starting point.
One of the salient features of three-body B decays is the

large nonresonant fraction in penguin-dominated B decay
modes, recalling that the nonresonant signal in charm
decays is very small, less than 10% [1]. Many of the
charmless B to three-body decay modes have been mea-
sured at B factories and studied using the Dalitz-plot
analysis. The measured fractions and the corresponding

FIG. 2. (a) Location of various physical configurations depicted in Fig. 1 within the Dalitz plot of B− → Kþðp1ÞK−ðp2Þπ−ðp3Þ and
(b) the measured Dalitz plot distribution taken from [8].

FIG. 1. Possible configurations of three-body B → P1P2P3

decays, where the black lines with arrows denote the momenta of
the three energetic quarks q1q2q̄3 produced in the b-quark decay,
and the pink lines with arrows denote the momenta of the
spectator quark and the quark-antiquark pair: (a) all three
produced mesons are moving energetically, (b) two of the
energetic mesons, say P1 and P2, are moving collinearly to each
other, recoiling against P3, (c) P2 is formed from q1q̄3 or q2q̄3,
while P1 contains the spectator quark (denoted by the longer pink
line), which becomes hard after being kicked by a hard gluon, and
(d) is similar to (c) except that P2 is soft.
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branching fractions of nonresonant components are sum-
marized in Table II. We see that the nonresonant fraction
is about ∼70%–90% in B → KKK decays, ∼17%–40%
in B → Kππ decays, and ∼35% in the B → πππ decay.
Moreover, we have the hierarchy pattern

BðB → KKKÞNR > BðB → KππÞNR > BðB → πππÞNR:
ð2:3Þ

Hence, the nonresonant contributions play an essential role
in penguin-dominated B decays. This is not unexpected
because the energy release scale in weak B decays is of
order 5 GeV, whereas the major resonances lie in the energy
region of 0.77 to 1.6 GeV. Consequently, it is likely that
three-body B decays will receive sizable nonresonant
contributions. It is important to understand and identify
the underlying mechanism for nonresonant decays.
It has been argued in [24] that the Dalitz plot is

completely dominated by the edges as the amplitude at
the center is both power and αs suppressed with respect to
the one at the edge. As a result, three-body decays become
quasi two-body ones. Nevertheless, this argument is not
inconsistent with the experimental observation of dominant
nonresonant background in penguin-dominated three-body
decays because the nonresonant background exists in the
whole phase space. That is, the vast phase space of
charmless three-body B decays is populated by nonreso-
nant components.
The explicit expressions of factorizable amplitudes

of charmless B → P1P2P3 decays can be found in
[5,12]. There are three distinct factorizable terms: (i) the
current-induced process with a meson emission,
hB → P1i × h0 → P2P3i, (ii) the transition process,
hB → P1P2i × h0 → P3i, and (iii) the annihilation process
hB → 0i × h0 → P1P2P3i, where hA → Bi denotes a
A → B transition matrix element. There are two different
kinds of mechanisms for the production of a meson pair. In
h0 → P2P3i, the meson pair is produced from the vacuum
through a current, whereas in hB → P1P2i, the meson pair
is produced through a current that induces the transition
from the B meson. Hence, we call these as current-induced

and transition mechanisms, respectively.1 While the latter
process is produced at the b → u tree level, the former
one is induced at the b → s or b → d penguin level.
Schematically, the decay amplitude is the coherent sum
of resonant contributions together with the nonresonant
background

A ¼
X
R

AR þ ANR: ð2:4Þ

In the following, we will discuss these two contributions
separately.

A. Nonresonant background

Consider the transition process induced by the b → u
current. The nonresonant contribution to the three-body
matrix element hP1P2jðūbÞV−AjBi has the general expres-
sion [44]

hP1ðp1ÞP2ðp2ÞjðūbÞV−AjBiNR
¼ irðpB −p1 −p2Þμ þ iωþðp2 þp1Þμ þ iω−ðp2 −p1Þμ
þ hϵμναβpν

Bðp2 þp1Þαðp2 −p1Þβ; ð2:5Þ

where ðq̄1q2ÞV−A ¼ q̄1γμð1 − γ5Þq2. The form factors r,
ω�, and h can be evaluated in the framework of heavy
meson chiral perturbation theory (HMChPT) [44].
Consequently, the nonresonant amplitude induced by the
transition process reads

AHMChPT
transition

≡ hP3ðp3Þjðq̄uÞV−Aj0ihP1ðp1ÞP2ðp2ÞjðūbÞV−AjBiNR

¼ −
fP3

2
½2m2

3rþ ðm2
B − s12 −m2

3Þωþ

þ ðs23 − s13 −m2
2 þm2

1Þω−�: ð2:6Þ

TABLE II. The fractions and branching fractions of nonresonant components of various charmless three-body decays of B mesons.

BABAR Belle

Decay BNRð10−6Þ NR fraction(%) BNRð10−6Þ NR fraction(%) Reference

B− → KþK−K− 22.8� 2.7� 7.6 68.3� 8.1� 22.8 24.0� 1.5� 1.5 78.4� 5.8� 7.7 [36,37]
B− → K−KSKS 19.8� 3.7� 2.5 ∼196 [36]
B̄0 → KþK−K̄0 33� 5� 9 ∼130 [36]
B̄0 → KSKSKS 13:3þ2.2

−2.3 � 2.2 ∼215 [38]
B− → K−πþπ− 9.3� 1.0þ6.9

−1.7 17.1� 1.7þ12.4
−1.8 16.9� 1.3þ1.7

−1.6 34.0� 2.2þ2.1
−1.8 [9,10]

B̄0 → K̄0πþπ− 11:1þ2.5
−1.0 � 0.9 22:1þ2.8

−2.0 � 2.2 19.9� 2.5þ1.7
−2.0 41.9� 5.1þ1.5

−2.6 [39,40]
B̄0 → K−πþπ0 7.6� 0.5� 1.0 19.7� 1.4� 3.3 5.7þ2.7þ0.5

−2.5−0.4 < 25.7 [41,42]
B− → πþπ−π− 5.3� 0.7þ1.3

−0.8 34.9� 4.2þ8.0
−4.5 [43]

1Note that the terminology concerning current-induced and
transition mechanisms in this work is different to those in our
previous publications [5,12].
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However, as pointed out in [5,12], the predicted nonreso-
nant rates based on HMChPT are unexpectedly too large
for tree-dominated decays. For example, the branching
fractions of nonresonant B− → πþπ−π− and B− →
KþK−π− are found to be of order 75 × 10−6 and
33 × 10−6, respectively, which are one order of magnitude
larger than the corresponding measured total branching
fractions of 15.2 × 10−6 and 5.0 × 10−6 (see Table III
below). The issue has to do with the applicability of
HMChPT. In order to apply this approach, two of the
final-state pseudoscalars in B → P1P2 transition have
to be soft; their momenta should be smaller than the chiral

symmetry breaking scale of order 1 GeV. Therefore, it is
not justified to apply chiral and heavy quark symmetries to
a certain kinematic region and then generalize it to the
region beyond its validity. Following [12], we shall assume
the momentum dependence of nonresonant amplitudes in
an exponential form, namely,

Atransition ¼ AHMChPT
transition e

−αNRpB·ðp1þp2Þeiϕ12 ; ð2:7Þ

so that the HMChPT results are recovered in the soft meson
limit of p1, p2 → 0. This is similar to the empirical

TABLE III. Branching fractions (in units of 10−6) of resonant and nonresonant (NR) contributions to B− → π−πþπ−, K−πþπ−,
KþK−π−, KþK−K−. Note that the BABAR result for K�0

0 ð1430Þπ− in [9] is their absolute one. We have converted them into the
product branching fractions, namely, BðB → RhÞ × BðR → hhÞ. The nonresonant background in B− → πþπ−π− is used as an
input to fix the parameter αNR defined in Eq. (2.7). Theoretical errors correspond to the uncertainties in (i) αNR, (ii) FBπ

0 , σNR, and
msðμÞ ¼ ð90� 20Þ MeV at μ ¼ 2.1 GeV, and (iii) γ ¼ ð67.01þ0.88

−1.99 Þ°.
B− → KþK−K− Decay mode BABAR [36] Belle [37] Theory

ϕK− 4.48� 0.22þ0.33
−0.24 4.72� 0.45� 0.35þ0.39

−0.22 4.4þ0.0þ0.8þ0.0
−0.0−0.7−0.0

f0ð980ÞK− 9.4� 1.6� 2.8 < 2.9 11.2þ0.0þ2.7þ0.0
−0.0−2.1−0.0

f0ð1500ÞK− 0.74� 0.18� 0.52 0.63þ0.0þ0.11þ0.0
−0.0−0.10−0.0

f0ð1710ÞK− 1.12� 0.25� 0.50 1.2þ0þ0.2þ0
−0−0.2−0

f02ð1525ÞK− 0.69� 0.16� 0.13

NR 22.8� 2.7� 7.6 24.0� 1.5� 1.8þ1.9
−5.7 21.1þ0.8þ7.2þ0.1

−1.1−5.7−0.1

Total 33.4� 0.5� 0.9 30.6� 1.2� 2.3 28.8þ0.5þ7.9þ0.1
−0.6−6.4−0.1

B− → K−πþπ− Decay mode BABAR [9] Belle [10] Theory
K̄�0π− 7.2� 0.4� 0.7þ0.3

−0.5 6.45� 0.43� 0.48þ0.25
−0.35 8.4þ0.0þ2.1þ0.0

−0.0−1.9−0.0

K̄�0
0 ð1430Þπ− 19.8� 0.7� 1.7þ5.6

−0.9 � 3.2a 32.0� 1.0� 2.4þ1.1
−1.9 11.5þ0.0þ3.3þ0.0

−0.0−2.8−0.0

ρ0K− 3.56� 0.45� 0.43þ0.38
−0.15 3.89� 0.47� 0.29þ0.32

−0.29 2.9þ0.0þ0.7þ0.0
−0.0−0.2−0.0

f0ð980ÞK−
10.3� 0.5� 1.3þ1.5

−0.4 8.78� 0.82� 0.65þ0.55
−1.64 6.7þ0.0þ1.6þ0.0

−0.0−1.3−0.0

NR 9.3� 1.0� 1.2þ6.7
−0.4 � 1.2 16.9� 1.3� 1.3þ1.1

−0.9 15.7þ0.0þ8.1þ0.0
−0.0−5.2−0.0

Total 54.4� 1.1� 4.6 48.8� 1.1� 3.6 42.2þ0.2þ16.1þ0.1
−0.1−10.7−0.1

B− → KþK−π− Decay mode BABAR [46] Belle [47] Theory

K�0K− 0.21þ0.00þ0.04þ0.00
−0.00−0.04−0.00

K�0
0 ð1430ÞK− 1.0þ0.0þ0.2þ0.0

−0.0−0.2−0.0
f0ð980Þπ− 0.25þ0.00þ0.01þ0.00

−0.00−0.01−0.00

NR 2.9þ0.7þ0.6þ0.0
−0.8−0.4−0.0

Total 5.0� 0.7 <13 5.2þ0.8þ1.0þ0.0
−0.9−0.7−0.0

B− → π−πþπ− Decay mode BABAR [43] Theory
ρ0π− 8.1� 0.7� 1.2þ0.4

−1.1 7.3þ0.0þ0.4þ0.0
−0.0−0.4−0.0

ρ0ð1450Þπ− 1.4� 0.4� 0.4þ0.3
−0.7

f0ð1370Þπ− 2.9� 0.5� 0.5þ0.7
−0.5 1.7þ0.0þ0.0þ0.0

−0.0−0.0−0.0

f0ð980Þπ− <1.5 0.2þ0.0þ0.0þ0.0
−0.0−0.0−0.0

NR 5.3� 0.7� 0.6þ1.1
−0.5 input

Total 15.2� 0.6� 1.2þ0.4
−0.3 17.0þ2.0þ0.9þ0.2

−2.3−0.7−0.2
aRecently, BABAR has measured the three-body decay B− → K0

Sπ
−π0 and obtained BðB− → K̄�0

0 ð1430Þπ− → K−πþπ−Þ ¼ ð31.0�
3.0� 3.8þ1.7

−1.6 Þ × 10−6 [3].
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parametrization of the nonresonant amplitudes adopted in
the BABAR and Belle analyses [37,45]

ANR ¼ c12eiϕ12e−αs12 þ c13eiϕ13e−αs13 þ c23eiϕ23e−αs23 :

ð2:8Þ

We shall use the tree-dominated B− → πþπ−π− decay data
to fix the unknown parameter αNR as its nonresonant
component is predominated by the transition process.
Hence, the measurement of nonresonant contributions to
B− → πþπ−π− provides an ideal place to constrain the
parameter αNR, which turns out to be [5]

αNR ¼ 0.081þ0.015
−0.009 GeV−2: ð2:9Þ

The phase ϕ12 of the nonresonant amplitude will be set to
zero for simplicity.
Note that AHMChPT

transition receives nonresonant contributions
from the whole Dalitz plot, including the central regions
and regions near and along the edge. Since pB ·ðp1þp2Þ¼
1
2
ðm2

B−m2
3þs12Þ, it is obvious that the nonresonant signal

Atransition arises mainly from the small invariant mass region
of s12.
For penguin-dominated decays B → KKK and

B → Kππ, the nonresonant background induced from the
b → u transition process yields BðB− → KþK−K−ÞNR ∼
1.1 × 10−6 and BðB− → Kþπþπ−ÞNR ∼ 0.8 × 10−6, which
are too small compared to experiment (see Table III). This
is ascribed to the large CKM suppression jVubV�

usj ≪
jVcbV�

csj ≈ jVtbV�
tsj associated with the b → u tree tran-

sition relative to the b → s penguin process. This implies
that the two-body matrix element of scalar densities, e.g.,
hKK̄js̄sj0i induced from the penguin diagram should have

a large nonresonant component. The explicit expression of
the nonresonant component of hKK̄js̄sj0i will be shown in
Eq. (2.17) below.
For the nonresonant contributions to the two-body

matrix elements hP1P2jq̄γμq0j0i and hP1P2jq̄q0j0i, we
shall use the measured kaon electromagnetic form factors
to extract hKK̄jq̄γμq0j0iNR and hKK̄js̄sj0iNR first and then
apply SU(3) symmetry to relate them to other two-body
matrix elements [12].

B. Resonant contributions

In the experimental analysis of three-body decays, the
resonant amplitude associated with the intermediate reso-
nance R takes the form [48]

AR ¼ FP × FR × TR ×WR; ð2:10Þ

where TR is usually described by a relativistic Breit-Wigner
parametrization, WR accounts for the angular distribution
of the decay, FP and FR are the transition form factors of
the parent particle and resonance, respectively (see, e.g.,
[48] for details).
In general, vector meson and scalar resonances contrib-

ute to the two-body matrix elements hP1P2jVμj0i and
hP1P2jSj0i, respectively. The intermediate vector meson
contributions to three-body decays are identified through
the vector current, while the scalar meson resonances are
mainly associated with the scalar density. Both scalar and
vector resonances can contribute to the three-body matrix
element hP1P2jJμjBi. Effects of intermediate resonances
are described as a coherent sum of Breit-Wigner expres-
sions. More precisely,2

hP1ðp1ÞP2ðp2Þjðq̄bÞV−AjBiR ¼
X
i

hP1P2jVii
1

s12 −m2
Vi
þ imVi

ΓVi

hVijðq̄bÞV−AjBi

þ
X
i

hP1P2jSii
−1

s12 −m2
Si
þ imSiΓSi

hSijðq̄bÞV−AjBi;

hP1P2jq̄1γμq2j0iR ¼
X
i

hP1P2jVii
1

s12 −m2
Vi
þ imVi

ΓVi

hVijq̄1γμq2j0i;

þ
X
i

hP1P2jSii
−1

s12 −m2
Si
þ imSiΓSi

hSijq̄1γμq2j0i;

hP1P2jq̄1q2j0iR ¼
X
i

hP1P2jSii
−1

s12 −m2
Si
þ imSiΓSi

hSijq̄1q2j0i; ð2:11Þ

2Strictly speaking, for the f0ð980Þ and a0ð980Þ, we should use the Flatté parametrization [49] to account for the threshold
effect, though in practice we find that numerically it makes no significant difference from the use of the Breit-Wigner
propagator.
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where Vi ¼ ϕ; ρ;ω;… and Si ¼ f0ð980Þ, f0ð1370Þ,
f0ð1500Þ;… for P1P2 ¼ πþπ−, and Vi ¼ K�ð892Þ,
K�ð1410Þ, K�ð1680Þ;… and Si ¼ K�

0ð1430Þ;… for
P1P2 ¼ K�π∓. In general, the decay widths ΓVi

and ΓSi
are energy dependent. For f0ð500Þ and K�

0ð800Þ, they are
too broad to use the Breit-Wigner formulism.
Notice that the two-body matrix element hP1P2jVμj0i

can also receive contributions from scalar resonances when
q1 ≠ q2. For example, both K� and K�

0ð1430Þ contribute to
the matrix element hK−πþjs̄γμdj0i given by

hK−ðp1Þπþðp2Þjs̄γμdj0iR

¼
X
i

gK
�
i→K−πþ

s12 −m2
K�

i
þ imK�

i
ΓK�

i

X
pol

ε� · ðp1 −p2ÞhK�
i js̄γμdj0i

−
X
i

gK
�
0i→K−πþ

s12 −m2
K�

0i
þ imK�

0i
ΓK�

0i

hK�
0ijs̄γμdj0i; ð2:12Þ

with K�
i ¼ K�ð892Þ, K�ð1410Þ, K�ð1680Þ;…, and

K�
0i ¼ K�

0ð800Þ, K�
0ð1430Þ;….

C. Nonresonant contribution from matrix element
of scalar density

Consider the nonresonant amplitude in the penguin-
dominated B− → KþK−K− decay. In addition to the b → u
tree transition which yields a rather small nonresonant
fraction, we need to consider the nonresonant amplitudes
indcued from the b → s penguin transition

A1 ¼ hK−ðp1Þjðs̄bÞV−AjB−ihKþðp2ÞK−ðp3Þjðq̄qÞV−Aj0i;
A2 ¼ hK−ðp1Þjs̄bjB−ihKþðp2ÞK−ðp3Þjs̄sj0i; ð2:13Þ

for q ¼ u, d, s. The two-kaon matrix element created from
the vacuum can be expressed in terms of timelike kaon
current form factors as

hKþðpKþÞK−ðpK−Þjq̄γμqj0i ¼ ðpKþ − pK−ÞμFKþK−
q ;

hK0ðpK0ÞK̄0ðpK̄0Þjq̄γμqj0i ¼ ðpK0 − pK̄0ÞμFK0K̄0

q :

ð2:14Þ

The weak vector form factors FKþK−
q and FK0K̄0

q can be
related to the kaon electromagnetic form factors FKþK−

em and
FK0K̄0

em for the charged and neutral kaons, respectively. As
shown in [12], the nonresonant components of FKþK−

q read

FKþK−

u;NR ¼ 1

3
ð3FNR − F0

NRÞ; FKþK−

d;NR ¼ 0;

FKþK−

s;NR ¼ −
1

3
ð3FNR þ 2F0

NRÞ; ð2:15Þ

where the nonresonant terms FNR and F0
NR can be para-

metrized as

Fð0Þ
NRðs23Þ ¼

 
xð0Þ1
s23

þ xð0Þ2
s223

!�
ln

�
s23
~Λ2

��
−1
; ð2:16Þ

with ~Λ ≈ 0.3 GeV. The unknown parameters xi and x0i are
fitted from the kaon electromagnetic data, see [50] for
details.
The nonresonant component of the matrix element of

scalar density is given by [12]3

hKþðp2ÞK−ðp3Þjs̄sj0iNR ¼ v
3
ð3FNR þ 2F0

NRÞ þ σNRe−αs23 ;

ð2:17Þ

with

v ¼ m2
Kþ

mu þms
¼ m2

K −m2
π

ms −md
: ð2:18Þ

From the measured B̄0 → KSKSKS rate and the KþK−

mass spectrum measured in B̄0 → KþK−KS, the nonreso-
nant σNR term can be constrained to be [12]

σNR ¼ eiπ=4ð3.39þ0.18
−0.21Þ GeV: ð2:19Þ

For the parameter α appearing in Eq. (2.17), we will use the
experimental measurement α ¼ ð0.14� 0.02Þ GeV−2 [52].
Numerically, the nonresonant signal is governed by the σNR
component of the matrix element of scalar density. Owing
to the exponential suppression factor e−αsij in Eq. (2.17),
the nonresonant contribution manifests in the low invariant
mass regions.

D. Branching fractions

For numerical calculations, we follow [5] for the input
parameters except the CKM matrix elements, which we
will use the updated Wolfenstein parameters A ¼ 0.8227,
λ ¼ 0.22543, ρ̄ ¼ 0.1504, and η̄ ¼ 0.3540 [53]. The cor-
responding CKM angles are sin 2β ¼ 0.710� 0.011 and
γ ¼ ð67.01þ0.88

−1.99Þ° [53]. In Table III, we present updated
branching fractions of resonant and nonresonant compo-
nents in B− → KþK−K−, K−πþπ−, KþK−π−, and π−πþπ−
decays.

1. B− → KþK−K−

As shown before in [5], the calculated B− → K−ϕ →
K−KþK− rate in the factorization approach is smaller
than experiment. In the QCD factorization approach, this
rate deficit problem calls for the 1=mb power corrections
from penguin annihilation. In this approach, it amounts

3Matrix elements of scalar densities (or scalar form factors)
have also been studied in [51] within the framework of unitarized
chiral perturbation theory and dispersion relations. However, the
main focus there is on resonant contributions.
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to replacing the penguin contribution characterized by
ap4 → ap4 þ βp3 , where p ¼ u, c, and β3 is the annihilation
contribution induced mainly from ðS − PÞðSþ PÞ opera-
tors [54]. For our purpose, we will use

βu3½Kϕ� ¼ βc3½Kϕ� ¼ −0.0085þ 0.0088i: ð2:20Þ

This power correction βp3 ½Kϕ� is calculated in [55] for the
quasi-two-body decay B− → K−ϕ. In principle, it should
be computed in the three-body decay B− → KþK−K− with
mðKþK−Þlow peaked at the ϕ mass in QCDF. We will
assume that βp3 ½Kϕ� calculated in either way is similar.
From Table III, it is clear that the predicted rates for the

nonresonant component and for the total branching fraction
of B− → KþK−K− are consistent with both BABAR and
Belle analyses within errors.

2. B− → K−πþπ−

We first discuss resonant decays. From Table VI of [5],
it is obvious that except for f0ð980ÞK, the predicted rates
for penguin-dominated channels K�π, K�

0ð1430Þπ, and
ρK in B− → K−πþπ− within the factorization approach
are substantially smaller than the data by a factor of
2 ∼ 5. To overcome this problem, we shall use the
penguin-annihilation induced power corrections calcu-
lated in our previous work [55]. The results are

βp3 ½K̄�0π−� ¼ −0.032þ 0.022i;

βp3 ½ρ0K−� ¼ 0.004 − 0.047i; ð2:21Þ

for p ¼ u, c. It is evident the discrepancy between theory
and experiment for K̄�0π− and ρ0K− is greatly improved
(see Table III).
As for the quasi-2-body mode B− → K̄�0

0 ð1430Þπ−,
BABAR Collaboration has recently measured the three-body
decay B−→K0

Sπ
−π0 and obtained BðB−→ K̄�0

0 ð1430Þπ−→
K−πþπ−Þ¼ð31.0�3.0�3.8þ1.6

−1.6Þ×10−6 [3]. This is in
good agreement with the Belle’s result ð32.0� 1.0�
2.4þ1.1

−1.9Þ × 10−6 [10]. Hence, the predicted rate by naive
factorization is too small by a factor of 3. Indeed, this is still
an unresolved puzzle even in both QCDF and pQCD
approaches [56,57]. Using BðK�

0ð1430Þ → KπÞ ¼ 0.93,
we find BðB− → K̄�0

0 ð1430Þπ−Þexpt ∼ 51 × 10−6, while

QCDF predicts ð12.9þ4.6
−3.7Þ × 10−6 [56]. This explains why

our prediction of the total branching fraction of B− →
K−πþπ− is smaller than both BABAR and Belle analyses.
The nonresonant component of B → KKK is governed

by the KK̄ matrix element of scalar density hKK̄js̄sj0i.
By the same token, the nonresonant contribution to the
penguin-dominated B → Kππ decays should be also
dominated by the Kπ matrix element of scalar
density, namely hKπjs̄qj0i. When the unknown two-body

matrix elements such as hK−πþjs̄dj0i and hK̄0π−js̄uj0i,
hK−π0js̄uj0i and hK̄0π0js̄dj0i are related to hKþK−js̄sj0i
via SU(3) symmetry, e.g.

hK−ðp1Þπþðp2Þjs̄dj0iNR ¼ hKþðp1ÞK−ðp2Þjs̄sj0iNR;
ð2:22Þ

we find too large nonresonant and total branching
fractions, namely, BðB− → K−πþπ−ÞNR ∼ 29.7 × 10−6

and BðB− → K−πþπ−Þtot ∼ 68.5 × 10−6. Furthermore,
Eq. (2.22) will lead to negative asymmetries Aincl

CP ðB− →
K−πþπ−Þ ∼ −0.8% and Aresc

CP ðB− → K−πþπ−Þ ∼ −6.4%,
which are wrong in sign when confronted with the data.
To accommodate the rates, it is tempting to assume that
hK−πþjs̄dj0i becomes slightly smaller because of SU(3)
breaking. However, the predicted CP asymmetry is still
not correct in sign. As argued in [5], we assumed that
some sort of power corrections such as FSIs amount to
giving a large strong phase δ to the nonresonant compo-
nent of hK−πþjs̄dj0i

hK−ðp1Þπþðp2Þjs̄dj0iNR

¼ v
3
ð3FNR þ 2F0

NRÞ þ σNRe−αs12eiδ: ð2:23Þ

We found that δ ≈�π will enable us to accommodate both
branching fractions and CP asymmetry simultaneously. In
practice, we use

hK−ðp1Þπþðp2Þjs̄dj0iNR

≈
v
3
ð3FNR þ 2F0

NRÞ þ σNRe−αs12eiπ
�
1þ 4

m2
K −m2

π

s12

�
:

ð2:24Þ

Our calculated nonresonant rate in B− → K−πþπ− is
consistent with the Belle measurement, but larger than
that of BABAR analysis. It is of the same order of
magnitude as that in B− → KþK−K− decays. Indeed, this
is what we will expect. The reason why the nonresonant
fraction is as large as 90% in KKK decays, but becomes
only 17% ∼ 40% in Kππ channels (see Table II) can be
explained as follows. Since the KKK channel receives
resonant contributions only from ϕ and f0 mesons, while
K�, K�

0, ρ, f0 resonances contribute to Kππ modes, this
explains why the nonresonant fraction is of order 90% in
the former and becomes of order 40% or smaller in the
latter.
Finally, we wish to stress again that the predicted total

rate of B− → K−πþπ− is smaller than the measurements of
both BABAR and Belle analysis. This is ascribed to the fact
that the calculated K�

0ð1430Þπ− in naive factorization is too
small by a factor of 3.
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3. B− → KþK−π−

Applying U-spin symmetry to Eq. (2.24) leads to

hKþðp1Þπ−ðp2Þjd̄sj0iNR

≈
v
3
ð3FNR þ 2F0

NRÞ þ σNRe−αs12eiπ
�
1 − 4

m2
K −m2

π

s12

�
;

ð2:25Þ

which will be used to describe B → KK̄π decays. Contrary
to naive expectation, ss̄ resonant contributions to the tree-
dominated B− → KþK−π− decay are strongly suppressed.
The only relevant factorizable amplitude which involves the
ss̄ current is given by [see Eq. (5.1) of [5]]

hπ−jðd̄bÞV−AjB−ihKþK−jðs̄sÞV−Aj0i

×

�
a3 þ a5 −

1

2
ða7 þ a9Þ

�
: ð2:26Þ

The smallness of the penguin coefficients a3;5;7;9 indicates
negligible ss̄ resonant contributions. Indeed, no clear
ϕð1020Þ signature is observed in the mass region m2

KþK−

around 1 GeV2 [7]. The branching fraction of the two-body
decay B− → ϕπ− is expected to be very small, of order
4.3 × 10−8. It is induced mainly from B− → ωπ− followed
by a small ω − ϕ mixing [55].
The predicted nonresonant fraction is very sizable about

55% in B− → KþK−π− even it is a tree-dominated mode.
This should be checked experimentally.

4. B− → πþπ−π−

The current-induced nonresonant contributions to the
tree-dominated B− → πþπ−π− decay are suppressed by the
smallness of the penguin Wilson coefficients a6 and a8.
Therefore, the nonresonant component of this decay is
predominated by the transition process, and its measure-
ment provides an ideal place to constrain the param-
eter αNR.

5. Other B → Kππ decays

Branching fractions of resonant and nonresonant (NR)
contributions to other B → Kππ decays such as
B− → K̄0π−π0, B− → K−π0π0, B̄0 → K̄0πþπ−, and B̄0 →
K−πþπ0 are shown in Table IV. Except the first channel, the
other three have been studied before in [5]. In order to
improve the discrepancy between theory and experiment
for penguin-dominated VPmodes in [5], we shall introduce
penguin annihilation given in Eq. (2.21). In general, the
predicted K�π and ρK rates are now consistent with
experiment. However, the calculated K�

0ð1430Þπ rates are
still too small. This explains why the calculated total
branching fractions are smaller than experiment, especially

for B− → K̄0π−π0 due to the presence of two
K�

0ð1430Þπ modes.
In [5], we have made predictions for the resonant

and nonresonant contributions to B̄0 → πþπ−π0; K̄0π0π0;
KSK�π∓. The πþπ−π0 mode is predicted to have a rate
larger than πþπ−π− even though the former involves a π0

and has no identical particles in the final state. This is
because while the latter is dominated by the ρ0 pole, the
former receives ρ� and ρ0 resonant contributions.

III. DIRECT CP ASYMMETRIES

Experimental measurements of inclusive and regional
direct CP violation by LHCb for various charmless three-
body B decays are collected in Table I. CP asymmetries of
the pair π−πþπ− and K−KþK− are of opposite signs, and
likewise for the pair K−πþπ− and π−KþK−. This can be
understood in terms of U-spin symmetry, which leads to the
relation [16,19]

R1 ≡ ACPðB− → π−πþπ−Þ
ACPðB− → K−KþK−Þ ¼ −

ΓðB− → K−KþK−Þ
ΓðB− → π−πþπ−Þ ;

ð3:1Þ

and

R2 ≡ACPðB− → π−KþK−Þ
ACPðB− → K−πþπ−Þ ¼ −

ΓðB− → K−πþπ−Þ
ΓðB− → π−KþK−Þ :

ð3:2Þ

The predicted signs of the ratios R1 and R2 are confirmed
by experiment. However, because of the momentum
dependence of three-body decay amplitudes, U-spin or
flavor SU(3) symmetry does not lead to any testable
relations between ACPðπ−KþK−Þ and ACPðπ−πþπ−Þ and
between ACPðK−πþπ−Þ and ACPðKþK−K−Þ. That is,
symmetry argument alone does not give hints at the relative
sign of CP asymmetries in the pair of ΔS ¼ 0ð1Þ decay.
The LHCb data in Table I indicate that decays involving

a KþK− pair have a larger CP asymmetry (Aincl
CP or Aresc

CP )
than their partner channels. The asymmetries are positive
for channels with a πþπ− pair and negative for those with a
KþK− pair. In other words, when KþK− is replaced by
πþπ−, CP asymmetry is flipped in sign. This observation
appears to imply that final-state rescattering may play an
important role for direct CP violation. It has been con-
jectured that maybe the final rescattering between πþπ−
and KþK− in conjunction with CPT invariance is respon-
sible for the sign change [16,17,59]. However, the impli-
cation of the CPT theorem for CP asymmetries at the
hadron level in exclusive or semi-inclusive reactions is
more complicated and remains mostly unclear [60].
It is well-known that one needs nontrivial strong and

weak phase differences to produce partial rate CP
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asymmetries. In this work, the strong phases arise from the
effective Wilson coefficients api listed in Eq. (2.3) of [5],
the Breit-Wigner expression for resonances and the pen-
guin matrix elements of scalar densities. It has been
established that the strong phase in the penguin coefficients
ap6 and ap8 comes from the Bander-Silverman-Soni mecha-
nism [61]. There are two sources for the phase in the
penguin matrix elements of scalar densities: σNR and δ for
Kπ–vacuum matrix elements.
In the literature, most of the theory studies concentrate

on the resonant effects on CP violation. For example, the
authors of [16,18] considered the possibility of having a
large local CP violation in B− → πþπ−π− resulting from

the interference of the resonances f0ð500Þ and ρ0ð770Þ. A
similar mechanism has been applied to the decay B− →
K−πþπ− [18].
In this work, we shall take into account both resonant

and nonresonant amplitudes simultaneously and work out
their contributions and interference to branching fractions
and CP violation in details.

A. CP asymmetries due to resonant
and nonresonant contributions

Following the framework of [5,12], we present in
Table V the calculated results of inclusive and regional

TABLE IV. Branching fractions (in units of 10−6) of resonant and nonresonant (NR) contributions to B− → K̄0π−π0, B− → K−π0π0,
B̄0 → K̄0πþπ−, and B̄0 → K−πþπ0. Note that the BABAR result for K�−

0 ð1430Þπþ in [39], all the BABAR results in [41] and Belle results
in [42] are their absolute ones. We have converted them into the product branching fractions, namely, BðB → RhÞ × BðR → hhÞ.
B− → K̄0π−π0 Decay mode BABAR [3] Theory

K�−π0 6.1� 0.9� 0.4þ0.2
−0.3 4.7þ0.0þ1.0þ0.1

−0.0−0.9−0.1
K̄�0π− 4.9� 0.9� 0.4þ0.2

−0.3 4.1þ0.0þ1.0þ0.0
−0.0−0.9−0.0

K�−
0 ð1430Þπ0 10.7� 1.5� 0.9þ0.0

−1.1 5.6þ0.0þ1.6þ0.0
−0.0−1.4−0.0

K̄�0
0 ð1430Þπ− 15.5� 1.5� 1.9þ0.8

−0.8 5.4þ0.0þ1.7þ0.0
−0.0−1.4−0.0

ρ−K̄0 9.4� 1.6� 1.1þ0.0
−2.6 5.9þ0.0þ2.5þ0.0

−0.0−0.9−0.0

NR 9.5þ0.3þ6.3þ0.0
−0.3−3.6−0.0

Total 45.0� 2.6� 3.0þ8.6
−0.0 28.5þ0.2þ12.1þ0.0

−0.3−7.4−0.0

B− → K−π0π0 Decay mode BABAR [58] Theory
K�−π0 2.7� 0.5� 0.4 2.5þ0.0þ0.6þ0.0

−0.0−0.5−0.0
K�−

0 ð1430Þπ0 2.4þ0.0þ0.8þ0.0
−0.0−0.7−0.0

f0ð980ÞK− 2.8� 0.6� 0.5 3.3þ0.0þ0.8þ0.0
−0.0−0.6−0.0

NR 5.9þ0.0þ2.6þ0.0
−0.0−1.9−0.0

Total 16.2� 1.2� 1.5 13.3þ0.1þ4.6þ0.0
−0.0−3.5−0.0

B̄0 → K̄0πþπ− Decay mode BABAR [39] Belle [40] Theory
K�−πþ 5.52þ0.61

−0.54 � 0.35� 0.41 5.6� 0.7� 0.5þ0.4
−0.3 6.8þ0.0þ1.7þ0.1

−0.0−1.5−0.1
K�−

0 ð1430Þπþ 18.5þ1.4
−1.1 � 1.0� 0.4� 2.0 30.8� 2.4� 2.4þ0.8

−3.0 10.6þ0.0þ3.0þ0.0
−0.0−2.6−0.0

ρ0K̄0 4.37þ0.70
−0.61 � 0.29� 0.12 6.1� 1.0� 0.5þ1.0

−1.1 3.9þ0.0þ1.9þ0.0
−0.0−0.9−0.0

f0ð980ÞK̄0 6.92� 0.77� 0.46� 0.32 7.6� 1.7� 0.7þ0.5
−0.7 6.0þ0.0þ1.5þ0.0

−0.0−1.2−0.0
f2ð1270ÞK̄0 1.15þ0.42

−0.35 � 0.11� 0.35

NR 11.1þ2.5
−1.0 � 0.9 19.9� 2.5� 1.6þ0.7

−1.2 15.2þ0.2þ7.9þ0.0
−0.2−5.2−0.0

Total 50.2� 1.5� 1.8 47.5� 2.4� 3.7 40.0þ0.1þ16.9þ0.1
−0.1−11.2−0.1

B̄0 → K−πþπ0 Decay mode BABAR [41] Belle [42] Theory
K�−πþ 2.7� 0.4� 0.3 4.9þ1.5þ0.5þ0.8

−1.5−0.3−0.3 3.5þ0.0þ0.9þ0.1
−0.0−0.8−0.1

K̄�0π0 2.2� 0.3� 0.3 < 2.3 3.0þ0.0þ0.9þ0.0
−0.0−0.8−0.0

K�−
0 ð1430Þπþ 8.6� 0.8� 1.0 5.1þ0.0þ1.5þ0.0

−0.0−1.3−0.0
K̄�0

0 ð1430Þπ0 4.3� 0.3� 0.7 4.2þ0.0þ1.4þ0.0
−0.0−1.2−0.0

ρþK− 6.6� 0.5� 0.8 15.1þ3.4þ1.4þ2.0
−3.3−1.5−2.1 6.5þ0.0þ2.7þ0.1

−0.0−1.1−0.1

NR 7.6� 0.5� 1.0 5.7þ2.7þ0.5
−2.5−0.4 < 9.4 9.2þ0.3þ5.9þ0.0

−0.4−3.4−0.0

Total 38.5� 1.0� 3.9 36.6þ4.2
−4.1 � 3.0 26.6þ0.3þ13.3þ0.1

−0.4−7.8−0.1
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CP asymmetries in our model. We consider both resonant
and nonresonant mechanisms and their interference. For
nonresonant contributions, direct CP violation arises solely
from the interference of tree and penguin nonresonant
amplitudes. For example, in the absence of resonances,
CP asymmetry in B− → K−πþπ− stems mainly from
the interference of the nonresonant tree amplitude
hπþπ−jðūbÞV−AjB−iNRhK−jðs̄uÞV−Aj0i and the nonreso-
nant penguin amplitude hπ−jd̄bjB−ihK−πþjs̄dj0iNR.
It is clear from Table V that nonresonant CP violation is

usually much larger than the resonant one and that the
interference effect is generally quite significant. If non-
resonant contributions are turned off in theKþK−K− mode,
the predicted asymmetries will be wrong in sign when
compared with experiment. This is not a surprise because
B− → KþK−K− is predominated by the nonresonant back-
ground. The magnitude and the sign of its CP asymmetry
should be governed by the nonresonant term.
Large local CP asymmetries Alow

CP in three-body charged
B decays have been observed by LHCb in the low mass
regions specified in Eq. (1.1). If intermediate resonant
states are not associated in these low-mass regions, it is
natural to expect that the Dalitz plot is governed by
nonresonant contributions. It is evident from Table V that
except the mode KþK−π−, CP violation in the low mass
region is indeed dominated by the nonresonant back-
ground. In our model, we find large nonresonant contri-
butions to CP asymmetries for B− → πþπ−π−; πþπ−K−,
of order 0.58 and 0.49, respectively. Likewise, large
ðAlow

CP ÞNR ¼ ð51:9þ1.08þ0.27
−0.91−0.32 Þ% for the former mode was

also obtained in the pQCD approach [22].
From Table V, it is evident that except the KþK−K−

mode, the resonant contributions to integrated inclusive

CP asymmetries are of the same sign and similar magni-
tudes as Aincl

CP . For πþπ−π−, resonant CP violation is
dominated by the ρ0, ACPðρ0π−Þ ¼ 0.059þ0.012

−0.010 , which is
close to the resonance-induced integrated asymmetry
ðAincl

CP ÞRES ¼ ð5.3þ1.6
−1.3Þ%. However, there is an issue about

the theoretical predictions of ACPðρ0π−Þ, which will be
addressed in detail below. The resonant CP asymmetry in
B− → K−πþπ− is governed by the ρ0 with ACPðρ0K−Þ ¼
0.65þ0.10

−0.21 , while the world average of measurements is
0.37� 0.11 [2]. For KþK−π−, we have the dominant
contributions from ACPðK�0K−Þ ¼ −28.4% and
ACPðK�0

0 ð1430ÞK−Þ ¼ −19.2%. For KþK−K−, the main
contributions to ðAincl

CP ÞRES arise from ϕK−; f0ð1500ÞK−;
f0ð1710ÞK−, all give positive contributions. The observed
negative Aincl

CP ðKþK−K−Þ is a strong indication of the
importance of nonresonant effects. This is reinforced by
the fact that the predicted ðAlow

CP ÞRES and ðAresc
CP ÞRES by

resonances alone are usually too small compared to the
data, especially for the former.

B. Discussions

Although our model based on factorization describes the
observed asymmetries reasonably well, in the following,
we would like to address several related issues.

1. CP asymmetry induced by interference

CP asymmetry of the B− → πþπ−π− decay in the low-
mass region of mðπþπ−Þlow is observed to change sign at a
value of mðπþπ−Þlow close to the ρð770Þ resonance. This
change of sign occurs for both cos θ > 0 and cos θ < 0 (see
Fig. 4 of [8]), where θ is the angle between the momenta of

TABLE V. Predicted inclusive and regional CP asymmetries (in %) for various charmless three-body B decays. Two local regions of
interest for regional CP asymmetries are the low-mass regions specified in Eq. (1.1) forAincl

CP and the rescattering region ofmππ andmKK̄
between 1.0 and 1.5 GeV for Aresc

CP . Resonant (RES) and nonresonant (NR) contributions to direct CP asymmetries are considered.

π−πþπ− KþK−π− K−πþπ− KþK−K−

ðAincl
CP ÞNR 25.0þ4.4þ2.1þ0.0

−2.7−3.1−0.1 −25.6þ2.2þ1.7þ0.2
−3.0−1.1−0.1 9.1þ1.3þ2.2þ0.1

−1.8−2.0−0.1 −7.8þ1.4þ1.3þ0.1
−0.9−1.5−0.1

ðAincl
CP ÞRES 5.3þ0.0þ1.6þ0.0

−0.0−1.3−0.0 −16.3þ0.0þ0.9þ0.1
−0.0−0.8−0.1 6.9þ0.0þ2.1þ0.1

−0.0−1.8−0.1 1.2þ0.0þ0.0þ0.0
−0.0−0.0−0.0

ðAincl
CP ÞNRþRES 8.3þ0.5þ1.6þ0.0

−1.1−1.5−0.0 −10.2þ1.6þ1.5þ0.1
−2.5−1.4−0.1 7.3þ0.2þ2.1þ0.1

−0.2−2.0−0.1 −6.0þ1.8þ0.8þ0.1
−1.2−0.9−0.1

ðAincl
CP Þexpt 5.8� 2.4 −12.3� 2.2 2.5� 0.9 −3.6� 0.8

ðAlow
CP ÞNR 58.3þ3.6þ2.6þ0.8

−3.7−4.0−0.8 −25.0þ2.8þ2.7þ0.3
−5.4−2.5−0.3 48.9þ7.0þ7.6þ0.3

−10.5−8.2−0.3 −13.0þ2.0þ2.8þ0.2
−1.2−3.2−0.2

ðAlow
CP ÞRES 4.5þ0.0þ1.6þ0.0

−0.0−1.2−0.0 −4.9þ0.0þ0.5þ0.0
−0.0−0.4−0.0 57.1þ0.0þ7.9þ0.9

−0.0−16.6−0.9 1.6þ0.0þ0.1þ0.0
−0.0−0.1−0.0

ðAlow
CP ÞNRþRES 21.9þ0.5þ3.0þ0.0

−0.4−3.3−0.1 −17.5þ0.6þ1.7þ0.1
−0.9−1.5−0.1 49.4þ0.7þ9.4þ0.8

−1.0−14.2−0.8 −16.8þ3.5þ2.8þ0.2
−2.3−3.2−0.2

ðAlow
CP Þexpt 58.4� 9.7 −64.8� 7.2 67.8� 8.5 −22.6� 2.2

ðAresc
CP ÞNR 36.7þ6.2þ3.2þ0.1

−3.7−4.6−0.2 −27.7þ3.1þ3.0þ0.4
−5.9−2.7−0.4 31.8þ4.6þ4.6þ0.3

−6.7−4.5−0.3 −10.8þ1.8þ2.2þ0.2
−1.2−2.5−0.2

ðAresc
CP ÞRES 7.0þ0.0þ1.8þ0.0

−0.0−1.5−0.0 −5.6þ0.0þ0.5þ0.0
−0.0−0.4−0.0 1.1þ0.0þ0.6þ0.0

−0.0−0.5−0.0 0.96þ0.00þ0.02þ0.01
−0.00−0.02−0.01

ðAresc
CP ÞNRþRES 13.4þ0.5þ2.0þ0.0

−1.1−2.1−0.0 −20.4þ1.2þ2.0þ0.2
−1.8−1.8−0.2 4.1þ0.2þ0.9þ0.0

−0.3−0.9−0.0 −3.8þ1.5þ0.5þ0.1
−1.0−0.5−0.1

ðAresc
CP Þexpt 17.2� 2.7 −32.8� 4.1 12.1� 2.2 −21.1� 1.4
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the unpaired hadron and the resonance decay product with
the same-sign charge. Likewise, the Dalitz CP asymmetry
of B− → K−πþπ− has two zeros in the mðπþπ−Þ distribu-
tion. In the cos θ < 0 region, there is a zero around the
ρð770Þ mass and another one around the f0ð980Þ meson
mass (see Fig. 5 of [8]). However, in the region of
cos θ > 0, a clear change of sign is only seen around the
f0ð980Þ mass.
In this work, we do see the sign change of CP

asymmetry in the decay B− → πþπ−π− for cos θ < 0 but
not for cos θ > 0. The former arises from the interference of
ρð770Þ with the nonresonant background. The sign change
is ascribed to the real part of the Breit-Wigner propagator of
the ρð770Þ, which reads

s −m2
ρ

ðs −m2
ρÞ2 þm2

ρΓ2
ρðsÞ

: ð3:3Þ

It is not clear to us why we did not see the zero for
cos θ > 0. As for B− → K−πþπ−, the interference between
ρð770Þ and f0ð980Þ has a real component proportional to

ðs −m2
ρÞðs −m2

f0
Þ

½ðs −m2
ρÞ2 þm2

ρΓ2
ρðsÞ�½ðs −m2

f0
Þ2 þm2

f0
Γ2
f0
ðsÞ� : ð3:4Þ

This gives two zeros: one at s ¼ m2
ρð770Þ and the other at

s ¼ m2
f0ð980Þ. However, we only see a sign change around

f0ð980Þ but not ρð770Þ for cos θ < 0 and do not see any
zero for cos θ > 0. It is possible that the zeros are
contaminated or washed out by other contributions. We
are going to investigate this issue.

2. Strong phase δ

We now discuss in more detail why we need to introduce
an additional phase δ to the matrix element of scalar density
hK−πþjs̄dj0i given in Eq. (2.23). First, we notice that
the calculated integrated CP asymmetries ð8.3þ1.7

−1.9Þ% for
πþπ−π− and ð−6.0þ2.0

−1.5Þ% for KþK−K− (see Table V) are
consistent with LHC measurements in both sign and
magnitude.4 As discussed in passing and in [5], when
the unknown two-body matrix elements of scalar
densities hKπjs̄qj0i and hπKjs̄qj0i are related to
hKK̄js̄sj0i via SU(3) symmetry so that hK−πþjs̄dj0i ¼
hKþπ−jd̄sj0i ¼ hKþK−js̄sj0i, the calculated nonresonant
and total rates of B− → K−πþπ− will be too large com-
pared to experiment [see the discussions after Eq. (2.22)].
Moreover, the predicted CP violation Aincl

CP ðK−πþπ−Þ ¼
ð−0.8þ0.9

−0.6Þ% and Aincl
CP ðKþK−π−Þ ¼ ð4.9þ1.1

−1.0Þ% are wrong
in sign when confronted with experiment. Since the partial

rate asymmetry arises from the interference between tree
and penguin amplitudes and since nonresonant penguin
contributions to the penguin-dominated decay K−πþπ− are
governed by the matrix element hK−πþjs̄dj0i, it is thus
conceivable that a strong phase δ in hK−πþjs̄dj0i induced
from some sort of power corrections might flip the sign of
CP asymmetry.
It is clear from Table VI that the reason why the

predicted inclusive and regional CP asymmetries [except
Alow

CP ðK−πþπ−Þ] all are erroneous in sign when δ is set to
zero is ascribed to the nonresonant contributions, which are
opposite in sign to the experimental measurements. By
comparing Tables VI and V, we see that when δ is set to
≈� π preferred by the data, CP asymmetries induced from
nonresonant components will flip the sign as e�iπ ¼ −1.
Consequently, this in turn will lead to the correct sign for
the predicted asymmetries. As stressed in [5], we have
implicitly assumed that power corrections will not affect
CP violation in πþπ−π− and KþK−K−.
Finally, we would like to remark that unlike the global

weak phases, strong phases such as δ and the Breit-Wigner
phase are local ones, namely, they are energy and channel
dependent. For example, when we study CP-asymmetry
Dalitz distributions in some large invariant mass regions
(see Sec. III. 4 below), we find that δ needs to vanish in the
large invariant mass region for B− → KþK−π− in order to
accommodate the observation.

3. Final-state rescattering

As shown in Table VI, the calculated integrated and
local CP asymmetries Aincl

CP , A
low
CP , and Aresc

CP for B− →
KþK−π−; K−πþπ− with δ ¼ 0 are wrong in sign when

TABLE VI. Same as Table V except that the strong phase δ
defined in Eq. (2.23) forKπ matrix element of scalar density is set
to zero. The decays B− → πþπ−π− and KþK−K− are not affected
by the phase δ.

KþK−π− K−πþπ−

ðAincl
CP ÞNR 17.4þ0.7þ1.7þ0.0

−1.0−2.9−0.1 −3.5þ0.8þ1.1þ0.1
−0.6−1.3−0.0

ðAincl
CP ÞRES −16.3þ0.0þ0.9þ0.1

−0.0−0.8−0.1 6.9þ0.0þ2.1þ0.1
−0.0−1.8−0.1

ðAincl
CP ÞNRþRES 4.9þ0.7þ0.9þ0.1

−0.8−0.6−0.1 −0.8þ0.7þ0.6þ0.0
−0.5−0.3−0.0

ðAincl
CP Þexpt −12.3� 2.2 2.5� 0.9

ðAlow
CP ÞNR 22.3þ5.3þ2.6þ0.0

−2.8−2.9−0.1 −19.0þ1.5þ5.0þ0.4
−0.7−5.9−0.3

ðAlow
CP ÞRES −4.9þ0.0þ0.5þ0.0

−0.0−0.4−0.0 57.1þ0.0þ7.9þ0.9
−0.0−16.6−0.9

ðAlow
CP ÞNRþRES 4.6þ0.7þ0.6þ0.0

−0.4−0.8−0.0 40.7þ3.2þ5.0þ0.3
−2.4−8.6−0.4

ðAlow
CP Þexpt −64.8� 7.2 67.8� 8.5

ðAresc
CP ÞNR 25.2þ5.9þ2.8þ0.0

−3.1−3.2−0.1 −11.5þ1.6þ3.2þ0.2
−0.9−3.8−0.2

ðAresc
CP ÞRES −5.6þ0.0þ0.5þ0.0

−0.0−0.4−0.0 1.1þ0.0þ0.6þ0.0
−0.0−0.5−0.0

ðAresc
CP ÞNRþRES 10.1þ1.2þ1.3þ0.0

−0.7−1.5−0.1 −6.4þ1.0þ0.3þ0.1
−0.7−0.1−0.1

ðAresc
CP Þexpt −32.8� 4.1 12.1� 2.2

4Before the LHCb measurements of CP violation in three-body
B decays, the predicted CP asymmetries in various charmless
three-body B decays can be found in Table XVII of [12].
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confronted with experiment. Since direct CP violation in
charmless two-body B decays can be significantly affected
by final-state rescattering [62], it is natural to hope that
final-state rescattering effects in three-body B decays may
resolve the discrepancy. For example, the sign of the CP
asymmetry in the two-body decay B̄0 → K−πþ can be
flipped by the presence of long-distance rescattering of
charming penguins [62].
Just as the example of B̄0 → K−πþ, whose CP violation

is originally predicted to have the wrong sign in naive
factorization and gets a correct sign after power corrections
such as final-state interactions or penguin annihilation, are
taken into account, it will be very interesting to see an
explicit demonstration of the sign flip of ACPðK−πþπ−Þ
and ACPðπ−KþK−Þ when the final-state rescattering of
ππ ↔ KK̄ is turned on.
Here, we shall follow the work of [63] (also the same

framework adapted in [26]) to describe the inelastic
ππ ↔ KK̄ rescattering process and consider this final-state
rescattering effect on inclusive and local CP violation.
The general expression of three-body B decay amplitude

under final-state interactions is given by [64,65]

AFSI
i ¼

Xn
j¼1

ðS1=2ÞijAfac
j : ð3:5Þ

We now concentrate on πþπ− and KþK− final-state
rescattering and neglect possible interactions with the third
meson under the so-called “2þ 1” assumption and write

�
AðB− → πþπ−P−Þ
AðB− → KþK−P−Þ

�FSI

¼ S1=2
�

AðB− → πþπ−P−Þ
AðB− → KþK−P−Þ

�

ð3:6Þ

with P ¼ π, K. The unitary S matrix reads

S ¼
 

ηe2iδππ i
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
eiðδππþδKK̄Þ

i
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
eiðδππþδKK̄Þ ηe2iδKK̄

!
; ð3:7Þ

where the inelasticity parameter ηðsÞ is given by [63]

ηðsÞ ¼ 1 −
�
ϵ1

k2
s1=2

þ ϵ2
k22
s

�
M02 − s

s
; ð3:8Þ

with

k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

K

p
2

: ð3:9Þ

The ππ phase shift has the expression

δππðsÞ ¼
1

2
cos−1

�
cot2½δππðsÞ� − 1

cot2½δππðsÞ� þ 1

�
; ð3:10Þ

with

cot½δππðsÞ� ¼ c0
ðs −M2

sÞðM2
f − sÞ

M2
fs

1=2

jk2j
k22

: ð3:11Þ

We shall assume that δKK̄ ≈ δππ in the rescattering region.
To calculate S1=2, we note that the S matrix can be recast

to the form

S¼U

0
B@ηe2iδππ

�
η− i

ffiffiffiffiffiffiffiffiffiffiffi
1−η2

p �
0

0 ηe2iδππ
�
ηþ i

ffiffiffiffiffiffiffiffiffiffiffi
1−η2

p �
1
CAU†

¼Ue2iδππ
�
e−iϕ 0

0 eiϕ

�
U†; ð3:12Þ

with

U ¼ 1ffiffiffi
2

p
�

1 1

−1 1

�
ð3:13Þ

and

ϕ ¼ tan−1
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
η

: ð3:14Þ

Hence,

S1=2 ¼ Ueiδππ
�
e−iϕ=2 0

0 eiϕ=2

�
U†

¼ eiδππ
�

cosϕ=2 i sinϕ=2

i sinϕ=2 cosϕ=2

�
: ð3:15Þ

Consequently,

AðB− → πþπ−P−ÞFSI ¼ eiδππ ½cosðϕ=2ÞAðB− → πþπ−P−Þ
þ isinðϕ=2ÞAðB− →KþK−P−Þ�;

AðB− →KþK−P−ÞFSI ¼ eiδππ ½cosðϕ=2ÞAðB− →KþK−P−Þ
þ isinðϕ=2ÞAðB− → πþπ−P−Þ�;

ð3:16Þ

for P ¼ π, K.
For the numerical results presented in Table VII, we

have used the parameters given in Eqs. (2.15b’) and
(2.16) of [63], namely, M0 ¼ 1.5 GeV, Ms ¼ 0.92 GeV,
Mf ¼ 1.32 GeV, ϵ1 ¼ 2.4, ϵ2 ¼ −5.5, and c0 ¼ 1.3.
Unfortunately, our results are rather disappointing: in the
presence of the specific final-state rescattering, CP asym-
metries for both πþπ−π− and KþK−π− are heading in the
wrong direction. While ACP is decreased for the former, it
is increased for the latter, rendering the discrepancy
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between theory and experiment even worse. We also see
that ACPðKþK−K−Þ is almost not affected by the rescatter-
ing of ππ and KK̄.
Thus far, we have confined ourselves to rescattering

between πþπ− and KþK− in s-wave configuration. It is
known from two-body B decays that this particular rescat-
tering channel (through annihilation and total annihilation
diagrams, see Fig. 1 of [64]) cannot be sizeable, or the
rescattered B0 → KþK− rate fed from the B0 → πþπ−
mode will easily excess the measured rate, which is highly
suppressed [1]. In fact, the effect of exchange rescattering is
expected to be more prominent [64], and one needs to
enlarge the rescattering channels. It is clear that ππ and KK
are not confined to the s-wave configuration in the three-
body decays. Therefore, rescatterings in other partial wave
configurations should also be included. Rescatterings
between the third meson and other mesons can be relevant.
Moreover, other potentially important coupled channels
should not be neglected. For example, the decay B− →
πþπ−π− can be produced through the weak decay B →
DD̄�π followed by the rescattering of DD̄�π → πππ
and likewise for other three-body decays of B mesons.

The intermediate Dð�Þ
ðsÞD̄

ð�Þ
ðsÞP states have large CKM matrix

elements and hence can make significant contributions to
CP violation when coupled to three light pseudoscalar
states.
A comprehensive study of rescattering effects in three-

body B decays is beyond the scope of the present work. At
any rate, in this work, we shall use the phenomenological
phase δ ≈�π to describe the decays and CP violation
of B− → KþK−π−; K−πþπ−.

4. CP violation in B− → ρ0π−

It has been claimed that the observed large localized CP
violation in B− → πþπ−π− may result from the interference
of a light scalar meson f0ð500Þ and the vector ρ0ð770Þ

resonance [16,18], even though the latter one is not covered
in the low mass region m2

πþπ− low < 0.4 GeV2. Let us
consider the intermediate state ρ0 in the B− → πþπ−π−

decay. As shown in Table III, the calculated BðB− →
ρ0π−Þ ¼ ð7.3� 0.4Þ × 10−6 is consistent with the world
average ð8.3þ1.2

−1.3Þ × 10−6 [2] within errors. Its CP asym-
metry is found to be ACPðρ0π−Þ ¼ 0.059þ0.012

−0.010 . At first
sight, this seems to be in agreement in sign with the BABAR
measurement 0.18� 0.07þ0.05

−0.15 from the Dalitz plot analysis
of B− → πþπ−π− [43]. However, theoretical predictions
based on QCDF, pQCD, and SCET all lead to a negative
CP asymmetry of order −0.20 for B− → ρ0π− (see
Table XIII of [55]). As shown explicitly in Table IV of
[55], within the framework of QCDF, the inclusion of 1=mb
power corrections to penguin annihilation is responsible for
the sign flip of ACPðρ0π−Þ to a negative one. Specifically,
we shall use

βp3 ½πρ� ¼ −0.03þ 0.02i;

βp3 ½ρπ� ¼ 0.004 − 0.049i; ð3:17Þ

for p ¼ u, c. While the tree-dominated B− → ρ0π− rate
is affected only slightly by the power correction, CP
asymmetry flips the sign and becomes −0.21. From
Table VIII, we see that the inclusive and regional CP
asymmetries induced by resonances now become negative.
Consequently, the predicted Aincl

CP is wrong in sign,
while Alow

CP and Aresc
CP are too small when compared with

experiment. Hence, the LHCb data imply positive CP
violation induced by the ρ and f0 resonances. Indeed,
LHCb has measured asymmetries in B− → πþπ−π− in
four distinct regions dominated by the ρ [8]: I: 0.47<
mðπþπ−Þlow<0.77GeV, cosθ>0, II: 0.77<mðπþπ−Þlow<
0.92GeV, cos θ > 0, III: 0.47 < mðπþπ−Þlow < 0.77 GeV,
cos θ < 0, and IV: 0.77 < mðπþπ−Þlow < 0.92 GeV,
cos θ < 0. It is seen that ACP changes sign at

TABLE VII. Predicted inclusive and regional CP asymmetries (in %) for various charmless three-body B decays
in the presence of πþπ− ↔ KþK− final-state rescattering. We have set δ to zero. Only the central values of the final-
state interaction (FSI) effects are quoted here.

π−πþπ− KþK−π− K−πþπ− KþK−K−

ðAincl
CP ÞNRþRES 8.3þ0.3þ1.6þ0.0

−1.1−1.5−0.0 4.9þ0.7þ0.9þ0.1
−0.8−0.6−0.1 −0.8þ0.7þ0.6þ0.0

−0.5−0.3−0.0 −6.0þ1.8þ0.8þ0.1
−1.2−0.9−0.1

ðAincl
CP ÞNRþRESþFSI −15.6 8.1 0.7 −6.1

ðAincl
CP Þexpt 5.8� 2.4 −12.3� 2.2 2.5� 0.9 −3.6� 0.8

ðAlow
CP ÞNRþRES 21.9þ0.5þ3.0þ0.0

−0.4−3.3−0.1 4.6þ0.7þ0.6þ0.0
−0.4−0.8−0.0 40.7þ3.2þ5.0þ0.3

−2.4−8.6−0.4 −16.8þ3.5þ2.8þ0.2
−2.3−3.2−0.2

ðAlow
CP ÞNRþRESþFSI −17.6 13.2 2.3 −16.7

ðAlow
CP Þexpt 58.4� 9.7 −64.8� 7.2 67.8� 8.5 −22.6� 2.2

ðAresc
CP ÞNRþRES 13.4þ0.5þ2.0þ0.0

−1.1−2.1−0.0 10.1þ1.2þ1.3þ0.0
−0.7−1.5−0.1 −6.4þ1.0þ0.3þ0.1

−0.7−0.1−0.1 −3.8þ1.5þ0.5þ0.1
−1.0−0.5−0.1

ðAresc
CP ÞNRþRESþFSI 10.4 20.0 −1.3 −4.0

ðAresc
CP Þexpt 17.2� 2.7 −32.8� 4.1 12.1� 2.2 −21.1� 1.4
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mðπþπ−Þ ∼mρ. Summing over the regions I–IV yields CP
asymmetry consistent with zero with slightly positive
central value (see Table IV of [8]).
Therefore, we encounter a puzzle here. On one hand,

BABAR and LHCb measurements of B− → πþπ−π− seem
to indicate a positive CP asymmetry in themðπþπ−Þ region
peaked atmρ. On the other hand, all theories predict a large
and negative CP violation in B− → ρ0π−. This issue
concerning ACPðρ0π−Þ needs to be resolved.

5. Local CP violation in other invariant mass regions

For regional CP violation, so far we have focused on the
small invariant mass region specified in Eq. (1.1) and the
rescattering region of mππ and mKK̄ between 1.0 and
1.5 GeV. As noticed in passing, the magnitude and sign
of CP asymmetries in the Dalitz plot vary from region to
region. A successful model must explain not only the
inclusive asymmetry but also regional CP violation.
Therefore, the measured CP-asymmetry Dalitz distribu-
tions put stringent constraints on the models. In the
following, we consider the distribution of ACP in some
(large) invariant mass regions to test our model.
B� → K�KþK−

We see from Fig. 3(a) that ACP is mostly negative in
the Dalitz plot region with mðKþK−Þlow between 1 and
1.6 GeV and mðKþK−Þhigh below 4 GeV, but it can be
positive atmðKþK−Þhigh > 4 GeV (see also Fig. 2 of [11]).
We consider two regions with positive ACP:
(i) m2ðKþK−Þlow ¼ 3–5 GeV2 and m2ðKþK−Þhigh ¼
18–22 GeV2, and (ii) m2ðKþK−Þlow ¼ 8–9 GeV2 and
m2ðKþK−Þhigh ¼ 18–19 GeV2. We obtain the values of
ACP to be 0.11 and 0.41, respectively, in our model. This is
consistent with the data as ACP in region (ii) should be
much larger than that in region (i).
B� → K�πþπ−

While the integrated Aincl
CP is positive in this decay,

Fig. 3(b) shows the distribution of negative CP asymmetry
in the regions such as (i) m2ðπþπ−Þ ¼ 9.5–10.5 GeV2 and
m2ðKþπ−Þ ¼ 10–18 GeV2 and (ii)m2ðπþπ−Þ ¼ 2–6 GeV2

and m2ðKþπ−Þ ¼ 20.5–21.5 GeV2. Our model leads to
Alocal

CP ≈ −0.09 and −0.04, respectively. Experimentally,
jACPj in region (ii) should be larger. Therefore, while
the sign is correctly predicted, the relative magnitude of
ACP in regions (i) and (ii) is not borne out by experiment.

B� → π�πþπ−
It is obvious from Fig. 3(c) that ACP is very large and

positive in the region of 5 < m2ðπþπ−Þlow < 10 GeV2 and
9 < m2ðπþπ−Þhigh < 12 GeV2, and it becomes negative
in the region of 3 < m2ðπþπ−Þlow < 8 GeV2 and 20 <
m2ðπþπ−Þhigh < 21 GeV2. We obtain Alocal

CP ≈ 0.47 and
−0.29, respectively, in qualitative agreement with
experiment.
B� → π�KþK−

Figure 3(d) shows that ACP is large and negative in the
region of (i) 16 < m2ðKþK−Þ < 25 GeV2 and 5 <
m2ðKþπ−Þ < 10 GeV2. It changes sign in the region of
(ii) 5 < m2ðKþK−Þ < 9 GeV2 and 4 < m2ðKþπ−Þ <
13 GeV2. Our results Alocal

CP ≈ 0.36 and −0.44 in regions
(i) and (ii), respectively, are not consistent with experiment.
If the phase δ is set to zero, we will haveAlocal

CP ≈ −0.73 and
0.54, respectively, in qualitative agreement with the data.
Thus, it is possible that the phase δ is energy dependent,
and it vanishes in the large invariant mass region. This issue
is currently under study.
In short, for local CP asymmetries in various (large)

invariant mass regions, our model predictions are in
qualitative agreement with experiment for KþK−K− and
πþπ−π− modes and yield a correct sign for K−πþπ−.
However, it appears that the phase δ needs to vanish in
the large invariant mass region for KþK−π− in order to
accommodate the observation.

IV. COMPARISON WITH OTHER WORKS

CP violation in three-body decays of the charged B
meson has been investigated in Refs. [5,16–27,66]. The
authors of [16,18] considered the possibility of having a
large local CP violation in B− → πþπ−π− resulting from
the interference of the resonances f0ð500Þ and ρ0ð770Þ.
A similar mechanism has been applied to the decay
B− → K−πþπ− [66]. Studies of flavor SU(3) symmetry
imposed on the decay amplitudes and its implication on
CP violation were elaborated on in [19,23]. The
observed CP asymmetry in B− → πþπ−π− decays
changes sign at a value of mðπþπ−Þlow close to the
ρð770Þ resonance [8]. It was argued in [22] that the sign
change is caused by the ρ–ω mixing. In our work, we
have taken into account both resonant and nonresonant
amplitudes simultaneously and worked out their

TABLE VIII. Predicted inclusive and regional CP asymmetries (in %) in B− → πþπ−π− decay when penguin
annihilation is added to render ACPðρ0π−Þ ≈ −0.21.

NR RES NRþ RES Expt.

Aincl
CP 25.0þ4.4þ2.1þ0.0

−2.7−3.1−0.1 −16.3þ0.0þ1.5þ0.0
−0.0−1.0−0.0 −6.7þ1.6þ1.5þ0.0

−2.6−1.3−0.0 5.8� 2.4

Alow
CP 58.3þ3.6þ2.6þ0.8

−3.7−4.0−0.8 −16.8þ0.0þ1.5þ0.0
−0.0−1.1−0.0 6.0þ0.2þ3.1þ0.0

−0.4−1.2−0.0 58.4� 9.7

Aresc
CP 36.7þ6.2þ3.2þ0.1

−3.7−4.6−0.2 −11.4þ0.0þ1.5þ0.0
−0.0−1.0−0.0 0.4þ1.2þ2.0þ0.0

−2.1−1.8−0.0 17.2� 2.7
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contributions to branching fractions and CP violation in
details. We found that even in the absence of f0ð500Þ
resonance, local CP asymmetry in πþπ−π− can already
reach the level of 17% due to nonresonant and other
resonant contributions. Moreover, the regional asymme-
try induced solely by the nonresonant component can be
as large as 58% in our calculation. In our work and also
in the work of [17,26] to be discussed below, the sign
change is ascribed to the real part of the Breit-Wigner
propagator for the ρð770Þ resonance.
Based on the constraint of CPT invariance on final-

state interactions, the authors of [17,26] have studied
CP violation in charmless three-body charged B decays,
especially the CP-asymmetry distribution in the mass
region below 1.6 GeV. We first recapitulate the main
points of this work. Writing the S matrix as Sλ0λ ¼
δλ0λ þ itλ0λ and the decay amplitude to the leading order
in t as

Aðh → λÞ ¼ Aλ þ e−iγBλ þ i
X
λ0
tλ0λðAλ0 þ e−iγBλ0 Þ; ð4:1Þ

with Aλ and Bλ being complex amplitudes invariant
under CP, it follows that the rate difference reads
[17,26]

ΔΓλ ≡ Γðh → λÞ − Γðh̄ → λ̄Þ
¼ 4ðsin γÞImðB�

λAλÞ
þ 4ðsin γÞ

X
λ0
Re½B�

λtλ0λAλ0 − B�
λ0 t

�
λ0λAλ�

¼ ΔΓSD
λ þ ΔΓFSI

λ ; ð4:2Þ
where the first term corresponds to the familiar short-
distance contribution to direct CP asymmetry and the
second term arises from final-state rescattering (so-
called compound CP violation). It is interesting to
notice the relation (see [26] for the derivation)X

λ

ΔΓFSI
λ ¼ 0 ð4:3Þ

is valid irrespective of the short-distance one. When the
CPT condition

P
λIm½B�

λAλ� ¼ 0 is imposed, the CPT
constraint

P
λΔΓλ ¼ 0 follows.

Suppose only the two channels α ¼ πþπ−P− and β ¼
KþK−P− (P ¼ π, K) in B− decays are strongly coupled
through strong interactions with the third meson P being
treated as a bachelor or a spectator, it follows from Eq. (4.3)
that ΔΓFSI

α ¼ −ΔΓFSI
β (not ΔΓα ¼ −ΔΓβ!). It should be

stressed again that this relation is not imposed by hand,
rather it is a consequence of the assumption of only two

FIG. 3. Local CP asymmetry distributions in the invariant mass regions depicted by the black rectangles for (a) B� → K�KþK−,
(b) B� → K�πþπ−, (c) B� → π�πþπ−, and (d) B� → π�KþK−. Dalitz plots of CP -asymmetry distributions are taken from [8].
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channels coupled through final-state resacttering. As a
result,

�
Aincl

CP ðKþK−π−Þ
Aincl

CP ðπþπ−π−Þ
�

FSI

¼ −
BðB− → πþπ−π−Þ
BðB− → KþK−π−Þ

¼ −3.0� 0.5;�
Aincl

CP ðKþK−K−Þ
Aincl

CP ðπþπ−K−Þ
�

FSI

¼ −
BðB− → KþK−K−Þ
BðB− → πþπ−K−Þ

¼ −1.5� 0.1; ð4:4Þ

where we have used the branching fractions listed in
Table III and the averaged ones: BðB− → πþπ−K−Þ ¼
ð51.0� 2.9Þ × 10−6 and BðB− → KþK−K−Þ ¼
ð34.0� 1.4Þ × 10−6. Experimentally, the ratios in
Eq. (4.4) are measured to be of order −2.1 and −1.4,
respectively. The coincidence between theory and experi-
ment suggests that the LHCb data ofCP asymmetries could
be described in terms of final-state rescattering. For three-
body B decays, the strong couplings between KþK− and
πþπ− channels with the CPT constraint were used in [26]
to fit the observed asymmetries in some channels and then
predict CP violation in other modes. Explicitly, the
amplitude Eq. (4.1) is fitted to the LHCb data of the
distribution of CP asymmetries in mðπþπ−Þ measured in
B− → πþπ−P− decays with P ¼ π, K. Then the fit param-
eters in ΔΓFSI

α are used to predict the ΔΓFSI
β ðsÞ distributions

of B− → KþK−P− decays in mðKþK−Þ (see Figs. 10 and
12 of [26]). It turns out that theCP-asymmetry distributions
of B− → KþK−P− observed by LHCb in the rescattering
region are fairly accounted for by the final-state rescattering
of πþπ− ↔ KþK−.
In short, final-state interactions play an essential role in

the work of [17,26]. The CPT relation ΔΓFSI
α ¼ −ΔΓFSI

β is
used to describe CP-asymmetry distributions in B− →
KþK−P− decays after a fit to B− → πþπ−P− channels.
Final-state rescattering of πþπ− ↔ KþK− dominates the
asymmetry in the mass region between 1 and 1.5 GeV. On
the contrary, we performed a dynamical model calculation
of partial rates and CP asymmetries without taking into
account final-state interactions explicitly. We accentuate
the crucial role played by nonresonant contributions. Our
predicted inclusive CP asymmetries for πþπ−π− and
KþK−K− agree with experiment and have nothing to do
with πþπ− and KþK− final-state rescattering, while the
calculated CP asymmetries for KþK−π− and πþπ−K− are
wrong in sign. Hence, we introduce an additional strong
phase δ to flip the sign.

V. CONCLUSIONS

We have presented in this work a study of charmless
three-body decays of Bmesons using a simple model based
on the factorization approach. Our main results are

(i) Dominant nonresonant contributions to tree-
dominated and penguin-dominated three-body decays
arise from the b → u tree transition and b → s
penguin transition, respectively. The former can be
evaluated in the framework of heavy meson chiral
perturbation theory supplemented by some energy
dependence to ensure that HMChPT results are valid
in a chiral limit. The latter is governed by the matrix
element of the scalar density hM1M2jq̄1q2j0i.

(ii) Based on the factorization approach, we have
considered the resonant contributions to three-
body decays and computed the rates for the
quasi-two-body decays B → VP and B → SP.
While the calculated branching fractions for the
tree-dominated modes such as ρπ and f0ð980Þπ are
consistent with experiment, the predicted rates for
penguin-dominated ϕK;K�π; ρK, and K�

0ð1430Þπ
channels are too small compared to the data. This
implies the importance of power corrections. We
follow the QCD factorization approach to introduce
the penguin annihilation characterized by the param-
eter β3 to improve the discrepancy between theory
and experiment for penguin-dominated ones.

(iii) The branching fraction of nonresonant contributions
is of order ð15–20Þ × 10−6 in penguin-dominated
decays B− → KþK−K−; K−πþπ− and of order
ð3–5Þ × 10−6 in tree-dominated decays B− →
πþπ−π−; KþK−π−. The nonresonant fraction is pre-
dicted to be around 55% for the B− →
KþK−π− decay.

(iv) We have updated the predictions for the resonant and
nonresonant contributions to B− → K̄0π−π0, B− →
K−π0π0, B̄0 → K̄0πþπ−, and B̄0 → K−πþπ0. The
calculated total branching fractions are smaller than
experiment. This is ascribed to the fact that the
predicted B → K�

0ð1430Þπ rates in factorization or
QCDF are too small compared to the data and that
the K�

0ð1430Þ has the largest contributions to B →
Kππ decays.

(v) In our study of B− → π−πþπ−, we find that
ACPðρ0π−Þ is positive. Indeed, both BABAR and
LHCb measurements of B− → πþπ−π− indicate pos-
itive CP asymmetry in themðπþπ−Þ region peaked at
mρ. On the other hand, all theories predict a large and
negativeCP violation inB− → ρ0π−. We have shown
that if we add 1=mb penguin-annihilation induced
power correction to renderACPðρ0π−Þ negative,Aincl

CP
will be wrong in sign and the predicted regional CP
asymmetries will become too small compared to
experiment. Therefore, the issue with CP violation
in B− → ρ0π− needs to be resolved.

(vi) While the calculated direct CP asymmetries for
KþK−K− and πþπ−π− modes are in good agreement
with experiment in both magnitude and sign, the
predicted asymmetries in B− → π−KþK− and
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B− → K−πþπ− are wrong in signs when confronted
with experiment. This is attributed to the sizable
nonresonant contributions which are opposite in sign
to the experimental measurements (see Table VI).
We have studied final-state inelastic πþπ− ↔ KþK−

rescattering and found that CP violation for both
πþπ−π− and KþK−K− is heading to the wrong
direction, making the discrepancy even worse. In
order to accommodate the branching fraction of
nonresonant component and CP asymmetry ob-
served in B− → K−πþπ−, the matrix element
hKπjs̄qj0i should have an extra strong phase δ of
order �π in addition to the phase characterized by
the parameter σNR. This phase δ may arise from
some sort of power corrections such as final-state
interactions. The matrix element hKπjq̄sj0i relevant
to the decay B− → π−KþK− is related to hKπjs̄qj0i
via U-spin symmetry.

(vii) In this work, there are three sources of strong phases:
effective Wilson coefficients, propagators of reso-
nances, and the matrix element of scalar density
hM1M2jq̄1q2j0i. There are two sources for the phase
in the penguin matrix element of scalar densities:
σNR and δ for Kπ–vacuum matrix elements.

(viii) Nonresonant CP violation is usually much larger
than the resonant one and the interference effect

between resonant and nonresonant components is
generally quite significant. If nonresonant contribu-
tions are turned off in the B− → KþK−K− mode, the
predicted CP asymmetries due to resonances will be
incorrect in sign. Since this decay is predominated
by the nonresonant background, the magnitude and
the sign of its CP asymmetry should be governed by
the nonresonant term.

(ix) We have studied CP-asymmetry Dalitz distributions
in some (large) invariant mass regions to test our
model. Our model predictions are in qualitative
agreement with experiment for KþK−K− and
πþπ−π− modes and yield a correct sign for
K−πþπ−. However, it appears that the phase δ needs
to vanish in the large invariant mass region for
KþK−π− in order to accommodate the observation.

ACKNOWLEDGMENTS

This work was supported in part by the Ministry of
Science and Technology of Taiwan under Grants
No. MOST 104-2112-M-001-022 and No. 103-2112-M-
033-002-MY3 and by the National Natural Science
Foundation of China under Grant No. 11347030, the
Program of Science and Technology Innovation Talents
in Universities of Henan Province 14HASTIT037.

[1] K. A. Olive et al. (Particle Data Group Collaboration), Chin.
Phys. C 38, 090001 (2014).

[2] Y. Amhis et al. (Heavy Flavor Averaging Group Collabo-
ration), arXiv:1412.7515 and online updates at http://www
.slac.stanford.edu/xorg/hfag.

[3] J. P. Lees et al. (BABAR Collaboration), arXiv:1501.00705.
[4] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 110,

221601 (2013).
[5] H. Y. Cheng and C. K. Chua, Phys. Rev. D 88, 114014

(2013).
[6] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 111,

101801 (2013).
[7] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 112,

011801 (2014).
[8] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 90,

112004 (2014).
[9] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 78,

012004 (2008).
[10] A. Garmash et al. (Belle Collaboration), Phys. Rev. Lett. 96,

251803 (2006).
[11] R. Aaij et al. (LHCb Collaboration), ReportsNo.CERN-PH-

EH-2014-203, No. LHCb-PAPER-2014-044, https://cds.cern.
ch/record/1751517?ln=en.

[12] H. Y. Cheng, C. K. Chua, and A. Soni, Phys. Rev. D 76,
094006 (2007).

[13] T. M. Yan, H. Y. Cheng, C. Y. Cheung, G. L. Lin, Y. C. Lin,
and H. L. Yu, Phys. Rev. D 46, 1148 (1992); 55, 5851(E)
(1997).

[14] M. B. Wise, Phys. Rev. D 45, R2188 (1992).
[15] G. Burdman and J. F. Donoghue, Phys. Lett. B 280, 287

(1992).
[16] B. Bhattacharya, M. Gronau, and J. L. Rosner, Phys. Lett. B

726, 337 (2013).
[17] I. Bediaga, T. Frederico, and O. Lourenco, Phys. Rev. D 89,

094013 (2014).
[18] Z. H. Zhang, X. H. Guo, and Y. D. Yang, Phys. Rev. D 87,

076007 (2013).
[19] D. Xu, G. N. Li, and X. G. He, Int. J. Mod. Phys. A

29, 1450011 (2014); Phys. Lett. B 728, 579 (2014);
X. G. He, G. N. Li, and D. Xu, Phys. Rev. D 91, 014029
(2015).

[20] L. Leśniak and P. Żenczykowski, Phys. Lett. B 737, 201
(2014).

[21] Y. Li, Phys. Rev. D 89, 094007 (2014).
[22] W. F. Wang, H. C. Hu, H. n. Li, and C. D. Lu, Phys. Rev. D

89, 074031 (2014).
[23] B. Bhattacharya, M. Gronau, M. Imbeault, D. London, and

J. L. Rosner, Phys. Rev. D 89, 074043 (2014).
[24] S. Kräkl, T. Mannel, and J. Virto, Nucl. Phys. B899, 247

(2015).

DIRECT CP VIOLATION IN CHARMLESS THREE-BODY … PHYSICAL REVIEW D 94, 094015 (2016)

094015-19

http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://www.slac.stanford.edu/xorg/hfag
http://www.slac.stanford.edu/xorg/hfag
http://www.slac.stanford.edu/xorg/hfag
http://arXiv.org/abs/1412.7515
http://arXiv.org/abs/1501.00705
http://dx.doi.org/10.1103/PhysRevLett.110.221601
http://dx.doi.org/10.1103/PhysRevLett.110.221601
http://dx.doi.org/10.1103/PhysRevD.88.114014
http://dx.doi.org/10.1103/PhysRevD.88.114014
http://dx.doi.org/10.1103/PhysRevLett.111.101801
http://dx.doi.org/10.1103/PhysRevLett.111.101801
http://dx.doi.org/10.1103/PhysRevLett.112.011801
http://dx.doi.org/10.1103/PhysRevLett.112.011801
http://dx.doi.org/10.1103/PhysRevD.90.112004
http://dx.doi.org/10.1103/PhysRevD.90.112004
http://dx.doi.org/10.1103/PhysRevD.78.012004
http://dx.doi.org/10.1103/PhysRevD.78.012004
http://dx.doi.org/10.1103/PhysRevLett.96.251803
http://dx.doi.org/10.1103/PhysRevLett.96.251803
https://cds.cern.ch/record/1751517?ln=en
https://cds.cern.ch/record/1751517?ln=en
https://cds.cern.ch/record/1751517?ln=en
https://cds.cern.ch/record/1751517?ln=en
http://dx.doi.org/10.1103/PhysRevD.76.094006
http://dx.doi.org/10.1103/PhysRevD.76.094006
http://dx.doi.org/10.1103/PhysRevD.46.1148
http://dx.doi.org/10.1103/PhysRevD.55.5851
http://dx.doi.org/10.1103/PhysRevD.55.5851
http://dx.doi.org/10.1103/PhysRevD.45.R2188
http://dx.doi.org/10.1016/0370-2693(92)90068-F
http://dx.doi.org/10.1016/0370-2693(92)90068-F
http://dx.doi.org/10.1016/j.physletb.2013.08.062
http://dx.doi.org/10.1016/j.physletb.2013.08.062
http://dx.doi.org/10.1103/PhysRevD.89.094013
http://dx.doi.org/10.1103/PhysRevD.89.094013
http://dx.doi.org/10.1103/PhysRevD.87.076007
http://dx.doi.org/10.1103/PhysRevD.87.076007
http://dx.doi.org/10.1142/S0217751X14500110
http://dx.doi.org/10.1142/S0217751X14500110
http://dx.doi.org/10.1016/j.physletb.2013.12.040
http://dx.doi.org/10.1103/PhysRevD.91.014029
http://dx.doi.org/10.1103/PhysRevD.91.014029
http://dx.doi.org/10.1016/j.physletb.2014.08.052
http://dx.doi.org/10.1016/j.physletb.2014.08.052
http://dx.doi.org/10.1103/PhysRevD.89.094007
http://dx.doi.org/10.1103/PhysRevD.89.074031
http://dx.doi.org/10.1103/PhysRevD.89.074031
http://dx.doi.org/10.1103/PhysRevD.89.074043
http://dx.doi.org/10.1016/j.nuclphysb.2015.08.004
http://dx.doi.org/10.1016/j.nuclphysb.2015.08.004


[25] C. Wang, Z. H. Zhang, Z. Y. Wang, and X. H. Guo, Eur.
Phys. J. C 75, 536 (2015).

[26] J. H. A. Nogueira, I. Bediaga, A. B. R. Cavalcante, T.
Frederico, and O. Loureno, Phys. Rev. D 92, 054010 (2015).

[27] I. Bediaga and P. C. Magalhãs, arXiv:1512.09284.
[28] I. Bediaga, in Workshop of Future Challenges in Non-

Leptonic B Decays: Theory and Experiment, Bad Honnef,
Germany, February 10–12, 2016.

[29] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda,
Phys. Rev. Lett. 83, 1914 (1999); Nucl. Phys. B591, 313
(2000); B606, 245 (2001).

[30] Y. Y. Keum, H. n. Li, and A. I. Sanda, Phys. Rev. D 63,
054008 (2001); Phys. Lett. B 504, 6 (2001).

[31] C. W. Bauer, S. Fleming, D. Pirjol, and I. W. Stewart, Phys.
Rev. D 63, 114020 (2001).

[32] C. H. Chen and H. n. Li, Phys. Lett. B 561, 258 (2003).
[33] S. Faller, T. Feldmann, A. Khodjamirian, T. Mannel, and D.

van Dyk, Phys. Rev. D 89, 014015 (2014).
[34] C. Hambrock and A. Khodjamirian, Nucl. Phys. B905, 373

(2016).
[35] D. van Dyk, A. Khodjamirian, P. R. Garcés, P. Masiuan,

and B. Kubis in Workshop of Future Challenges in Non-
Leptonic B Decays: Theory and Experiment, Bad Honnef,
Germany, February 10–12, 2016.

[36] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 85,
112010 (2012).

[37] A. Garmash et al. (Belle Collaboration), Phys. Rev. D 71,
092003 (2005).

[38] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 85,
054023 (2012).

[39] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 80,
112001 (2009).

[40] A. Garmash et al. (Belle Collaboration), Phys. Rev. D 75,
012006 (2007).

[41] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 83,
112010 (2011).

[42] P. Chang et al. (Belle Collaboration), Phys. Lett. B 599, 148
(2004).

[43] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 79,
0720106 (2009).

[44] C. L. Y. Lee, M. Lu, and M. B. Wise, Phys. Rev. D 46, 5040
(1992).

[45] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 74,
032003 (2006); arXiv:0808.0700v2.

[46] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 99,
221801 (2007).

[47] A. Garmash et al. (Belle Collaboration), Phys. Rev. D 69,
012001 (2004).

[48] See Chapter 13 of A. J. Bevan et al. (BABAR and Belle
Collaborations), Eur. Phys. J. C 74, 3026 (2014).

[49] S. M. Flatté, Phys. Lett. 63B, 224 (1976).
[50] C. K. Chua, W. S. Hou, S. Y. Shiau, and S. Y. Tsai, Phys.

Rev. D 67, 034012 (2003).
[51] M. Doring, U. G. Meisner, and W. Wang, J. High Energy

Phys. 10 (2013) 011; U. G. Meisner and W. Wang, Phys.
Lett. B 730, 336 (2014).

[52] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 99,
161802 (2007).

[53] J. Charles, A. Höcker, H. Lacker, S. Laplace, F. R. Diberder,
J. Malclés, J. Ocariz, M. Pivk, and L. Roos (CKMfitter
Group), Eur. Phys. J. C 41, 1 (2005) and updated results
from http://ckmfitter.in2p3.fr; M. Bona et al. (UTfit Col-
laboration), J. High Energy Phys. 07 (2005) 028 and
updated results from http://utfit.roma1.infn.it.

[54] M. Beneke and M. Neubert, Nucl. Phys. B675, 333
(2003).

[55] H. Y. Cheng and C. K. Chua, Phys. Rev. D 80, 114008
(2009).

[56] H. Y. Cheng, C. K. Chua, K. C. Yang, and Z. Q. Zhang,
Phys. Rev. D 87, 114001 (2013).

[57] H. Y. Cheng, C. K. Chua, and K. C. Yang, Phys. Rev. D 73,
014017 (2006).

[58] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 84,
092007 (2011).

[59] I. I. Bigi, arXiv:1306.6014; arXiv:1509.03899.
[60] D. Atwood and A. Soni, Phys. Rev. D 58, 036005

(1998).
[61] M. Bander, D. Silverman, and A. Soni, Phys. Rev. Lett. 43,

242 (1979).
[62] H. Y. Cheng, C. K. Chua, and A. Soni, Phys. Rev. D 71,

014030 (2005).
[63] J. R. Pelaez and F. J. Yndurain, Phys. Rev. D 71, 074016

(2005).
[64] C. K. Chua, Phys. Rev. D 78, 076002 (2008).
[65] M. Suzuki and L. Wolfenstein, Phys. Rev. D 60, 074019

(1999).
[66] Z. H. Zhang, X. H. Guo, and Y. D. Yang, arXiv:1308.5242.

CHENG, CHUA, and ZHANG PHYSICAL REVIEW D 94, 094015 (2016)

094015-20

http://dx.doi.org/10.1140/epjc/s10052-015-3757-2
http://dx.doi.org/10.1140/epjc/s10052-015-3757-2
http://dx.doi.org/10.1103/PhysRevD.92.054010
http://arXiv.org/abs/1512.09284
http://dx.doi.org/10.1103/PhysRevLett.83.1914
http://dx.doi.org/10.1016/S0550-3213(00)00559-9
http://dx.doi.org/10.1016/S0550-3213(00)00559-9
http://dx.doi.org/10.1016/S0550-3213(01)00251-6
http://dx.doi.org/10.1103/PhysRevD.63.054008
http://dx.doi.org/10.1103/PhysRevD.63.054008
http://dx.doi.org/10.1016/S0370-2693(01)00247-7
http://dx.doi.org/10.1103/PhysRevD.63.114020
http://dx.doi.org/10.1103/PhysRevD.63.114020
http://dx.doi.org/10.1016/S0370-2693(03)00486-6
http://dx.doi.org/10.1103/PhysRevD.89.014015
http://dx.doi.org/10.1016/j.nuclphysb.2016.02.035
http://dx.doi.org/10.1016/j.nuclphysb.2016.02.035
http://dx.doi.org/10.1103/PhysRevD.85.112010
http://dx.doi.org/10.1103/PhysRevD.85.112010
http://dx.doi.org/10.1103/PhysRevD.71.092003
http://dx.doi.org/10.1103/PhysRevD.71.092003
http://dx.doi.org/10.1103/PhysRevD.85.054023
http://dx.doi.org/10.1103/PhysRevD.85.054023
http://dx.doi.org/10.1103/PhysRevD.80.112001
http://dx.doi.org/10.1103/PhysRevD.80.112001
http://dx.doi.org/10.1103/PhysRevD.75.012006
http://dx.doi.org/10.1103/PhysRevD.75.012006
http://dx.doi.org/10.1103/PhysRevD.83.112010
http://dx.doi.org/10.1103/PhysRevD.83.112010
http://dx.doi.org/10.1016/j.physletb.2004.07.063
http://dx.doi.org/10.1016/j.physletb.2004.07.063
http://dx.doi.org/10.1103/PhysRevD.79.072006
http://dx.doi.org/10.1103/PhysRevD.79.072006
http://dx.doi.org/10.1103/PhysRevD.46.5040
http://dx.doi.org/10.1103/PhysRevD.46.5040
http://dx.doi.org/10.1103/PhysRevD.74.032003
http://dx.doi.org/10.1103/PhysRevD.74.032003
http://arXiv.org/abs/0808.0700v2
http://dx.doi.org/10.1103/PhysRevLett.99.221801
http://dx.doi.org/10.1103/PhysRevLett.99.221801
http://dx.doi.org/10.1103/PhysRevD.69.012001
http://dx.doi.org/10.1103/PhysRevD.69.012001
http://dx.doi.org/10.1140/epjc/s10052-014-3026-9
http://dx.doi.org/10.1016/0370-2693(76)90654-7
http://dx.doi.org/10.1103/PhysRevD.67.034012
http://dx.doi.org/10.1103/PhysRevD.67.034012
http://dx.doi.org/10.1007/JHEP10(2013)011
http://dx.doi.org/10.1007/JHEP10(2013)011
http://dx.doi.org/10.1016/j.physletb.2014.02.009
http://dx.doi.org/10.1016/j.physletb.2014.02.009
http://dx.doi.org/10.1103/PhysRevLett.99.161802
http://dx.doi.org/10.1103/PhysRevLett.99.161802
http://dx.doi.org/10.1140/epjc/s2005-02169-1
http://ckmfitter.in2p3.fr
http://ckmfitter.in2p3.fr
http://ckmfitter.in2p3.fr
http://dx.doi.org/10.1088/1126-6708/2005/07/028
http://dx.doi.org/10.1088/1126-6708/2005/07/028
http://dx.doi.org/10.1016/j.nuclphysb.2003.09.026
http://dx.doi.org/10.1016/j.nuclphysb.2003.09.026
http://dx.doi.org/10.1103/PhysRevD.80.114008
http://dx.doi.org/10.1103/PhysRevD.80.114008
http://dx.doi.org/10.1103/PhysRevD.87.114001
http://dx.doi.org/10.1103/PhysRevD.73.014017
http://dx.doi.org/10.1103/PhysRevD.73.014017
http://dx.doi.org/10.1103/PhysRevD.84.092007
http://dx.doi.org/10.1103/PhysRevD.84.092007
http://arXiv.org/abs/1306.6014
http://arXiv.org/abs/1509.03899
http://dx.doi.org/10.1103/PhysRevD.58.036005
http://dx.doi.org/10.1103/PhysRevD.58.036005
http://dx.doi.org/10.1103/PhysRevLett.43.242
http://dx.doi.org/10.1103/PhysRevLett.43.242
http://dx.doi.org/10.1103/PhysRevD.71.014030
http://dx.doi.org/10.1103/PhysRevD.71.014030
http://dx.doi.org/10.1103/PhysRevD.71.074016
http://dx.doi.org/10.1103/PhysRevD.71.074016
http://dx.doi.org/10.1103/PhysRevD.78.076002
http://dx.doi.org/10.1103/PhysRevD.60.074019
http://dx.doi.org/10.1103/PhysRevD.60.074019
http://arXiv.org/abs/1308.5242

