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We modify the quark periodicity condition on the thermal circle by the introduction of some phases—
known also as “flavor holonomies”— different quark flavors. These phases provide a valuable tool, to be
used for better understanding of deconfinement and chiral restoration phase transitions: by changing
them, one can dramatically modify both phase transitions. In the language of instanton constituents—
instanton-dyons or monopoles—changing the quark periodicity condition has a very direct explanation: the
interplay of flavor and color holonomies can switch topological zero modes between various dyon types.
The model we will study in detail, the so-called ZNc

-symmetric QCD model with equal number of colors
and flavors Nc ¼ Nf ¼ 2 and special arrangement of flavor and color holonomies, ensures the “most
democratic” setting, in which each quark flavor and each dyon type are in one-to-one correspondence. The
usual QCD has the opposite “most exclusive” arrangement: all quarks are antiperiodic and, thus, all zero
modes fall on only one—twisted or L—dyon type. As we show by ensemble simulation, deconfinement
and chiral restoration phase transitions in these two models are dramatically different. In the usual QCD,
both are smooth crossovers: but in the case of the Z2-symmetric model, deconfinement becomes a strong
first-order transition, while chiral symmetry remains broken for all dyon densities studied. These results are
in good correspondence with those from recent lattice simulations.
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I. INTRODUCTION

QCD-like gauge theories display two main nonpertur-
bative phenomena—confinement and spontaneous break-
ing of SUðNfÞ chiral symmetry. Their mechanism has been
discussed extensively since the 1970s: we will mention
some historical highlights below. Our previous papers,
referred to as I [1] and II [2] below, address those
phenomena in a model based on a certain gauge topology
model.
Before going into the details of that model, let us first

explain the main new element of this paper—what we mean
by quark periodicity condition and why one should be
interested in such theories. The standard Euclidean formu-
lation of QCD-like theories define time τ ∈ S1, on the so-
called Matsubara circle with a circumference β ¼ ℏ=T.
Bosons—the gauge fields—are periodic on this circle, and
fermions are antiperiodic: as a result, standard Bose and
Fermi thermal factors automatically appear in thermody-
namical expressions. One can generalize quarks periodicity
condition on S1 by adding an arbitrary phase, and this is the
option used in this work. With a generic value of this phase,
quarks are neither fermions nor bosons: perhaps one can
use a term originated from condensed matter physics—the
“anyons.”
The short answer to why such studies can be instructive

follows: chiral symmetry breaking is associated with Dirac
zero modes of certain topological solitons. By changing the
quark phases, one can very effectively manipulate their
coupling to solitons of different kinds and, thus, learn
which of them are in fact relevant for the phenomena under
consideration.

Since this is our third paper of the series, it hardly
needs an extensive introduction. Here is a brief outline of
the historic development of nonperturbative QCD. Since
the 1970s, confinement was historically connected with
gauge field solitons with magnetic charge—the monopoles.
It is sufficient to mention the so-called “dual supercon-
ductor” model by ’t Hooft and Mandelstam [3] and
Polyakov’s proof of confinement in 2þ 1-dimensional
gauge theories [4].
Chiral symmetry breaking was first addressed back in

1961 by Nambu and Jona Lasinio (NJL) [5], who pointed
out the existence of the chiral symmetry, as well as its
spontaneous breaking by a nonzero quark condensate. It
was shown that in order to create it, some strong attractive
4-fermion interaction is needed, at momenta below a cutoff
Q < Λ ∼ 1 GeV. Twenty years later, the emerging instan-
ton phenomenology [6] made it clear that this interaction is
nothing more than multifermion effective forces induced
by instantons. Furthermore, unlike the effective Lagrangian
conjectured by NJL, it also explicitly breaks Uð1Þa axial
symmetry. With time, a somewhat different perspective on
chiral symmetry breaking developed, focused on the Dirac
eigenvalue spectrum. The low-lying eigenvalues are formed
via collectivization of the topological fermionic zero modes
into the so-called zero mode zone (ZMZ); for a review,
see [7].
While the main nonperturbative phenomena were for a

long time ascribed to two rather distinct mechanisms, the
results of the numerical simulations on the lattice persist-
ently indicated that the deconfinement temperature Tdeconf
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and chiral symmetry restoration, one to be called Tχ , are in
fact very close, at least for near-real-world QCD (with the
number of colors and flavors Nc ¼ 3, Nf ¼ 2þ 1 and
quark masses small). This fact, and in general their inter-
play in all QCD-like theories became one of the most
puzzling issues in nonperturbative QFT.
But does it really hold for all QCD-like theories? One

simple way to modify QCD is to change the color charge
(representation) of the quark fields. Changing the quark
color charge from the fundamental to adjoint representa-
tion, Kogut [8] observed in SUð2Þ gauge theories (with two
and four species of Majorana fermions, or one and two
species of the Dirac ones) two distinct phase transitions, at
temperatures separated by a large factor:

TaQCD
χ

TaQCD
deconf

∼Oð10Þ: ð1Þ

Later studies for the SUð3Þ theories with adjoint quarks
[9,10] also observed such a large separation. Such a
significant split between two transition temperatures may
suggest that some quite different mechanisms are respon-
sible for these two phenomena. Our studies of the adjoint
quarks will be described in a separate publication, IV [11].
On the other hand, theory developments revealed some

common dynamical roots of confinement and chiral sym-
metry breaking. In 1998, when the finite-temperature
instantons were generalized to the case of the nonzero
expectation value of the Polyakov loop by Lee-Li-Kraan-
van Baal [12,13], it became apparent that each consists
of Nc objects, known as instanton-dyons (or instanton-
monopoles). Unlike instantons themselves, their constitu-
ents have charges and directly backreact on the holonomy
value. This observation led to the proposal [14] of confine-
ment being driven by this effect and, in a very specialized
setting, it has been shown to induce confinement [15,16],
even for exponentially small dyon density. Recent works
using mean-field methods [17,18] and our own two papers
[1,2] have shown that a sufficiently dense ensemble of the
dyons does generate both confinement and chiral symmetry
breaking, with close transition temperatures (too close to
separate inside the errors).
Let us now turn to the discussion of quarks with

nonstandard periodicity phases on S1: can those have
any measurable physical effect on observables? A first
experimentation with quark phases [19] answered this
question affirmatively. Even with fixed quenched lattice
gauge configurations, it was confirmed that the value of
the quark condensate depends on the periodicity phase. In
particular, the “periodic” (or bosonic) quarks possess chiral
symmetry breaking until very high T, in striking contrast to
the usual antiperiodic ones. A suggested explanation [20]
was formulated in terms of the instanton-dyons: the
periodic quarks have zero modes with M-type dyons,
while the antiperiodic quarks have zero modes with

“twisted” L-type dyons. The “masses” (actions) of those
are different at T > Tconf and the twisted ones L are heavier
SL > SM and, therefore, have smaller density:

nM ≫ nL: ð2Þ

So, the periodic quarks “see” a much denser (M dyon)
ensemble than the antiperiodic ones, which explains the
larger quark condensate and higher Tχ.
In a framework of the PNJL model, Kouno et al. [21–25]

suggested to require different boundary conditions to
different quark flavors. For enhanced symmetry, they focus
on theories in which the number of colors and flavors are
the same, Nc ¼ Nf. In particular, for the SU(3) color, they
use quark angles for u, d, s quarks to be of the form
ð0; θ;−θÞ, respectively. The parameter θ can be varied from
θ ¼ 0 (the usual QCD) to θ ¼ 2π=3, at which point the
theory becomes “center symmetric.” Thus, the name of the
resulting model—ZNc

-symmetric QCD. In the framework
of the PNJL model, these authors found substantial
dependence of Tχ on θ. The effect is the largest for the
symmetric value:

TZ3QCD
χ ≈ 2TZ3QCD

deconf : ð3Þ

Of course, the PNJL is just a model, using as input the
holonomy potential and the 4-quark NJL-like Lagrangian,
the same as for ordinary QCD, with unmodified parame-
ters: whether this can be justified is unclear.
The flavor-dependent phases were also suggested in the

framework of supersymmetric QCD in [26].
Misumi et al. [27] recently put this Z3-symmetric theory

on the lattice. They observed that, compared to ordinary
QCD, in this case the deconfinement transition is signifi-
cantly strengthened to the first-order phase transition, with
clear hysteresis, etc. The chiral breaking for the Z3-
symmetric theory is indeed present at higher temperatures.
It is hard to tell from the paper, since small mass
extrapolation is not yet performed, whether the chiral
symmetry is in fact restored at any temperatures.
Furthermore, the chiral condensates for different flavors
become clearly different, so Tχ should get split for different
flavors. Qualitatively, the PNJL-based conclusions are
confirmed.

II. ZNc
-SYMMETRIC QCD AND THE
INSTANTON-DYONS

Let us start this section by noting that, in the framework
of the original instanton model, most of the phenomena
mentioned in the Introduction would be impossible to
explain. Indeed, the number of zero modes of the instanton
is prescribed by the topological index theorem and is
independent of the periodicity condition.
On the other hand, after it has been recognized that

instantons have to be split into instanton-dyons, the
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situation changes dramatically. Indeed, quarks with differ-
ent boundary angles can be coupled to different types of
dyons. Dialing different values of those angles, one can see
the consequences from which it will eventually be possible
to understand the dynamical role of those objects.
The “ZNc

-symmetric QCD” proposed by Kouna et al.
does indeed have outstandingly simple symmetry proper-
ties in the instanton-dyon model: each quark flavor has zero
modes with a different type of instanton-dyon. This means
that each quark flavor has its own “dyon plasma” with
which it interacts. We note that, in this model, the number
of colors and flavors must match, Nf ¼ Nc, so the number
of quark and dyon types match as well.
Furthermore, in the low T, near and below Tdeconf, the

holonomy values tend to the symmetric “confining” value,
at which all types of the dyons obtain the same action. This
fact indeed made the model ZNc

symmetric.
In the opposite limit of high T, the holonomy moves to a

trivial value, and the actions of different dyons become
distinct. This implies that each quark flavor has its own
“dyon plasma” with distinct densities, leading to flavor-
dependent Tχ .
One more qualitative idea is related to the values of z

which are “intermediate” between the extremes discussed
above. Those are values at which the zero modes jump from
one kind of dyon to the next. This happens by “delocal-
ization” of the zero mode, which means that, at such
particular z values, the zero modes become long range.
Since in this case the “hopping” matrix elements, describ-
ing quark-induced dyon-dyon interactions, get enhanced,
one may also expect that the chiral condensate is effectively
strengthened.

III. THE SETTING OF THE SIMULATIONS

Let us remind the reader of the setting used in our
first paper [1] with instanton-dyons. A certain number of
them—64 or 128—are placed on the three-dimensional
sphere. Its radius, thus, controls the density. The standard
Metropolis algorithm is used to numerically simulate the
distribution defined by classical and one-loop partition
function. We studied the simplest non-Abelian theory with
two colorsNc ¼ 2, which has a single holonomy parameter
ν ∈ ½0; 1�. Free energy is calculated and the adjustable
parameters of the model—the value of the holonomy ν
and densities of M- and L-type dyons—are placed at its
minimum.
In this paper, each dyon couples to a different flavor of

quarks. The partition function is therefore Z2 symmetric,
under ν ↔ ν̄ ¼ 1 − ν and M ↔ L replacement. A distinct
symmetric phase has minimal free energy at the symmetric
point ν ¼ 1=2, and equal number of L, M dyons. An
asymmetric phase has free energy with two minima, away
from the center ν ¼ 1=2: by default, the spontaneous
breaking of Z2 is assumed to happen to a smaller value
of ν, so that at high T it goes to zero.

Following paper II [2], we use the following para-
metrization of the overlap between zero modes,

Tij ¼ vkc0 exp
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11.2þ ðvkrT=2Þ2

q �
; ð4Þ

where vk is v ¼ 2πν for M dyons, and vk is v̄ ¼ 2πν̄ ¼
2πð1 − νÞ for L dyons. The three constants in the model are
the same as our previous paper: x0 ¼ 2 for the dimension-
less size of the core, Λ ¼ 4 for the overall constant, and
− logðc0Þ ¼ −2.6 for the constant on Tij.
The simulations have been done using the standard

Metropolis algorithm. An update of all N ¼ 64 or 128
dyons corresponds to one cycle. Each run consists of 3000
cycles. Free energy is measured by a standard trick,
involving integration over the interaction parameter from
zero to one. The simulation was done on a S3 circle, and its
volume is V ¼ 2π2r3: we use r in some places below.
The input “action parameter” S defines the instanton-

dyon amplitude and literally corresponds to the sum of the
L and M dyon actions in the semiclassical amplitude. In
one-loop approximation, it is related to the temperature T
by the asymptotic freedom relation:

S ¼
�
11Nc

3
−
2Nf

3

�
log

�
T
ΛT

�
: ð5Þ

In I and II, we approximately related the constant ΛT to the
phase transition temperature Tc: we do not do it in this
work because there is no single phase transition in the
theory we study now.
The varied parameters of the model include (i) The

holonomy ν which is related to the Polyakov loop as
P ¼ cosðπνÞ, (ii) the densities of M and L dyons nM, nL,
and (iii) after the free energy is found for each run, the
values of these parameters, corresponding to the minima,
are fitted and used.
Other parameters include (iv) the Debye mass, which is

used to describe the falloff of the fields: its value is kept
“self-consistent” by a procedure explained in I. Finally, we
mention (v) the auxiliary interaction variable which is then
integrated in order to obtain the free energy F.
The organization of the numerical sets was done as

follows. An initial survey found the areas of interest,
corresponding to the minima of the free energy and the
most important variations in the results. Then the final set
of simulations was performed: the parameters are summa-
rized in Table I. In total, 1,170,000 individual runs were
done for the final set of data and were used to make
the plots.
The main part of the data analysis consists of finding the

minima of the free energy and getting the Debye mass self-
consistent. To do the former, we fit data sets for the free
energy near its minima with a two-dimensional parabola,
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f ¼ ðv − v0ÞMðv − v0Þ þ f0; ð6Þ

which has six variables. v and v0 are two-dimensional
vectors with v containing the variables holonomy ν and
radius r and v0, describing the position of the minimum.
M is a 2 times 2 matrix with M ¼ MT containing the
coefficients for the fit.
The fit was done on free energy values of 52 ¼ 25 points

from a square, containing five points around the minimum.
The six parameters from the fit are used as follows: (i) v0
and its uncertainties give the values of densities and
holonomy at the minimum, plotted as results below and
(ii) the diagonal component ofM in the holonomy direction
was converted into the value of the Debye mass Md.
An additional requirement of the procedure, to make the
ensemble approximately self-consistent, is that the Debye
mass from the fit should be within �0.25 of the used input
Debye mass value.
To obtain the chiral properties—such as the Dirac eigen-

value distributions and its dependence on dyon number and
volume—we only used the “dominant” configurations for
each action S.
The results reported below compare new results, for

Z2-symmetric QCD explained above, to the “old” ones,
from II, for Nc ¼ Nf ¼ 2 QCD with antiperiodic funda-
mental quarks.

IV. THE HOLONOMY POTENTIAL
AND CONFINEMENT

The free energy density obtained from the simulations is
shown in Fig. 1 as a function of holonomy value, both for
standard (lower plot) and Z2-symmetric QCD (upper plot).
At high density of the dyons, one finds a symmetric
minimum for the Z2-symmetric model. As the density
decreases, one finds behavior very different from both that
of the quenched case (no quarks) with two minima or in
standard QCD with broken center symmetry.
While symmetry remains intact, with the decreasing

density (larger S), the minima of the potential become very
flat and wide. (A slight appearance of the minima can be

seen for the smallest density which is not nearly as strong as
in the quenched case.) We interpret this as an appearance of
a large domain of “mixed phase,” a coexistence of many
different configurations with different properties and differ-
ent ν, but with degenerate free energy. The confining
minimum in the middle is also found to be dominant for
a much larger range of densities.
Translating the location of the minimum to the mean

Polyakov line, we plot the results in Fig. 2. It shows that
while the two models under consideration have very similar
behavior at high densities of the dyons (smaller S or the left
side of the plot), in the Z2-symmetric model, there appears
a strong jump in P, from about 0.2 to 0.6. Note that the
intermediate point with the large error bar should be
interpreted not as an uncertainty of the value, as the usual

TABLE I. The input parameters used for the final set of
simulations. The step sizes given are some standard ones: yet
some areas was given extra attentions. For example, around
NM ¼ 4, the step size was 1.

Min Max Step size

λ 0 0.1 1=90
λ 0.1 1.0 0.1
ν 0.05 0.55 0.025
r 1.2 1.8 0.05
NM 3 18 2
Md 1 3.5 0.5
S 5 9.5 0.5

FIG. 1. Free-energy density as a function of the holonomy
parameter ν. The upper plot is for the Z2-symmetric model and
the lower plot is for the model in which all quarks are
antiperiodic. Different curves are for different dyon densities.
The densities are ð0.47; •Þ, ð0.37; ▪Þ, ð0.30;♦Þ, ð0.24;▴Þ,
ð0.20;▾Þ, ð0.16; ∘Þ, ð0.14;□Þ, ð0.12;⋄Þ, ð0.10;▵Þ. Not all
densities are shown. In both cases, the action parameter is
S ¼ 8.5 and both dyon types are equally represented nM ¼ nL.
Note the dramatic difference of the holonomy potentials for
these two cases: the Z2 potential is symmetric (for equal dyon
densities), while the periodic quarks produce an asymmetric
minimum and thus slide smoothly towards smaller holonomies
(to the left) as the dyon density decreases.
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error bar, but rather as a reflection of the fact that, in the
ensemble, the intermediate values of P are all feasible, due
to flatness of the holonomy potential. In other words, this
point is rather a vertical part of the curve, indicative of a
strong first-order transition. This conclusion is consistent

with lattice studies in [27], in which the authors show some
hysteresis curve for P, with a similar strong jump.
The densities of the dyons in both models are shown in

Fig. 3. The upper plot for the Z2-symmetric model displays
a very symmetric confining phase at the lhs of the plot
(small S, dense ensembles) complemented by a very
asymmetric composition of the ensemble at the rhs. The
usual QCD-like model withNc ¼ Nf ¼ 2 in the plot below
shows that the L −M symmetry never holds, due to only
L-dyons coupling to the zeromodes, while the overall
dependence on S is much less significant.
Finally, the Debye mass—defined via the second deriv-

atives of the effective potential at the minimum—has been
determined and plotted in Fig. 4, again for both models. For
the Z2-symmetric model, its values are significantly lower
than for the QCD-like model. Smaller mass indicates flatter
potential and stronger fluctuations, already discussed
above.

V. CHIRAL SYMMETRY BREAKING

As we already explained above, the main feature of the
ZNc

-symmetric model with Nf ¼ Nc, is that it distributes
all types of quarks evenly, so that each type of dyon would
have one quark flavor possessing zero modes. This is in
contrast to the usual QCD, in which all quarks are
antiperiodic and, thus, all have zero modes only with
twisted L-type dyons.
The simplest examples considered in this work are two

Nc ¼ Nf ¼ 2 theories—the Z2-symmetric model and the
two color QCD. In the former case, the partition function
includes two independent fermionic determinants, one for
M and one for L dyons, with a single quark species each. In
the latter, one has a square (two-species) of the determinant
of the hopping matrix over the L dyons only.
Here we remind the reader of well-known facts about

chiral symmetry breaking in such cases and the conse-
quences for such determinants. Theories with a single

FIG. 2. The mean Polyakov loop P as a function of action
parameter S, for the Z2-symmetric model (red squares), compared
to that for the Nc ¼ Nf ¼ 2 QCD with the usual antiperiodic
quarks (blue circles).

FIG. 3. (upper) Densities of L dyons (red squares) andM dyons
(blue circles), as a function of action parameter S, for the
Z2-symmetric model. (lower) The same for the usual QCD-like
model with Nc ¼ Nf ¼ 2 and antiperiodic quarks.

FIG. 4. Debye MassMd as a function of action parameter S, for
the Z2-symmetric model (red squares) and the usual QCD-like
model with Nc ¼ Nf ¼ 2 (blue circles).
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quark flavor have only a single Uað1Þ symmetry, broken
explicitly by the fermionic effective action. Indeed, it
includes terms ψ̄LψR or ψ̄RψL directly coupling compo-
nents with opposite chiralities. So, there are no chiral
symmetries to break, and condensates are always nonzero,
proportional to density of the topological objects.
The case with two or more flavors is different: there is the

SUðNfÞ flavor symmetry, which can be either broken or
not, depending on the strength of the 2Nf-quark effective
interaction.

A. Dirac eigenvalue distribution

Differences in chiral breaking mechanisms in these two
models, indicated above, also manifest themselves in the
Dirac eigenvalue distribution.
For a proper perspective, let us note that, for the SUðNfÞ

flavors with Nf ≥ 2, a general Stern-Smilga theorem [28]
states that the eigenvalue distribution at small λ has the so-
called “cusp” singularity:

ρðλÞ ¼ Σ
π

�
1þ jλjΣðN2

f − 4Þ
32πNfF4

c
þ � � �

�
: ð7Þ

For Nf > 2, the coefficient is positive—this is known as
“direct cusp”—and was also observed, both on the lattice
and in the instanton models. In the particular case Nf ¼ 2,
this cusp is absent: this fact can be traced to the absence of
the symmetric dabc structure constant in the case of the
SUð2Þ group. Indeed, both the calculations done in the
instanton liquid framework (for examples and references
see [7]) and our previous studies II of the Nf ¼ 2 theory
had produced a “flat” eigenvalue distribution:

ρNf¼2ðλÞ ∼ const: ð8Þ

In the Nf ¼ 1 case, the distribution does have a
singularity at λ ¼ 0 of the form of the “inverse cusp”,
∼ − jλj, with a negative coefficient. The Stern-Smilga
derivation does not apply, but the theorem has been
rederived for general Nf using partially quenched chiral
perturbation theory in [29].
Our results for the ZNc

-QCD under consideration shown
in Fig. 5 also show the “inverse cusp” with linear behavior
of ρðλÞ. (We use this fact to extrapolate ρðλÞ to λ → 0 and to
extract the value of the quark condensate and the value of
the coupling constant Fc.) In the other model, Nc ¼ Nf ¼
2 QCD, such an “inverse cusp” is absent; see II.
So far, our discussion has assumed an infinite volume

limit in which case the Dirac eigenvalue spectrum extends
until λ ¼ 0. However, it is well known that any finite-size
system, with 4-volume V4, has the smallest eigenvalues of
the order Oð1=V4Þ. This creates the so-called “finite size
dip,” in the eigenvalue distribution, also clearly visible in
Fig. 5 (upper). One can see that doubling of the volume,

from 64 to 128 dyons at the same density, reduces the width
of this dip roughly by a factor of 2, as expected.
As the holonomy jumps away from its confining value

0.5, the dyon densities become different. Unlike the
fundamental quarks, where the holonomy goes down,
the densities of L dyons become larger than those of M
dyons. The total density goes down, but the reduction inM
dyons leaves space for a few more L dyons. This means
that, on one hand, the density is larger for L dyons, and the
zero-mode density is therefore higher. On the other hand,
the factor in the exponential in Tij [Eq. (4)] is ν̄ ¼ 1 − ν for
L dyons and ν forM dyons. This means that, as ν becomes
smaller, the effective density of the zero modes associated
with L dyons becomes smaller, while the zero modes
associated withM dyons get an increased effective density.
It is, therefore, the interplay between these two effects that
control which of the condensates are largest. This results in
what we show in Fig. 6, where the M dyon condensate
appears to be slightly larger than the L dyon condensate,
and both condensates decreases slightly in accordance with
the total density of dyons. It is also observed that each gas

FIG. 5. The Dirac eigenvalue distribution ρðλÞ for ensembles of
64 (Blue triangle) and 128 (Red square) dyons, for Z2-symmetric
model at S ¼ 6. The upper plot shows the region of smaller
eigenvalues, in which one can see the finite volume “dip,” of a
width which scales approximately as 1=V4 as expected. The
lower plot shows the same data sets, but in a wider range of
eigenvalues: it displays the “inverse cusp” shape of the distri-
bution discussed in the text.
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of zero modes effectively works as a Nf ¼ 1 ensemble,
with nonvanishing condensates even at the lowest
densities we studied [30] (the rhs of the plot). The other
model—Nc ¼ Nf ¼ 2 QCD—has a condensate shown by
black triangles: it clearly has chiral symmetry restoration:
At S > 8, we detected no presence of a condensate.
The coupling constant Fc (Fig. 7), obtained from the

slope of the eigenvalue distribution and Smilga-Stern
theorem (7), is nearly density independent: it changes by
a factor of around 1.5 from S ¼ 5 to S ¼ 9.5. This is
consistent with the behavior of the quark condensates and,
similarly, indicates that, in the Z2 model, the chiral
symmetry does not show a tendency to be restored.

VI. SUMMARY AND DISCUSSION

To put it in perspective, let us start by briefly reminding
the main findings of the previous two papers of these series.
In I we had shown that in pure gauge theory with SUð2Þ
color the instanton-dyon ensemble undergoes confinement
transition as the dyon density reaches certain critical value.
The high-density confining phase has holonomy ν ¼ 1=2
and equal densities and other properties of all types of
instanton-dyons.
In paper II, we added two light fundamental antiperiodic

quarks, as they are in the SUð2Þc, SUð2Þf QCD.
Deconfinement transition gets significantly smoothed to
a crossover. Chiral symmetry transition is also somewhat
smooth, and happens when the Polyakov loop gets close to
the confining value P ¼ 0. Thus, we concluded that the old
question of the interrelation of the two transitions is finally
over: a large enough instanton-dyon density does both.
In this work, we introduce flavor holonomies,

and, following Kouno et al. [21], arrange them into the

Z2-symmetric model, which we compare to theories with
all periodic or all antiperiodic (QCD) quarks. The results
are dramatically different: the Z2-symmetric model has
very symmetric confining phase and a quick deconfinement
transition, but no apparent chiral symmetry restoration. The
deconfinement becomes much stronger, a first-order tran-
sition with clear mixed phase for intermediate dyon
densities. Chiral symmetry seems to never be restored,
even for the smallest densities, as indeed is expected based
on analogy to the one-flavor QCD. Different flavors do
have different condensates, but the difference in conden-
sates is much smaller than the difference in the dyon
densities. Our approach, based on instanton-dyons, pro-
vides the simplest explanation of these observations. The
flavor-dependent periodicity condition effectively manipu-
late the coupling to dyons of different kinds. The ZN-
symmetric model is the “most democratic” arrangement,
producing basically N copies of single-flavor topological
ensembles, drastically different from one N-flavor ensem-
ble of L-dyons in the usual QCD.
Thus, we take lattice confirmation of these phenomena,

by Misumi et al. [27], as basically a confirmation of its
main statement: chiral symmetry breaking is induced by
zero modes of the instanton-dyons. Needless to say, more
detailed studies on the lattice are possible: perhaps direct
identification of the quasizero mode localization with the
instanton-dyons in the gauge field ensemble would soon be
possible.
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FIG. 6. Chiral condensate generated by u quarks and L dyons
(red squares) and d quarks interacting withM dyons (blue circles)
as a function of action S, for the Z2-symmetric model. For
comparison, we also show the results from II for the usual QCD-
like model with Nc ¼ Nf ¼ 2 by black triangles.

FIG. 7. Coupling constant Fc for the M dyon ensemble (blue
circle) and the L dyon ensemble (red square).
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