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We reexamine the determination of jVcbj from B → Dlν in view of recent experimental and theoretical
progress, discussing the parameterization of the form factors and studying the role played by the unitarity
constraints. Our fit to experimental and lattice results for B → Dlν gives jVcbj ¼ 40.49ð97Þ10−3 and to
RðDÞ ¼ 0.299ð3Þ.
DOI: 10.1103/PhysRevD.94.094008

I. INTRODUCTION

The discrepancy between the determination of jVcbj
from inclusive and exclusive semileptonic B decays is a
long-standing problem in flavor physics. The Cabibbo-
Kobayashi-Maskawa (CKM) element jVcbj plays a central
role in the analyses of CKM unitarity [1,2] and in the
standard model (SM) prediction of flavor-changing neutral
current transitions, where its uncertainty is often the dom-
inant one [3]. Its determination from inclusive decays is
based on an operator product expansion which parameterizes
the relevant nonperturbative physics in terms of nonpertur-
bative constants that are extracted from experiment; see [4]
for a review. A very recent analysis [5] points to

jVcbj ¼ ð42.00� 0.65Þ × 10−3: ð1:1Þ

The main channels for the exclusive determination of jVcbj
have been so far B → Dð�Þlν, and until recently all analyses
have focused on the zero-recoil point, i.e. on maximal q2.
Indeed, in the heavy quark limit the relevant form factors are
knownexactly at zero recoil [6], up to perturbative corrections,
and lattice calculations, which are anyway performed at high
q2, only need to determine the power-suppressed deviation
from that limit. In theD� case the correction to the heavyquark
limit is quadratically suppressed. The downside of zero-recoil
analyses, however, is that the decay rates vanish at zero recoil
(more rapidly in B → Dlν) and that one therefore needs to
extrapolate the experimental distributions, a problem which
has been thoroughly addressed almost 20 years ago, with the
introduction of various model-independent parameterizations
[7–9].
To date, the most precise exclusive determination of jVcbj

is based on the calculation of theD� form factor at zero recoil
by the FNAL/MILC Collaboration [10] and on the HFAG
average [11] of B factory results analyzed in the context of
the Caprini-Lellouch-Neubert (CLN) parameterization [9]:

jVcbj ¼ ð39.04� 0.75Þ × 10−3: ð1:2Þ

This differs from (1.1) by 3σ, which becomes 2.8σ once the
QED corrections are treated in the same way in both cases.

It would be important to have other independent lattice
calculations, also in view of indications from heavy quark
sum rules that the form factor of [10] is overestimated [12].
Traditionally, the D channel has led to less precise determi-
nations, mostly because of larger experimental errors; see for
instance [13].
The discrepancy between (1.1) and (1.2) is unwelcome.

In principle, it could signal new physics, as the B → D�
transition is sensitive only to the axial-vector component
of the charged weak current. However, this new physics
would require new interactions which seem ruled out by
electroweak constraints on the effective Zb̄b vertex [14].
The situation is further complicated by the 3.9σ discrep-
ancy [11] between the measurement of

RðDð�ÞÞ ¼ BðB → Dð�ÞτνÞ
BðB → Dð�ÞμνÞ ð1:3Þ

and their SM predictions, which depend on knowledge of
the form factors in the whole available q2 range. Different
types of new physics could be responsible for this discrep-
ancy; see [15] and references therein for recent discussions.
In this context, any new information on jVcbj and on

the semileptonic form factors is of great value. Two new
elements have recently made the decays B → Dlν more
interesting in this respect. First, two calculations of the
form factors of B → Dlν beyond zero recoil have appeared
in 2015 [16,17]. They represent the first unquenched
calculations of these form factors performed at different
q2 values, which significantly reduces the uncertainty of the
extrapolation from the q2 region where most data are taken.
Second, a new, more precise Belle measurement has been
published [18], which for the first time provides the q2

differential distribution with complete statistical and sys-
tematic uncertainties and correlations. As we will show, the
combination of these steps forward allows for a competitive
extraction of jVcbj and for a very precise determination of
the B → D form factors.
In this paper we revisit the decay B → Dlν in view of

the above developments and upgrade the unitarity bounds
using recent three-loop calculations and up-to-date
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heavy quark masses. In Sec. II we briefly review the model-
independent parameterization of the form factors and
introduce three well-known parameterizations. We then
update and discuss the impact of unitarity bounds, boosting
them with the inclusion of higher states. After presenting
our inputs in Sec. III, we perform a global fit of the
available theoretical and experimental data, which leads to
a precise determination of jVcbj and of the form factors. We
also employ these form factors in the calculation of RðDÞ
and provide the most precise prediction to date. Section V
summarizes our findings.

II. FORM FACTORS AND THEIR
PARAMETERIZATION

The hadronic matrix element governing the B → Dlν
decay is described by two form factors:

hDðp0ÞjVμjB̄ðpÞi ¼ fþðq2Þðpþ p0Þμ þ f−ðq2Þðp − p0Þμ;
ð2:1Þ

where q2 ¼ ðp − p0Þ2. The differential rate can be written
as

dΓ
dq2

ðB → DlνlÞ ¼
η2ewG2

FjVcbj2mBλ
1=2

192π3

�
1 −

m2
l

q2

�
2

× ½clþfþðq2Þ2 þ cl0f0ðq2Þ2�; ð2:2Þ

where r ¼ mD=mB, λ ¼ ðq2 −m2
B −m2

DÞ2 − 4m2
Bm

2
D,

clþ ¼ λ

m4
B

�
1þ m2

l

2q2

�
; cl0 ¼ ð1 − r2Þ2 3m

2
l

2q2
; ð2:3Þ

and

f0ðq2Þ ¼ fþðq2Þ þ
q2

m2
B −m2

D
f−ðq2Þ;

from which it follows that fþð0Þ ¼ f0ð0Þ. In the limit of
vanishing lepton mass the f0 contribution becomes irrel-
evant. In fact, it can be safely neglected except for decays
into τ leptons. The factor ηew¼1þα=π lnMZ=mB≃1.0066
[19] takes into account the short-distance QED corrections,
namely the electromagnetic running of the four-fermion
operator from the weak to the B scale, and represents the
leading electroweak correction. Unlike Ref. [16] we do not
include any Coulomb correction and expect the error due
to subleading electroweak corrections to be negligible in
comparison with other uncertainties. The knowledge of fþ
and f0 in the whole range m2

μ ≤ q2 ≤ ðmB −mDÞ2 allows
for the calculation of RðDÞ, defined in (1.3).
The proper parameterization of the form factors fþ;0ðq2Þ

has been the subject of intense investigation, motivated
in particular by the need to extrapolate the information

obtained in a restricted q2 region to the whole q2 range.
Lattice QCD calculations, for instance, are typically limited
to the highest q2 values. Here we consider three different
parameterizations, often employed in the literature. The
three parameterizations we consider share the same theo-
retical background, which is summarized in Sec. II A.
Additional theoretical input deriving from heavy quark
effective theory (HQET) calculations is considered in the
CLN case, where the number of parameters is minimal,
while Bourrelly-Caprini-Lellouch (BCL) adopts a func-
tional form simpler than in the original Boyd-Grinstein-
Lebed (BGL) parameterization.

A. The BGL parameterization

The BGL parameterization was originally proposed
in [7] and further developed in [8,20]. It follows from
dispersion relations, analyticity, and crossing symmetry.
In the case of semileptonic B decays q2 ranges from m2

l
to ðmB −mDÞ2 but the form factors can be continued
analytically in the q2 complex plane. They have a cut at
q2 ¼ ðmB þmDÞ2 and various poles corresponding to Bc
resonances with the appropriate quantum numbers.
Adopting the notation of [8], we define

t¼ q2¼ðp−p0Þ2; tþ ¼ ðmBþmDÞ2; t−¼ðmB−mDÞ2;

w¼m2
Bþm2

D− t
2mBmD

; zðw;N Þ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þw

p
−

ffiffiffiffiffiffiffiffi
2N

p
ffiffiffiffiffiffiffiffiffiffiffi
1þw

p þ
ffiffiffiffiffiffiffiffi
2N

p ;

N ¼ tþ− t0
tþ− t−

;

where zðt; t0Þ maps the q2 plane on a unit disk. The
parameter t0 < tþ is a free parameter which determines
the point in the q2 plane to be mapped onto the origin of
the z plane by the conformal transformation q2 → z. The
two form factors fþ and f0 are parameterized by

fþðzÞ ¼
1

PþðzÞϕþðz;N Þ
X∞
n¼0

anznðw;N Þ; ð2:4Þ

f0ðzÞ ¼
1

P0ðzÞϕ0ðz;N Þ
X∞
n¼0

bnznðw;N Þ; ð2:5Þ

where Pþ;0ðzÞ are known as Blaschke factors and ϕþ;0ðzÞ
as outer functions. They will be introduced shortly. In
practice one truncates the series in (2.4) and (2.5) at some
maximal power N. In our fits we will consider N ¼ 2, 3, 4.
The main advantage of the BGL class of parameter-

izations is that the parameters an of Eq. (2.4) are con-
strained by unitarity conditions

X∞
n¼0

a2n < 1;
X∞
n¼0

b2n < 1; ð2:6Þ
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that follow from analyticity, crossing symmetry, and quark-
hadron duality. Indeed, it is possible to write dispersion
relations for the correlator of two flavor-changing currents
evaluated at q2 ¼ 0, where it can be computed reliably in
perturbation theory because the heavy quark masses are
much larger than the QCD scale. Assuming global quark-
hadron duality, the dispersion relations relate integrals of
the form factors at q2 values outside the physical range to
the perturbative calculation of the correlator. The unitarity
bounds of (2.6) then follow; see [21] for a pedagogical
introduction.
In the case of B → D semileptonic decays with massless

leptons z can vary between

zmin ¼ −
ffiffiffiffiffi
N

p
− 1ffiffiffiffiffi

N
p

þ 1
and zmax ¼

1þ r − 2
ffiffiffiffiffiffiffi
N r

p

1þ rþ 2
ffiffiffiffiffiffiffi
N r

p :

Choosing t0 ¼ t− one has N ¼ 1; the range of variation of

z is 0 ≤ z ≤ ð1− ffiffi
r

p Þ2
ð1þ ffiffi

r
p Þ2 ≃ 0.0646 and the point of zero recoil

(w ¼ 1) is at z ¼ 0. This is the most common choice in the
literature. Another convenient choice for t0 is the one
which leads to a symmetric z range using the condition
jzminj ¼ jzmaxj. This corresponds to t0 ¼ tþ −N ðtþ − t−Þ
andN ¼ 1þr

2
ffiffi
r

p . With this prescription the maximum physical

value of jzj is minimized and zmax ≃ 0.032. While in
principle a smaller range in z, combined with (2.6), forces
a faster convergence of the z expansion, we have checked
that in our case this choice brings no advantage with respect
to setting t0 ¼ t−. This is likely due to the precise lattice
QCD constraints we employ. From now on we will only
consider the case t0 ¼ t− and z will always stand for
zðw; 1Þ.
In our case only the transverse and longitudinal parts of

the vector current correlator are relevant:�
−gμν þ qμqν

q2

�
ΠTðq2Þ þ qμqν

q2
ΠLðq2Þ

≡ i
Z

d4xeiqxh0jTJμðxÞJ†νð0Þj0i ð2:7Þ

with Jμ ¼ c̄γμb. The longitudinal and transverse part
correspond to spin 0 and spin 1, respectively. The
derivatives

χLðq2Þ ¼ ∂ΠL

∂q2 ; χTðq2Þ ¼ 1

2

∂2ΠT

∂ðq2Þ2

satisfy unsubtracted dispersion relations on which the
unitarity bounds are built. The value q2 ¼ 0 is sufficiently
far from the threshold region and is generally employed.
For the perturbative evaluation of χL;Tð0Þ we update

Ref. [8] using recent values of the heavy quark masses
and the Oðα2sÞ corrections computed in [22]. We neglect all
contributions of condensates, which have been shown to

be negligible. Several precise determinations of the bottom
and charm masses have appeared in recent years;
see [23] for a review. Here we first use the MS values
m̄bðm̄bÞ ¼ 4.163ð16Þ GeV, m̄cð3GeVÞ¼ 0.986ð13ÞGeV
from [24] and αð5Þs ðm̄bðm̄bÞÞ ¼ 0.2268ð23Þ and get

χTð0Þ ¼ ½5.883þ 0.552αs þ 0.050α2s � × 10−4 GeV−2

¼ 6.486ð48Þ × 10−4 GeV−2;

χLð0Þ ¼ ½5.456þ 0.782αs − 0.034α2s � × 10−3

¼ 6.204ð81Þ × 10−3; ð2:8Þ

where the errors reflect only the uncertainties on the
input quark masses and we have neglected the small
correlation between them. The effect of the Oðα2sÞ correc-
tions is less than 1%, but the values differ significantly
from those used in [8], χTð0Þ ¼ 4.42 × 10−4 GeV−2 and
χLð0Þ¼ 4.07×10−3, because of the different, more precise
inputs. An alternative determination is obtained using the
fit to semileptonic moments of [25] and employs the kinetic
b mass mkin

b ð1GeVÞ¼4.553ð20ÞGeV, m̄cð3GeVÞ¼
0.987ð13ÞGeV and αð5Þs ðmkin

b ð1 GeVÞÞ ¼ 0.2208ð22Þ,
leading to

χTð0Þ ¼ ½4.958þ 1.059αs þ 0.309α2s � × 10−4 GeV−2

¼ 6.326ð51Þ × 10−4 GeV−2;

χLð0Þ ¼ ½5.905þ 0.564αs − 0.136α2s � × 10−3

¼ 6.332ð74Þ × 10−3; ð2:9Þ

where we have taken into account the correlation between
mb andmc from the fit of [25]. The next-to-next-to-leading-
order (NNLO) corrections amount to þ5.1 and −2.1%,
respectively. Because of the off-shell nature of χT;Lð0Þ,
the OðαsÞ and Oðα2sÞ corrections are more sizable when
we employ the kinetic mass for the b quark instead of
the MS mass; taking into account the theoretical uncer-
tainty due to higher-order corrections, larger in the second
case, Eqs. (2.8) and (2.9) are perfectly consistent. In the
following, we adopt the more precise values in (2.8) as our
reference.
The 1− Bc resonances below the BD pair production

threshold contribute as single particles to the unitarity sum.
Their effect can be effectively seen as a reduction of
χT;Lð0Þ; see [9]:

~χTð0Þ ¼ χTð0Þ −
X
n¼1;2

f2nðB�
cÞ

M4
nðB�

cÞ
; ð2:10Þ

where fn are the decay constants andMn the masses of the
B�
c mesons. The decay constant is strongly suppressed for

0þ states and we therefore neglect this contribution to the
scalar channel. We likewise do not consider poles above
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the BD threshold to avoid double counting. In Table I the
relevant Bc masses and decay constants are presented with
their sources, among which are recent lattice calculations.
The masses will also be used to evaluate the Blaschke
factors later on. A conservative 10% uncertainty is assigned
to f2ðB�

cÞ. Since the unitarity bounds emerge from the
assumption that a single channel, or a set of channels,
saturates the dispersion relation, larger values of χT;L

constrain the form factors less effectively. Therefore, to
be conservative we compute ~χT using the decay constants
reduced by one standard deviation and the mass values
increased by one standard deviation. The result in units of
GeV−2 is

~χTð0Þ ¼ 6.486 × 10−4 −
ð0.409Þ2
ð6.332Þ4 −

ð0.270Þ2
ð6.940Þ4

¼ 5.131 × 10−4: ð2:11Þ

Another ingredient in Eqs. (2.4) and (2.5) is the Blaschke
factors

PþðzÞ¼
Y3
Pþ¼1

z−zPþ

1− zzPþ
; P0ðzÞ¼

Y2
P0¼1

z− zP0

1−zzP0

; ð2:12Þ

where zP is defined as

zP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ −m2

P

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ −m2

P

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p ;

wheremP represents the location of a Bc narrow resonance.
The product is extended to all the Bc resonances below
the BD threshold with the appropriate quantum numbers
(1− for Pþ and 0þ for P0). The Blaschke factors remove
the subthreshold poles from the form factors, making the
form factors analytic for all q2 values below the cut.
Finally, the outer functions reflect the way in which the

form factors enter the dispersive integral, which depends on
the helicity amplitude they belong. Their normalization
depends on χT;L because we want to have the unitarity
bounds in the simplest form (2.6). The outer functions ϕþ;0

are given by

ϕþðzÞ ¼ kþ
ð1þ zÞ2 ffiffiffiffiffiffiffiffiffiffi

1 − z
p

½ð1þ rÞð1 − zÞ þ 2
ffiffiffi
r

p ð1þ zÞ�5 ;

kþ ¼ 8r2

mB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8nI

3π ~χTð0Þ

s
≃ 12.43; ð2:13Þ

ϕ0ðzÞ ¼ k0
ð1 − z2Þ ffiffiffiffiffiffiffiffiffiffi

1 − z
p

½ð1þ rÞð1 − zÞ þ 2
ffiffiffi
r

p ð1þ zÞ�4 ;

k0 ¼ rð1 − r2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8nI

πχLð0Þ

s
≃ 10.11; ð2:14Þ

where nI is a factor that simply counts the number of
massless spectator quarks. Although SU(3) breaking
appears to be small in form factor calculations, we prefer
to be conservative and use nI ¼ 2.6. Replacing (2.12)–
(2.14) in Eqs. (2.4) and (2.5) we obtain the BGL parameter-
izations of fþ and f0. There appears to be some confusion
on k0 in the literature (see e.g. [16,18]), possibly generated
by the unusual definition of f0 in [8]. We stress that the
precise definition and inclusion of both Pþ;0 and ϕþ;0 is
instrumental to using the unitarity bound on the sum of the
squared coefficients of the z expansion. Without this bound
there is no difference between the z expansion and any
other power expansion of the form factors.

B. CLN parameterization

The CLN parameterization was proposed in [9] and has
been extensively used in the literature. It is also based on
dispersion relations and unitarity but it additionally exploits
HQET to reinforce the unitarity bounds. Indeed, the form
factors of the two-meson states contributing to the two-
point function are related by heavy quark symmetry and in
the heavy quark limit either vanish or are proportional to
the Isgur-Wise function [8]. Reference [9] also includes
Oð1=mÞ heavy quark symmetry breaking corrections,
computed with input from light-cone sum rules, and
leading short-distance corrections to these relations. We
will describe in more detail the method in Sec. II D.
The reinforced unitarity bounds allow Ref. [9] to

establish approximate relations between the slope and
the higher power coefficients of the reference form factor
fþ and to provide simplified formulas valid within ≈ 2%.
For instance, our form factors of interest are expressed in
terms of two parameters only:

fþðzÞ≃ fþð0Þ½1 − 8ρ21zþ ð51ρ21 − 10Þz2
− ð252ρ21 − 84Þz3Þ�; ð2:15Þ

f0ðzÞ
fþðzÞ

≃
�
2

ffiffiffi
r

p
1þ r

�
2 1þ w

2
1.0036½1 − 0.0068w1

þ 0.0017w2
1 − 0.0013w3

1�; ð2:16Þ

TABLE I. Relevant Bc masses and decay constants.

Type Mass (GeV) Decay constants (GeV) Reference

1− 6.329(3) 0.422(13) [23,26,27]
1− 6.920(20) 0.300(30) [23,26,28]
1− 7.020 [29]
1− 7.280 [30]
0þ 6.716 [29]
0þ 7.121 [29]
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where w1 ¼ w − 1. Notice in particular that the ratio f0=fþ
is fixed by the NLO HQET calculation implemented in [9].
All other Bð�Þ → Dð�Þ form factors are similarly expressed
as fþðzÞ times a ratio computed at NLO in HQET. One
should bear in mind that the heavy mass expansion here is
an expansion in 1=mc and therefore all form factors in this
parameterization are subject, in principle, to Oð1=m2

cÞ ∼
5%–10% corrections. Indeed, the ratio of the B → D� and
B → D form factors at zero recoil is 0.948 at NLO in
HQET [9], while the most precise lattice calculations lead
to 0.860(14) [10,16]. However, as long as the CLN
parameterization is used to describe the shape of a single
form factor, like in (2.15), it provides a simple and effective
parameterization, unless of course the experimental or
theoretical constraints reach the ∼1% precision.

C. The BCL parameterization

The BCL parameterization [31] was proposed to over-
come problems that appear due to the truncation of the
BGL expansion. When the BGL expansion is truncated at
some finite power N, the form factor develops an unphys-
ical singularity at the threshold tþ and behaves at large jq2j
in contradiction with perturbative QCD scaling. While
these problems are related to the behavior of the form
factor at values of q2 much larger than those relevant for
B → Dlν and are therefore likely to be irrelevant in the
present context, the BCL parameterization offers a simple
alternative to BGL that avoids these potential shortcom-
ings. The two form factors of interest are given by

fþðq2Þ ¼
1

1− q2=M2þ

XN
k¼0

ak

�
zk − ð−1Þk−N−1 k

N þ 1
zNþ1

�
;

ð2:17Þ

f0ðq2Þ ¼
1

1 − q2=M2
0

XN
k¼0

bkzk; ð2:18Þ

whereMþ;0 are the masses of the two closest Bc resonances
in the þ; 0 channels; see Table I. The zNþ1 terms in (2.17)
ensure the proper behavior of the form factor at q2 ≈ tþ.
There is no point in introducing additional pole terms for
resonances that lie even further. The unitarity bounds we
have considered above can be mapped onto the BCL
parameters as shown in [31]. As they assume a more
complicated form, we will only consider the weak bounds
for the BCL parameters.

D. Strong unitarity constraints

The unitarity bounds of Eq. (2.6) assume that a single
hadronic channel, in our case BD, saturates the bound;
we can label them weak unitarity bounds. Of course
there are a number of additional two-body channels
(BD�; B�D;B�D�;ΛbΛc;…) with the right quantum

numbers, as well as higher multiplicity channels, that give
positive contributions to the absorptive part to the two-point
function and can strengthen the unitarity bound on the
coefficients of the BD form factors.
In the case of the four states B̄ð�ÞD̄ð�Þ, one can use heavy

quark symmetry to connect the form factors of the various
channels. The implementation of these relations in the
unitarity conditions is outlined in [8]: only amplitudes of
fixed spin parity enter each dispersion relation, leading to
the strong unitarity condition

XH
i¼1

X∞
n¼0

b2in ≤ 1: ð2:19Þ

Here all helicity amplitudes i ¼ 1…H for processes
involving B̄ð�ÞD̄ð�Þ with the right quantum numbers must
be included.
We follow here the approach proposed in [8] to derive

strong unitarity bounds on the coefficients of fþ, but we
include short-distance and 1=m corrections to the heavy
quark limit as done in [9]. One can compute strong
constraints for the coefficients of f0 as well, but they
would play a marginal role in our analysis. We will
therefore use only the weak unitarity constraint for the
coefficients of the scalar form factor.
Considering the vector (1−) form factors for Bð�ÞDð�Þ

states, there are seven helicity amplitudes, H ¼ 7. Each
form factor Fi can be put in the general form

Fi ¼ ~fi
X
n

binzn; ð2:20Þ

where ~fiðzÞ ¼ 1=PiðzÞϕiðzÞ are known functions. If
b1n ¼ an are the coefficients of fþðzÞ, it is possible to
rearrange the z expansion of each form factor asX

n

binzn ¼
X
n

anznciðzÞ; ð2:21Þ

where ciðzÞ ¼ Fi
~fþ=ðfþ ~fiÞ and only the fþ coefficients

appear explicitly. In order to use Eq. (2.21) to obtain a
unitarity condition involving only the an, an explicit
approximation for the ciðzÞ is required; i.e. information
on the other form factors is needed. Once the ciðzÞ are
known, their z expansion allows for the determination of
the coefficients bin to be employed in (2.19). Of course,
the maximum reached by the index n in (2.19) coincides
with the maximum power of z we employ in (2.4), (2.5),
namely N.
In Ref. [8] the exact heavy quark limit in used in

order to fix the functions ciðzÞ. Here we evaluate
them incorporating the 1=m heavy quark symmetry
breaking and short-distance corrections as done in [9].
In the notation of [8] the form factors involved are
Fi ¼ ðfþ; g; ĝ; Vþþ; Vþ0; V0þ; V00Þ. They are related to
those in [9] by
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fþ ¼ mBþmD

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p V1; g¼ V4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD�

p ; ĝ¼−
V5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mB�mD
p ;

Vþ0¼
V6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mB�mD�
p ; Vþþ ¼ V7ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mB�mD�
p ;

V0þ ¼−
mB� þmD�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mB�mD�

p V2; V00¼
mB� þmD�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mB�mD�

p V3:

Using these relations and the ratios Vi=V1 computed in
[9] at NLO in HQET and given in their Appendix, it is
easy to find the relevant ciðzÞ. Indeed, the ratios ~fþ= ~fi
are easily computed from [8]. Depending on the specific
form factor either three or four poles have to be subtracted
with the Blaschke factors because of the different tþ
thresholds.
The strong unitarity bounds are finally obtained using

the values in Tables I and II:
(i) N ¼ 2

442.82a20−101.619a0a1þ34.947a21−127.668a0a2þ
33.234a1a2þ16.4754a22≤1.

(ii) N ¼ 3

1707.54a20þ1299.57a0a1þ442.82a21−356.01a0a2−
101.62a1a2þ34.947a22−206.767a0a3−
127.668a1a3þ33.234a2a3þ16.475a23≤1.

We do not display the longer N ¼ 4 expression. These
strong unitarity constraints will be used to fit the exper-
imental and lattice results in the BGL parameterization.
We have also considered adding the ΛbΛc channel to the

unitarity bounds, even though heavy quark symmetry does
not relate its form factors to those of BD in a direct way.
Indeed a lattice QCD calculation of the Λb → Λclν form
factors has recently appeared [32]. Unfortunately, their
precision is not yet sufficient to evaluate their contribution
to the unitarity sum in a useful way.
The derivation of the strong unitarity bounds makes

essential use of the NLO HQET relations between the form
factors, but we have seen that subsubleading Oð1=m2

cÞ
effects can be sizable. In order to estimate their effect we
randomly vary the coefficients bin which appear in (2.19) in
such a way that the overall shift in the ratio between form
factors with respect to the expressions given in Appendix A
of [9] is less than 8%. Equation (2.19) precludes any
coefficient bin from being too large. As the bin’s in turn
depend on the expansion coefficients an of fþ, the largest bin

variations turn out to be incompatible either with the
constraints on an we have from lattice and experiment or
with Eq. (2.19), degrading significantly the quality of the
constrained fit, in a way which becomes stronger for higher
N. Indeed, unitarity is very effective in constraining the
higher derivatives terms of the form factors.
We also observe that the HQET expressions for Fi=fþ

have a z expansion characterized by a rapid apparent
convergence with Oð1Þ coefficients. For instance,
F2ðzÞ
fþðzÞ

≈ 0.329ð1 − 1.14z − 2.38z2 − 3.61z3 þ…Þ;

ð2:22Þ
where all the powers of z originate from NLO corrections
to the leading HQET result. Limiting ourselves to random
variations which satisfy the previous requirement and
preserve the order of magnitude (not necessarily the sign)
of the z-expansion coefficients in Fi=fþ, we have verified
that (i) employing the HQET relations in the derivation
of the strong bounds leads to global fits with nearly optimal
χ2 (i.e only very few and small variations have smaller
minimum χ2); (ii) the fitted value of jVcbj is very (fairly)
insensitive to changes in the HQET relations in the
N ¼ 3ð4Þ cases, with a marked preference for a slight
increase. We will therefore employ the strong unitarity
bounds as we have derived them, without assigning any
uncertainty. As will be shown in the next section, the
difference between results obtained with weak and strong
bounds is always minor. However, there is so much missing
in the weak bounds that it seems preferable to use our
imperfect version of the strong bounds for actual fits.

III. INPUTS

A. Experimental data

Most of the B → Dlν analyses by Aleph, Cleo, BABAR
and Belle were performed assuming the CLN parameter-
ization and their results are given in terms of ρ21 and
ηewGð1ÞjVcbj, where Gð1Þ ¼ 2

ffiffiffi
r

p
=ð1þ rÞfþð0Þ is the

zero-recoil form factor; see [11] for a recent average. In the
following we perform a fit to the differential w distribution
and therefore use only results provided by Belle and
BABAR.
The BABAR Collaboration published their results on the

w distribution in [33]. The w spectrum is divided into ten
bins of width 0.06, and the results are expressed in terms of
the average jVcbjGðwÞ in each bin. Since this entails non-
negligible finite bin size effects, we have reexpressed the
data in terms of ΔΓ for each bin. As BABAR analysis is tied
up with the CLN parameterization, only the statistical
uncertainties are provided. BABAR claims a 3.3% system-
atic error at small w, and we have extended this to the entire
w range, with 100% correlation between different bins
as recommended to us [34]. An important point is that
BABAR’s last bin, 1.54 ≤ w ≤ 1.60, extends beyond the

TABLE II. Mass values employed in the paper.

Mass Value (GeV)

mB 5.27942
mD 1.86723
mμ 0.1057
mτ 1.7768
mB� 5.325
mD� 2.009
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physical end point wmax ≃ 1.5905. This has to be taken
properly into account and has a non-negligible effect on
the fit.
Concerning Belle, we use the results of a recent

analysis [18] of B → Dlν, which provides the w spec-
trum with full statistical and systematic errors, and
correlations. The w range is divided into ten bins as
in BABAR analysis, but the last one stops at wmax. The B
and D mass values given in Table II are those employed
in Ref. [18] and reflect the relative weight of charged and
neutral B mesons in their sample. We assume that these
values are suitable for BABAR analysis as well and
neglect their uncertainty. The experimental data points
employed in the fit can be seen in Fig. 1, where they are
shown as measurements of fþðzÞ after normalizing them
to the fitted jVcbj.

B. Lattice QCD calculations

While the experimental results are more precise at large
recoil (small q2), lattice QCD calculations of the form
factors are performed close to zero recoil. They have made
substantial progress in the last two decades and the most
recent calculations of fþ;0 [16,17] have reached a high
accuracy both at zero recoil (0.8% and 4%, respectively)
and beyond. In fact, they represent the first unquenched
calculations of these form factors performed at values of w
different from 1, which significantly reduces the uncer-
tainty of the extrapolation from the w region where most
data are taken.
The FNAL/MILC Collaboration has presented results

for both fþðwÞ and f0ðwÞ in terms of synthetic data points
at w ¼ 1.00, 1.08 and 1.16 [16], with complete statistical
and systematic uncertainties and correlations.
The HPQCD Collaboration [17] instead present their

results for fþðwÞ and f0ðwÞ in terms of a BCL parameter-
ization with only the closest Bc pole, whose coefficients
are provided with uncertainty and correlations. Since their
simulations extend to a maximal value of z ¼ 0.013,
corresponding to w ≈ 1.11, we extract from their param-
eterization synthetic data for fþ;0 at w ¼ 1.00, 1.06
and 1.12. HPQCD fþ;0 data points have a significantly
larger error and are more correlated than those of [16].
While HPQCD individual points are in good agreement
with those by FNAL/MILC, there is a mild tension
between their fþ slopes at zero recoil: from [17]
we find dfþ=dwjw¼1 ¼ −1.29ð11Þ, while FNAL has
dfþ=dwjw¼1 ¼ −1.42ð4Þ, showing a marginal discrepancy
that may require further consideration.
We assume no correlation between FNAL/MILC and

HPQCD results, although the two calculations both employ
some of the MILC gauge ensembles. In fact, the overlap
between the sets of ensembles employed by the two
collaborations is limited. Moreover, the statistical errors
play a minor role in the HPQCD error budget, which is
dominated by theoretical systematics related to the use of

nonrelativistic QCD. The lattice data points employed in
the fit can be seen in Fig. 1.
Because of their limited accuracy, we do not include

previous lattice [35,36] and light-cone sum rules [37]
results on the form factors. We also do not include the HQE
result, partially based on BPS symmetry, Gð1Þ¼ 1.04ð2Þ
[38].

IV. RESULTS AND DISCUSSION

A. Fits to both lattice and experimental data

In this section we report the results of several fits
performed with the three parameterizations we have dis-
cussed above. To gauge the stability of the fits for different
N, we compare the N ¼ 2, 3, 4 cases. While we normally
include all the inputs listed in Secs. III A and III B, we have
also performed BGL fits excluding a specific set of inputs:
they clarify their role in the fit. The central values and
standard deviation of jVcbj and RðDÞ obtained in each case
are reported in Table III together with the minimum χ2. In
the following we discuss the main features of the results
and clarify a few technical points.
The first three fits employ the BGL parameterization and

all the inputs. In the case N ¼ 2 the absolute minimum of
χ2 is always consistent with both weak and strong unitarity
bounds. For N ¼ 3, 4 the absolute minimum lies outside
both the weak and strong unitarity bounds. We therefore
look for the constrained minimum imposing the strong
unitarity bounds, which modifies slightly the fitted values
of jVcbj and RðDÞ and complicates the error analysis,
giving rise to asymmetric uncertainties, which we evaluate
using Δχ2 ¼ 1. Weak and strong unitarity constraints lead
to very similar results, with jVcbj just 0.05 × 10−3 higher in
the second case for N ¼ 4. For our final result we adopt
the N ¼ 4 BGL fit, which is the one where the functional
form of fþ;0 has the maximum flexibility.
In all cases the fits have good quality and there is a

remarkable stability with respect to the value of N, which

TABLE III. Fits using different parameterizations and inputs.
See text for explanations.

Exp data Lattice data N,par 103 × jVcbj χ2=d:o:f: RðDÞ
All All 2,BGL 40.62(98) 22.1=26 0.302(3)
All All 3,BGL 40.47(97) 18.2=24 0.299(3)
All All 4,BGL 40.49ð97Þ 19.0=22 0.299ð3Þ
Belle All 3,BGL 40.92(1.12) 11.6=14 0.300(3)
BABAR All 3,BGL 40.11(1.55) 12.6=14 0.301(4)
All FNAL 3,BGL 40.17(1.05) 10.4=18 0.293(4)
All HPQCD 3,BGL 40.51þ1.82

−1.71 10.1=18 0.299(7)
All All CLN 40.85(95) 77.1=29 0.305(3)
All fþ only CLN 40.33(99) 20.0=23 0.305(3)
All All 2,BCL 40.49(98) 18.2=26 0.299(3)
All All 3,BCL 40.48(96) 18.2=24 0.299(3)
All All 4,BCL 40.48(97) 17.9=22 0.299(3)
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could not be achieved without the unitarity bounds. Thanks
to the unitarity bounds, the error on RðDÞ is reduced by
30% in the case of N ¼ 3 and by 50% in the case of N ¼ 4,
while that on jVcbj is only slightly reduced for N ≥ 3. The
coefficients ai, bi of the form factors fþ;0 obtained in these
three BGL fits are shown in Table IV with their errors. In
Table V we provide the correlation matrix for the case
N ¼ 2, the only case for which it can be properly defined.
In the case N ¼ 4 the 1σ uncertainties for fþ;0ðzÞ are

δfþðzÞ≃ 0.00854þ 0.0388zþ 0.26z2;

δf0ðzÞ≃ 0.0065þ 0.012zþ 1.2z2: ð4:1Þ

These uncertainties are very close to those we obtain from
the N ¼ 2, 3 fits.
We also present two fits performed with the CLN

parameterization. The first one includes all experimental
and lattice data and has a very low p value, 3 × 10−6. This
is due to the fact that in the CLN parameterization the ratio
fþ=f0 is fixed to the HQET relation (2.16), which is in
striking contrast with the most precise lattice evaluations:
Ref. [16] finds fþð0Þ=f0ð0Þ ¼ 0.753ð3Þ at zero recoil,
while (2.16) implies 0.775. The two values differ only
by 3%, which is of the expected order of magnitude for
higher-order corrections to the CLN relation. Clearly,
lattice calculations are getting too precise to use CLN
without a proper uncertainty. A second CLN fit which
excludes all f0 lattice determinations has a good quality,
comparable to that of the BGL fits.

With the BCL parameterization we have performed fits
to all inputs for N ¼ 2, 3, 4, with weak unitarity constraints
only. The results are perfectly consistent with those
obtained in the BGL parameterization and are very stable
for increasing N.
Our fits are in good agreement with recent analyses, if one

takes into account the different inputs. Belle analysis [18]
employs the same lattice data as we do and finds (BGL,
N ¼ 3) ηewjVcbj ¼ 41.10ð1.14Þ×10−3. Using ηew ¼ 1.0066
as we do, one gets jVcbj ¼ 40.83ð1.13Þ × 10−3, well com-
patible with the result of our Belle-only fit. The HPQCD
Collaboration reports jVcbj ¼ 40.2ð1.7Þð1.3Þ × 10−3 [17]
based on BABAR data only and using a different ηew.
If we repeat the fit under similar conditions we get
jVcbj ¼ 40.1ð2.2Þ × 10−3. The FNAL-MILC Collaboration
quotes jVcbj ¼ 39.6ð1.7Þð0.2Þ × 10−3 [16], based on
BABAR data only and using ηew ¼ 1.011ð5Þ. Under the
same hypotheses we get jVcbj ¼ 39.7ð1.7Þ × 10−3. A fit
with lattice, BABAR, and preliminary Belle data, presented
in [39], is again consistent with our results after taking into
account the different inputs.
It might be interesting to compare our results with those

one obtains using the HFAG average ηewGð1ÞjVcbj ¼
42.65ð72Þð1.35Þ × 10−3 [11] and the N ¼ 4 fit value
of fþð0Þ, corresponding to Gð1Þ ¼ 1.0557ð78Þ. We get
jVcbj ¼ 40.13ð1.47Þ × 10−3, which is consistent with but
less precise than our final value. This is clearly not
surprising because we include new additional information.
One should keep in mind that the data averaged by HFAG
are the result of CLN extrapolation.
To gauge the impact of nonzero recoil lattice results in the

analysis, we perform a fit without all the lattice points at
z ≠ 0: the result is jVcbj ¼ 39.6ð1.72.0Þ × 10−3 using BGLwith
N ¼ 3. Clearly, nonzero recoil lattice data are very important
both for the uncertainty and the central value. If we instead
employ CLN, we obtain jVcbj ¼ 40.0ð1.1Þ × 10−3.
The form factors of the N ¼ 4 BGL fit are shown in

Fig. 1 together with their 1σ error bands and the lattice
input data. We also show bin-average values for fþ
obtained from the experimental data, with normalization
fixed by the fitted value of jVcbj.

TABLE IV. Coefficients of the form factors in the BGL fits to all data.

N a0 a1 a2 a3 a4

2 0.01566(11) −0.0342ð31Þ −0.090ð22Þ
3 0.01565(11) −0.0353ð31Þ −0.043ðþ21

−35 Þ 0.194ðþ19
−16 Þ

4 0.01564(11) −0.0353ð30Þ −0.044ðþ22
−14 Þ 0.111ðþ51

−111Þ −0.20ðþ20
−8 Þ

N b0 b1 b2 b3 b4

2 0.07935(58) −0.205ð14Þ −0.23ð10Þ
3 0.07932(58) −0.214ðþ15

−14 Þ 0.17ðþ10
−25 Þ −0.958ðþ1060

−2 Þ
4 0.07929ðþ97

−93 Þ −0.210ð14Þ 0.09ðþ12
−14 Þ −0.967ðþ396

−11 Þ 0.08ðþ76
−71 Þ

TABLE V. Correlation matrix for the N ¼ 2 fit. Due to the
constraint fþ ¼ f0 at q2 ¼ 0, the coefficient b0 is given by
4.99a0 þ 0.32a1 þ 0.021a2 − 0.065b1 − 0.004b2.

a0 a1 a2 b1 b2

a0 1 0.304 −0.294 0.212 0.161
a1 0.304 1 −0.422 0.747 0.190
a2 −0.294 −0.422 1 −0.034 0.148
b2 0.212 0.747 −0.034 1 −0.210
b2 0.161 0.190 0.148 −0.210 1
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B. Fits to lattice results only

We have seen that the difference between using weak and
strong unitarity constraints is relatively small in our fits.
One might think this is going to change in a case where we
do not have data over the whole spectrum and where
extrapolation errors become important. To illustrate such a
case, we have performed a fit to lattice results only, shown
in Fig. 2. Here we include the same fþ and f0 results by
the MILC-FNAL and HPQCD Collaborations we have
employed in the global fits. The plot shows the 1σ error
band for fþ in the case of the N ¼ 4 BGL fit, using strong
and weak constraints. The band obtained using strong
constraints is up to 25% narrower than the one obtained
using the weak constraints. These bands can be compared
with similar ones given in Refs. [16,17], keeping in mind

that ours is a combined fit. We also note in passing that
the implementation of weak unitarity constraints using
Gaussian priors, as done for instance in [16], leads to
overestimate the width of the band (by up to 30% in the
N ¼ 4 case with only Fermilab results). In conclusion,
while for N > 2 it is essential to use unitarity constraints,
the gain from using strong rather than weak constraints is
not significant in our fits. However, this is not a general
statement and the issue should be reconsidered case
by case.

V. SUMMARY

We have reexamined the form factor parameterizations
for B → Dlν in view of recent theoretical and experimental
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FIG. 1. Form factors in the N ¼ 4 fit with data points. FNAL/MILC synthetic data are shown in red, HPQCD in blue, Belle data in
brown, and BABAR in green.
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FIG. 2. Form factor fþðzÞ in the N ¼ 4 BGL fit to lattice data for fþ;0ðzÞ with weak (brown band) and strong (gray band) unitarity
constraints. The N ¼ 2 band (independent of unitarity constraints) is shown in dashed lines for comparison. FNAL/MILC synthetic data
are shown in red and HPQCD in blue. On the right, enlarged detail of the tail.
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results. After updating the unitarity constraints to Oðα2sÞ
with recent quark mass values, we have discussed the
strong unitarity bounds, which can improve the precision of
the form factors and lead to better determinations of jVcbj
and RðDÞ. In our analysis, using strong rather than weak
unitarity bounds does not modify significantly the results of
the fit to lattice and experimental results. In the future, it
might be possible to implement strong unitarity bounds
using lattice calculations of different form factors, rather
than HQET approximations only, and to perform global
fits to experimental and lattice data for different channels
(e.g. B → D;B → D�, etc., and even Λb → Λc).
We have considered the BGL, CLN, and BCL parameter-

izations; they all yield consistent results for jVcbj. However
the CLN parameterization, which has played a useful role
in the past, may no longer be adequate to cope with the
present accuracy of lattice calculations. BGL and BCL are
valid alternatives and their fits are almost identical. In both
cases, the analysis should be performed with increasing N,
properly including the unitarity constraints. Our final result
for jVcbj,

jVcbj ¼ 40.49ð97Þ × 10−3; ð5:1Þ

has a 2.4% error and can be improved by more precise
lattice calculations and by new measurements of the
differential decay rate. It is fair to stress that the level of
precision in (5.1) is mostly due to the high precision
FNAL-MILC results, which makes it also urgent to have
alternative calculations at the same level of accuracy.
Concerning experiment, even before Belle-II data are
available, the old BABAR data could be usefully
reexamined using the latest tagging techniques and untying
them from the CLN formulas. Our result (5.1) is compatible
with but less precise than both the exclusive Vcb from
B → D�lν in Eq. (1.2) and the inclusive one of Eq. (1.1).
Since the extraction of jVcbj from experimental data for

B → D�lν relies on the CLN parameterization, its uncer-
tainty could be underestimated: this decay mode depends
on three form factors, whose behavior at w ≠ 1 has been

parameterized using CLN expressions, without accounting
for theoretical uncertainties. However, one should keep in
mind that the w spectrum of B → D�lν is measured rather
precisely over the whole physical region (unlike that of
B → Dlν) and that the CLN expressions fit it well. The
extrapolation to the zero-recoil point is therefore a small
effect which is unlikely to change jVcbj significantly. While
the Vcb conundrum persists, a new player (B → Dlν) has
entered the game.
Our precise fit to both form factors fþ and f0 has

allowed us to compute the ratio of tau to muon semileptonic
decays RðDÞ in the SM. Our result is

RðDÞ ¼ 0.299� 0.003;

which differs 2σ from the HFAG average of BABAR and
Belle measurements [11]

RðDÞexp ¼ 0.397� 0.040� 0.028:

Our SM determination of RðDÞ is the most precise so far
and is in excellent agreement with other recent estimates:
the HPQCD Collaboration [17], without recourse to exper-
imental data, reports 0.300(8), while FNAL-MILC [16],
using BABAR data only, finds 0.299(11). Older analyses
such as those of Refs. [40,41] give consistent values.
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