
Dissociation of heavy quarkonium in hot QCD medium
in a quasiparticle model

Vineet Kumar Agotiya,1,* Vinod Chandra,2,† M. Yousuf Jamal,2,‡ and Indrani Nilima1,§
1Centre for Applied Physics, Central University of Jharkhand Ranchi, 835 205, India
2Indian Institute of Technology Gandhinagar, Gandhinagar-382355, Gujarat, India

(Received 17 May 2016; published 4 November 2016)

Following a recent work on the effective description of the equations of state for hot QCD obtained from
a hard thermal loop expression for the gluon self-energy, in terms of the quasigluons and quasiquarks and
antiquarks with respective effective fugacities, the dissociation process of heavy quarkonium in hot QCD
medium has been investigated. This has been done by investigating the medium modification to a heavy
quark potential. The medium-modified potential has a quite different form (a long-range Coulomb tail in
addition to the usual Yukawa term) in contrast to the usual picture of Debye screening. The flavor
dependence binding energies of the heavy quarkonia states and the dissociation temperature have been
obtained by employing the Debye mass for pure gluonic and full QCD case computed employing the
quasiparticle picture. Thus, estimated dissociation patterns of the charmonium and bottomonium states,
considering Debye mass from different approaches in the pure gluonic case and full QCD, have shown
good agreement with the other potential model studies.
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I. INTRODUCTION

The problem of dissociation of bound states in a hot
QCDmedium is of great importance in heavy ion collisions
as it provides evidence for the creation of the quark-gluon
plasma there [1]. Matsui and Satz [2] proposed J=ψ
suppression caused by the Debye screening by the
quark-gluon plasma (QGP) as an important signature to
reaffirm its formation in heavy ion collisions. The physical
understanding of the quarkonium dissociation within a
deconfined medium has undergone some definite refine-
ments in the last couple of years [3–7]. Since the heavy quark
and antiquark in a quarkonia state are bound together by
almost static (off-shell) gluons, the issue of their dissociation
boils down to how the gluon self-energy behaves at high
temperatures. It has been noticed that the gluon self-energy
has both real and imaginary parts [8]. Note that the real part
leads to the Debye screening, while the imaginary part leads
to Landau damping and gives rise the thermal width to the
quarkonia.
The fate of quarkonia at zero temperature can be

understood in terms of nonrelativistic potential models
(as the velocity of the quarks in the bound state is small,
v ≪ 1) [9] using the Cornell potential [10]. Further, the
physics of the fate of a given quarkonium state in the QGP
medium, is encoded in its spectral function [11,12].
Therefore, following the temperature behavior of the
spectral function, theoretical insight into the quarkonium

properties at finite temperature can be made. There are
mainly two lines of theoretical approaches to determine
quarkonium spectral functions viz. the potential models
[13–16] which have been widely used to study quarkonia
states (their applicability at finite temperature is still under
scrutiny), and the lattice QCD studies [17,18] which provide
the reliable way to determine spectral functions, but the
results suffer from discretization effects and statistical errors
and, thus, are still inconclusive. These two approaches show
poor matching as far as their predictions are concerned.
None of these two approaches leads towards a complete
framework to study the properties of quarkonia states at
finite temperature. However, some degree of qualitative
agreement was still achieved for the S-wave correlators. In
contrast, the finding was somehow ambiguous for the
P-wave correlators. Additionally, the temperature depend-
ence of the potential model was even qualitatively different
from the lattice one. Refinement in the computations of the
spectral functions has recently been done (including the zero
modes in both the S and P channels) [19,20]. It has been
observed that these contributions cure most of the previously
observed discrepancies with lattice calculations. This sup-
ports the fact that the employment of potentialmodels at finite
temperature can serve as an important tool to complement
lattice studies. The potential model can actually be derived
directly from QCD as an effective field theory (potential
nonrelativistic QCD-pNRQCD) by integrating out modes
above the scales mQ and then mQv, respectively [21–23].
Note that the potential models have served as useful

approaches while exploring the physics of heavy quarkonia
since the discovery of J=ψ [21,24]. It indeed provides a
useful way to examine quarkonium binding energies,
quarkonium wave functions, reaction rates, transition rates,
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and decay widths. It further allows the extrapolation to the
region of high temperatures by expressing screening effects
reflecting on the temperature dependence of the potential.
The effects of the dynamics of quarks on the stability of
quarkonia can be studied by using potential models
extracted from thermodynamic quantities that are computed
in full QCD. At high temperatures, the deconfined phase of
QCD exhibits screening of static color-electric fields [25];
it is, therefore, expected that the screening will lead to the
dissociation of quarkonium states. After the success at zero
temperature while predicting hadronic mass spectra, the
potential model descriptions have also been applied to
understand quarkonium properties at finite temperature.
Note that the production of J=ψ and ϒ mesons in

hadronic reactions occurs, in part, via the production of
higher excited cc̄ (or bb̄) states and their decay into
respective ground states. Since the lifetime of different
quarkonium states is much larger than the typical lifetime
of the medium produced in nucleus-nucleus collisions, their
decay occurs almost completely outside the produced
medium [26,27]. This is crucial due to the fact that the
produced medium can be probed not only by the ground
state quarkonium but also by different excited quarkonium
states. Since different quarkonia states have different sizes
and binding energies, one expects that higher excited states
will dissolve at smaller temperature as compared to the
smaller and more tightly bound ground states. These facts
may lead to a sequential suppression pattern in the J=ψ and
ϒ yield in nucleus-nucleus collision as the function of the
energy density. The potential model in this context could be
helpful in predicting the binding energies of various
quarkonia states by setting up and solving appropriate
Schrödinger equation in the hot QCD medium. The first
step towards this is to model an appropriate medium-
dependent interquark interaction potential at finite temper-
ature. The dissociation of heavy quarkonium derived by the
presence of screening of static color fields in hot QCD
medium has long been proposed as a signature of a
deconfined medium and QGP formation [2]. Since then,
this has been an area of active research [28–34]. However, a
precise definition of the dissociation temperature is still
elusive and is a matter of intense theoretical and phenom-
enological investigations either from the perspective of
lattice spectral function studies [33,35–40] or potential
inspiredmodels [41–44] or effective quarkonia field theories
[45]. The heavy quarks and antiquarks such as cc̄ are bound
together by almost static gluons [8,46,47]. Therefore, the
gluon self-energy in the static limit can be helpful in
understanding the fate of such states in the hot QCD
medium.
While modeling the medium-modified potential, the

nonperturbative effects coming from the nonzero string
tension between the quark-antiquark pair in the QGP phase
are not an unreasonable consideration. This is simply due to
the fact that the hadronic to the QGP transition is a

crossover. Therefore, the string tension will not vanish
abruptly at or closer to Tc. One should certainly study its
effect on the behavior of quarkonia even above the
deconfinement temperature. This fact has been exploited
in the recent past in Refs. [31,48], where a medium-
modified form of the heavy quark potential has been
obtained by correcting the full Cornell potential, not only
its Coulomb part alone, as is usually done in the literature,
with a dielectric function encoding the effects of the
deconfined medium. The medium-modified potential, thus
obtained, has a long-range Coulomb tail with an (reduced)
effective charge [31] along with the usual Debye-screened
form employed in most of the literature. We subsequently
used this form to determine the binding energies and the
dissociation temperatures of the ground and the first excited
states of the charmonium and bottomonium spectra.
In the present paper, we shall consider an isotropic QGP

mediumwhich is described in terms of quasiparticle degrees
of freedombased on a recently proposed quasiparticlemodel
for hot QCD equations of state based on improved pertur-
bative techniques at weak coupling [49,50]. We further
implement a similar description for the lattice-QCD-based
equations of state [51].We first obtain themedium-modified
heavy quark potential (both real and imaginary parts) and
estimate the dissociation temperatures for two- and three-
flavor hot QCD medium. As an intermediate step, the
binding energies of the different quarkonia states and their
respective thermal widths have been obtained in the hot
QCD/QGP medium. Our predictions have been found to be
consistent with the results obtained from other approaches.
The manuscript is organized as follows. The real part of

the heavy-quark potential is discussed in Sec. II along with
the Debye mass obtained from a quasiparticle model of the
hot QCD equation of state along with binding energies of
various quarkonia bound states by solving the Schrödinger
equation (numerically). In Sec. III, computations on the
imaginary part of the potential and, thereby, the thermal
width of the quarkonium have been presented. Section IV
deals with results and discussions. Finally, the conclusions
and future prospects for the work are presented in Sec. V.

II. HEAVY-QUARK POTENTIAL

The interaction potential between a heavy quark and
antiquark gets modified in the presence of a medium. The
static interquark potential plays a vital role in understanding
the fate of quark-antiquark bound states in the hot QCD/
QGP medium. These aspects have been well studied in the
literature and, in this direction, several excellent reviews
exist [52,53] that cover potential model-based phenomenol-
ogy aswell as the lattice-QCD-based approaches. In all these
studies, the potential in the deconfined phase is of the
Yukawa form (screening Coulomb). The prime assumption
is that the melting of the string between the quark-antiquark
pairs in the deconfined phase is motivated by the fact that
there is a phase transition from a hadronic matter to a QGP
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phase. In the present analysis, we incorporate the modifi-
cation to both the Coulomb part and confining part in the
deconfinedmedium [31,54]. This is based on the fact that the
transition between the hadronic to the QGP phase is a
crossover as shown by the recent lattice studies [55]. In the
case of finite-temperature QCD, we here employ the ansatz
that themediummodification enters in the Fourier transform
of heavy quark potential VðkÞ as [31]

~VðkÞ ¼ VðkÞ
ϵðkÞ ; ð1Þ

where ϵðkÞ is the dielectric permittivity which is obtained
from the static limit of the longitudinal part of the gluon self-
energy [56]:

ϵðkÞ ¼
�
1þ ΠLð0; k; TÞ

k2

�
≡

�
1þm2

D

k2

�
: ð2Þ

In our case, VðkÞ in Eq. (1) is the Fourier transform (FT)
of the Cornell potential (to compute the FT, we need to
introduce a modulator of the form expð−γrÞ and finally let
the γ tend to zero), which is obtained as

VðkÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
ð2=πÞ

p α

k2
−

4σffiffiffiffiffiffi
2π

p
k4

: ð3Þ

Next, substituting Eq. (2) and Eq. (3) into Eq. (1) and
evaluating the inverse FT, we obtain the r dependence of
the medium-modified potential [48,57]:

Vðr; TÞ ¼
�
2σ

m2
D
− α

�
exp ð−mDrÞ

r

−
2σ

m2
Dr

þ 2σ

mD
− αmD: ð4Þ

Interestingly, this potential has a long-range Coulombic tail
in addition to the standard Yukawa term. The constant
terms are introduced to yield the correct limit of Vðr; TÞ as
T → 0 (it reduces to the Cornell form). Note that such terms
could appear naturally while performing the basic compu-
tations of real-time static potential in hot QCD [58] and
from the real and imaginary time correlators in a thermal
QCD medium [59]. The three -dimensional form is
motivated from the fact that, at finite temperature, the flux
tube structure may expand in more than one dimension
[60]. In the limiting case r ≫ 1=mD, the dominant terms in
the potential are the long-range Coulombic tail and αmD.
The potential will look like

Vðr; TÞ ∼ −
2σ

m2
Dr

− αmD ð5Þ

and can be tackled analytically while solving for the
binding energies and the dissociation temperatures for
the ground and first excited states of cc̄ and bb̄. In general,
one is required to set the Schrödinger equation with the full

potential and solve it numerically for the binding energy.
Here, we consider the full potential and estimate the binding
energies and the dissociation temperatures for heavy quar-
konia.We analyze the spatial dependence of the heavy quark
potential later and compare it against the other known forms
of the potentials in the forthcoming sections. To that end, we
employ the Debye mass computed from the effective
fugacity quasiparticle model (EQPM) [49,50] and compare
all the predictionswith theDebyemass obtained inHTL and
latticeQCDcomputations. Let us nowproceed to discuss the
EQPM and Debye mass below.

A. The Debye mass from a quasiparticle
picture of hot QCD

The Debye mass, mD, in QCD is generically non-
perturbative and gauge invariant [61] unlike QED. The
Debye mass in leading order in QCD coupling at high
temperature has been long known and is perturbative in
nature [62]. In a work in the past, Rebhan [63] defined mD
by seeing the relevant pole of the static quark propagator
instead of the zero momentum limit of the time-time
component of the gluon self-energy. The mD thus obtained
is seen to be gauge independent. This follows from the fact
that the pole of the self-energy is independent of choice of
gauge. In their work, Braaten and Nieto [64] calculated the
mD for the QGP at high temperature to the next-to-leading-
order (NLO) in QCD coupling from the correlator of two
Polyakov loops (this agrees to the HTL result [63]). Arnold
and Yaffe [61] pointed out that the contribution of Oðg2TÞ
to the Debye mass in QCD needs the knowledge of the
nonperturbative physics of confinement of magnetic
charge. They further argued that a perturbative definition
of the Debye mass as a pole of gluon propagator no longer
holds. Importantly, in lattice QCD, the definition of mD
itself, encounters difficulty due to the fact that unlike QED
the electric field correlators are not gauge invariant in QCD
[65]. To circumvent this problem, the approaches based on
effective theories obtained by dimensional reduction [66],
spatial correlation functions of gauge-invariant meson
correlators [67], and the behavior of the color singlet free
energies [68] have been proposed. In a very recent attempt
by Burnier and Rothkopf [65], a gauge-invariant mass has
been defined from a complex static in medium heavy-quark
potential obtained from lattice QCD.
To capture all the interaction effects present in hot QCD

equations of state in terms of noninteracting quasipartons
(quasigluons and quasiquarks), several attempts have been
made. These quasipartons are nothing but the thermal
excitations of the interacting quarks and gluons. We can
categerize them as (i) effective mass models [69,70],
(ii) effective mass models with Polykov loop [71], (iii) mod-
els based on PNJL and NJL [72], and (iv) effective fugacity
models [49,50]. In QCD, the quasiparticle model is a
phenomenological model which is widely used to describe
the nonideal behavior of QGP near the phase transition
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point. The system of interacting massless quarks and gluons
can be effectively described as an ideal gas of “massive”
noninteracting quasiparticles in quasiparticle model. The
mass of these quasiparticles is temperature dependent and
arises because of the interactions of quarks and gluons with
the surrounding matter in the medium. These quasiparticles
retain the quantum numbers of the real particles, i.e., the
quarks and gluons [73].
Here, we consider the quasiparticle description [49,50]

ofOðg5Þ hot QCD [61,74] andOðg6 lnð1=gÞ hot QCD EoSs
[75], we call them EoS1 and EoS2, respectively. We further
consider the lattice QCD EoS [76] in terms of its quasi-
particle description, we denote it as LEoS. Although there
are more recent lattice results with improved lattice actions
and more refined lattice [77,78], but to update the current
model requires pure glue results for the trace anomaly with
the same lattice set-up. Therefore, such attempts are beyond
the scope of the present work. We intend to explore these
possibilities in near future.
The equilibrium distribution function is written in the

form given below:

fg;q ¼
zg;q expð−βpÞ

ð1 ∓ zg;q expð−βpÞÞ
: ð6Þ

where g stands for quasigluons, and q stands for quasi-
quarks. zg is the quasigluon effective fugacity and zq is
quasiquark effective fugacity. These distribution functions
are isotropic in nature. These fugacities should not be
confused with any conservation law (number conservation)
and have merely been introduced to encode all the inter-
action effects at high temperature QCD. Both zg and zq have
a very complicated temperature dependence and asymptoti-
cally reach to the ideal value unity [50]. The temperature
dependence zg and zq fits well to the form given below,

zg;q ¼ aq;g exp

�
−
bg;q
x2

−
cg;q
x4

−
dg;q
x6

�
: ð7Þ

(Here x ¼ T=Tc and a, b and c and d are fitting parameters),
for both EoS1 and EoS2.
The Debye mass, mD is defined in terms of the

equilibrium (isotropic) distribution function as,

m2
D ≡ −g2

Z
d3 ~̄p
ð2πÞ3

dfeqðp̄Þ
dp̄

: ð8Þ

where, feq is taken to be a combination of ideal Bose-
Einstein and Fermi-Dirac distribution functions as [79], and
is given by:

feq ¼ 2Ncfgð~pÞ þ 2Nfðfqð~pÞ þ fq̄ð~pÞÞ: ð9Þ
Since, we are dealing with the QGP system with vanishing
baryon density, therefore, fq ¼ fq̄ (here, fg and fq are
the quasiparton thermal distributions given in Eq. (6)).
This combination of feq leads to the leading order HTL

expression (m2
D ¼ g2ðTÞT2ðNc=3þ Nf=6Þ) for the Debye

mass in hot QCD. Here, Nc denotes the number of colors
and Nf the number of flavors.
Now, considering quasiparton distributions, we obtain,

mD in the pure gluonic case:

m2
D ¼ g2ðTÞT2

�
Nc

3
×
6PolyLog½2; zg�

π2

�
ð10Þ

and full QCD:

m2
D ¼ g2ðTÞT2

��
Nc

3
×
6PolyLog½2; zg�

π2

�

þ
�
Nf

6
×
−12PolyLog½2;−zq�

π2

��
: ð11Þ

Here, gðTÞ is the QCD running coupling constant, Nc ¼ 3
(SUð3Þ) and Nf is the number of flavor, the function

PolyLog½2; z� having form, PolyLog½2; z� ¼ P∞
k¼1

zk

k2. We
get same expressions from the chromo-electric response
functions in [80] for the interacting QGP.
The medium-modified mD in terms of effective fugac-

ities can be understood by relating it with the charge
renormalization in the medium. This could be done by
defining the effective charges for the quasigluons and
quarks as Qg and Qq. These effective charges are given
by the equations:

Q2
g ¼ g2ðTÞ 6PolyLog½2; zg�

π2

Q2
q ¼ g2ðTÞ−12PolyLog½2;−zq�

π2
: ð12Þ

Now the expressions for the Debye mass can be rewritten as

m2
D¼

8><
>:
Q2

gT2Nc
3

for pure gauge;

T2

�
Nc

3
Q2

g

�
þ
�
Nf

6
Q2

q

�
for full QCD

ð13Þ

Here, fQ2
g; Q2

qg ≤ g2ðTÞ since it acquire the ideal value
g2ðTÞ asymptotically. As mentioned earlier, the effective
fugacities, zg and zq are obtained for EoS1, EoS 2 and
LEoS. The Debye mass with LEoS using our quasiparticle
model is seen closer to that for EoS1 and EoS as compared
to other cases. It is farthest as compared lattice Debye mass
as the factor of 1.4 in the definition of the lattice Debye
mass cannot be reproduced by perturbative or improved
perturbative QCD or transport theory.
The temperature dependence of the quasiparticle Debye

mass mQP
D in pure and full QCD with Nf ¼ 2, 3 is depicted

in Fig. 1 and Fig. 2, compared with the LO and NLO in
HTL and lattice parametrized Debye masses which are
denoted asmLO

D andmL
D, respectively. These various Debye

masses have the following mathematical expressions,
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mLO
D ¼ gðTÞT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc

3
þ Nf

6

r
;

mNLO
D ¼ mLO

D þ Ncg2ðTÞT
4π

ln

�
mLO

D

g2ðTÞT
�
;

mL
D ¼ 1.4gðTÞT;

mQP
D ¼ gðTÞT

�
2Nc

3π2
PolyLog½2; zg�

−
2Nf

π2
PolyLog½2;−zq�

�1
2

: ð14Þ

For gðTÞ, we employ two expression for the running
coupling in finite temperature QCD [81]. Clearly, mQP

D
is lowest among all other cases for the whole range of
temperature considered here. The mLO

D is higher and mNLO
D ,

and mL
D is largest among them for the whole range of

temperature. From its temperature dependence in Eq. (14),
it is straightforward to see that it will approach to the mLO

D
asymptotically (zg;q → 1). These observations are holding
true for all (Nf ¼ 0, 2, 3) cases and for the EoS1 and ESO2.

B. Heavy quark potential and quankonia
Binding energies with EQPM

1. The Heavy-quark Potential

The heavy-quark potential given in Eq. (4) is shown as a
function of rT for fixed T=Tc for pure gluonic, Nf ¼ 2 and
Nf ¼ 3 cases in Fig. 3 (for EoS1) and Fig. 4 (EoS2) The
expressions for the mD has been taken from Eq. (14) and
employed in the expression for the potential in Eq. (4). As
expected the potential as a function of rT is lowest with the
mL

D and highest for the mQP
D for the fixed T for the entire

range of rT (this just follows from the temperature
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FIG. 1. Debye mass versus temperature (T=Tc) for quasiparticle (QP), lattice EoS, lattice parametrized, next-to-leading-order and
leading-order cases, when we used the fugacity EoS 1. Left panel represents the pure gluonic case, middle and right panel represents
two-flavor and three-flavor, respectively.
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FIG. 2. Debye mass verse temperature (T=Tc) for quasiparticle (QP), lattice EoS, lattice parametrized, and leading order (LO) cases,
when we used the fugacity EoS 2. Left panel represents the pure gluonic case, middle and right panel represents two-flavor and
three-flavor, respectively.
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dependence of the Debye mass i. e., higher the Debye mass
higher the screening). The similar observations are seen for
Nf ¼ 2 and 3 and for both EoS1 and EoS2.

2. The Binding Energies of J=Ψ and ϒ
To obtain the binding energy (BE) with heavy quark

potential in Eq. (4), we need to solve the Schrödinger
equation numerically with the full medium dependent
complex potential [22]. Clearly, the binding energy will
have both real and the imaginary parts. One can take the
intersection point of real and imaginary parts of the binding
energies while plotting their temperature dependences to
define the dissociation temperature of quarkonia state under
consideration. Another approach to look at the quarkonia
dissociation is to first compute the thermal width of the
given quarkonia from the imaginary part of the potential
and equate it with the twice of the binding energies (real
part). We follow the latter approach to estimate the
dissociation temperatures. Therefore, we shall mostly
concentrate on the real part of the binding energies and
thermal width of the quarkonia.

In the limiting case discussed earlier, the real part of the
medium-modified potential resembles the hydrogen atom
problem [2]. The solution of the Schrödinger equation
gives the eigenvalues for the ground states and the first
excited states in charmonium (J=ψ , ψ 0 etc.) and bottomo-
nium (ϒ, ϒ0 etc.) spectra,

En ¼ −
1

n2
mQσ

2

m4
D

; ð15Þ

where mQ is the mass of the heavy quark.
In the present case, we solve the Schrödinger equation

with full potential and obtain the binding energies. The
temperature dependence of the binding energies is shown in
Figs. 5–8. For our analysis here, we consider J=Ψ, Ψ0
binding energies with EoS 1 and EoS 2 as a function of
temperature in Fig. 5 and Fig. 7, respectively. The ϒ and ϒ0
binding energies as a function of temperature are shown in
Fig. 6 and Fig. 8, respectively.
We have also plotted the LEoS estimates for BEs

of various quarkonia states based on the quasiparticle
understanding along with predictions for EoS1 and
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FIG. 3. The behavior of Vðr; TÞ=T as a function of rT for a fixed (T=Tc ¼ 3.32) for EoS1. The left panel represents the pure gluonic,
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EoS2. The BE in this case is largest as compared toNf ¼ 0,
2, 3 using EoS1 and EoS2 for the considered range of
temperature. This observation is seen to be valid not only
for J=ψ, Ψ0 but also for the ϒ and ϒ0 states. In each of the
cases, the behavior is shown forNf ¼ 0, 2, and 3. There are
some interesting observations that could be made while
having a closer look at the temperature dependence of the
binding energies in each case. Comparing the J=Ψ and Ψ0
cases, we see that the binding energy is approaching to zero
sharply in the later case. This roughly implies that the latter
state will dissolve before the former one. The same state-
ment could me made for ϒ and ϒ0 states i. e., the former
will dissociate later in temperature as compared to the latter
state. We shall see that these observations are indeed true

while we estimate the dissociation temperature for these
states later. Interesting, for the three cases (Nf ¼ 0, 2, 3)
with either EoS 1 and EoS 2, these predictions for the
dissociation temperatures come out true.
Let us now proceed to the computation of the dissociation

temperatures for the above-mentioned quarkonia bound
states. To that end, we need to compute the imaginary part
of the heavy-quark potential and thus estimate the ther-
mal width.

III. THE COMPLEX INTERQUARK POTENTIAL

Here we discuss how to obtain the complex interquark
potential. The real part of the potential will be same as
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Eq. (4). We follow the similar procedure to obtain the
imaginary part of the potential as discussed below. To
obtain the imaginary part of the interquark potential, we
first need to obtain the imaginary part of the symmetric self
energy in the static limit. This can be done by obtaining the
imaginary part of the HTL propagator which represents the
inelastic scattering of an off-shell gluon to a thermal gluon
[34,59,82,83]. The imaginary part of the potential plays
crucial role in weakening the bound state peak or trans-
forming it to mere threshold enhancement and eventually in
dissociating it (finite width (Γ) for the resonance peak in the
spectral function, is estimated from the imaginary part of
the potential which, in turn, determines the dissociation
temperatures for the respective quarkonia). This sets the

dissociation criterion, i. e., it is expected to occur while
the (twice) binding energy becomes equals the width ∼Γ
[29,84]. The equality will do the quantitative determination
of the dissociation temperature.
To obtain the imaginary part of the potential in the

QGP medium, the temporal component of the symmetric
propagator in the static limit has been considered as [8],

ImD00
FðisoÞð0; kÞ ¼

−2πTm2
D

kðk2 þm2
DÞ2

: ð16Þ

The same expression Eq. (16) could also be obtained
for partons with space-like momenta (ω2 < k2) from the
retarded (advanced) self energy [85] using the relation [8,59]:
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ln
ωþ k� iϵ
ω − k� iϵ

¼ ln

����ωþ k
ω − k

���� ∓ iπθðk2 − ω2Þ: ð17Þ

The imaginary part of the symmetric propagator Eq. (16)
leasds to the imaginary part of the dielectric function in the
QGP medium as:

1

ϵðkÞ ¼ −πTm2
D

k2

kðk2 þm2
DÞ2

: ð18Þ

Afterwards, the imaginary part of the in medium
potential is easy to obtain owing the definition of the
potential Eq. (1) as mentioned in [86]:

ImVðr; TÞ ¼ −
Z

d3k

ð2πÞ3=2 ðe
ik·r − 1Þ

×

�
−

ffiffiffi
2

π

r
α

k2
−

4σffiffiffiffiffiffiffiffiffiffi
2πk4

p
�

−πTm2
Dk

ðk2 þm2
DÞ2

≡ ImV1ðr; TÞ þ ImV2ðr; TÞ; ð19Þ
where ImV1ðr; TÞ and ImV2ðr; TÞ are the imaginary parts
of the potential due to the medium modification to the
short-distance and long-distance terms, respectively:

ImV1ðr; TÞ ¼ −
α

2π2

Z
d3kðeik·r − 1Þ

×

�
πTm2

D

kðk2 þm2
DÞ2

�
; ð20Þ

ImV2ðr; TÞ ¼ −
4σ

ð2πÞ2
Z

d3k

ð2πÞ3=2 ðe
ik·r − 1Þ

×
1

k2

�
πTm2

D

kðk2 þm2
DÞ2

�
: ð21Þ

After performing the integration, the contribution due to
the short-distance term to imaginary part becomes (with
z ¼ k=mD)

ImV1ðr; TÞ ¼ 2αT
Z

∞

0

zdz
ðz2 þ 1Þ2

�
1 −

sin zr̂
zr̂

�

≡ αTϕ0ðr̂Þ; ð22Þ
and the contribution with the nonzero string tension
becomes

ImV2ðr; TÞ ¼
4σT
m2

D

Z
∞

0

dz
zðz2 þ 1Þ2

�
1 −

sin zr̂
zr̂

�

≡ 2σT
m2

D
ψ0ðr̂Þ; ð23Þ

where the functions, ϕ0ðr̂Þ and ψ0ðr̂Þ at leading-order
in r̂ are

ϕ0ðr̂Þ ¼
�
−
r̂2

9
ð−4þ 3γE þ 3 log r̂Þ

�
: ð24Þ

ψ0ðr̂Þ ¼
r̂2

6
þ
�
−107þ 60γE þ 60 logðr̂Þ

3600

�
r̂4 þOðr̂5Þ:

ð25Þ
In the short-distance limit (r̂ ≪ 1), both the contributions,
at the leading logarithmic order, reduce to

ImV1ðr; TÞ ¼ αT
r̂2

3
log

�
1

r̂

�
; ð26Þ

ImV2ðr; TÞ ¼ −
2σT
m2

D

r̂4

60
log

�
1

r̂

�
: ð27Þ

Therefore, the sum of Coulomb and string tension depen-
dent terms leads to the imaginary part of the potential:

ImVðr; TÞ ¼ T

�
αr̂2

3
−

σr̂4

30m2
D

�
log

�
1

r̂

�
: ð28Þ

One thus immediately observes that for small distances the
imaginary part vanishes and its magnitude is smaller as
compared to the case with only the Coulombic term [85].
The effect of nonperturbative contribution coming from the
string terms, thus, reduces the width of the resonances in
thermal medium. The imaginary part of the potential above,
provides an estimate for the width (Γ) for a resonance state.
The width Γ can be computed in first-order perturbation,
while folding the imaginary part of the potential with the
unperturbed (1S) Coulomb wave function as:

Γ ¼
�
1þ 3σ

αm2
Q

�
4T
α

m2
D

m2
Q
log

αmQ

2mD
: ð29Þ

It is possible to solve the integral for the functions ϕ0ðr̂Þ
and ψ0ðr̂Þ in the right hand side of the Eq. (23) exactly. The
compact mathematical expressions are presented in the
Appendix. The behavior of these functions as a function of
r̂ is depicted in Figs. 9 and 10 where we have compared the
small r̂ behavior in Eq. (27) with approximate result in
Eqs. (24) and (25) along with results for larger r̂. Clearly
the approximation works fantastically well of r̂ < 1 for
ϕ0ðr̂Þ and better for ψ0ðr̂Þ. The behavior at large r̂ is crucial
to understand the fate of higher (excited) states of quarko-
nia. The analytic estimate for ψ0ðr̂Þ based on the expression
quoted in the appendix is well behaved until r̂ ≤ 16–17. For
r̂ > 17 the functions ψ0ðr̂Þ show large fluctuations that
grow rapidly for larger r̂. Therefore, in that region, we
perhaps can not utilize it for phenomenological purposes.

A. The dissociation temperatures for heavy quarkonia

There are two criteria for the dissociation of quarkonia
bound state in the QGP medium that are under consid-
eration here. The first one is the dissociation of a given
quarkonia bound state by the thermal effects alone. On the
other hand, the second criterion is based on the dissolution
of a given quarkonia state while its thermal width is
overcomed by the twice of the real part of the binding
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energy. We shall employ both of them one by one below
and present the comparison of the quantitative estimates of
the dissociation temperatures.

1. Dissociation by thermal effects

Dissociation of a quarkonia bound state in a thermal
QGP medium will occur whenever the binding energy
(BE), EB of the said state will fall below the mean thermal
energy of a quasiparton. In such situations the thermal
effect can dissociate the quakonia bound state.
To obtain the lower bound of the dissociation temper-

atures of the various quarkonia states, the (relativistic)
thermal energy of the partons will be 3T. On the other hand,
the upper bound of the dissociation temperature (TD) is
obtained by considering the mean thermal energy to be T.
The dissociation is supposed to occur whenever,

EBðTDÞ ¼ 3TD or TD: ð30Þ
While solving for the EB, the string tension (σ) is taken as
0.184 GeV2, and critical temperatures (Tc) are considered as
270 MeV, 203 MeV and 197 MeV for pure, 2-flavor and 3-
flavorQCDat high temperature for both the equations of state.
The binding energies are shown as a function of temperature
in earlier plots. The dissociation temperatures for the ground
state and the first excited state of cc̄ (J=Ψ andΨ0) andbb̄ sates
(ϒ and ϒ0) are presented in Table I and III while considering
two different criteria of quarkonia dissociation.

2. Overcoming thermal width of the resonance
by the binding energy

Whenever the thermal width, Γ of the a given quarko-
nium is as large as twice the binding energy (real part) the
given quarkonia state will dissolve [86].
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TABLE I. Lower(upper) bound on the dissociation temperature
(TD) for the quarkonia states (in units of Tc) for using fugacity
parameters of EoS 1.

State Pure QCD Nf ¼ 2 Nf ¼ 3

J=ψ 1.6(1.9) 1.6(2.1) 1.5(2.0)
ψ 0 1.3(1.5) 1.3(1.6) 1.3(1.5)
ϒ 1.9(2.4) 2.1(2.6) 2.0(2.5)
ϒ0 1.5(1.8) 1.6(1.9) 1.5(1.9)

TABLE II. Lower(upper) bound on the dissociation temper-
ature (TD) for the quarkonia states (in units of Tc) for using
fugacity parameters of EoS 2.

State Pure QCD Nf ¼ 2 Nf ¼ 3

J=ψ 1.5(1.8) 1.7(2.0) 1.6(1.9)
ψ 0 1.2(1.4) 1.3(1.6) 1.3(1.6)
ϒ 1.8(2.2) 2.0(2.6) 2.0(2.5)
ϒ0 1.4(1.7) 1.6(1.9) 1.6(1.9)
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We applied the criteria for the cc̄ bound states (J=ψ and
ψ 0) and bb̄ bound state (ϒ and ϒ0). The quantitative
estimates for the respective dissociation temperatures are
enlisted in Tables II and IV.
Let us now analyze the quantitative estimates for J=ψ

and ψ 0 dissociation temperatures for EoS1 equating the
thermal width with the twice of the BE. The J=ψ state is
seen to dissociate at T ¼ 1.8Tc for Nf ¼ 0, T ¼ 2.0Tc for
Nf ¼ 2 and for Nf ¼ 3 at T ¼ 1.9Tc. On the Ψ0 is seen to
dissociate at T ¼ 1.6Tc for Nf ¼ 0, T ¼ 1.8Tc for Nf ¼ 2

and for Nf ¼ 3 at T ¼ 1.8Tc. On the other hand, for EoS2,
J=ψ is seen to dissociate at T ¼ 1.7Tc for Nf ¼ 0, T ¼
1.9Tc for Nf ¼ 2 and for Nf ¼ 3 at T ¼ 1.9Tc. Ψ0 is seen
to dissociate at T ¼ 1.5Tc for Nf ¼ 0, T ¼ 1.7Tc for Nf ¼
2 and for Nf ¼ 3 at T ¼ 1.7Tc. As stated earlier (on the
basis of temperature dependence of the BE) Ψ0 is seen to
dissociate at lower temperatures as compared to J=ψ for
both the equations of state.
Similarly, for ϒ and ϒ0 dissociation temperatures are

recorded in Table III and Table IV. The ϒ state is seen to
dissociate at T ¼ 2.6Tc for Nf ¼ 0, T ¼ 2.8Tc for Nf ¼ 2

and for Nf ¼ 3 at T ¼ 2.2Tc while employing EoS1
through the quasiparticle picture. On the other hand, ϒ0
is seen to dissociate at T ¼ 2.1Tc for Nf ¼ 0, T ¼ 2.2Tc

for Nf ¼ 2 and for Nf ¼ 3 at T ¼ 2.1Tc for the same EoS.
With EoS2, ϒ is seen to dissociate at T ¼ 2.5Tc for
Nf ¼ 0, T ¼ 2.7Tc for Nf ¼ 2 and for Nf ¼ 3 at T ¼
2.6Tc and ϒ0 is seen to dissociate at T ¼ 2.0Tc for Nf ¼ 0,
T ¼ 2.2Tc for Nf ¼ 2 and for Nf ¼ 3 at T ¼ 2.1Tc.
Again, we can see (on the basis of temperature dependence
of the BE) that ϒ is seen to dissociate at higher temper-
atures as compared to ϒ0 for both the equations of state.
The estimates for various quarkonia states under con-

sideration with LEoS are quoted in Table V. The first row

records the estimates for the case while the quarkonia
dissociation has been led by the average thermal energy of
the q=q̄. On the other hand the second row captures
estimates while the BEs are overcomed by the thermal
width of quarkonia due to complex nature of the potential
(interquark). The upper bound obtained in row1 are closer
to those with the latter criterion. On comparing the estimate
only slightly different.
Comparing the numbers for the TD for various quarkonia

states, quoted in Table I and Table III, we observe that the
quantitative estimates in Table III are quite closer to the
upper bound(NR) criteria. Note that the former estimates
are based on the dissolution of a given quarkonia state by
the mean thermal energy of the quasipartons in the hot
QCD/QGP medium, the latter one is based on equating the
thermal width to the real part of the binding energy (twice).
Similar observations are obtained while comparing the
estimates from Table II and Table IV. Interestingly, the
numbers regarding the dissociation temperatures obtained
by employing EoS1 and EoS2 with the latter criterion of
quarkonia dissociation are not very different from
each other.

IV. RESULTS AND DISCUSSION

The hot QCD equations of state corresponding to
interactions up toOðg5Þ andOðg6ðln 1=gÞÞ in the improved
perturbative QCD can significantly impact the fate of
quarkonia in the QGP medium. The medium-modified
form of the heavy quark potential in which the medium
modification causes the Debye screening of color charges
has been obtained by employing the Debye mass obtained
by utilizing the quasiparticle understanding of these equa-
tions of state. This, in turn, leads to the temperature-
dependent binding energies for the J=ψ and ψ 0. The
binding energies are seen to decrease less sharply for the
pure gluonic case in comparison to the full QCD medium.
Similar patterns have been observed for the case of ϒ and
ϒ0 states.
To estimate the dissociation temperature, we consider

two criteria viz. the dissociation by mean thermal energy of
the quasiparticles in the QGP medium and the binding
energy overcoming the thermal width of the quakonia
bound state. The upper and lower bound within the first
criterion were obtained by thermal energy T and 3T,
respectively. In numbers for the dissociation temperatures

TABLE III. The dissociation temperature (TD) for the quarko-
nia states (in units of Tc) for using fugacity parameters of EoS 1,
when thermal width ¼ 2 BE.

State Pure QCD Nf ¼ 2 Nf ¼ 3

J=ψ 1.8 2.0 1.9
ψ 0 1.6 1.8 1.8
ϒ 2.6 2.8 2.2
ϒ0 2.1 2.2 2.1

TABLE IV. The dissociation temperature (TD) for the quarko-
nia states (in units of Tc) for using fugacity parameters of EoS 2,
when thermal width ¼ 2BE.

State Pure QCD Nf ¼ 2 Nf ¼ 3

J=ψ 1.7 1.9 1.9
ψ 0 1.5 1.7 1.7
ϒ 2.5 2.7 2.6
ϒ0 2.0 2.2 2.1

TABLE V. Lower (upper) bound on the dissociation temper-
ature (TD) for the quarkonia states for 2þ 1 flavour (in units of
Tc) case while using the fugacity parameters of the LEoS (second
row). The third row records the estimates with second criterion of
the dissociation (2BE≡ thermal width).

State J=ψ ψ 0 ϒ ϒ0

LEoS 1.9(2.3) 1.5(1.8) 2.3(2.8) 1.8(2.1)
LEoS 2.1 1.8 3.1 2.6
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from both the criteria are seen to be consistent with the
recent predictions from the recent quarkonium spectral
function studies using a potential model. The effects of
realistic EoS for the QGP have significant impact on the
binding energies and the dissociation temperatures for the
various quarkonia states.

V. CONCLUSION AND OUTLOOK

In conclusion, we have studied the quarkonia dissociation
in QGP in the isotropic case employing quasiparton equi-
librium distribution functions obtained from Oðg5Þ and
Oðg6ðln 1=gÞÞ hot QCD equations of state and LEoS and
medium modification to a heavy quark potential. We have
found that medium modification causes a dynamical screen-
ing of color charge which, in turn, leads to a temperature-
dependent binding energy. We have systematically studied
the temperature dependence of binding energy for theground
and first excited states of charmonium and bottomonium
spectra in pure gluonic and full QCDmedium.We have then
determined the dissociation of heavy quarkonium in hot
QCD medium by employing the medium modification to a
heavy quark potential and explore how the pattern changes
for the pure gluonic case and full QCD in the Debye mass.
We intend to look for extensions of the present work in

the case of hydrodynamically expanding viscous QGP
medium. Another interesting direction would be to couple
the analysis to the physics of momentum anisotropy and
instabilities in the early stages of the heavy-ion collisions
and the impact on the physics of heavy quarkonia dis-
sociation and yields in heavy-ion collisions.
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APPENDIX: IMAGINARY PART OF
INTERQUARK POTENTIAL

It is possible to solve the integral in Eq. (22) and Eq. (23)
for real r̂. The expressions for the functions ϕ0ðr̂Þ and
ψ0ðr̂Þ are obtained as

ϕ0ðr̂Þ ¼ 1 −
ffiffiffi
π

p
G2;1

1;3

�
r̂2

4

���� 0

0; 1;− 1
2

�
;

ψ0ðr̂Þ ¼
1

2jr̂j ð−6jr̂j þ 4jr̂jγE þ 4r̂Log½jr̂j�

þ ðCið−ijr̂jÞ þ Ciðijr̂jÞÞ
× ½jr̂j coshðjr̂jÞ − 3 sinhðjr̂jÞ�
þ 2Shiðjr̂jÞ½3 coshðjr̂jÞ − r̂j sinhðjr̂jÞ�Þ: ðA1Þ

Here, G is the MeijerG function and

CiðzÞ ¼ CosIntegralðzÞ ¼ −
Z

∞

z

cosðtÞ
t

dt;

ShiðzÞ ¼ SinhIntegralðzÞ ¼
Z

z

0

sinhðtÞ
t

dt: ðA2Þ
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