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Quasidistribution amplitude of heavy quarkonia
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The recently proposed quasidistributions point out a promising direction for lattice QCD to investigate
the light-cone correlators, such as parton distribution functions and distribution amplitudes (DAs), directly
in the x space. Owing to its excessive simplicity, heavy quarkonium can serve as an ideal theoretical
laboratory to ascertain certain features of quasi-DAs. In the framework of nonrelativistic QCD
factorization, we compute the order-a, correction to both light-cone distribution amplitudes (LCDAs)
and quasi-DAs associated with the lowest-lying quarkonia, with the transverse-momentum UV cutoff
interpreted as the renormalization scale. We confirm analytically that the quasi-DA of a quarkonium does
reduce to the respective LCDA in the infinite-momentum limit. We also observe that, provided that the
momentum of a charmonium reaches about 2-3 times its mass, the quasi-DAs already converge to the
LCDAS to a decent level. These results might provide some useful guidance for the future lattice study of

quasidistributions.
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I. INTRODUCTION

The QCD factorization theorems [ 1] imply that the parton
distribution functions (PDFs) [2] play the central role in
accounting for virtually every high-energy collision experi-
ment. In addition to PDFs, there also exist other important
types of light-cone correlators, such as generalized parton
distributions (GPDs), transverse-momentum-dependent dis-
tributions (TMDs), and light-cone distribution amplitudes
(LCDAS), all of which probe the internal structure of a hadron
in terms of the fundamental quark-gluon degree of freedom.

These light-cone correlators are of a nonperturbative
nature and are notoriously difficult to compute from the
first principle of QCD. The eminent obstacle for the lattice
simulation originates from the fact that they are defined in
terms of the bilocal operators with lightlike separation. In
the past, lattice simulation has mainly focused on comput-
ing their moments [3—6], which are constructed out of the
local operators. Unfortunately, it becomes quickly imprac-
tical to go beyond the first few moments, since the more
derivatives added, the noisier the lattice simulation would
become. To date, our comprehensive knowledge about the
nucleon PDF is gleaned exclusively through extracting
from the experimental data [7-9].

An exciting breakthrough has emerged recently. A lattice
calculation scheme directly in x space was proposed by Ji
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in 2013 [10]. In this approach, the task of computing
the original light-cone correlators is transformed into com-
puting a new class of nonlocal matrix elements: the so-called
quasidistributions. These quasidistributions are defined as
equal-time yet spatially nonlocal correlation functions, thus
amenable to the lattice simulation. In contrast to the light-
cone quantities, the quasidistributions are generally frame-
dependent. But in the infinite-momentum frame (IMF), the
quasidistributions are expected to exactly recover the
original light-cone distributions. Ji has further envisaged
that, in analogy with the heavy quark effective theory, the
quasidistribution method can be framed in an effective field
theory context, dubbed the large momentum effective field
theory [11]. The large momentum effective field theory was
first applied to proton spin structure, which provides a means
to extract the nucleon spin contents from the quasidistribu-
tions calculated on a lattice [12,13].

The utility of this new approach hinges crucially on the
key that the quasidistributions and light-cone distribution
share the exactly same infrared (IR) properties. It implies
there exists a factorization theorem that connects these two
quantities, with perturbatively calculable matching coef-
ficients. Once the lattice has measured the quasidistribu-
tions, one can use this factorization formula to reconstruct
the desired light-cone quantities.

During the past two years, the one-loop matching factors
have been computed for PDFs, GPDs for the nonsinglet
quark, as well as pion DAs [14-16]. The quasi-TMD was
also studied in Ref. [17]. Very recently, the two-loop
renormalization of a quasi-PDF has also been conducted
[18]. The factorization theorem for PDFs has recently been
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proved to all orders in «, [15]. In addition, there recently
have emerged some preliminary results from exploratory
lattice simulations, extracting the PDFs from quasi-PDFs
through the matching procedure outlined above [19-22].
There are also some new improved formalisms of quasi-
PDF are explored in Refs. [23,24].

To turn quasidistributions into a fruitful industry, there
remain many technical obstacles to overcome. One out-
standing challenge is to systematically implement the
renormalization of such nonlocal operators on a lattice.
Another difficulty stems from the technical limitation that it
is too expensive for the current lattice resources to accom-
modate a fast-moving hadron on the lattice, since it requires
exquisitely fine lattice spacing. It is fair to say that there is
still a long way to go for the lattice simulation to be able to
produce phenomenologically competitive results.

For the lack of a nonperturbative understanding of
quasidistributions, it is worth looking at their features from
the perspective of phenomenological models. For example,
very recently, the nucleon quasi-PDF has been investigated
in a diquark model [25], and the authors have examined
how fast the nucleon quasi-PDF would approach the PDF
with an increasing nucleon momentum.

Needless to say, it is also highly desirable to gain an
understanding about the gross features of the quasidistribu-
tions from a model-independent angle. This consideration
has motivated us to study the DAs of heavy quarkonia,
chiefly because they offer a unique, clean platform to
scrutinize the quasidistributions. The key reason is that
the DA of the quarkonium can be largely understood solely
within the perturbation theory.

The widely separated scales (m > mv, Agcp) inherent to
quarkonium invites an effective-field-theory treatment. In
fact, the influential nonrelativistic QCD (NRQCD) factori-
zation approach [26], which fully exploits this scale
hierarchy, nowadays has become an indispensable tool to
tackle quarkonium-related phenomena.

According to NRQCD factorization, the LCDA of a
heavy quarkonium can be factorized as the sum of the
product of perturbatively calculable, IR-finite coefficient
functions and nonperturbative local NRQCD matrix ele-
ments [27-29]. At the lowest order in velocity expansion,
up to a normalization factor, the profile of the quarkonium
LCDA is fully amenable to the perturbation theory.

In this work, we generalize this knowledge, apply NRQCD
factorization further to the quasi-DA of heavy quarkonia,
and calculate the respective coefficient functions to the order
of a,. To keep things as simple as possible, we concentrate
on the lowest-lying S-wave quarkonia. We have verified that,
like the LCDAs of quarkonium, the quasi-DAs at the order
of a, are also IR-finite. We are able to show analytically that
the quasi-DA exactly reduces to the LCDA in the infinity-
momentum limit. We also observe that, provided that the
quarkonium is boosted to carry a momentum about 2-3 times
its mass and with the renormalization scale chosen around the
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charmonium mass, the respective quasi-DAs will converge to
the LCDAs to a satisfactory degree.

We hope some of features about the quarkonium
quasi-DAs may also apply to other hadrons. Hopefully,
this knowledge will provide some useful guidance to the
future lattice investigation of similar quasidistributions.

The rest of the paper is organized as follows. In
Sec. II, we present the definitions of LCDAs and quasi-
DAs for S-wave quarkonia and discuss the precise
meaning of NRQCD factorization to these correlators.
In Sec. III, we describe the strategy to determine the DAs
of quarkonia beyond tree level, outline the key steps of
deriving the one-loop corrections, and present the corre-
sponding analytical expressions for the S-wave quarko-
nia. In Sec. IV, we carry out a numerical comparison
between the LCDA and quasi-DA, to study how fast the
quasi-DA approaches the LCDA as the quarkonium
momentum increases. We also compare the first inverse
moments calculated in both the LCDA and quasi-DA. We
summarize in Sec. V. The detailed illustrations about how
to work out the one-loop calculation are provided in the
Appendixes.

II. NRQCD FACTORIZATION OF QUARKONIUM
DISTRIBUTION AMPLITUDES

In contrast to light hadrons, heavy quarkonia are
arguably among the simplest hadrons: The constituent
quark and antiquark are quite heavy, m > Agcp, and
move rather slowly (v < 1). These two essential fea-
tures result in the hierarchical structure of intrinsic
energy scales of a quarkonium. The NRQCD factoriza-
tion approach [26] fully exploits this scale hierarchy
and allows one to efficiently separate the relativistic and
perturbative contributions from the long-distance and
nonperturbative dynamics. For most quarkonium-related
phenomena, i.e., quarkonium production and decay
processes, this factorization approach has become a
standard tool.

It is well known that the fragmentation functions for a
parton transitioning into a light hadron are genuinely
nonperturbative objects, and the only way to extract them
is through experimental measurements [30]. On the con-
trary, it was realized long ago that the heavy quarkonium
fragmentation function can be put in a factorized form
[31,32]. Concretely speaking, for a gluon-to-quarkonium
fragmentation function, one has

Dg—>H+X(Z7 ﬂ) = ng—wﬁ[n] (Z) <0|0H[n]|0>’ (1)

n

where z denotes the momentum fraction, n specifies the
color, spin, or orbital quantum number of the c¢ pair, and
Oy[n] is the NRQCD four-fermion operator, which char-
acterizes the transition probability from the partonic state
cc[n] to the quarkonium H plus additional soft hadrons.
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The key insight is that coefficient functions d_, 1, (z) are
perturbatively calculable.

Analogous to the case of the aforementioned fragmen-
tation function, one might naturally envisage that the DA of
a quarkonium is also not a fully nonperturbative object, and
some sort of short-distance (~1/m) effects should be
disentangled owing to asymptotic freedom. Indeed, such
an analogy has already been pursued some time ago
[27,28]. Schematically, one may express the quarkonium
DA in the following factorized form:

g (x. 1) ~ Y (H|Op|0)rag (. ) (2)

n

where the color-singlet NRQCD operators O, are organ-
ized according to importance in the velocity expansion.
Apart from the universal NRQCD matrix elements, the key
observation is that ¢y, (x, #) can now be interpreted as the
short-distance coefficients. Actually, for hard exclusive
quarkonium production, employing this factorized
J

Qp(x,u) = —if pP Pp(x, )
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quarkonium LCDA turns out to have a considerable
advantage compared with the conventional NRQCD fac-
torization approach [33,34].

For simplicity, in this work we will concentrate only
on the distribution amplitudes of S-wave quarkonia.
Moreover, we will be interested in only the lowest order
in v expansion. Obviously, there is no any principal
difficulty to incorporate the relativistic corrections or even
extend to higher orbital quarkonium states.

A. NRQCD factorization of quarkonium LCDA

To be specific, let us assume the quarkonium H to move
along the positive z axis, i.e., P¥ = (VP% +m?,0,, P
with P? > 0. For a general 4-vector V¥, it is convenient
to introduce the light-cone plus (minus) components
VE =S5 (VO£ V).

The leading-twist LCDAs of the pseudoscalar meson P,

longitudinally (transversely) polarized vector meson VI,
are defined as

— / % emi=hPrE <P(P) {1,7 <%_> Wy (— %) '0> (3a)

O (x, 1) = — ife Myl (x. )

g —i(x-L)Pre
:/Ee ( Z)P 4 <V(P,€“)

Py (o, ) = — if P (x. )

dé— —i(x=h)pre
_/ge (x=p)P*¢ <V(P,8L)

where &) and ¢ are the polarization vectors for the
longitudinally and transversely polarized vector meson,
respectively, and y signifies the renormalization scale. W is
the gauge link along the light-cone “minus” direction:

W = Pexp {—igs /_Z dn‘AJ“(n‘)} . (4)

2

The decay constants fy are defined as the vacuum-to-
quarkonium matrix elements mediated by various local
QCD currents:

(P(P) iy rp|0) = —if pP* = /0 '), (a)

1
(V(P. &)l y[0) = —iMy fleit = / dx®) (x. ),

(5b)

(3b)

oSS
ey

1
(V(P, e )pyTy w|0) = —ifPtet = A dx®i (x, p).

(5¢)

The LCDA is clearly subject to the normalization
condition:

/O dxp(x) =1 Y H. (6)

Thus far, everything is about the standard definition,
valid for any pseudoscalar and vector mesons. So what is
special about the heavy quarkonium? As has been argued
previously, the quarkonium DA defined above still contains
a short-distance contribution, which ought to be identified
and isolated.

If H is an S-wave quarkonium state, the precise
implication of NRQCD factorization of the LCDA is

CF Ay

u(x) = 4 () + 2 (1) + oo (Ta)
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CF A

fuy —fﬁf)(1 + i+ ) +0(?), (7b)

/s
where H = P, Vi V.. For the DAs of the hidden-flavor
quarkonia (the c¢¢ or bb family), charge conjugation
symmetry demands that they are symmetric under
x < 1—x

The key message conveyed in (7) is that the ¢y(x)
entailing all the hard “collinear” degrees of freedom (with a
typical virtuality of the order of m?) thus can be computed
in the perturbation theory owing to asymptotic freedom.
The nonperturbative aspects of quarkonium are encoded in
the decay constant fz. Moreover, as indicated in (7b), one
can match the QCD currents to the respective NRQCD
currents, by integrating out the hard quantum fluctuation.
Consequently, the genuinely nonperturbative binding
dynamics is encapsulated in the NRQCD matrix elements

fﬁ?. For H = 5., J/y, one has
1 . N,
(Helw'x|0) ~

. 2zm,

= R, (0).  (8a)

(I)m(xwu?PZ) = _i}‘r](,PZme (x’:u)

PHYSICAL REVIEW D 94, 094005 (2016)

o _ 1) _ 1 +
fJ/x// - fJ/l// - \/—m—c <J/W(£)|W o 8)(|0>
N
~ | —R 0 8b
SRy, 0). (8)

where & denotes the polarization 3-vector in the J/y rest
frame and N, = 3 is the number of colors in QCD. Since
NRQCD matrix elements are always defined in the quarko-
nium rest frame, rotation invariance then implies that

f%(;/) = fJL/(S). As implied in the last entity, these NRQCD
matrix elements are often approximated by R (0), the radial
Schrodinger wave function at the origin for the S-wave
charmonia, which can be evaluated in the phenomenological
quark potential models.

B. NRQCD factorization of quarkonium quasi-DAs

The quasi-DAs are defined as pure spatial correlation
functions and, hence, can be directly simulated on the
lattice. Analogous to LCDA (3), we define the quasi-DAs
of S-wave quarkonia as

Jem i Qv )

) (x.p, P7) = —ifY €My, @), (x. 1)

dz

=3 ei—p)Pz <J/l//(P, e) ’1/'/ <§> r*Vw (— %) ’0>, (9b)

) (xop P) = = if 17, P, (x. )

d . 1 ¥4
_ / —Ze’(x‘i)PZ<J/y/(P,€L)

2w

where the field separation is along the z direction, and
the gauge link V reads

Y = Pexp {—igs /E anAZ(nZ)} (10)

The quasidecay constants, dubbed fu, are again defined
as the vacuum-to-quarkonium matrix elements mediated by
corresponding QCD currents':

'Lorentz invariance requires fy = fy. Here we intentionally
distinguish these two cases, because one may choose a UV
regulator that does not preserve Lorentz symmetry. In the loop
integrals, we will impose a UV cutoff in the transverse-momen-
tum components, which does not to violate the boost invariance
along the z axis. Therefore, in our case, we indeed have f; = fy
and will use them interchangeably.

w(%) rY € Vy <— %) ’0>, (9¢)

(I1a)

(ne(P) gy r’w|0) = —if pP* = /_oo dx®p(x, p),

(Se]

(I (P ep)larwl0) = —iM, ), ) el

_ /°° dxd!, (eu),  (11b)

/(P e)[@yyoyl0) = —if7, Pe]

:/ dxfiﬁ/,,,(x,,u).

o

(I1c)

The NRQCD factorization is also valid for the quasi-DAs.
For the quasi-DAs of S-wave quarkonia, the precise
implication of NRQCD factorization is
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$ GGG ¢ (2

ey

2
CFas( me (12]2))

—E0E gy
where H = P, V|, V| . The matching of the decay constant

is exactly the same as in (7b).
The quasi-DA is subject to the normalization:

Fu =f£?’<

T du(x)=1 VH.

(13)

Because a quasi-DA no longer emerges from a parton
picture, the integrand is no longer bounded within the
interval x € [0, 1].

In contrast to the LCDA, the quasi-DA is generally
dependent on the magnitude of P*. We note that the heavy
quark mass in NRQCD factorization corresponds to a large
scale, so it cannot be neglected even in the limit P* > m.

II1. ONE-LOOP EXPRESSIONS OF DISTRIBUTION
AMPLITUDES FOR S-WAVE QUARKONIA

In this section, we compute the one-loop corrections to
both LCDAs and quasi-DAs for the S-wave quarkonia, to
lowest order in v.

A. Strategy of determining the LCDA
and quasi-DA for a quarkonium

The ¢y (x) [¢u(x)] is sensitive only to short-distance
dynamics. In order to extract it, it is convenient to replace a
physical quarkonium state |H(P)) by a fictitious one, i.e., a
pair of free heavy quark-antiquark |c(p;)¢(p,)). We then
compute the corresponding Pz (p) (x) in the perturbation
theory:
|
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0 C as(//‘) 1
Dozpy(x) = ‘I)Ea) (x) + i A . (I)Ea) (x)+ ..., (l4a)
= = (0 Cros(u) =1
b zpy (x) = B (x) + £ . V(x)+.... (14b)

The partonic decay constant f.zp) can also be computed
order by order in «a,. Following the definitions in (3) and
(9), after projecting onto the suitable quantum number, one

should be able to solve for ¢ (x) [Py (x)] iteratively, order
by order in a;.

The ¢ and ¢ in the fictitious charmonium state
lc(p1)e(p2)) carry momenta p, =§+q and p, =§— q,
respectively. Since we are interested in only the lowest
order in v, it is legitimate to neglect the relative momentum
q; from now on, we thereby assume p; = p, = P = p.

When going beyond the tree level, rather than utlllze the
literal matching method, we take a standard shortcut to
directly extract the short-distance coefficient (arising from
the hard region m?) in the loop integral [35]: in the
beginning, we simply neglect the relative momentum ¢
prior to carrying out the loop integration.” Therefore, our
calculation is free from the contamination due to the low-
energy effects (loop momentum carrying virtuality of the
order of mv or smaller, exemplified by the Coulomb
singularity). This brings forth great technical simplifica-
tion. Nevertheless, the general principle of the effective
field theory guarantees that the contributions from the low-
energy regimes must cancel between the QCD side and the
NRQCD side, and we simply trust it holds and forgo
this check.

B. Tree-level results

At the lowest order in a4, it is straightforward to work out
the partonic DAs:

80 o) = [ et (clpieo)lo (5 )rrw (-5 )|o)
= 5(x=3) g0 T (150)
B oy (6. P) = %ZT el <C(p)f(p) ‘u‘/ (;) yTy <— ;) ’0>
= 5<x—5> Lzﬁ(p)rzrv(p), (15b)
(e(p)e(p) T wl0) = a(p) Ao (p). (15¢)

*For a one-loop computation of the S-wave quarkonium LCDA
interested reader to Ref. [27].
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FIG. 1.

where we have introduced the reference vector n:

e {%(1,0,0,—1)
(0,0,0,—1)

for LCDA,
(16)

for quasi-DA.

r=y,1, yi correspond to 7, and the longitudinally and
transversely polarized J/y meson, respectively.

Since we work with a moving frame of H, it is
convenient to adopt the threshold expansion method
developed by Braaten and Chen [36], which takes into
account the Lorentz transformation between the quarko-
nium rest frame and the moving frame, making the
connection to NRQCD transparent. One then finds

1 _ .
- Pu(p) ¢751/(p) = flnlcérest frame > (173)
L. z 1P
EM(P)V”U(P) ={o 71|c6rest frame > (17b)
I + T 2
Fu(p)y U(p) = f o 7]|c€' rest frame» (17C)
1 i i
—u(p) ﬂyj_v(p) = ‘f 01_’7|c€* rest frame> (17d)

where £ and 5 are two-components Pauli spinors. When the
c€ pair is in the *S| (¢) state, £&'6n o« e. Everything has the
desired structure as dictated in (5); especially, the Lorentz
transformation of the longitudinal polarization vector is
correctly incorporated. From this knowledge, we can
readily determine f. for c¢('S,) and cc(3S;).

Therefore, the tree-level LCDAs and quasi-DAs bear the
simple form

Ww=iyw=o(r-3). 0¥

where H = P, V, V. Obviously, it satisfies the normali-
zation condition (5).

Intuitively, this is what is expected from the nonrelativ-
istic limit, when relative momentum is neglected.
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One-loop diagrams for the S-wave quarkonium (quasi-)DA in the axial gauge.

C. Outline of one-loop calculation

The DAs of quarkonium will develop a nontrivial profile
after implementing a radiative correction. Its shape gen-
erally becomes widely spread. This extended profile should
not be confused with the LCDAs determined by phenom-
enological models such as QCD sum rules [37], because it
is generated perturbatively and can be computed in a
model-independent manner.

We now turn to calculating the order-a, correction to

the LCDA and quasi-DA, that is, to determine ¢2) and

#\)). This can be fulfilled by employing the following
relation:

(19b)

Therefore, we need calculate the order-a,; correction
to the partonic (quasi-)DA and corresponding decay
constant.

Although LCDAs and quasi-DAs by construction are
gauge-invariant objects, practically we have to specify a
gauge when computing the one-loop correction. We find it
convenient to work with the axial gauges: i.e., At = 0 for
LCDA and A® = 0 for quasi-DA. In such gauges, the gauge
link shrinks to unity, and we have to deal only with a very
few diagrams, which are depicted in Fig. 1. Now the
complication instead resides in the gluon propagator:

n2kﬂk
Y, 20
+ n-k? ) ( )

—i n,k, + n,k
Dyv(k) (g;w --£ £

Tt ie n-k

where n# is defined in (16).

Ultraviolet divergences will inevitably emerge in our
calculation, thereby necessitating the introduction of a UV
regulator. For the light-cone correlators such as PDF and
LCDA, only the logarithmic UV divergences will arise;
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nevertheless, for the quasidistributions, one often con-
fronts linear or even more severe UV divergences
[14,15]. In order to keep track of these violent UV
divergences, it is more transparent to adopt a physical
UV regulator such as a hard momentum cutoff than
simply use the dimensional regularization (DR). In some
sense, the UV cutoff A imposed on the transverse-
momentum integration may be viewed as intimately
mimicking the role placed by the lattice spacing in a
lattice Monte Carlo simulation. In this work, we will
also utilize the transverse-momentum cutoff A to regu-
larize the UV divergence.

Thus far, the renormalization program of nonlocal
correlators, particularly the quasidistributions, has not
yet been fully developed and remains as an active research
topic [15,18]. The hope is that the UV divergences
associated with the quasidistributions can be removed
through multiplicative renormalization to all orders in «;
[15,18]. As a consequence, a rigorous renormalization
procedure of the quasi-DA is beyond the scope of the
current work. Our primary goal in this work is to compare
the behavior of quasi-DAs and LCDAs at variance with P<.
For this purpose, A will be kept finite and taken around the
characteristic heavy quark mass scale. Roughly speaking,
we pretend to have a “renormalized” LCDA and quasi-DA
with A interpreted as the corresponding renormalization
scale u in a continuum quantum field theory.

Another practical reason for us to keep A finite is because
the order of taking two limits A - oo and P? - oo is not
commutable. Had A — oo been taken first, the quasidistri-
butions would not approach the light-cone distributions even
in the limit P* — co. As the main goal of this paper is to
investigate quantitatively how the quasi-DA can approach
the LCDA with increasing P?, therefore, the analytic control
of P* — oo limit is a crucial requirement. For this purpose,
keeping a finite A is crucial.

It is worth pointing out that, besides UV divergences,
IR divergences also arise from individual diagrams in
Fig. 1. It can be traced from the exchange of a soft gluon
between the quark and antiquark that equally partition the
total momentum P and so is always accompanied with
8(x—1). Of course, when summing the vertex diagram
and the quark self-energy diagram together, the IR
singularities cancel, as ensured by the validity of
NRQCD factorization: the color-singlet NRQCD bilinears
such as yw'y and yw'ey do not acquire an anomalous
dimension at the order of as.B However, it is still
necessary to introduce an IR regulator in the intermediate

’If we attempt to extract the two-loop correction to (quasi-)
DAs using the same technique as described in this work, we
would confront the uncanceled single IR pole, which should
be absorbed into the corresponding vacuum-to-quarkonium
NRQCD matrix elements. It is intimately linked to the fact that
NRQCD quark bilinears 'y and w6y acquire an anomalous
dimension first at the order of a? [38—40].
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steps. In our calculation, we find it convenient to employ
the DR to regularize the IR singularity, working with the
spacetime dimension d = 4 — 2¢ (e < 0)." We stress that
the popular way of introducing a fictitious small gluon
mass is not sufficient to tame the IR divergences
encountered here, because in our calculation the soft
IR singularity can be coupled with the axial singularity
(stemming from 1/n-k), where the latter cannot be
regularized by just adding m, alone.”

For the one-loop integral, we always choose to first
integrate over the k= (k°) component using a contour
technique for the LCDA (quasi-DA), then carry out the
remaining d — 2-dimensional integration over transverse
components, and finally end up with a one-dimensional
integral depending on the variable k™ (k%) for the LCDA
(quasi-DA). Then one can readily read off the desired
distribution as a function of x, which is connected
with kt (k%) through the relation k* = (x—1/2)P*
[k* = (x — 1/2)P?] for the LCDA (quasi-DA) that is
enforced by the & function. The following transverse-

momentum integration measure is ubiquitously
encountered:
2 ,vE\ € 2 ,7e\ € 2 1-e€ A
HiR® 2-2¢ Hir® z 1-2¢
—_ d-—k, = k\~=¢dk,
(47I>/ - (47[)F(1—e)/0 L +
(21)

where A is the UV cutoff, y is the Euler constant, and
uir 1is the 't Hooft unit mass. We put a subscript “IR” to
emphasize that this scale is affiliated with the IR
divergence. The main reason why we use DR and a
cutoff to regularize IR and UV divergence, respectively,
is to ensure that the quasi-DAs reduce to light-cone
DAs in the P?> A > m limit, so that one can inves-
tigate the magnitude of P* needed to recover LCDAs. If
the conventional DR is applied, the quasi-DA will equal
to the limit A > P* > m which will not reduce to the
LCDA after taking the P?— oo limit. The similar
behavior of a quasi-PDF is reported in Refs. [14,15].
We provide a more detailed explanation with an
example in Appendix A.

‘In a previous calculation of the LCDA of the S-wave
quarkonium using NRQCD factorization [28,29], the authors
employ the DR to regularize UV and IR divergences simulta-
neously. If taking A — oo prior to Laurent-expanding e, we
would be able to reproduce their unrenormalized one-loop
results.

5Precisely speaking, the most singular IR behavior is captured
by the 6% pole if DR is used. If one uses the gluon mass

regularization for the soft divergence, one has to invoke an
additional regulator such as DR to regularize the axial singularity,
so the most severe IR singularity would look like iln my, as

1
X =5
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For both the LCDA and quasi-DA, the vertex diagram in Fig. 1 can be written as

2 LYE\ € d4—2€k 1
R T / i) ——————— Lyt
cc gsCF Ax (27[)4—26‘”([))7/ k+lf—m+l€ yi{]/ 14 }
1 1 n-k
xgk_ﬂ_m_i_ieyvv(p)D/w(k)é(x—E——n'P>. (22)

The three terms associated with the gluon propagator
have a one-to-one correspondence with what would be
encountered in a Feynman-gauge calculation. The second
and third terms correspond to the diagrams entailing a
gauge-link interaction. Particularly, the third term will
correspond to a self-energy correction to the gauge link
and would actually lead to a linear UV divergence for the
quasi-DA.

In Appendix B, we have provided comprehensive details
on how to work out the Feynman part (e g, in the gluon
propagator) of this one-loop vertex integral. After accom-
plishing all the algebra, it is reassuring that CDEIE) " turns out
to possess exactly the same Lorentz structure as the tree-
level format, o« 3=ii(p)y Tw(p). This feature is in con-
formity with Eq. (19).

According to the Lehmann-Symanzik-Zimmermann
reduction formula, we also have to include the order-a;
correction to the quark wave function renormalization

1

constant. It yields only a &(x—3) piece to @ (x)

[®,.(x)]. The contributions from the last two diagrams
in Fig. 1 read

w1 1
O = 2162 + 62141 <x ~ 5) . (23a)

~Mwv 1.~ ~(1 1
W 5 [6Z) + 5Z%L]5<x - 5) . (23b)

The quark wave function renormalization constant Z in
axial gauges is considerably more complicated than its
counterpart in covariant gauges.

We follow the recipe given in Ref. [14] to express
them as

52, = (p) g L) () (). (240
323 = 0(p) 5o s o) [0 (). (240

At the order of aj, they read

a _ wee't\ € [ d* %k _ 1
57, ——ch§< fo? ) /(2”)4_2€u(p)k+¢_m+i€¢
Xmu(p)Dﬂy(k)/[ﬁ(p)ﬂu(p)], (25a)

2 Lve\ € A4k 1
6ZE—,1):—CFg§</‘IZ; > /(2n)4‘2€@(p)k—1/5—m+ie¢
Xm”(l’wuu(k)/[ﬁ(l?)ﬂv(ﬁ)]- (25b)

The detailed derivation of their analytic expressions is also
presented in Appendix B.

Both the vertex diagram and self-energy diagrams
contain IR divergences. After some manipulations as
elaborated in Appendix B, we are able to isolate those
IR-divergent parts as the terms containing (1 — 2x)~1~%¢
and (1 — 2x)~272¢. With the aid of the distribution identities
listed in Appendix C, we can rewrite these terms as the IR
pole of the form §(x — 1/2) /e and the plus (double-plus)
functions. The “+” and “++" functions are distributions,
in the sense that when convoluted with a test function g(x),
they give

/0; dx[f(x)].9(x) = A def () [g(x) - g@] . (26a)

/ Ll ()], g0)
0

= A : dxf(x) {g(x) -q G) (x - %) - g(%)] . (26Db)

where ¢(x) is regular at x = 1/2. The above two definitions
are also valid if we replace the integration range from 0 <
x<1/2t01/2<x<1.

Upon summing the vertex and self-energy diagrams, all
the double and single IR poles cancel, and we are left with
regular (at x = 1/2) functions as well as plus distributions.
After some reshuffling of terms, we are able to rewrite

@EIE) (x) [(5515) (x)] as an entire ++ function plus an IR-finite

piece proportional to 5(x —1).
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The partonic DA ®()(x) is not the desired short-
distance distribution. In compliance with (19), we have to
subtract the order-a; correction to the decay constant in
order to acquire the normalized LCDA and quasi-DA. It
is straightforward to compute the order-a, correction to
the decay constants associated with various S-wave
quarkonia:

a A (m A? A+ m?
e ——I—Etan l(x) +WIH<T s (27&)

1) Aomy o (m
f-]/’// —1 (m —+ A) tan (A) s (27b)
(1) A m 1 m
fj/l// 1- (Z + K) tan (X)
A2 + m2 AZ + m2 A2
4m2 ( m2 ) - F In <—> (270)

PHYSICAL REVIEW D 94, 094005 (2016)

Again we have kept a finite A but take the IR regulator
e — 0, since they are IR finite. For the 57, and J /!, the one-
loop corrections are UV finite, and our results agree with the
existing results in literature once taking A — co. For J/y+,
the order-a, correction is logarithmically UV-divergent, and
our result agrees with the existing results that employ the DR
as a UV regulator but differs in the finite piece.

Not surprisingly, after incorporating the very one-loop
corrections to the decay constants in (27), the extra 5(x — 1)
pieces in ®(!)(x) get exactly canceled in (19). We thereby

obtain the properly normalized qbg)(x) [(Eg)(x)], in the
sense that [ dxpy) (x) = =, dxd'y) (x) = 0.

D. Analytic expressions of order-o, LCDA and DA
of S-wave quarkonia

In this section, we present the analytical expressions for
the order-a, corrections to the DAs of various helicity states
of S-wave quarkonia.

The LCDAs of three S-wave quarkonium states have a
rather quite compact form:

o (o Aom) = [x(l _22x + 1) log (ﬁjmﬁ 1> TP (-2 ot _x)]++’

1D ). _ 2 A
i = [<(Zg+ 1) v (!

(1), o 2x A2 o1
Piju (i Bem) = [1 BERL <m2(1 e T 1) TP+ mi =z ! x)} ’

all of which have support only in the range 0 < x < 1.
These LCDAs are symmetric under x <> 1 —x, as de-
manded by charge conjugation symmetry.

Note that all these LCDAs contain explicit InA
dependence. This is in conformity with the celebrated
Efremov-Radyushkin-Brodsky-Lepage (ERBL) evolution
equation [41,42]:

d . 7C¥SCF
dlnAz(PH(x’A) o

A LayVo () (y.4) + O(a).

(29)

where the evolution kernel V(x,y) varies with different
hadron helicity. Substituting the ¢}’ in (28) back to (7a)

2xA\?
(28a)
8x2(1 —x)A?
) " (1=2x)2(A% + m?(1 = 2x)?) Flemts x)] o+
(28b)
2xA? (28¢)
-

I

and plugging into (29), also taking into account the order-
a, correction to the decay constant in (27), it is straightfor-
ward to check that all of these LCDAs indeed obey the
ERBL equation.

Conceivably, the nonlogarithm terms in (28) differ from
those given in [29],6 which can be attributed to the different
choice of UV regulators. Had we first sent A — oo during
the intermediate stage, which amounts to using DR to
regulate both UV and IR divergences, we would be able to
reproduce their results.

®When computing the order-a, correction to the color-
singlet channel of the double parton fragmentation function,
the corresponding results in Ref. [43] are equivalent to those of
the LCDA [29].
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Next we turn to the quasi-DA. Since the boost invariance is sacrificed there, the expressions would explicitly depend on
P? and, consequently, become considerably more complicated:

- 2 Z 0, /A2 2.4 2
¢'(71)(x,PZ;A,m): |:_x(1+ ) Ll Y < \/ +m-+ ( ) + (
‘ 1-2x PO/ m*+4(p)2xr+2(p

)x+m>

x—l—m

+(1_X)len<(1—2x)(pz)2+\/A2 (=1+2x)2(p°)2p 0>
P’ (1=2%)(p*)2 + p*/(p*) 7+ m?|1 =24
_Z(I_X)len<\/(/\2+(l—2x)2(pz)2)p0—|—(1—Zx)(pz)2>
(1-2x)p° [1=2x|p*p° + (1-2x)(p*)?
+(A2(p0) —2m?x(1=2x)(p?)?) /N> +4x%(p +x\/4x
2(m*(1-2x)*(p )+A2( 9)2)(1- 2x) (1— 2x)
m?p*\/A? 4 (1-2x)*(p°)? VAT +(1-2x) ( 4)?
W (=22 (e 12N (R 2(1 2x)%p _|1—2x+(x_’1_x)L+’ (30a)

+2x %) pim?

(2x+1)+4x(p

) (x, 5 A m) = [

J/w

2<p 2(1-22)(p")

PO/ m? +4x%(p*)? —m? —2x(p*

)i (pwmz+A2+4x2<pz>2—m2—2x<;z>2>

(1- 2x p*(m*(2x+1)+4x(p* )1 ( PO+ (1=2x)2(p?)> + (1-2x)(p z)2>
2(1-2x)(p")’° PP0|1 2x|+(1-2x)(p*)?
A*(p m? +4(1 —=x)x(p* m? +4x*(p?)? — |1 =2x|p?
p1g<m< >(<1)2x>“)+( | )(z<)1)—(2x>2 o
2pt(m? = 4(x—1)x(p?)?) (VN> + (1=2x)2(p?)2 = /m? + A2 +4x%(p?)?)
2(p°)? ( (A2 +(1=2x)*(p ) )+A2( )?)
PA(V/m? + N 437 (pP)? = /m? +42°(p°)? \/A2 (1-2x) (p ) _ +(x—>1—x)}
2(1—2x)( 0)2 2(1—2x) 21— 24] N
(30b)

(1-2x)%*(p

)2+ (1 -20)(p

0. /A2
- p A%+
¢JL/$)(x, P A m) = [ _po ( PV

)2>
pep |1—2XI+(1—ZX)( °)?

2xpzln<p°\/A2+m +4(p*)*x* +2(p )X+m> pzl ( A2(p°)? +1>
po/m? + 4(p*)°x* + 2(p*)°x + m? 2p° 2(1=2x)(p*)?
+\/A2+m2+4x2(pz)2_ m?pi\/ N> + m? + 4x%(p?)? +x\/m +4(p)? 1
2(1 = 2x)p? 2m2( 2(1=2x)2 +2(p)2A2 pe(1=2x)? |1 —2x|
2pi/A? + (1 —2x) A + (1 =2x)%(p?)?
mzp \/2 5 2 2 \/ %) (p) +x—=>1-x)] . (30c)
20 (p (1 - 2x> e > )T (-2 .
|
where p® = /(p.)? + m*. Needless to say, these quasi-  general feature of quasidistributions, which was also
DAs are also symmetric under the transformation  seen in the quasi-PDF and generalized parton distribu-

x < 1—ux

A major difference between quasi-DAs and LCDAs is
that the former have a nonvanishing support when x < 0
and x > 1, though suppressed by 1/(P%)% This is a

tion. This simply signals the breakdown of a physical

parton interpretation for quasidistributions.
Reassuringly, it can be analytically checked, when

boosted to the IMF by sending P — oo, that these
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FIG. 2. LCDAs and quasi-DAs for three S-wave charmonium helicity states with various P<.

frame-dependent quasi-DAs in (30) indeed reduce to the
exact functional form of the LCDAs in (28).

Note that all the c}ﬁﬁy(x) in (28) contain a linearly UV-
divergent piece /A% + (1 —2x)%(p?)>. This term is
always accompanied with the double pole (1 —2x)72
and suppressed by 1/P%. Physically, such a term can be

traced to the self-energy correction to the gauge link. In this
work, we have keep A finite, so such a term does not bring
any problem. For a consistent renormalization program, the
proper treatment of such a term in the limit A — oo at fixed
P? has been sketched in Refs. [14,16].

Had we taken the A > P> m limit in the quasi-DA,
the BL evolution kernel would also emerge in the range
0 < x < 1, but the accompanied logarithm is in the form of
In P? rather than In A as in the LCDA. It is the strength of
the recently advocated large momentum effective field
theory [11] to resum such a type of logarithms.

IV. NUMERICAL COMPARISON BETWEEN
LCDA AND QUASI-DA OF QUARKONIA

Having the one-loop exact “data” available for both the
LCDA and quasi-DA of the 5. and J/y, it is the time to
make a comprehensive study on their properties.

A. The convergence behavior of quasi-DAs to
LCDAs with increasing P?

We have already seen that the quasi-DAs in the limit
P?* — oo analytically recover the LCDAs for each species of
quarkonia. It is of practical curiosity to see explicitly how fast
the quasi-DA approaches the LCDA with increasing P*.

For numerical study, we take the charm quark mass as
1.4 GeV. We tentatively choose A = 3 GeV, approximately
equal to the masses of . and J/w. In Fig. 2, for each
species of S-wave charmonia, we display several sets of the
quasi-DAs at various values of P*: 2, 6, 10, 14, and 18 GeV,
respectively. Because the DAs are symmetric under
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FIG. 3. The degree of resemblance as a function of P~.

x <> 1 —x, and quasi-DAs decrease very rapidly in the
unphysical regions x < 0 and x > 1, we plot them only in
the interval —0.1 <x < 1/2. In order to suppress the
singular appearance near x ~1, we deliberately multiply
all the DAs by (1 —2x)2.

From Fig. 2, we clearly see the trend of the quasi-DA
approaching the LCDA with increasing P*. Also, it is
interesting to note that the quasi-DA admits a nonzero
value at x =0 and 1, which is quite different from
the LCDA.

In order to quantify the difference between the LCDA
and quasi-DA at a given P?, we invent a parameter degree
of resemblance, denoted by A(P?):

Py — fé dx(1- 2x)4[¢g) (x; A,m) — g?)g) (x,P%A, m)]2 ‘

AH( 1 1 P
Jadx(1=2x)*[pYy (x; A,m)]

(31)

The dependence of Ay on P* is shown in Fig. 3. It is a
rapidly descending function. When P* is 6 GeV, A is about
20%; as P* is boosted to 9 GeV, A already decreases to 5%.
It may persuasively imply that, provided that P* is about 3
times larger than the hadron mass (with the renormalization
scale fixed around the hadron mass), the quasi-DA already
converges to the “true” LCDA to a decent extent.
Interestingly, a very recent investigation on the nucleon
quasi-PDF in the diquark model has drawn a similar
conclusion [25].

T 202 2ACw? 4+ )
e 6 mr+A " m(m*+ A?)
A* +202m? +3m* . A? +m?
2m* (A + m?) A?

n

arctan m_ In21n

PHYSICAL REVIEW D 94, 094005 (2016)

P?[GeV]
18~ :

A [GeV]

FIG. 4. To fulfill A = 0.05, the minimal value of P* required as
a function of A.

We can further inspect the correlation between P* and A,
for a given degree of resemblance. In Fig. 4, we show that,
to achieve A = 0.05, how the minimal value of P* required
depends on the value of A. The colored dots and squares are
generated from actual calculations, the solid line is a linear
fit by averaging over three types of charmonium helicity
states, and we obtain P* = 1.66A + 3.86 GeV. It is inter-
esting to observe this linear correlation between P and A.

B. Comparison of first inverse moment between
LCDA and quasi-DA

In the hard exclusive reactions, the factorization theorem
expresses the amplitude as the convolution of the hard-
scattering kernel with the LCDAs. For a leading-twist
contribution, the hard part always bears the form x~';
thereby, it is the first inverse moment of the LCDA that is of
ubiquitous phenomenological interest [44].

We are curious to which extent the inverse moment
generated from the quasi-DA will resemble the light-cone
one in magnitude. The first inverse moment of the

charmonia LCDA, to order-a, accuracy, is given by

[ g A m)
<x)H_Adx .

- (32)

As dictated by the general principle, ¢y xx as x — 0;
thereby, the leading-twist LCDA admits a finite inverse
moment. One can readily deduce the closed form for the
inverse moments from (28):

A% + m?
AZ

A . 2m . m
+(3 —21n2)1n%+2Re{L12<m — iA> —Li, <m— iA)]’ (33a)
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(D = —% + ;arctan% - <32_m22 In2)m? In A? szz
+(3-21n2) ln% + 2Re {Liz (mZ_ml_A> - Li, (m o A)] , (33b)
D apr = _%2+ 21;2 1n22 21\(311122 - 2?2) arctan
m=+ A m(m? + A?) A
+4(1-1n2) ln%— (2In2 - I)Z\jii(zlﬂ - l)mzlnAz;mz
+4Re {Liz <m2_ml, A) ~ Li, (ﬁ)] . (33¢)

In the A > m limit, the inverse moments are dominated
by the ln% term for each LCDA, whose coefficients agree
with the previously known results [29,34]. It is this type of
collinear logarithms that can be resummed to orders in «;
with the aid of the ERBL evolution equation [33].

In contrast, as can be analytically inferred from (30) or
clearly seen from Fig. 2, the quasi-DAs approach nonzero
values as x — 0. Nevertheless, the quasi-DAs still smoothly
cross x = 0; we thus utilize the principal value prescription
to define the inverse moment of the quasi-DA:

@y (x, P A m)
bt om),

(F 1), =P.V. /_ " dx (34)

The magnitudes of the first inverse moments of the
LCDA and quasi-DA as a function of P are presented in
Fig. 5, with A fixed at 3 GeV. To characterize the extent of
the proximity of the first inverse moments between the

(1) anld (71

6.0r °d 0 =
‘ O <x >7]0 - <x )771‘
5.5¢ ¢ ~—1 =il
H . (T >J/¢H --(z >J/¢H

L ° . - -1 ]
5.0 o.:. o <J) >J/¢L —<ZU >J/,¢}L
4.5 ¢ Moo

’ ¢ ..o
¢ = .o.
4.0f o, "mg e,
o, "m AL TN
Oo .I. ..‘.......
(2 ..l.. ".0000.0000000000.
35— — — — — %06 500 R ]
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FIG. 5. The first inverse moments obtained from various S-

wave quarkonia, for both order-a;, LCDA and quasi-DA, as a
function of P*. We fix A =3 GeV.

LCDA and quasi-DA, we introduce the following fractional
difference:

(35)

(x Ny

Concretely speaking, at A = 3 GeV, the Q for three types
of S-wave states are shown in Table I We see that, even
when P? is boosted to 9 GeV, the inverse moments
generated from the quasi-DA still differ from the true
results by about 20%. Compared with Ay (P?), the first
inverse moments generated by the quasi-DAs appear to
approach the LCDA value with a rather slower pace.

V. SUMMARY

The PDF and LCDA are among the most prominent and
basic nonperturbative quantities coined in QCD, encapsu-
lating rich dynamics about the quark-gluon degree of
freedom inside a hadron. For several decades, how to
effectively compute such light-cone distributions from the
first principle of QCD has posed a preeminent challenge,
and progress was slow. As a breakthrough, the recently
advocated quasidistributions, and the corresponding large
momentum effective field theory, have the very bright
prospect to help finally overcome this long-standing difficulty.

Despite some important progress, there remain eminent
technical obstacles for the lattice to make phenomenologi-
cally competitive measurements on quasidistributions. One
is the lack of a systematic renormalization program for
quasidistributions. Moreover, for the current lattice tech-
nique, to make a precise simulation for quasidistributions in

TABLE I. Numerical results of €, , Q ! and Q; Syt with
different hadrons’ momenta.

pe Qm- QJ/!//” Qj/y/i
6 GeV 0.335 0.431 0.358
9 GeV 0.172 0.228 0.174
18 GeV 0.052 0.071 0.049
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a highly boosted hadron state is also unrealistic. Therefore,
it is valuable if some useful insights about the general
aspects of quasidistributions can be gained in the con-
tinuum field theory.

Thank to its tremendous simplicity, heavy quarkonium
actually provides an ideal theoretical laboratory to study
quasidistributions. It has been known that NRQCD fac-
torization allows one to express the LCDA of a heavy
quarkonium, at the lowest order in velocity expansion,
simply as the product of a perturbatively calculable, IR-
finite coefficient function and a single nonperturbative
matrix element. Therefore, the profile of the quarkonium
LCDA is fully amenable to the perturbation theory.
Quarkonium thus constitutes a rare example that the
light-cone correlators can be fairly well understood in
the continuum theory without much effort.

In this work, extending the previous work on quarko-
nium LCDAs, we apply NRQCD factorization further to
the quasi-DA of the ground-state quarkonia and calculate
the respective coefficient functions to order a,. We are able
to show analytically that the quasi-DA exactly reduces into
the LCDA in the infinity-momentum limit. We also observe
that, provided that the P* of a charmonium is about 2-3
times its mass and with the renormalization scale chosen
around the charmonium mass, the respective quasi-DAs
will converge to the LCDAS to a satisfactory degree.

Our work also has some limitation, chiefly in that we
have resided entirely in a cutoff theory and naively
interpreted the hard transverse-momentum cutoff A as
the renormalization scale. It is worth pursuing the rigorous
renormalization procedure to the quasi-DAs in future work.

We hope our comprehensive study of the quasi-DAs for
heavy quarkonia will provide some useful guidance to the

PHYSICAL REVIEW D 94, 094005 (2016)

future lattice investigation of similar quasidistributions,
e.g., how to optimally choose the parameters in their
Monte Carlo simulation.
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APPENDIX A: COMPARISON BETWEEN
DR-+CUTOFF REGULARIZATION AND
DR REGULARIZATION

The most important reason we use DR and cutoff
regularization simultaneously is to justify taking the
P> A, m limit of the quasi-DA to reduce to the
LCDA. In the conventional dimensional regularization,
the renormalization scale is an overall factor as

2,7\ € d4—2€k
ue
Z(k*, P*,m).
<4JZ> /(27:)4_26 (e, P%, m)

The y — o and P* — u limits are independent, and the
latter one of the quasi-DA does not reduce to the LCDA.
We demonstrate the difference between conventional DR
regularization and DR + cutoff regularization with the
following integral:

(A1)

Falx) = (”iff) / (er)j-lz (K —m* + ie)l[(P — k) + ie] 5<x B Z -. f’>

(A2)

where n* = (1,0, —1)/+/2 for the light-cone case and n* = (0,0, —1) for the quasi case. The light-cone integral can be
calculated using light-cone coordinates and integrating k- without a cutoff (from —oo to oo):

i e %€ csc (me)

oo ioe 0<x <l
f(X,,U) = { 167 T'(1—€)m* (1—x)* X ' (A3)
0 otherwise.
After ¢ — 0 expansion we have
Cllams—2m(i-n] 0<x<l,
f(x) = 167° |:€ + nmz n( x) X | (A4)
0 otherwise.

The ¢! will be dropped after renormalization.
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For the quasi-integral, integrating out k* without a cutoff (from —oco to co) gives

- i %—e 1 eer€ 2e z\1-2¢
flx, Pip) = 2 161;1(22\/;(1) — ge)iio))z [(—stgn(l —x)+ im)(

1 1 3 | P* 1-
x2F1<——€,—+e,——€,l sen( x)+m)|1_x|_2€

—iPisgn(1 —x) + m) 2*e
m

2 72 72 2m
- (PR)* <imPZ|1 — x[7¢ + (m? + (P?)?x)|1 - x|—%—e)

1 1 3 mPl — x| —i(P°)?
F A~ S S PP ) 5 A5
%2 1(2 O T T P — o (A3)

where P* = \/(P%)? + m? and sgn(x) is the sign function. After ¢ — 0 expansion we have

Z

P
= —161ﬂ2ﬁ1n [(stgn(l - x) + \/m2 + (P?)%sgn®(1 — x))PPP*y/m? + (P*)?x?|1 — x|

x (m* — (P?)2x(P°\/m? + (P?)%x> — (P*)*x) + m*((P*)?(1 + x*) — P°\/m? + (PZ)sz))_l} . (A6)

f(x, P%,p)

Taking the limit P* — oo gives

lnxx;1 x <0,
. = l 2z
Plflgloof(x’ P ) = Te2 ) <fnf +InE 0<x<l, (A7)
In =% x> 1,

which does not recover the light-cone integral in Eq. (A4).
If we apply a transverse-momentum cutoff to the loop integral

/ P2k o Jo dk= [=, dkt [} ’ d(k%) (k%)= light-cone, (A8)
J2u dkO [o3, die [ d(k3) (kD)™ quasi,

we will have (after ¢ — 0 expansion) the light-cone integral

A Pl L e L W |

sty = { 0o (49)
0 otherwise

and quasi-integral

~ i Pt

|m? + x(P?)?| + PO\/x*(P%)* + m?
f(x’ A) = 2 10
327 P

|m2 —I—x(PZ)2| +PO\/x2(PZ)2 +m2 —|—A2
Im? + x(P?)?| = P°\/x*(P?)? + m* + A2
|m? + x(P?)? — P°\/x*(P%)* + m?
(P = P)(P|1 = x| /K (T =P (P = (1= (PP
(PO + PY(PO[L =2 /AZ £ (1 =02 (P) + (1 - x)2 (P

[sgn(x(Pz)2 + m?)In

+sgn(x(P?)? 4+ m?) In

+sgn(l —x)In (A10)

It is straightforward to check that the P* > A, m limit recovers the light-cone integral (with cutoff) result in Eq. (A9):

094005-15



YU JIA and XIAONU XIONG PHYSICAL REVIEW D 94, 094005 (2016)

{ i A=) g oo,

167> m?(1-x)? (All)
0 otherwise.

lim f (x,P%u) = f(x,A) =

P50

The above example has shown that the integral with a transverse-momentum cutoff reduces to the light-cone result when
taking the P* > A, m limit, while taking the A > P?, m limit, which corresponds to conventional DR, does not reduce to
the light-cone result.

APPENDIX B: DETAILS OF CONDUCTING THE ONE-LOOP CALCULATION

It is easiest to compute the order-a, correction to DAs of the longitudinally polarized J/y. Therefore, in this section, we
take the Feynman part [the g, part in the gluon propagator in (20)] as a concrete example to illustrate the intermediate steps

in the one-loop calculation for the LCDA and quasi-DA of J /.

1. LCDA

For the LCDA of J/y!l, we take n* as the lightlike reference vector defined in (16). The Feynman part of the vertex
diagram in (22) reads

B Cr ,u2 ereE\ € _ . i i
() = (2m)*-%€ ( IZ” ) /ddku(p)(—lgsyf) p+Kk—m+ i€y+ p—K—m+ie

— +
(i )o(p) g7 a5 (v= 3 =5 ) )y o)

.2 2 7E\ € l1-¢
<ot () g ) et faca
—4(1 — e)k% + 8%(1(*)2 — 8m?
20k~ + p7) (kT + pT) =K —m? +ie]2(k~ = p7) (kT = p*) — k% — m? + ie]
S(x =3 =2 m)alp)rtu(p)
2k"kT — K3 +ie

T

(B1)

The k™ integral is carried out by contour integration. The & function trades the k™ in favor of the dimensionless momentum
fraction x. As is well known, the Z(x) vanishes unless 0 < x < 1, for which the poles are distributed in both the upper and
lower half of the complex plane when carrying out the k™ integration. After utilizing Cauchy’s theorem, we are left with the
integration over the transversa momentum:

(o) - Gk, (Hher) m

A N 1
20\ dr ) T=0) )y dk k2 9(x)9<§ - x)x
(1—e)k3 + m*(4(1 —€)x(1 —x) + 1 +¢)
) 12+ m2(1 - 2x)72
20(x)0(% — x)eTx(1 — e)* A*2epude . . A?
- { 2 —2€)F(1 —e)(1—2x)'m” [(1 — e <1’ 2l e s 2x)2>
(e—=2)m*(1 — 2x)2} } {29()6)9(% —x)eTrx(4(1 —€)x(1 —x) + 1+ €)*A=2ugs
Ist

m?(1 = 2x)% + A? (1-2x)*
A?(1 —2x)? eA? ' . A?
g [<m2<1 2P (I —e)  mT2-e? (1’ e 2x>2>} }m
+(x—>1-x). (B2)

For the first piece Z | (x) (with the subscript “1st”), which originates from the part of the integrand containing k3 , one can
safely set € — 0, because it is regular at x = % The result is
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. % A2 A2
Zi(x)= iﬂ‘z 9(x)9<%—x>x{ln (1 + (0 —2x)2> TN (=) +(x—=1-x). (B3)

The second piece Z,(x) in (B2) (labeled by the subscript “2nd”) turns out to be IR-divergent at x = % To isolate the IR
pole, we apply the following hypergeometric function ,F'| identity:

_ I(o)n (=X)a )
1) {rw)r(c_a)r(a-w1>2F1<“»a—c+1»a—b+LX ')
(-x) ;
“TaTc—b(catbrnh1Bb-etl-atbt1.X )}- (B4)

Then the ,F; function in Z, can be rewritten as

A2
Fill,1-¢2-¢————
( eoe m2<1—2x>2>

B T2—¢) (|1 =2x|m\22 m?>(1-2x)’T(2-¢) m?(1 — 2x)?
_ncsc(ﬂe)[r(l_e)( A ) _AZF(I—e)zF(e+1)2Fl<1’€’€+1’_7>} (B3)

Therefore, we have

_ Crgi 0(x)0(G — x)eTx(4(1 — e)x(1 — x) + 1 + €) A" pig
 4n? I'(l-e¢)

x [—m2<1 _';1;)2+A2 + <1 _12x>2+2€<1 +€1n(A2+m’21521 —2x)2>>} +O(e). (B6)

The singular term (1 — 2x)7272¢ can be expressed through the distribution identity:

11_rg<% - x> . <—2i€ ~log 2)5' <x - %) - 25<x - %) + [ﬁ] R (B7)

with the single IR pole now manifest. All distribution identities required in this work have been assembled in Appendix C.
Substituting (B7) into (B6) and truncating to the order of €, we obtain

I(x) = Crg; {15/ (x_%) [—x(l —2x)? _w_x(l +4x—42)In <A2 - 2x)2>]

T, (x)

472 |8 )
x(14+4x —4x?)  m?x(1 +4x—4x*) 1 1 1
i [(1=2x)].. + A + m*(1 - 2x)? _§5<x_§>}9(x)9(§—X> +(x—>1-x). (B8)

Now we have the ultimate result of Z(x):

Cr? [ ((144x—4x2) m2(1 + 4x — 4x2) A?

+In (1 +ﬁ_22x)2>>9(x)9<%—x> + (=1 —X)} .
G lLma) o]

which contains the IR pole 5(x — 1)/ (4e).
We also need to include the effects due to the quark wave function renormalization, as outlined in (25). The Feynman
parts of such contributions are
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oz, = ic (e 6/d4 T = () ) u(p)]. (B10)
=1 u u u Py
a FIs\ " ax (2m)4-2¢ yk—i—ﬁ—m—i—iey k+ﬁ—m+i€y” pk2+i€ Py mp
2 Lre\ € d4 2ek 1 1 1
. Hir® -

6Z; = iCrg? H + - + . B11

g =1 F.%( dn > /(2][)4 2¢ ( )}’ ¥ — ﬁ—m—f—iey Xk—p—m+i€y”1j(p) k2+i€/[v(p)7 U(p)] ( )
These constants are also IR-divergent:

1 CFgT 1
(6z, +5Z(—])5(x—§) == L ( + lnﬂIR> + O(EO):|5<X—§>. (B12)

Note the &'(x — ) have canceled between two symmetric pieces under x — 1 — x.
It is reassuring that the IR poles exactly cancel upon summing Z(x) in (B9)) and (B12).

2. Quasi-DA

For the quasi-DA of J/y!l, we choose n* as the spacelike reference vector as specified in (16). The Feynman part of the
vertex diagram in (22) is

- Cr (MR / e . i i
T(x) = d*kia(p)(~ig,p* :
() (27[)4_2€< 4r i(p)(=igir") ptkhk—m+ic p—k—m+ie

(i )o(p) 2 (= =5 ) o)

k* + ie
. 9 —€
—ig;Cr (uige’™\¢ 2x' /A 1—2/ 0
= dk kK172 [ a0k

(27r)4‘2€< 4r ) M(l-¢))o %

21,0 .
(2-26) (K =2k (2 — ) —dm® - 5(x =3

r &= ap), (B13)

) [(p+ k)2 —m?+ie][(p—k)?> —m* +ie] k>+ie

We first perform the k° integration by the contour method and then use the § function to trade the k* for the dimensionless
momentum fraction x. Nevertheless, since the propagators are now quadratic in k°, the poles are always dispersed in both
the upper and lower complex planes, irrespective of the range where x lies. After integrating over k° and k%, we have

- 2C Q1€ 2¢ A z
I(X): gsCF T /"IR/ ko_ki—2e4p_p0

(27)37%T(1 —¢)
XH(M“rZ(pZ)ZX)\/k2 1+ m* 4+ 4(p*)x (6—1)+p0(4( °)%x 2(6—1)+mze)]
VIE A+ m? 4 4(po)2E (m? 4 2(p?)2x — pO/IEm? + 4 7)2 -
[—(m2+2(pz)2(1—x \/ki+m2+4(p) (1=x)*(e=1) 4 p°(4(p°)*(1 = x)*(e = 1) 4+ m’e)
VI 4+ m? +4(pH) (1= x)2(m* + 2(p?)2(1 = x) — p°\ /KX + m? + 4(p?)*(1 — x)?)?
_2(m*p® — ( Z)2(1 —2x) (/K + Z)2(1 —2x)* = p°(1 = 2x))(e = 1))
VIE + (p9)2(1 = 2x)? 0\/k2 (p?)2(1 = 2x)2 = p*(1 — 2x))? Lnd}’ (B14)

where p®=/(p*)?+m?.
The first piece Z;(x) (labeled by the subscript 1st) in (B14) is IR finite, because its denominator does not vanish
ask, > 0atx— % After sending ¢ — 0 and performing the k| integration, we obtain
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:Z (X) _ (m2 —|—4(pz)2x(1 —X))
: 872(p°)*(1 = 2x)* p*(m*(p*)*(1 = 2x)* + A*(p°)?)

X [(m* A%/ m* +4(p*)*x* = p¥) + A*(p?)*(1/m* + 4(p?)*x* — 2p°x)

2 (p7 (1= 202w + 4(p ) = [0 i+ 4722
+pz(m2+2(pz)2x) {_ln<m2_|_2(pz)2x+p0\/A2_|_m2+4( z)2x2>
167:2( 0)3 m2+2( z)2x_ 0\/A2+m2+4(pz) 2
)

W(EREAE ) ) e

m+2() — pO\/m? + 4(p?)? p°)

—

The second piece fz (x) (denoted with subscript 2nd) in (B14) potentially contains IR singularity at x = % Integrating
over the transverse momentum by brute force, we obtain

7, - SRl [ 2P P T

2T 4p2N% 2(p?)Pm*(1 —2x)*T(1 —¢)
1 (pO)ZAZ A2

<r(1-e2mg e S g )

A2(pe)2|1 - 24 I ()20 A2
T (-2 (- <1 B R T T TR A s —x>2)

A% ()] m? < 2(1 - 202 (e - 1)

(1+2€ l—e 0\/A2 1—2)() +(pz)2(2x_1))1+2€
,( {2 — 1) + /1 - 2x]) p(pF(2x — 1) = pO)1 - 2x])

x Fi|2e+ 1;€,€;2¢ + 2; )

( i T ) VA (R 20 @x— DR 4 PR (R 2x>2)

A2 ()2 me 1+ 4(p (1 — (e — 1)

21+ 26)0(1 =€) (pO /A7 + m? + 4(p (1 —x)2 = m? +2(p")(x — 1)+
m? = 2(p)?(x = 1) = pO/m? +4(p*)*(x — 1)?
m? = 2(p*)}(x = 1) = p°/A> + m? + 4(p*)*(x — 1)2
m? =2(p?)*(x = 1) + p°/m? + 4(p?)* (x — 1)? )
m? =2(p*)2(x = 1) = pO /A2 + m? + 4(p?)*(x — 1)2
A%(m?* 4+ 2(p?)%x 0122
dm?p? 1(7 <1+—2§c>2)r(1)-e> F (1’ Tma2-a- m2<p(z1;221 —2x)2>
A2(mC = m(p™)? (x = 1) + 12m* (p)* (x = 1)* + 2(p*)°(4x = 6x + 3))
- 2(p¥)3PpPm*(1 = 2x)* (1 — ¢)
022 T(2e + 1
< (1’ PmemeTy (zlizglﬂ— 2x)2> * 2(5))'52‘??6 ; 2)
m?e +4(p)*(x — 1)%(e = 1)
(PO/mE+4(p*)2(1 = x)2 = m? +2(p*)2(x — 1))
m? =2(p*)*(x = 1) + p°/m® + 4(p*)*(x - 1)2>
m? —2(p*)2(x — 1) — p°/m* +4(p?)*(x = 1)2

x F, <2€+1,€,e,2€+2,

X2F1(€,2€—|—1,€—|—2,

~ pTr(2e + 1) o D2(1 — 252 (e — 1 142¢
s 0 P01 =207 = ) ()
m? +2(p*)* + 2p*pPsgn(1 — 2x)>} ’

><2F1<6,2€+1;6+2;— 5
m

(B16)
where ,F is the hypergeometric function, F; is the Appell F; function, and sgn(x) denotes the sign function.

094005-19



YU JIA and XIAONU XIONG PHYSICAL REVIEW D 94, 094005 (2016)

In fQ(x), those terms containing ,F; functions can be manipulated according to the method in Appendix B 1,
with the IR pole readily isolated with the aid of distribution identities. Nevertheless, the manipulation of
Appell F; functions is much more challenging due to its excessive complication. Since the IR singularity is always
exactly located at x =1, we find it beneficial to use the subtraction trick. We first identify the asymptotic behavior
of the Appell F; function near x — % and then apply the distribution identities to isolate the respective IR poles. The
difference between the Appell F; and its asymptotic form is IR finite, which is amenable to simple Taylor expansion in
powers of e.

The asymptotic forms of Appell F; functions required in this work have been tabulated in Appendix D.

Among all terms containing F'; functions in (B16), only the first one possibly develops an IR singularity. Following the
aforementioned technique, we can identify the IR pole associated with this term:

761 (x) Crgzeuig A*(m* = 2(p*)*(x = 1))*\/m’ + 4(p*)*(x — 1)
X)) =
2 472 N% 2(p?)’m*T(1 —€)(1 — 2x)*
1 (p0)2A2 A2
F 1 -6 =3 17 2 -6, = s T
: ( ST T O T (=20 T A (- )
Crg: [3p°p° (1 1
Summing all the IR-divergent terms in (B16), we obtain
~ Crg? N\ [1/1
a0l = 28 o(x-5) [y (4 i) + 0| (B18)
which has the same single-IR pole as in the light-cone case.
The complete result of Z reads
~ ~ ~ Crg? [1 /1 1
26) = 1 Wemo + Tl + G [ (4 ik ) + 0o -3) (B19)

We also need to include the contribution from the quark self-energy diagrams. According to (25), the Feynman part of the
quark wave function renormalization constant is

» 2 Lve\ € d4—2€k 1
. HrE .
82, = iCrg? ’ :
q LCEYs ( 4 > / (2”)4—26‘ u(p)}/ ¥ ﬁ _ ley

1 1
i(p)y: , B20
o p_m+i€yﬂu(p)k2+i€/[u(p)y u(p)] (B20)
~ 2 L7E\ € d4—2€k 1
, Hir® -
7 — 2 U Z
024 ’CFQS( 4n ) /(271)4—26”(”)7 k—p—m+ie
1 1
5(p)yt : B21
Xz ﬁ_m+i€m(p) k2+i€/[v(p)7 v(p)] (B21)
Their net contribution is
- - 1 Crg? 1 /1 1
(62, + 52(7)5(36 - 5) =-a {Z (g +In ﬂ%R) + (9(60):| 5(x - E)‘ (B22)

It is straightforward to check that the single IR pole cancels between (B19) and (B22).
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APPENDIX C: DISTRIBUTION IDENTITIES

In DR, the IR divergences usually originate from terms such as [1/2 —x|7172¢, |1/2 —x|7'"%In , and
|1/2 — x|727%¢, etc. In this work, the following distribution identities have been utilized to express the above singular
structures as the IR pole together with distribution functions:

R TR R

1

lim [ dxg(x) x
e=0 Jo

1

E—x

) 1 1 —1-2e 1 1 1 1
11_1}% % dxg(x) x 57X /% dxg(x)x{(—2—€—1n2)5<x—§>+[ _%]+}, (Clb)
: (| : 1 In*2 1 In (3 —
li_l)% Ozdxg(x)x 7% In 5% :A'dxg(x)x{{—z%—n?]é(x—i)—i— [%]Jr}, (C2a)
, 1 1 -1-2¢ |1 1 1 In?2 1 In (x — 1)
1-1—133 % dxg(x) x 57X In 5% :/; dxg(x)x{[—%z+2}6<x—2> + {x—%z]+} (C2b)

1

lim [ dxg(x) x
e=0 Jo

——x

- ool Yoo el ) e
oo [l ) e

The IR divergence is represented by ¢~". The above distribution identities should be understood to be convolved with a
test function g(x) that is regular at x = % The double pole €2 in (C2) stems from the coupled soft and light-cone (axial)
singularity.

1
lim [ dxg(x)x|=—x

e—0 J1
2

APPENDIX D: ASYMPTOTIC FORM OF APPELL F; FUNCTIONS AND POLE STRUCTURES

When computing the one-loop corrections to the quasi-DAs, we have encountered numerous Appell F; functions. Here

we present the asymptotic form of the encountered Appell F; functions near x = %:

| (p)A° A
Fill-e—5.1,2—¢~ -
1 < “Ty T m*(p*)*(1=2x)*" m® +4(p*)*(1 - x)?

~ =20 A (E0) a5 (55) ] (Dla)

A2 B (p0)2A2 )
(p)P(1=2x)*" m?(p?)*(1 —2x)?
m*A 2(p¥)?(1 —e¢) o, T2-eT(e—-1) [p7\3-2%
= (1-2) [(po)zpz 7 e Y <A>

1 1 Z\ 2
N <1,—§+e,§, (%) >|1—2x|‘1‘2€}, (D1b)
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1
F1<1—€,—§,1,2—€,_

2(p*)? 1-¢ 1 A2 (p*A)? 1 A?
- 1—2x3{m p (— Fil-=,—€1-¢— >+ F<—,1—€,2—€——>>1—2x"
( ) (po)zAz 241 2 2 p 241 ) (po)z | |

n (’X}’j ;) Heu —2x|1-2(2 — S)F(e)] . (Dlc)

Although these Appell F; functions vanish at x = %, they are usually accompanied with (1 —2x)™ (n = 3, 4). The
subtraction algorithm can be applied to isolate their divergent pieces from finite ones.
We take (B17) as an example:

550y Ceste™oulg Mo =20 s = )P + 3P = 17
2 T T 2(p7)m T (1 — e)(1 - 2x)°
1 (pO)ZAZ A2
<r(1-eg e S e g )
= 2 (@) + {25 () = (5 (0 agm} |y + O, (D2)

where the first term denotes the asymptotic form of 7 5 '(x) and the second term denotes the subtracted part. The subtracted
part is regular at x = %; thereby, one can simply set € — O in it.
The asymptotic part reads

FE ()| = CEIETHIR A2 (m? = 2(p)(x = D)2/ + 4(p7)(x = 1)
2 asym 471.2A2€ 2(pz>3m41—*(1 _ 6)

(R ) i () ) o

Rewriting (1 — 2x)?*2¢ through the distribution identity in (C3b) leads to

= _ CrgieTpig A*(m* = 2(p*)* (x = 1))*y/m’ + 4(p*)*(x — 1)°

Z5 () |agym =
2 (D aom == o 2(p7)*m*T(1 —¢)
F2-e)(1+e€) [p°A\*2 1 1 1
— _10g2)8 (x—=
x ( r'(1-e) mp* 22+2€ 2¢ 8 T\ 2
1 1 1—e¢ m*(p?)*
(e e [ ] ) ) -
2 (% - X)Z . (1 + €)F(1 - 6) p0>4A4
Therefore, the IR pole of fZF ' becomes
@y, = S (3N (14 5] (DS)
1= - X—=.
200 42 \16m? ) \e HirR 2
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