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We revisit the suggestion that charged ρ-mesons undergo Bose-Einstein condensation in isospin-rich
nuclear matter. Using a simple version of the Nambu–Jona-Lasinio (NJL) model, we conclude that ρ-meson
condensation is either avoided or postponed to isospin chemical potentials much higher than the ρ-meson
mass as a consequence of the repulsive interaction with the preformed pion condensate. In order to support
our numerical results, we work out a linear sigma model for pions and ρ-mesons, showing that the two
models lead to similar patterns of medium dependence of meson masses. As a byproduct, we analyze in
detail the mapping between the NJL model and the linear sigma model, focusing on conditions that must be
satisfied for a quantitative agreement between the models.
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I. INTRODUCTION

The phase structure of nuclear and quark matter at low
temperatures and high densities remains one of the major
unresolved problems in contemporary physics. While direct
Monte Carlo simulations of quantum chromodynamics
(QCD) at high baryon density are inhibited by the notorious
sign problem, this does not affect QCD at nonzero isospin
density [1]. Although the latter is not entirely physical, since
a medium with nonzero isospin but zero net baryon density
does not seem to exist in nature, the study of QCD under
such conditions may shed some light on ordinary nuclear
matter.
The fact that the lightest hadron carrying isospin, the pion,

is a pseudo-Nambu-Goldstone (NG) boson of spontane-
ously broken chiral symmetry, allows us to draw rigorous
conclusions about the QCD phase diagram at nonzero
isospin density. At zero temperature, charged pions undergo
Bose-Einstein condensation (BEC) once the isospin chemi-
cal potentialμI exceeds the pionmass,mπ [2]. In the opposite
extreme of very high isospin chemical potential, one expects
a crossover from meson-dominated to quark-dominated
matter. Such high-isospin-density matter is characterized
by a first-order confinement-deconfinement transition at
temperatures much lower than the QCD scale [1,4]. What
happens at intermediate isospin densities remains unclear
though.
Since the next-to-lightest particle in terms of the mass-to-

isospin ratio is the ρ-meson, it was suggested early on that
at sufficiently high μI, charged ρ-mesons will undergo BEC
as well [5]. This would have far-reaching consequences for
the structure of isospin-rich nuclear matter as it would,
among others, imply spontaneous breaking of rotational

invariance. However, the fate of ρ-mesons in the pion
superfluid phase is not that obvious, since isospin sym-
metry is spontaneously broken in this phase and hence the
ρ-meson mass no longer depends linearly on the chemical
potential. Unfortunately, the issue cannot be settled within
the model-independent approach of chiral perturbation
theory (χPT) [6] since it addresses physics outside of
χPT’s range of validity. A holographic model for QCD at
nonzero isospin density was proposed in Ref. [7], con-
cluding that, indeed, ρ-mesons condense for sufficiently
high values of μI (μI ≳ 1.7mρ in their setup). This work is,
nevertheless, based on QCD in the large-Nc limit and in the
chiral limit, where the theory possesses a continuous axial
U(1) symmetry.
A preliminary lattice study of QCD with two flavors of

Wilson fermions with a focus on the meson spectrum was
carried out in Ref. [8]. It was found that at sufficiently high
values of μI, the charged ρ-meson mass drops, within the
numerical accuracy, to zero, which suggests BEC. However,
their results are at odds with other model-independent
predictions of χPT. The latter implies that within the pion
superfluid phase, the mass of the neutral pion equals μI. In
fact, this is now understood to be an exact consequence of
spontaneous breaking of isospin by the charged pion
condensate: the neutral pion is the massive NG boson of
the isospin symmetry [9]. This is in contrast to the findings of
Ref. [8], according to which the neutral pion mass starts to
decrease with chemical potential upon the onset of BEC
at μI ¼ mπ .
Motivated by these works, the objective of the present

paper is to provide new insight into the question of whether
ρ-mesons condense at sufficiently high isospin chemical
potential. Our primary tool is the Nambu–Jona-Lasinio
(NJL) model. Being merely a model, this, of course, does
not allow us to make rigorous conclusions about the QCD
phase diagram. Still, the NJL model is known to work
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reasonably for vacuum physics [10] and its advantage is a
relatively low number of free parameters, all of which can
be fixed by a fit to vacuum observables. The analysis is
carried out in Sec. II, starting with a detailed discussion of
the condensates in the pion superfluid phase, and proceed-
ing to the meson spectrum therein. Treating the vacuum
ρ-meson mass as a free parameter, we show that if present
at all, ρ-meson BEC is postponed to chemical potentials far
beyond the scope of the NJL model.
In order to gain a deeper insight into the nature of this

result, we complement the NJL analysis by one using the
linear sigma model in Sec. III. It turns out that the repulsive
interaction between pions and ρ-mesons results in post-
poning the onset of ρ-meson BEC. While the latter always
occurs in the linear sigma model, for arbitrary model
parameters and sufficiently high μI, it can indeed be pushed
to values μI ≫ mρ.
Apart from our main results, some aspects of the

presented work might be useful in a broader context for
those working on an effective model description of quark
matter. First, to the best of our knowledge, this is the first
time that the condensates of the temporal vector and axial
vector field in the pion superfluid phase have been
calculated self-consistently using the NJL model. We show
how the results obtained in the NJL model match the
predictions of χPT. For the reader’s convenience, the χPT
analysis is summarized in Appendix A. Second, we under-
take a systematic study of the mapping between the NJL
model and the linear sigma model. To what extent the
predictions of the NJL model and the matched linear sigma
model agree is discussed in Appendix C.

II. NAMBU–JONA-LASINIO MODEL ANALYSIS

The basic degrees of freedom of the NJL model are the
quarks. Their detailed dynamics depends on the choice of
interaction which is to some extent arbitrary. We want to
take advantage of the simplicity of the mean-field approxi-
mation; hencewemust include interaction channels with the
quantum numbers of the pions and ρ-mesons. A minimal
NJL-typemodel that fulfills this requirement and at the same
time respects the full chiral symmetry of QCD is the two-
flavor model defined by the Lagrangian

L ¼ ψ̄ðiD −mÞψ þ G½ðψ̄ψÞ2 þ ðψ̄ iγ5~τψÞ2�
−GV ½ðψ̄γμ~τψÞ2 þ ðψ̄γμγ5~τψÞ2�: ð1Þ

(A similar model was used in Ref. [11] to study ρ-meson
condensation in the QCD vacuum in a magnetic field.) Here
ψ is the isospin-doublet quark field and ~τ the Pauli matrices
in isospin space. The covariant derivative includes the
isospin chemical potential via D0 ≡ ∂0 − iμI

τ3
2
. The model

is defined completely by four parameters: the current quark
massm (assumed for simplicity to be the same for both quark
flavors), the scalar and vector coupling G and GV , and the
ultraviolet cutoff Λ.

We follow the usual bosonization procedure wherein the
four-point interaction is decoupled by introducing a set of
collective bosonic fields, σ, ~π, ~ρμ and ~aμ, and subsequently
carrying out the Hubbard-Stratonovich transformation.
This brings the Lagrangian (1) to the form

L ¼ −
σ2 þ ~π2

4G
þ ~ρ2μ þ ~a2μ

4GV
þ ψ̄ iDψ ; ð2Þ

where the modified Dirac operator of the theory reads

iD≡ iD −m − σ − iγ5~π · ~τ þ ~ρ · ~τ þ ~a · ~τγ5: ð3Þ
Integrating out the quark degrees of freedom then leads to
the fully bosonized effective action

Seff ¼
Z

d4x

�
−
σ2 þ ~π2

4G
þ ~ρ2μ þ ~a2μ

4GV

�
− iTr logD: ð4Þ

This effective action is the starting point for the calculation
of both the thermodynamic potential (and hence the phase
structure of the model) and the meson spectrum.

A. Vacuum physics

In the QCD vacuum, isospin is not spontaneously broken
[12]. Hence only the σ field can acquire a vacuum expect-
ation value, which is found self-consistently from the gap
equation δSeff=δσ ¼ 0. After a simple manipulation, the gap
equation can be brought to the form

hσi ¼ 16GNcMI1; ð5Þ
where I1 denotes the tadpole momentum integral,

I1 ≡ i
Z

d4k
ð2πÞ4

1

k2 −M2
; ð6Þ

andwe explicitly highlighted the dependence on the number
of colors, Nc ¼ 3. In both expressions, M ≡mþ hσi
denotes the dynamical (constituent) quark mass. While
the vacuum expectation value of σ is an observable specific
to the present NJL model, it can be directly related to the
expectation value of the scalar operator composed of the
quark fields,

hψ̄ψi ¼ −
δSeff
δm

¼ −
hσi
2G

; ð7Þ

where the gap equation for hσi has already been used. This,
together with Eq. (5), constitutes one of the matching
relations used to fix our model parameters.
The other observables used to fix the model parameters

are related to the meson spectrum in the vacuum. This can
be extracted from the meson polarization functions, defined
by the second functional derivative of the effective action
(4), symbolically
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χðABÞðx − yÞ≡ δ2Seff
δϕAðxÞδϕBðyÞ

; ð8Þ

where ϕA runs over all the meson fields of the model and
the multi-index A includes the field type as well as the
isospin and Lorentz indices. As a consequence of the
conservation of isospin and parity [13] in the QCD vacuum,
the polarization function matrix will take a block-diagonal
form. The simplest block is that of the sole isospin singlet
of the model, σ. We will not discuss it in detail here as it is
of no interest for our purposes though.
The other meson modes are all isospin triplets. The

polarization function must clearly be diagonal in the isospin
space. Denoting isospin indices as a, b, it can be written as

χðABÞab ðpÞ≡ χðABÞðpÞδab upon a Fourier transform to
momentum space, where the multi-index A now only labels
the field type and the Lorentz index. The polarization
functions χðABÞ can in turn be obtained by evaluating the
right-hand side of Eq. (8), which is equivalent to a one-loop
integral with two external meson legs,

χðABÞðpÞ ¼ 2GðABÞ þ 2iNc

Z
d4k
ð2πÞ4

×
trD½ΓðAÞðkþ pþMÞΓðBÞðkþMÞ�

½ðkþ pÞ2 −M2�ðk2 −M2Þ : ð9Þ

HereGðABÞ is a constant diagonal matrix defined byGðππÞ ¼
−1=ð4GÞ and GðρρÞ

μν ¼ GðaaÞ
μν ¼ gμν=ð4GVÞ. Also, the matri-

ces ΓðAÞ carry information about quantum numbers of the

modes, and read ΓðπÞ ¼ iγ5, Γ
ðρÞ
μ ¼ −γμ and ΓðaÞ

μ ¼ −γμγ5.
The trace in Eq. (9) is to be carried out over the space of
Dirac matrices only. Upon some algebraic manipulation, all
the polarization functions can be expressed in terms of two
basic momentum integrals: the tadpole I1 (6) and the one-
loop integral

I2ðp2Þ≡ −i
Z

d4k
ð2πÞ4

1

½ðkþ pÞ2 −M2�ðk2 −M2Þ : ð10Þ

Sincewe are going to regulate the divergent integrals using a
sharp three-momentum cutoff, we give here also suitable
expressions for both integrals after the frequency integration
has been carried out,

I1 ¼
Z

d3k
ð2πÞ3

1

2ϵk
;

I2ðp2Þ ¼
Z

d3k
ð2πÞ3

1

ϵkð4ϵ2k − p2Þ ; ð11Þ

where ϵk ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
is the fermion quasiparticle

dispersion relation in the vacuum.
We next focus on the ρ-meson polarization function.

Being a symmetric rank-two tensor, this can be decom-
posed into a longitudinal and transverse part,

χðρρÞμν ðpÞ≡ χLðρÞðp2Þpμpν

p2
þ χTðρÞðp2Þ

�
gμν −

pμpν

p2

�
: ð12Þ

The longitudinal piece is constant, χLðρÞðp2Þ ¼ 1=ð2GVÞ,
reflecting the fact that the longitudinal component of the
field ~ρμ does not describe a propagating degree of freedom.
The three physical degrees of freedom of the massive vector
meson are all contained in the transverse part,

χTðρÞðp2Þ ¼ 1

2GV
−
16

3
NcI1 −

8

3
Ncðp2 þ 2M2ÞI2ðp2Þ: ð13Þ

This equation can be used to determine the ρ-meson mass in
the vacuum once all the parameters of the model are known.
The case of the pion and the axial vector meson is

somewhat more complicated [14,15]. Namely, the pion and
the longitudinal component of the ~aμ field carry the same
quantum numbers and thus can mix. The polarization
function in this sector forms a nontrivial 2 × 2 matrix,
represented by the components

χðππÞðpÞ ¼ −
1

2G
þ 8NcI1 þ 4Ncp2I2ðp2Þ;

χðπaÞμ ðpÞ ¼ 8ipμNcMI2ðp2Þ;

χLðaÞðp2Þ ¼ 1

2GV
þ 16NcM2I2ðp2Þ: ð14Þ

The transverse part of ~aμ is characterized by the polariza-
tion function, defined similarly to Eq. (12),

χTðaÞðp2Þ¼ 1

2GV
−
16

3
NcI1−

8

3
Ncðp2−4M2ÞI2ðp2Þ; ð15Þ

which in principle allows us to determine the mass of the
axial vector meson (the a1-meson). Note that the transverse
and longitudinal polarization functions of the vector and
axial vector meson satisfy the sum rule [14]:

χTðaÞðp2Þ − χTðρÞðp2Þ ¼ χLðaÞðp2Þ − χLðρÞðp2Þ: ð16Þ
We are now ready to put together the set of equations that

can be used to fix the parameters of our model. As already
mentioned above, there are altogether four parameters: m,
G,GV and the cutoff Λ. We therefore need four observables
on input, and it is most common to choose three of these as
the chiral condensate hψ̄ψi, pion mass mπ and decay
constant fπ . The fourth one is naturally provided by the
ρ-meson mass mρ. However, for the sake of convenience,
we shall trade the chiral condensate for the constituent
quark mass M. When combined with mπ and mρ, this has
the advantage of giving us direct control over the threshold
for the (unphysical) decay of the ρ-meson into a quark-
antiquark pair, ρ → qq̄, as well as over the threshold for the
(physical but absent at mean-field level) two-pion decay,
ρ → ππ. All four equations needed for parameter fixing can
thus be put together in the following compact form,
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hσi¼ 16GNcMI1 ðchiral condensateÞ;
m

2GM¼ 4Ncm2
πI2ðm2

πÞ
1þ32GVNcM2I2ðm2

πÞ ðpion massÞ;
f2π ¼ mhσi

2Gm2
π

ðpion decay constantÞ;
1

2GV
− hσi

3GM¼ 8
3
Ncðm2

ρþ2M2ÞI2ðm2
ρÞ ðρ-meson massÞ:

ð17Þ

The condition for the pion mass was obtained from the
mixing matrix (14) by integrating out the longitudinal
component of ~aμ, and setting the resulting effective pion
polarization function to zero. Also, both here and in the
condition for the ρ-meson mass, the gap equation (5) was
used to simplify the expressions. This makes it clear that
the pion becomes massless in the chiral limit wherem → 0.
Finally, we note that the condition for the pion decay
constant is not a result of an actual NJL model calculation;
for the sake of simplicity, we used instead the Gell-Mann–
Oakes–Renner relation [10] rewritten in terms of hσi using
Eq. (7). This is expected to give an accurate approximation
to fπ as long as the pion mass is well below the character-
istic scale of spontaneous chiral symmetry breaking in the
QCD vacuum.
As we show below, the tendency towards ρ-meson BEC

depends very sensitively on the vacuum mass mρ. Taking
its physical value, mρ ≈ 775 MeV, would require us to go
to a range of μI way beyond the scope of the NJL model.
We therefore choose a different approach. Unless explicitly
stated otherwise, we will use the following set,

M¼ 300MeV; mπ ¼ 140MeV; fπ ¼ 92.4MeV:

ð18Þ

For illustration purposes, we tune the ρ-meson mass to an
artificially low value, mρ ¼ 500 MeV. This results, by
means of Eq. (17), in the parameter set

G ¼ 2.92 GeV−2; Λ ¼ 817 MeV;

GV ¼ 3.12 GeV−2; m ¼ 3.30 MeV: ð19Þ

B. Pion superfluid phase: Condensates

The presence of the isospin chemical potential μI explic-
itly breaks the SU(2) isospin symmetry down to its Abelian
subgroup Uð1ÞI3 , generated by τ3. When μI > mπ , charged
pions undergo BEC, which can be represented by nonzero
expectation value of (one of) the π1;2 fields. Such a
condensate further breaks the remaining continuous isospin
symmetry. At the same time, the pion condensate sponta-
neously breaks parity. However, there is a discrete Z2

symmetry which remains intact, generated by simultaneous
parity transformation and a Uð1ÞI3 rotation by 180 degrees,
eiπ

τ3
2 ¼ iτ3. Although we cannot prove rigorously that such

modified parity is not spontaneously broken in the pion

superfluid phase, we take this as a plausible starting
point [16].
The unbroken symmetries of the pion superfluid phase

consist of spacetime translations, spatial rotations and the
modified parity. Apart from hπ1;2i, condensates of the
temporal vector fields are also consistent with these sym-
metries and therefore have to be included in our analysis,
namely the neutral vector meson condensate hρ30i and the
charged axial vector meson condensate ha1;20 i.
From the effective action (4), we infer the mean-field

thermodynamic potential density Ω. Remarkably, even in
the presence of the pion and vector condensates, the
determinant of the Dirac operator (3) can still be factorized
analytically in terms of quasiparticle dispersion relations
E�
k , given by

ðE�
k Þ2 ¼ k2 þM2 þ ~μ2 þ ~π2 þ ~a2

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM ~μ − ~π × ~aÞ2 þ k2ð~μ2 þ ~a2Þ

q
: ð20Þ

Here ~π × ~a is understood as π1a20 − π2a10 and ~μ≡ μI=2þ ρ,
where ρ denotes the vector mean field ρ30. Likewise, the
Lorentz index on the axial vector mean field ~a0 is dropped
and it is denoted simply by ~a, in addition to the pion mean
field ~π. The mean-field thermodynamic potential density
then acquires the usual form, consisting of a condensate
contribution and a fermionic quasiparticle contribution,

Ω
V
¼ σ2 þ ~π2

4G
−
~ρ2 þ ~a2

4GV
− 2Nc

X
s¼�

Z
d3k
ð2πÞ3

× ½Es
k þ 2T logð1þ e−βE

s
kÞ�: ð21Þ

How do we in practice determine the expectation values
of the mean fields? A straightforward solution would be to
simultaneously solve a set of gap equations, obtained by
differentiating the thermodynamic potential with respect to
the mean fields. However, this may not be the most
convenient way in case there are several solutions; one
needs to compare their free energies in order to determine the
actual equilibrium state. A common alternative is to look for
the absoluteminimumof the thermodynamic potential. Here
we have to exercise some care though. The vector mean
fields effectively play the role of Lagrangemultipliers for the
corresponding charge densities, and the thermodynamic
potential is thus a negative definite function of their
deviations from equilibrium. (Its second derivatives mea-
sure, up to a sign, the fluctuations of the charge densities.)
Theway out is to first solve the set of gap equations for ~ρ and
~a, treating them as constraints on the charge densities. Once
the solution is plugged back to Ω, it can be subsequently
minimized with respect to σ and ~π as usual.
The analysis is further simplified by noting that the axial

vector condensate is necessarily orthogonal to the pion
condensate in the isospin space. This is easy to understand
within χPT (see Appendix A), but can also be proven
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directly within the NJL model (see Appendix B for details).
In addition, we can always use the symmetry to choose the
orientation of the pion condensate at will. Finding thermo-
dynamic equilibrium therefore boils down to determining
the values of four mean fields, chosen without loss of
generality as σ, π1, ρ30 and a20.
The numerical results for the condensates at zero temper-

ature as a function of μI are shown in Fig. 1.While the results
for the (pseudo)scalar condensates are hardly surprising
[17], wewould like to emphasize the perfect agreement with
χPT regarding the results for the vector condensates; see
Eq. (A8) in Appendix A. The predictions of χPT and their
comparison to the NJL model do not involve any free
parameters, and the agreement therefore confirms the con-
sistency of our approach, including themixing of pions with
axial vector mesons.

C. Pion superfluid phase: Mass spectrum

There are two types of excitations that our mean-field
analysis allows us to address: elementary fermionic (quark)
and collective bosonic (meson). The dispersion relation of
the fermionic quasiparticles is fully determined by the
values of the condensates and Eq. (20). On the microscopic
level, the formation of the pion condensate corresponds to

the pairing of u-quarks and d-antiquarks, at least at high
isospin density where a Fermi sea of quarks is formed. It is
therefore instructive to find the corresponding gap in the
quasiparticle dispersion relation,Δ [18]. This is determined
by the minimization of E−

k with respect to momentum, and
a short calculation yields

Δ ¼ j ~μj~πj −Mj~ajjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~μ2 þ ~a2

p : ð22Þ

Obviously, due to the presence of the axial vector condensate
~a, the quasiparticle gap is not given by the magnitude of the
pion condensate ~π as usual. To assess the difference ofΔ and
j~πj more quantitatively, we note that for our parameter set,
the vector condensates are numerically much smaller
than the chemical potential; hence to first order in ~a and
~ρ we can write

Δ ≈ j~πj
�
1 −

Mj~aj
μj~πj

�
: ð23Þ

Using the χPT prediction for the condensates, Eqs. (A6) and
(A8), we then get the approximate expression

Δ ≈ j~πj
�
1 −

8GVf2π
x4

�
; ð24Þ

where x≡ μI=mπ . For the parameter set (19), we have
8GVf2π ≈ 0.21. The crossover from the BEC phase to the
Fermi sea of quarks occurs roughly at x ≈ 1.6 [19], and at
this point the fermionic quasiparticle gap is reduced just by
about 3% compared to the pion condensate ~π. Moreover, the
two rapidly converge to each other as the chemical potential
further increases.
Next we focus on the meson fluctuations. Their spectrum

is again determined by Eq. (8). However, the functional
derivatives are now to be taken in the equilibrium state that
features all the condensates discussed in the previous
subsection, hσi, hπ1i, hρ30i and ha20i. The explicit expression
for the isospin-singlet polarization function (9) then has to
be appropriately generalized,

χðABÞðpÞ ¼ 2GðABÞ þ iNc

Z
d4k
ð2πÞ4

× trD;f½ΓðAÞSðkþ pÞΓðBÞSðkÞ�; ð25Þ
where the trace is now to be taken over the Dirac and flavor
(isospin) space. The fermion propagator entering the
polarization function includes the chemical potential and
all the condensates,

SðkÞ−1 ≡ kþ 1

2
μIτ3γ0 −m − hσi − ihπ1iτ1γ5

þ hρ30iτ3γ0 þ ha20iτ2γ0γ5: ð26Þ
As in the vacuum phase, the polarization function will

take a block-diagonal form, the structure of the blocks

FIG. 1. The values of various condensates at T ¼ 0 as a
function of the isospin chemical potential. Top panel: σ (dashed)
and π (solid). Bottom panel: ρ (solid) and a (dashed). For
comparison, we show the results both of the NJL model (thick
lines) and of χPT (thin lines). The dimension-one condensates ρ
and a are related to the χPT prediction (A8) by a factor of 4GV .
The numerical results were obtained with the parameter set (19).
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being determined by the unbroken symmetry in the
equilibrium. The 22 physical degrees of freedom contained
in the fields σ, ~π, ~ρμ and ~aμ then split into the following
sectors, differing by their transformation properties under
spatial rotations and the modified parity:

(i) The fσ; π1;2; ρ30; a1;20 g sector: Three propagating
scalar modes, one of which is the NG boson of
the spontaneously broken isospin Uð1ÞI3 invariance.

(ii) The fπ3; ρ1;20 ; a30g sector: One propagating pseudo-
scalar mode of mass μI, corresponding to the
massive NG boson of the isospin symmetry [9,21].

(iii) The fρ3i ; a1;2i g sector: Nine propagating vector
modes.

(iv) The fρ1;2i ; a3i g sector: Nine propagating axial vec-
tor modes.

The detailed mass spectrum of the meson excitations has to
be determined numerically by finding the zeros of the
determinant of the polarization matrix in each sector.
While it is in principle no problem to determine the full

meson spectrum numerically, here we focus on the modes
that are of particular interest to us, that is, pions and ρ-
mesons. First of all, as already said above, one of the
charged pions becomes exactly massless in the pion
superfluid phase as a consequence of the Goldstone
theorem. In addition, the neutral pion acquires a mass
equal to μI; that is, it is the massive NG boson of the isospin
SU(2) symmetry [9]. Both of these are exact properties of
the pion superfluid phase, guaranteed by the isospin
symmetry, which are moreover easy to verify numerically.
Finally, we focus on the lightest vector degree of

freedom, which corresponds to a mixture of the two
charged ρ-meson fields. The dependence of its in-medium
mass on the chemical potential is shown in Fig. 2; the three
curves correspond to different choices of the vacuum mass
mρ while keeping the other physical variables (18) fixed.

The figure reveals two characteristic properties of the
vector mass spectrum.
First of all, just after the onset of pion BEC, the mass

increases as a function of μI. Note that the same behavior
was predicted using effective field theory for charged
vector mesons in two-color QCD [22], although the
evidence from direct lattice simulations of the same theory
seems somewhat inconclusive so far [23]. Second, at
sufficiently high chemical potential, a maximum occurs
and the mass starts dropping again. Provided that the ρ-
meson is sufficiently light in the vacuum, the in-medium
mass drops to zero at some μI within the range of validity of
the NJL model. This is a signature of ρ-meson BEC.
To appreciate how high μI has to be for us to observe ρ-

meson BEC, we plot in Fig. 3 the value of such “critical” μI
as a function of the vacuum massmρ. In QCD, the ρ-meson
mass cannot be tuned freely. The parameter space of the
NJL model is larger than that of QCD though. The way to
think about Fig. 3 is as follows. We start in a region of the
NJL model parameter space where the onset of ρ-meson
BEC is under theoretical control. Then we tune mρ, trying
to extrapolate towards the physical surface within the
parameter space, which matches QCD. It is obvious that
such an extrapolation cannot be done reliably since already
for values of mρ shown in Fig. 3, the critical chemical
potential lies way beyond the NJL model cutoff. However,
we can conclude with confidence that should ρ-meson BEC
occur in QCD at all, it has to set in at a value of μI much
higher than the vacuum ρ-meson mass.

III. LINEAR SIGMA MODEL ANALYSIS

In order to get some insight into the results obtained in
the previous section, we now turn to a much simpler
description of the meson spectrum, based on the linear
sigma model. While this leads to a further extension of the
parameter space, it has the great advantage of incorporating

FIG. 2. Dependence of the in-medium charged ρ-meson mass
on the isospin chemical potential. The solid, dashed and dotted
lines correspond respectively to the vacuum ρ-meson masses of
250 MeV, 400 MeV, and 550 MeV. In each case, the parameters
of the model were adjusted in order to keep the other physical
variables, listed in Eq. (18), fixed.

FIG. 3. Dependence of the critical isospin chemical potential, at
which the mass of the lightest vector degree of freedom drops to
zero, on the vacuum ρ-meson mass. The other physical input
variables were fixed according to Eq. (18).
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the physical degrees of freedom as elementary excitations
rather than bound states of quarks. Since the mean-field
approximation in the NJL model resums all quark loops
but treats the bosonic fields as classical, the tree-level
approximation is the appropriate equivalent in the linear
sigma model.
In order to keep our discussion as simple as possible, we

only include in the model those modes which are of most
interest to us, that is, pions and ρ-mesons. This is reasonable
since we expect that at sufficiently high chemical potentials,
(some of) these will be the lightest degrees of freedom.
Therefore, the model discussed below can be thought of as a
low-energy effective theory for the lightestmodes in the pion
superfluid phase. As such, it cannot possess full chiral
symmetry, not in a linear realization at least. Wewill instead
impose the isospin SU(2) symmetry alone.
To that end, we note that the determinant of the Dirac

operator (3) can be made invariant under gauged isospin
SU(2) transformations, provided that the meson fields are
assigned suitable transformation rules. In this case, the ~ρμ
field plays the role of a gauge field. Noting that such gauge
invariance is broken explicitly only by the quadratic,
condensate part of the action (4), we consider the following
linear sigma model,

L ¼ 1

2
ðDμ~πÞ2 −

1

2
m2

π~π2 −
λ

4
ð~π2Þ2

−
1

4
~Fμν · ~F

μν þ 1

2
m2

ρ~ρμ · ~ρμ: ð27Þ

Here ~Fμν ≡ ∂μ
~~ρν − ∂ν

~~ρμ þ g~~ρμ × ~~ρν is the isospin SU(2)

field-strength tensor and Dμ~π ≡ ∂μ~π þ g~~ρμ × ~π the covar-
iant derivative of the pion field. Again motivated by the
form of the Dirac operator (3), the vector meson field is
shifted inside the gauge-invariant part of the Lagrangian
according to

g~~ρμ ≡ ðgρ1μ; gρ2μ; gρ3μ þ δμ0μIÞ: ð28Þ
The shift does not affect the ρ-meson mass term in Eq. (27).
Altogether, the linear sigma model (27) can be thought of
as having been obtained from the NJL model by integrating
out quarks, dropping the scalar and axial vector degrees of
freedom, and truncating the Lagrangian to operators of
dimension four or less. To what extent the parameters of the
linear sigma model can actually be determined by this
procedure is discussed in Appendix C. Here we will treat g
and λ as free parameters.

A. Ground state

From our discussion of the NJL model, we expect that
once the isospin chemical potential μI exceeds the pion
mass mπ , a pion condensate appears, accompanied by a
temporal vector condensate. The orientation of the pion
condensate can be chosen at will; in this section we will use

the following notation to distinguish the condensates from
the dynamical fields,

π0 ≡ hπ1i; ρ0 ≡ hρ30i: ð29Þ
The condensates are determined by extremization of the
static part of the Lagrangian (27), which leads to a set of
two coupled gap equations,

λπ20 − ðμI þ gρ0Þ2 þm2
π ¼ 0;

gðμI þ gρ0Þπ20 þm2
ρρ0 ¼ 0: ð30Þ

An analytic solution of this set of equations would require
solving a cubic equation. We choose to gain insight by
examining various special cases rather than by writing
down a fully general solution.
First, the special case g ¼ 0 is well known. Namely, the

pion and ρ-meson sectors decouple in this limit.
Consequently, there is no vector condensate, while the pion
condensate acquires the usual value,

π0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2I −m2

π

λ

r
: ð31Þ

Now we switch on the coupling g but focus on the limit of
very high chemical potential μI. Then we can neglect the
mass term in the first of the gap equations (30), which results
in a set of equations that is easy to solve by a series
expansion,

π0 ¼
�
μIm2

ρ

g2
ffiffiffi
λ

p
�

1=3

þOðμ−1=3I Þ;

ρ0 ¼ −
μI
g
þ 1

g

�
λμIm2

ρ

g2

�
1=3

þOðμ−1=3I Þ: ð32Þ

The asymptotic behavior of the pion condensate as a
function of μI is very different in the cases where g is zero
and nonzero. However, it is interesting to note that the
difference disappears once the chemical potential is traded
for the isospin density nI, defined by the derivative of the
static part of the Lagrangian (27) with respect to μI. Namely,
both Eqs. (31) and (32) reduce to

π0 ≈
�
n2I
λ

�
1=6

ð33Þ

to the leading order in powers of nI.

B. Meson spectrum

The meson dispersion relations can be determined by
shifting the fields by the above-found condensates and
subsequently expanding the Lagrangian to the second order
in the field fluctuations. This is a completely routine
procedure and we therefore omit details, merely providing
a summary of the results. For the sake of simplicity we set
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the spatial momentum to zero and just overview the mass
spectrum.

(i) The neutral π sector: The mass of the neutral pion is
found to be μI, in accord with the prediction based
on the exact isospin symmetry.

(ii) The charged π sector: We find one gapless mode as
expected, and one gapped mode with the mass

mπ− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðμI þ gρ0Þ2 − 2m2

π

q
; ð34Þ

where ρ0 is determined implicitly by Eq. (30).
(iii) The neutral ρ sector: The mass of neutral ρ equals

mρ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ þ g2π20

q
; ð35Þ

where π0 is likewise determined by Eq. (30).
(iv) The charged ρ sector: We find two gapped modes

with masses given by

mρ� ¼
�
m2

ρþðμIþgρ0Þ2þ
1

2
g2π20

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
g4π40þ2ðμIþgρ0Þ2ð2m2

ρþg2π20Þ
r �

1=2
:

ð36Þ
We would now like to see to what extent this result can
reproduce the behavior we found using the NJL model; see
Fig. 2. We first focus on the behavior of the lightest vector
mode just after the onset of pion BEC. To that end, we
define the nonrelativistic chemical potential for the charged
pion as

δμI ≡ μI −mπ: ð37Þ
Similarly to the asymptotic solution (32) at very high μI, it
is now possible to solve the gap equations (30) by a series
expansion in δμI. The result reads

π0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mπδμI

λþ 2g2m2
π

m2
ρ

vuut þOðδμ3=2I Þ;

ρ0 ¼ −
δμI

1þ λm2
ρ

2g2m2
π

þOðδμ2I Þ: ð38Þ

Inserting this back into Eq. (36), we find that just after the
onset of pion BEC, the vector meson mass equals

mρþ ≈mρ −mπ þ δμI

g2mπ
2mρ

− λ

λþ 2g2m2
π

m2
ρ

: ð39Þ

We observe that the vector meson mass increases with μI
for μI ≳mπ, just as in Fig. 2, provided that the gauge
coupling g is strong enough.

Next, we shift our attention to the region of high chemical
potentials. It is not a priori obvious fromEq. (36)whether or
not the lightestmassmρþ drops to zero at sufficiently high μI,
which would signal BEC. However, it is easy to see that this
indeed does happen when μI is so high that the following
condition is satisfied [24],

ðμI þ gρ0Þ2 ¼ m2
ρ: ð40Þ

Solving this together with the gap equations (30), we find
that themass of the lightest vectormesonmode drops to zero
for arbitrary (finite and nonzero) values of the model
parameters at a critical chemical potential determined by

μI;crit ¼ mρ þ
g2

λ

�
mρ −

m2
π

mρ

�
: ð41Þ

This is not so surprising, for a nonzero expectationvalue of a
non-Abelian charge density (in this case isospin) is known to
act as a chemical potential for BEC of the associated gauge
bosons [25].
Equation (41) makes it clear that the critical chemical

potential is always larger than the vacuum massmρ (as long
asmρ > mπ). Moreover, by tuning the ratio g2=λ suitably, it
can in principle be made arbitrarily large. Regarding
the dependence of the linear sigma model predictions on
the unknown parameters g and λ, it is useful to note that
all the in-medium meson masses depend only on the
vacuum masses mπ and mρ, the chemical potential μI,
and the ratio g2=λ. Together with Eq. (41), this implies that
the dependence of the in-medium masses on μI within the
linear sigma model is completely fixed once the values of
mπ , mρ and μI;crit are given.

IV. CONCLUSIONS AND DISCUSSION

We have investigated the possibility that vector mesons
undergo BEC in QCD at sufficiently high isospin density
and zero temperature. Using a combination of arguments
based on the NJL and the linear sigma model, we
concluded that condensation of ρ-mesons is disfavored
by the preformed condensate of charged pions. As a
consequence, if present at all, ρ-meson BEC is postponed
to much higher chemical potentials than what would follow
from a naive estimate based on the vacuum mass mρ.
We were able to determine the critical chemical potential

for ρ-meson BEC for model parameter sets corresponding
to artificially light ρ-mesons. Unfortunately, an extrapola-
tion to the physical ρ-meson mass is not possible within our
model setup since it leads far beyond the range of validity
of the effective models. Ultimately, the question has to be
settled by direct lattice simulation, which is possible at least
in principle since QCD with nonzero isospin chemical
potential does not suffer from the sign problem [1].
Finally, let us make a comment regarding the stability of

the ρ-mesons in the pion superfluid medium. While in the
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vacuum, ρ-mesons decay predominantly into two pions (as
long as mρ > 2mπ), the possible decay channels in the pion
superfluid phase are constrained by the modified kinematics
and by the modified parity invariance. As a consequence, a
charged ρ-meson can decay into one neutral pion and one
charged pion, but not into two charged pions. (The latter is
not forbidden by conservation of electric charge or isospin,
which is spontaneously broken by the pion condensate.)
Since the mass of the neutral pion equals μI, it follows that at
sufficiently high μI, the lightest charged ρ-meson will be
protected against decay into two pions by kinematics.
Barring the emergence of new decay channels in the super-
fluid medium, we can make the model-independent con-
clusion that the lightest charged ρ-mesonwill become stable;
hence it makes sense to speak of its BEC in the first place.
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APPENDIX A: CHIRAL PERTURBATION
THEORY TREATMENT

In this appendixwe briefly review how the condensates in
the pion superfluid phase, discussed in Sec. II B, can be
addressed using χPT. The pseudo-NG boson degrees of
freedomof χPTare encoded in a unitarymatrix variableΣ, in
terms of which the leading-order χPT Lagrangian reads [1]

L ¼ f2π
4
tr½DμΣ†DμΣþm2

πðΣþ Σ†Þ�: ðA1Þ

Under a chiral transformation, defined by the left- and right-
handed unitary matrices UL and UR, the field Σ transforms
asΣ → ULΣU

†
R. Therefore, it couples to backgroundmatrix

gauge fields Lμ and Rμ of the chiral group via the covariant
derivative

DμΣ≡ ∂μΣ − iLμΣþ iΣRμ: ðA2Þ

1. Ground state at nonzero isospin density

Introducing the isospin chemical potential μI is equiv-
alent to setting the background fields Lμ and Rμ to

Lν ¼ Rν ¼
1

2
δν0μIτ3: ðA3Þ

Likewise, the 2 × 2 unitary matrix Σ can always be
decomposed into a linear combination of the unit and
Pauli matrices; the presence of the scalar and pseudoscalar

condensates hσi and hπ1i then corresponds to the param-
eterization

Σ ¼ cos θ þ iτ1 sin θ ðA4Þ
with coordinate-independent angle θ. This angle is found
by minimization of the dimensionless potential

VðθÞ ¼ −
L

f2πm2
π
¼ −

1

2
x2sin2θ − cos θ; ðA5Þ

where we introduced the dimensionless parameter
x≡ μI=mπ . A pion condensate appears for x > 1 and is
given implicitly by cos θ ¼ 1=x2. This corresponds to the
vacuum expectation value

hΣi ¼ 1
1

x2
þ iτ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

x4

r
; ðA6Þ

which determines the dependence of the scalar and pseu-
doscalar condensates on μI up to an overall factor.

2. Vector and axial vector condensates

The pion condensate, defining the superfluid ground state,
induces secondary condensates, admitted by the unbroken
symmetry. These are in particular the vector and axial vector
condensate. Within χPT, they can be calculated by intro-

ducing additional infinitesimal background fields ~Vμ and ~Aμ

such that

Lμ ¼
1

2
ð~Vμ − ~AμÞ · ~τ; Rμ ¼

1

2
ð~Vμ þ ~AμÞ · ~τ: ðA7Þ

The condensates can be obtained by taking a derivative of the
Lagrangian with respect to the backgrounds fields, evaluated
in the ground state. A straightforward manipulation leads to

hψ̄ τa
2
γ0ψi≡ ∂L

∂Va
0

¼ δa3mπf2πx

�
1 −

1

x4

�
;

hψ̄ τa
2
γ0γ5ψi≡ ∂L

∂Aa
0

¼ δa2mπf2π
1

x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

x4

r
: ðA8Þ

These expressions completely fix the dependence of the
vector and axial vector condensates in the pion superfluid
phase on the chemical potential. In the vacuum phase (x ≤ 1)
both condensates are zero.

APPENDIX B: ORTHOGONALITY OF THE PION
AND AXIAL VECTOR CONDENSATES

In Sec. II B we claimed that the axial vector condensate
is necessarily orthogonal to the pion condensate in isospin
space. This fact was used to simplify the numerical
calculation. In this appendix we give a proof of this claim
within the NJL model. First, we write down the gap
equations for σ and ~π derived from the thermodynamic
potential (21),
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σ − 4GNc

X
s¼�

Z
d3k
ð2πÞ3

1

Es
k

�
M þ s ~μ

M ~μ − ~π × ~affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM ~μ − ~π × ~aÞ2 þ k2ð ~μ2 þ ~a2Þ

p
�
½1 − 2fðEs

kÞ� ¼ 0;

π1 − 4GNc

X
s¼�

Z
d3k
ð2πÞ3

1

Es
k

�
π1 − sa20

M ~μ − ~π × ~affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM ~μ − ~π × ~aÞ2 þ k2ð ~μ2 þ ~a2Þ

p
�
½1 − 2fðEs

kÞ� ¼ 0;

π2 − 4GNc

X
s¼�

Z
d3k
ð2πÞ3

1

Es
k

�
π2 þ sa10

M ~μ − ~π × ~affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM ~μ − ~π × ~aÞ2 þ k2ð ~μ2 þ ~a2Þ

p
�
½1 − 2fðEs

kÞ� ¼ 0; ðB1Þ

where fðxÞ≡ 1=½1þ exp ðx=TÞ� is the Fermi-Dirac distribution. If we introduce the abbreviations,

x≡ 1 − 4GNc

X
s¼�

Z
d3k
ð2πÞ3

1

Es
k

½1 − 2fðEs
kÞ�;

y≡ 4GNc

X
s¼�

Z
d3k
ð2πÞ3

s
Es
k

M ~μ − ~π × ~affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM ~μ − ~π × ~aÞ2 þ k2ð ~μ2 þ ~a2Þ

p ½1 − 2fðEs
kÞ�; ðB2Þ

the above gap equations can be cast as

xM −m − y ~μ ¼ 0;

�
π1 a20
π2 −a10

��
x

y

�
¼ 0: ðB3Þ

From the first line in Eq. (B3) we can conclude that x and y
cannot vanish simultaneously as long as the current quark
mass m is nonzero. Then the second line requires the
determinant of the coefficient matrix to be zero which
implies ~π · ~a ¼ 0. This orthogonality of the pion and axial
vector condensates in the isospin space is consistent with
the expectation from the χPT.

APPENDIX C: MATCHING THE NJL AND
LINEAR SIGMA MODELS

The linear sigma model analyzed in Sec. III was
motivated by the NJL model, yet its couplings were treated
as free parameters. In this appendix we wish to take a closer
look at the extent to which the linear sigma model
parameters can be determined from the NJL model.
As far as the correlators of the meson interpolating fields

are concerned, the bosonized action (4) is equivalent to the
original NJL model (1). The corresponding approximate
linear sigma model can then be obtained by expanding the
action in powers of the meson fields and their derivatives,
and keeping only operators with canonical dimension four
or less.
The derivative expansion of the logarithm of the Dirac

operator D is most conveniently carried out using the
method of covariant symbols [26]. First we drop the scalar
and axial vector fields in order to keep just the field content
of the model analyzed in Sec. III. Using the fact that the
determinant of the Dirac operator D is gauge invariant, we
can actually keep the pion field only; the dependence on ~ρμ
can subsequently be restored by imposing the gauge
invariance. This leads to the linear sigma model Lagrangian

L ¼ d1ðDμ~πÞ2 þ d2~π2 þ d3ð~π2Þ2

þ d4 ~Fμν · ~F
μν þ d5~ρμ · ~ρμ; ðC1Þ

where the effective couplings are given by

d1¼ 2NcI2; d3¼−2NcI2; d5 ¼
1

4GV
;

d2¼−
1

4G
þ4NcI1; d4¼−

Nc

6

�
I2þ

1

2
M2I3

�
: ðC2Þ

The coefficients In stand for a set of Euclidean loop
integrals, generalizing Eqs. (6) and (10),

In ≡
Z

d4kE
ð2πÞ4

1

ðk2E þM2Þn : ðC3Þ

Those with n ≤ 2 are ultraviolet divergent and thus require
an explicit cutoff. Integration by parts shows that the
integrals satisfy the recursive relation

Inþ1 ¼
�
1 −

2

n

�
In
M2

: ðC4Þ

Once we know the coefficients in Eq. (C1) in terms of the
NJL model couplings, it is a matter of a simple field
redefinition to match this Lagrangian to that of Eq. (27),
leading to the matching relations

m2
π ¼ −

d2
d1

; m2
ρ ¼ −

d5
8d4

;

λ ¼ −
d3
d21

; g ¼ 1

2
ffiffiffiffiffiffiffiffi
−d4

p : ðC5Þ

Unfortunately, it turns out that the predictions of such a
matched linear sigma model can be far from those of the
original NJL model already in the vacuum, especially
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regarding the ρ-meson mass. It is therefore hopeless to use
such a model to gain a quantitative insight into the spectrum
of mesons in the pion superfluid phase.
The source of the problem is twofold. First, the couplings

di of the Lagrangian (C1) suffer from an ambiguity which
arises from the ultraviolet divergence of the momentum
integrals involved. This can be seen already from the fact
that the coupling d4 differs from what one would expect
based on the transverse part of the ρ-meson polarization
tensor (13). As a matter of fact, naive application of the
recursive relation (C4) would suggest that I3 ¼ 0, which
would remove the discrepancy. Of course, the integral I3
itself is ultraviolet finite and by its definition (C3) nonzero
and positive. This is not a problem of the method of
covariant symbols or even of the effective Lagrangian (C1).
Namely the same ambiguity affects the meson polarization
functions in the NJL model; it is well known that the
ultraviolet cutoff is a part of the definition of the model.
The second problem is the truncation of the expansion in

powers of derivatives, wherein only the leading, two-
derivative kinetic term is kept. To study the effect of this
truncation, we consider the pole conditions for the pion and
ρ-meson mass, given in Eq. (17). Modulo the ambiguity
just discussed, expanding the meson polarization functions
to first order in squared momentum and solving for the pole
should give the same mass spectrum as the linear sigma
model (C1). We can then subsequently improve upon the
linear sigma model by adding higher order terms to the
series expansion of the meson polarization functions. (This
is equivalent to adding bilinear terms with four or more
derivatives to the linear sigma model Lagrangian.)
The result of this procedure is shown in Fig. 4.

Obviously, the linear sigma model gives an accurate
prediction for the pion mass unless the quarks are very
heavy. Moreover, the upper plot in Fig. 4 confirms numeri-
cally the Gell-Mann–Oakes–Renner relation: the squared
pion mass is proportional to the current quark mass.
However, the prediction for the ρ-meson mass is much
worse. This is natural since the ρ-meson is heavier than the
pion and thus the series expansion of its polarization tensor
converges more slowly at the pole. While the values shown

in the lower plot of Fig. 4 exhibit a still relatively acceptable
error of roughly 20%, for the physical ρ-meson mass the
matched linear sigma model clearly cannot be taken
quantitatively seriously. This is the reason why in the
discussion in Sec. III, we prefer to treat the couplings λ and
g as free parameters; using Eq. (C5) instead might give a
false impression of having the linear sigma model pre-
dictions under numerical control.
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