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We compute the transport coefficients, namely, the coefficients of shear and bulk viscosity, as well as
thermal conductivity, for hot and dense quark matter. The calculations are performed within the Nambu–
Jona-Lasinio (NJL) model. The estimation of the transport coefficients is made using a quasiparticle
approach of solving the Boltzmann kinetic equation within the relaxation time approximation. The transition
rates are calculated in a manifestly covariant manner to estimate the thermal-averaged cross sections for
quark-quark and quark-antiquark scattering. The calculations are performed for finite chemical potential
also. Within the parameters of the model, the ratio of shear viscosity to entropy density has a minimum at the
Mott transition temperature. At vanishing chemical potential, the ratio of bulk viscosity to entropy density, on
the other hand, decreases with temperature, with a sharp decrease near the critical temperature, and vanishes
beyond it. At finite chemical potential, however, it increases slowly with temperature beyond the Mott
temperature. The coefficient of thermal conductivity also shows a minimum at the critical temperature.
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I. INTRODUCTION

Transport properties of hot and dense matter have
attracted a lot of attention recently, in the context of
relativistic heavy-ion collisions [1], as well as in astrophysi-
cal situations such as the early Universe [2] and perhaps
neutron stars [3]. These properties enter as dissipative
coefficients in the hydrodynamic evolution and therefore
become an important ingredient for the near equilibrium
evolution of the thermodynamic system. In the context of
relativistic heavy-ion collisions, the matter produced at the
core of the fireball is hot enough to have the quarks and
gluons as the relevant degrees of freedom [4] that behaves
like a strongly interacting liquid. This liquid with a small
shear viscosity expands, cools down, and undergoes a phase
transition to a hadronic phase to finally free-stream to the
detector. One of the successful descriptions of this evolution
is through relativistic hydrodynamics.A finite but very small
shear viscosity to entropy ratio (η=s) is necessary to explain
the elliptic flow data [5,6]. The smallness of η=s is
significant in connection with the conjectured lower
bound η=s ¼ 1=4π, the Kovtun-Son-Starinets (KSS) bound
obtained in the context of AdS/CFT correspondence [7].
The other viscous coefficient, the coefficient of bulk

viscosity (ζ), has recently been realized to be important to
be included in the dissipative hydrodynamics describing
the evolution of quark gluon plasma (QGP) subsequent to a
heavy-ion collision. This is because the bulk viscosity
scales as the trace of the energy-momentum tensor and

lattice simulations indicate that the trace of the energy-
momentum tensor can be large near the transition temper-
ature [8]. During the expansion of the QGP fireball, when
the temperature approaches the critical temperature Tc, the
coefficient of bulk viscosity can be large and give rise to
different interesting phenomena like the phenomenon of
cavitation when the pressure vanishes and the hydrody-
namic description of the evolution breaks down [9]. Indeed,
there have been quite a few attempts to include the effects
of bulk viscosity on particle spectra and flow coefficients
[10–12]. Effects of interplay of shear and bulk viscosity on
elliptic flow were investigated in [13–15].
The transport coefficient that also plays an important role

for hydrodynamic evolution at finite chemical potential is the
thermal conductivity [16–18]. The effects of thermal con-
ductivity in the relativistic hydrodynamics in the context of
quark gluon plasma have only recently been studied [18,19].
It is, therefore, desirable that these transport coefficients

be understood and derived rigorously within a microscopic
theory. They are not only interesting for their use in
hydrodynamic simulations for the interpretation of data
generated in heavy-ion collision experiments, but also, in
some cases, through their dependence on system parameters
like temperature or chemical potential that can be indicative
of a phase transition. For example, inmany physical systems
the coefficient of shear viscosity is a minimum at the phase
transition point. In principle, these transport coefficients can
be estimated directly within QCD using the Kubo formu-
lation [20]. However, given that QCD is strongly coupled for
the energies accessible in heavy-ion collision experiments,
the task becomes complicated. Calculations with first-
principle lattice simulations at finite chemical potential

*paramita@phy.iitb.ac.in
†guru@theory.tifr.res.in
‡hm@prl.res.in

PHYSICAL REVIEW D 94, 094002 (2016)

2470-0010=2016=94(9)=094002(19) 094002-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.094002
http://dx.doi.org/10.1103/PhysRevD.94.094002
http://dx.doi.org/10.1103/PhysRevD.94.094002
http://dx.doi.org/10.1103/PhysRevD.94.094002


are also challenging and limited only to the equilibrium
properties at small baryon chemical potential [8,21]. There
have been numerous attempts to estimate shear viscosity
within various effective models [22–28] involving different
approximation schemes like relaxation time approximation,
Chapman-Enskog, and the Green Kubo formalism, apart
from weak coupling QCD [29]. Most of these calculations
have been performed with vanishing chemical potentials.
There have been attempts to estimate the transport coef-
ficients using transport codes. The ratio, η=s, in the hadronic
phase has been estimated using ultrarelativistic quantum
molecular dynamics (UrQMD) transport in Ref. [30] while
the bulk and shear viscosity coefficients have been estimated
using the parton hadron string dynamics (PHSD) transport
codewithin a relaxation time approximation [31]. The rise of
the bulk viscosity coefficient near the transition temperature
has been observed in various effective models like chiral
perturbation theory [32], quasiparticle models [33], the
linear sigma model [24], and the Nambu–Jona-Lasinio
model [34]. Most of these calculations were performed at
vanishing chemical potentials. There have been attempts to
compute bulk and shear viscosity at finite baryon densities.
The ratio η=s at finite μwas investigated using a relativistic
Boltzmann equation for a pion nucleon system using a
phenomenological scattering amplitude [35,36]. Bulk vis-
cosity at finite chemical potential has also been estimated
with low energy theorems of QCD [37].
The coefficient of thermal conductivity (λ) for strongly

interacting matter has been estimated in different theoreti-
cal models. These include using kinetic theory for strongly
interacting systems [38], chiral perturbation theory with a
pion gas [39], the Chapman-Enskog approximation [40],
the Green-Kubo approach within the NJL model [41], and
the instanton liquid model [42]. The results, however, vary
over a wide range of values, with λ ¼ 0.008 GeV−2 as in
Ref. [39] to λ ∼ 10 GeV−2 as in Ref. [43] for a range of
temperatures (0.12 GeV < T < 0.17 GeV), which has
been nicely tabulated in Ref. [44]. Thermal conductivity
has also been calculated for vanishing baryon density but
with a conserved pion number in a pionic medium, which
can be relevant for a heavy-ion collision system between
kinetic and chemical freeze-out [44,45].
We shall here attempt to estimate these transport coef-

ficients within the NJL model. Estimations of the viscosity
coefficients were made in Refs. [26,34,43] for the NJL
model using a quasiparticle approach with a Boltzmann
kinetic equation. We follow a similar approach of using the
Boltzmann equation within a relaxation time approxima-
tion. We include here the finite chemical potential effects
[34] and also estimate the coefficient of thermal conduc-
tivity along with the coefficients of shear and bulk
viscosity. We mention here that both the medium depend-
ence of the mass and the chemical potential bring out
nontrivial contributions to the expressions for the viscosity
coefficients, particularly for the bulk viscosity. In Ref. [46],

the authors discussed three different Ansätze for the bulk
viscosity expression in the quasiparticle approach when
there are mean fields in the dynamical system and medium-
dependentmasses. Thiswas put on firmer theoretical ground
in Ref. [47]. The crucial observation made here was to
realize that in the ideal hydrodynamics, the entropy per
baryon remains constant, which restricts the variations of
system parameters like temperature and chemical potential
while calculating first-order deviations. The expressions for
the viscosities turned out to be a natural generalization of
those at zero baryon density and are explicitly positive
definite, as the dissipative coefficients should be. We shall
use here a similar approach to derive the expressions for the
transport coefficients within the NJL model.
We organize the present work as follows. In the follow-

ing section we discuss the two-flavor NJL model thermo-
dynamics. We also recapitulate the medium dependence of
masses of the pion and sigma mesons here as these are
needed to estimate the scattering amplitudes of the quarks
and antiquarks through meson exchange to estimate the
relaxation time. In Sec. III, we discuss the expressions for
the shear and bulk viscosity within the relaxation time
approximation. In the next subsection we give here the
explicit calculations for the estimation of transition rates at
finite temperature and density so as to estimate the
medium-averaged relaxation time. In Sec. IV, we give
the results. Finally, in Sec. V we summarize our findings
and give a possible outlook.

II. THERMODYNAMICS OF TWO-FLAVOR NJL
MODEL AND MESON MASSES

We summarize here the thermodynamics of the simplest
NJL model with two flavors with a four-point interaction in
the scalar and pseudoscalar channels, with the Lagrangian
given as

L ¼ ψ̄ðiγμ∂μ −m0Þψ − Gððψ̄ψÞ2 þ ðψ̄iγ5τaψÞ2Þ: ð1Þ

Here, ψ is the doublet of u and d quarks. We also have
assumed isospin symmetry and have taken the same
(current) mass m0 for both flavors. Using the standard
methods of thermal field theory, one can write down the
thermodynamic potential within a mean field approxima-
tion corresponding to the Lagrangian Eq. (1) as [48]

Ωðβ; μÞ ¼ −
2NcNf

ð2πÞ3
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM2
p

dk

−
2NcNf

ð2πÞ3β
Z

dkðlnð1þ expð−βðE − μÞÞ

þ lnð1þ expð−βðEþ μÞÞÞ þ ðM −m0Þ2
4G

; ð2Þ

where β is the inverse of the temperature, μ is the quark
chemical potential, and EðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
is the on-shell
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single-particle energy with “constituent” quark mass M.
The constituent quark mass satisfies the self-consistent gap
equation

M¼m0−2Gρs

¼m0þ
2NcNf

ð2πÞ3
Z

M
EðkÞð1−f−ðk;β;μÞ−fþðk;β;μÞÞdk;

ð3Þ

where we have introduced the scalar density ρs, given as

ρs ¼ hψ̄ψi ¼ −
2NcNf

ð2πÞ3
Z

dk
M

EðkÞ ð1 − f−ðkÞ − fþðkÞÞ:

ð4Þ

In the above f∓ðk; β; μÞ ¼ ðexpðβðE ∓ μÞÞ þ 1Þ−1 are the
fermion distribution functions for quarks and antiquarks,
respectively, with a constituent mass M and are related to
the quark number density in the standard way:

ρ ¼ 2NcNf

ð2πÞ3
Z

dk½f−ðk; β; μÞ − fþðk; β; μÞ�: ð5Þ

Within random phase approximation (RPA), the meson
propagator can be calculated as [26]

DMðω;pÞ ¼
2iG

1 − 2GΠMðω;pÞ
; ð6Þ

where M ¼ σ, π for scalar and pseudoscalar channel
mesons, respectively, and ΠM is the polarization function
in the corresponding mesonic channel. The mass of the
meson is extracted from the pole position of the meson
propagator at zero momentum, specified by the equation

1 − 2GReΠMðmM; 0Þ ¼ 0: ð7Þ

Here, we have chosen to define the mass of the unbound
resonance by the real part of ΠM. For bound state solutions,
i.e., for ω ¼ mM < 2M, the polarization function is always
real. For mM > 2M, ΠM has an imaginary part that is
related to the decay width of the resonance as ΓM ¼
ImΠMðmM; 0Þ=mM.
Explicitly,

Ππðmπ; 0Þ ¼ I1 −m2
πI2ðmπ; 0Þ ð8Þ

Πσðmσ; 0Þ ¼ I1 − ðm2
σ − 2M2ÞI2ðmσÞ; ð9Þ

where

I1 ¼
2NcNf

ð2πÞ3
Z

dq
Eq

ð1 − f−ðq; β; μÞ − fþðq; β; μÞÞ ð10Þ

and

I2ðmπ=σÞ ¼
2NcNf

ð2πÞ3
Z

dq
Eq

ð1 − f−ðq; β; μÞ − fþðq; β; μÞÞ

×
1

m2
π=σ − 4EðqÞ2 ; ð11Þ

so that the masses of the pion and sigma mesons are given,
using the gap equation Eq. (3), by

m0

M
þ 2Gm2

πReI2ðmπÞ ¼ 0 ð12Þ

for pions and

m0

M
þ 2Gðm2

σ − 4M2ÞReI2ðmσÞ ¼ 0 ð13Þ

for the mass of the sigma meson. Explicitly, the real and the
imaginary part of ΠMðω; 0Þ are given as

ReΠMðω; 0Þ ¼
2NcNf

ð2πÞ3
Z

dq
1

Eq

×

�
E2
q − ϵM=4

E2
q − ω2=4

ð1 − f−ðEqÞ − fþðEqÞÞ
�

ð14Þ

ImΠMðω; 0Þ ¼ θðω2 − 4m2ÞNcNf

8πω
ðω2 − ϵ2MÞ

× ð1 − f−ðωÞ − fþðωÞÞ: ð15Þ

In the above, f∓ðxÞ ¼ ð1þ expðβðx ∓ μÞÞ−1 is the Fermi
distribution function for particles and antiparticles. It is
easy to see that the meson propagators near the pole can be
approximated by D−1

M ð ffiffiffi
s

p
;0Þ∼ ðs− ðmM− iΓM=2Þ2Þ, with

mM being the solution of Eq. (7) and ΓM ¼ ImΠM=mM
[49]. This will have interesting consequences while con-
sidering quark scattering through exchange of mesons to
estimate the relaxation time.
We might note here that, within the RPA approximation

for the masses and widths of the mesons as above, the
sigma meson has only a small-width quark-antiquark decay
at low temperatures and thus does not describe the scalar
f0ð500Þ meson, which should have a large pi-pi width that
should be dominant for low temperature. This is a limita-
tion of the RPA method. In principle one can go beyond the
RPA to include mesonic fluctuations [50] to include the
low-temperature pionic width for the sigma meson. In what
follows, however, we shall calculate the transport coeffi-
cients due to quark scattering only through meson
exchange with the meson propagators calculated within
the RPA approximations in the NJL model, where the
elementary degrees of freedom are quarks.
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In the following we look into the Boltzmann equation to
derive the transport coefficients in terms of the relaxa-
tion time.

III. BOLTZMANN EQUATION IN RELAXATION
TIME APPROXIMATION AND TRANSPORT

COEFFICIENTS

Within a quasiparticle approximation, a kinetic theory
treatment for the calculation of transport coefficients can be
a reasonable approximation that we shall be following,
similar to that in Refs. [22,24,29,51,52]. The plasma can be
described by a phase space density for each species of
particle. Near equilibrium, the distribution function can be
expanded about a local equilibrium distribution function for
the quarks as

fðx;p; tÞ ¼ f0ðx;p; tÞ þ f1ðx;p; tÞ;

where the local equilibrium distribution function f0 is
given as

f0ðx;p; tÞ ¼ ½exp ðβðxÞðuνðxÞpν ∓ μðxÞÞÞ þ 1�−1: ð16Þ

Here, uμ ¼ γuð1;uÞ is the flow four-velocity, where
γu ¼ ð1 − u2Þ1=2, and μ is the chemical potential associated
with a conserved charge like baryon number. Further,
Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
with a mass M, which in general is

medium dependent. The departure from equilibrium is
described by the Boltzmann equation

dfa
dt

¼ ∂fa
∂t þ va · ∇fa − ∇Ea · ∇pfa ¼ −Ca½f�; ð17Þ

where we have introduced the species index a on the
distribution function. With a medium-dependent mass,
the last term on the left-hand side can be written
as ðM=EaÞð∂M=∂xiÞð∂fa=∂piÞ and the Eq. (17) can be
recast as

dfa
dt

¼ pμ

Ea
∂μfa −

M
Ea

∂M
∂xi

∂fa
∂pi ¼ −Ca½f�: ð18Þ

To study the transport coefficients, one is interested in a
small departure from equilibrium in the hydrodynamic limit
of slow spatial and temporal variations. In the collision term
on the right-hand side we shall be limiting ourselves to
2 → 2 scatterings only. Within the relaxation time approxi-
mation, in the collision term for species a, all the distri-
bution functions are given by the equilibrium distribution
function except the distribution function for particle a.
The collision term, to first order in the deviation from the
equilibrium function, will then be proportional to f1, given
the fact that Ca½f0� ¼ 0 by local detailed balance. In that
case, the collision term is given by

C½f� ¼ −f1a=τa; ð19Þ

where τa, the relaxation time for particle a, in general is a
function of energy. However, one can define a mean
relaxation time by taking a thermal average of the scattering
cross sections, which we shall spell out in the following
subsection.
We shall next use the Boltzmann equation to calculate

the transport coefficients in this relaxation time approxi-
mation. The departure from equilibrium for the distribution
function is used to estimate the departure of the equilibrium
energy-momentum tensor to define the transport coeffi-
cients. Let us consider now the structure of the energy-
momentum tensor Tμν and of the quark current Jμ. Tμν and
Jμ can be written in terms of the chemical potential,
temperature, and four-velocity uμ as

Tμν ¼ −pgμν þ wuμuν þ ΔTμν ð20Þ

and

Jμ ¼ nuμ þ ΔJμ; ð21Þ

where pðT; μÞ is the pressure, ϵ is the energy density,
w ¼ ϵþ p is the enthalpy, and uμ is the four-velocity of the
fluid. The dissipative parts are given by

ΔTμν ¼ η

�
Dμuν þDνuμ þ 2

3
Δμν∂αuα

�
− ζ∂αuα ð22Þ

and

ΔJμ ¼ λ

�
nT
w

�
2

Dμ

�
μ

T

�
; ð23Þ

where η, ζ, and λ are the coefficients of shear viscosity, bulk
viscosity, and thermal conductivity, respectively. Further, in
the above, Dμ ¼ ∂μ − uμuα∂α is the derivative normal to
uμ. It is useful to note that, in the fluid rest frame that will
be used to calculate the transport coefficients, D0 ¼ 0
and Di ¼ ∂i.
The energy-momentum tensor Tμν and the current Jμ can

also be written in terms of the distribution functions as

Tμν ¼
X
a

Z
dΓa p

μpν

Ea
fa þ gμνV ð24Þ

and

Jμ ¼
Z X

a

ta

Z
dΓa

pμ

Ea
fa; ð25Þ

where we have introduced the notations dΓa ¼ ga
d3p
ð2πÞ3, ga

being the degeneracy for species a, and pμ ¼ ðEa;pÞ, with
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Ea ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

a

p
. Further, V is the mean field or the

“vacuum” energy density contribution in terms of the
mean field giving a medium-dependent mass and ta ¼ �1
for particles and antiparticles, respectively. The nonequi-
librium part of the distribution function is used to
calculate the departure from equilibrium of the energy-
momentum tensor. The variation of the spatial part of
Eq. (24) is given as

δTij ¼
X
a

Z
dΓa p

ipj

Ea

�
δfa − f0a

δEa

Ea

�
− δijδV; ð26Þ

where the variation of the quasiparticle energy is also
included to take into account the medium dependence of
the mass. The deviation of the distribution function, in
general, will have departure from the equilibrium form. In
addition it can also change due to the change in the single-
particle energy from its equilibrium value. Defining the
equilibrium values of T, μ, and E with a superscript 0, we
can write

δfa ¼ faðEa; T; μÞ − f0aðE0
a; T0; μ0Þ

¼ δ ~fa −
δEa

T
ðf0að1 − f0aÞÞ; ð27Þ

where we have defined δ ~fa ¼ faðEa;T;μÞ−faðEa;T0;μ0Þ
and have retained up to the linear term in δEa. Let us note
that it is δ ~fa that determines the transport coefficient, as it
is defined with the nonequilibrium energy, which enters in
the energy-momentum conservation in the collision term
of the Boltzmann equation [47].
Similarly, using the gap equation, the deviations in the

vacuum energy term in Eq. (24) are given by

δV ¼
X
a

Z
dΓa

M
Ea

faδM: ð28Þ

This leads to

δTij ¼
X
a

Z
dΓa

pipj

Ea δ ~f

−
X
a

Z
dΓa

M
Ea

fa
�
1þ p2ð1 − faÞ

3EaT
þ p2

3E2
a

�
δM;

ð29Þ

where we have replaced pipj ∼ 1=3ðp2Þ and for the terms
involving δEa, we have used δEa ¼ ðM=EaÞδM. The terms
involving δM in Eq. (29) can be shown to vanish by doing
an integration by parts, leading to

ΔTij ¼
X
a

Z
dΓa

pipj

Ea
δ ~f: ð30Þ

In a similar manner, it can be shown that the departure of
the quark current due to the nonequilibrium part of the
distribution function can be written as

ΔJi ¼
X
a

ta

Z
dΓa p

i

Ea
δ ~f: ð31Þ

Next, we compute δ ~fa ≡ f1ðx; pÞ using the Boltzmann
equation, Eq. (18), in the relaxation time approximation.
This is then used to calculate nonequilibrium parts of the
energy-momentum tensor and the quark current to finally
relate them to the transport equations using Eqs. (22) and
(23). To do so, it is convenient to analyze in a local region
choosing an appropriate rest frame. We further note that
we shall be working with first-order hydrodynamics and
hence will keep gradients up to first order in space time
only. The left-hand side of the Boltzmann equation,
Eq. (18), is explicitly small because of the gradients and
we therefore may replace fa by fa0. In the local rest frame
uμ ¼ ð1; 0; 0; 0Þ, but the gradients of the velocities are
nonzero. Further, in the local equilibrium distribution
function f0a in Eq. (16), the flow velocity, temperature,
and chemical potential all depend upon x. In addition, the
four-momentum pa also depends upon the coordinate x
through the dependence of mass on the same. We give here
some details of the calculations of the left-hand side of
the Boltzmann equation. To do so, let us calculate the
derivative of the equilibrium distribution function Eq. (16),
given as

∂μf0a ¼ −f0að1 − f0aÞ
�
−

1

T2
ðEa − μaÞ þ

1

T
∂μðpνuν − μaÞ

�
:

ð32Þ

Noting the fact the Ea also has spatial dependence through
its mass dependence, one obtains for the first term in the lhs
of Eq. (18)

pμ

Ea ∂μf0a ¼
f0að1 − f0aÞ

Ea

�
Ea

T2
pμ∂μT þ pμ∂μ

�
μa

T

�

−
1

T
ðpμ∂μEa þ pμpν∂μuνÞ

�
; ð33Þ

while the second term is given as

∂f0a
∂pi ¼ −f0að1 − f0aÞ

pi

EaT
: ð34Þ

Next using the fact that uνuν ¼ 1, one can show that, in the
local rest frame, ∂νu0 ¼ 0. This can be used to expand the
term with the gradient of flow velocity, Eq. (33), in terms of
spatial and temporal derivatives of the flow velocity ui.
Combining both Eqs. (33) and (34), the lhs of Eq. (18) is
given as
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f0að1 − f0aÞ
Ea

�
−Ea∂0

�
Ea − μa

T

�
Eapi

T

�∂iT
T

− ∂0ui

�

þ pi∂i

�
μa

T

�
− pipj∂jui

�
¼ −

f1a
τ
: ð35Þ

Next, we can use the conservation equation ∂μTμν ¼ 0 to
write ∂0ui ¼ ∂iP in the rest frame. One can use thermody-
namic relations ∂iP¼s∂iTþn∂iμ towrite ð∂iTÞ=T−∂0ui¼
−ðnT=wÞ∂iðμ=TÞ. Further, the spatial derivative of the flow
velocity can be decomposed into a traceless part and a
divergence part in the flow velocity.
This leads to

df0a
dt

¼ f0að1 − f0aÞ
T

qaðβ; μÞ ¼ −
δ ~fa
τa

ð36Þ

where we have defined

qaðT; μÞ ¼ −
�∂T
∂t

�
Ea − μa

T
−
∂Ea

∂T
�

−
∂μ
∂t

�∂Ea

∂μ − ta
�
þ T
Ea

�
ta −

Ean
w

�
pi∂i

�
μ

T

�

−
pipj

2Ea Wij þ
p2

3Ea ∂kuk
�
: ð37Þ

The Boltzmann equation, Eq. (36), thus relates the non-
equilibrium part of the distribution functions to the varia-
tion in fluid velocity, the temperature, and the chemical
potential. This will be used to calculate the dissipative part
of the energy-momentum tensor.
Using stress-energy conservation ∂μTμν ¼ 0, the baryon

number conservation equation ∂μJμ ¼ 0, and standard
thermodynamic relations, one can relate the temporal
derivatives of temperature and chemical potentials with
the velocity of sound at a constant baryon density and
constant entropy density, respectively, as

∂0T ¼ −v2nT∇ · u ð38Þ

and

∂0μ ¼ −v2sμ∇ · u: ð39Þ

The velocity of sound at constant density(n) or at constant
entropy (s) can be calculated using Jacobian methods as

v2n ¼
�∂P
∂ϵ

�
n
¼ ∂ðp; nÞ

∂ðϵ; nÞ ¼ sχμμ − nχμT
∂ϵ
∂T χμμ −

∂ϵ
∂μ χμT

ð40Þ

and

v2s ¼
�∂P
∂ϵ

�
s
¼ ∂ðp; sÞ

∂ðϵ; sÞ ¼ sχμT − nχTT
∂ϵ
∂T χμT − ∂ϵ

∂μ χTT
: ð41Þ

In the NJL model one can explicitly calculate the deriv-
atives of the energy density with temperature or chemical
potential. On the other hand, using thermodynamic rela-
tions one can also rewrite Eqs. (40) and (41) as

v2n ¼
sχμμ − nχμT

TðχμμχTT − χ2μTÞ
ð42Þ

v2s ¼
nχTT − sχμT

μðχμμχTT − χ2μTÞ
: ð43Þ

Thus, we can have from Eqs. (38) and (39) the variation
for the distribution function in the relaxation time
approximation,

δ ~fa
τa

¼ −
f0að1 − f0aÞ

T
qaðT; μÞ; ð44Þ

with qaðT; μÞ given as

qaðT; μÞ ¼ −QaðT; μ;p2Þ∇ · uþ T
Ea

pi∂i

�
μ

T

��
ta −

Ean
w

�

þ pipj

2T
Wij: ð45Þ

In the above, the coefficient of the divergence in the flow
velocity part, Qa, is given by

−QaðT; μ;p2Þ ¼
�
v2n

�
−Ea þ T

∂Ea

∂T þ μ
∂Ea

∂μ
�

þ
�∂P
∂n

�
ϵ

�∂E
∂μ − ta

�
þ p2

a

3Ea

�
: ð46Þ

Substituting the expression for δ ~f from Eq. (44) in
Eq. (30), in the local rest frame,

δTij ¼
X
a

Z
dΓ

pi
ap

j
a

TEa
τaf0að1 − f0aÞqaðp; β; μÞ: ð47Þ

The contribution of the term proportional to the gradient of
the (μ=T) term in Eq. (45) vanishes because of symmetry.
When comparing the resulting expression with the tensor
structure of the dissipative part of ΔTμν of Eq. (30), we
have the expressions for the shear viscosity coefficient η as

η ¼ 1

15T

X
a

Z
dΓa

p4
a

E2
a
ðτaf0að1 − f0aÞÞÞ: ð48Þ

Similarly, the bulk viscosity coefficient ζ is given as
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ζ ¼ −
1

3T

X
a

Z
dΓa

p2
a

Ea
ðτaf0að1 − f0aÞQaÞ: ð49Þ

In a similar manner, one can substitute δ ~f in Eq. (31) to
obtain

ΔJi ¼
X
a

Z
dΓapiτaf0að1 − f0aÞqaðt; μÞ: ð50Þ

In the above, in contrast to Eq. (47), the term in qa that
results in a nonzero contribution from θaðt; μÞ is the term
with gradient in (μ=T). Comparing this with Eq. (23), we
have the thermal conductivity given as

λ ¼
�
w
nT

�
2X

a

Z
dΓa p

2τa
3E2

a

�
1 −

tanEa

w

�
f0að1 − f0aÞ:

ð51Þ

However, the solutions forQa as given in Eq. (46) for the
bulk viscosity are to be supplemented by Landau-Lifshitz
matching conditions, i.e., the variations of the distribution
function should be such that they satisfy the conditions
uμΔJμ ¼ 0 and uμΔTμνuν ¼ 0. In the local rest frame these
conditions reduce to

ΔJ0 ¼
X
a

Z
dΓataδfa ¼ 0 ð52Þ

ΔT00 ¼
X
a

Z
dΓaEaδfa ¼ 0: ð53Þ

Using Eq. (27) relating δfa and δ ~f, one can write the
Landau-Lifshitz conditions in the relaxation time approxi-
mation as

ΔJ0 ¼ hτaQaðT; μÞtagaðT; μÞi ¼ 0 ð54Þ

ΔT00 ¼ hτaQaðT; μÞEagaðT; μÞi ¼ 0; ð55Þ

with

gaðT; μÞ ¼ 1 −
Tð∂Ea

∂T Þσ
Ea − μa þ Tð∂μa∂T Þσ

; ð56Þ

where we have defined the derivative with respect to
temperature at fixed entropy per quark as [47]

�∂Ea

∂T
�

σ

¼
�∂Ea

∂T
�

μ

þ
�∂Ea

∂μ
�

T

�∂μ
∂T

�
σ

ð57Þ

and

�∂μ
∂T

�
σ

¼ 1

T

�
μþ 1

v2n

�∂p
∂n

�
ϵ

�
: ð58Þ

The above arises due to the fact that the variations of
temperature and chemical potential are not independent
variations. They are related by the hydrodynamic flow of
the matter, which occurs at constant entropy per baryon
σ ¼ s=n [47]. Further, we have introduced the notation [46]

hϕaðpÞi ¼
Z

dΓa½ϕaðpÞf0að1 − f0aÞ�:

If the variations as in Eq. (44) do not satisfy the Landau-
Lifshitz conditions Eqs. (54) and (55), one may still fulfill
them by performing a shift [46,47],

τaQa → τaQa − αnta − αeEa; ð59Þ

where αn and αe are the Lagrange multipliers associated
with the conservation of baryon number and energy.
Performing the substitution Eq. (59) in Eqs. (54) and
(55), we have the Landau-Lifshitz conditions given as

X
a

tahτaQai − αn
X
a

hgai − αe
X
a

htaEagai ¼ 0; ð60Þ

X
a

hEaτaQai − αn
X
a

htaEagai − αe
X
a

hE2
agai ¼ 0: ð61Þ

One can solve these two equations for the coefficients
αe and αn and calculate the bulk viscosity coefficient ζ
after performing the replacement Eq. (59) in Eq. (49). This
leads to

ζ ¼ −
1

3T

X
a

Z
dΓa

p2
a

Ea
ðτaf0að1 − f0aÞQaÞ − αew − αnn:

ð62Þ
On the other hand, it is convenient to use Eqs. (60) and (61)
to obtain

αewþ αnn ¼ −
X
a

�
τaQa

�
Ea − T

∂Ea

∂T − μ
∂Ea

∂μ
�

þ
�∂P
∂n

�
ϵ

�∂Ea

∂μ − ta
��

: ð63Þ

Substituting this back into Eq. (62), we have

ζ ¼ 1

9T

X
a

Z
dΓaτaf0að1 − f0aÞ

×
�
p2

Ea − 3v2n

�
Ea − T

∂Ea

∂T − μ
∂Ea

∂μ
�

þ 3

�∂P
∂n

�
ϵ

�∂Ea

∂μ − ta
��

2

: ð64Þ
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In a similar manner, putting the constraint ΔT0i ¼ 0 in
the rest frame yields the expression for thermal conduc-
tivity as [47]

λ ¼ 1

3

�
w
nT

�
2X

a

Z
dΓ

p2

E2
a
τa
�
ta −

nEa

w

�
2

f0að1 − f0aÞ:

ð65Þ

In passing, we would like to comment here that the
expression for thermal conductivity is identical to those
as derived in Refs. [53,54].
Thus all the dissipative coefficients are explicitly positive

definite within the relaxation time approximation. The
expression for the bulk viscosity reduces to the expression
for the same in the limit of vanishing density to that of
Ref. [24]. Further, the expression also reduces to the
expression for bulk viscosity in Ref. [53] when the medium
dependence of the single-particle energy is not taken into
account. We would like to comment here that the difference
between including the Landau-Lifshitz condition, Eqs. (52)
and (53), and not including the same has been pointed out
in Ref. [43] for μ ¼ 0. Equations (48), (64) and (65) for the
dissipation coefficients shall be the focus of our discussion
in what follows. Let us note that in these equations so far,
the unknown quantity is the estimation of the relaxation
time τa. As mentioned earlier, τa, in general, will be energy
dependent but we shall be taking an energy-averaged
estimation of the relaxation time by taking the thermal
average of the scattering cross section.

A. Transition rates and thermal averaging

The key quantity in estimating the transport coefficient is
the thermal-averaged transition rate W̄ to estimate the
average relaxation time τ. This has been dealt with, e.g.,
in Refs. [34,43] by multiplying the zero-temperature cross
section with the Pauli blocking factor and then taking an
energy average weighted by a normalized distribution
function to calculate the mean cross section and hence the
relaxation time. On the other hand, we follow a procedure of
thermal averaging in a manner similar to Ref. [55], which is
manifestly Lorentz covariant. Such an averaging procedure
has been performed in Ref. [56]. The difference between the
two approaches has also been discussed in Ref. [56]. The
average transition rate W̄, e.g., for a general fermion-fermion
scattering process a; b → c; d is given as

W̄ab ¼
1

nanb

Z
dπadπbfaðpaÞfbðpbÞWabðsÞ: ð66Þ

In the above,fi are the distribution functions for the fermions
and dπi ¼ ð1=ð2πÞ3Þdpi=2Ei, ni ¼ ðgi=ð2πÞ3Þ

R
dpifðpiÞ

is the number density of ith species with degeneracy gi.
Further, the quantity WabðsÞ is dimensionless, Lorentz
invariant, and dependent only on the Mandelstam variable
s, and it is given as

WabðsÞ ¼
1

1þ δab

Z
dπcdπdð2πÞ4δ4

× ðpa þ pb − pc − pdÞjM̄j2ð1 − fcðpcÞÞ
× ð1 − fdðpdÞÞ: ð67Þ

Here, we have included the Pauli blocking factors. The
quantity WabðsÞ can be related to the cross section by
noting that

dσ
dt

¼ 1

64πs
1

p2
ab

jM̄j2; ð68Þ

where pab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 4m2Þ

p
=2 is the magnitude of the three

momentum of the incoming particles in the center-of-mass
(CM) frame if the masses of the particles are the same. Thus
in the CM frame, we have, using the delta function and
integrating over the final momenta

WabðsÞ ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

p
1þ δab

Z
0

tmin

dt

�
dσ
dt

��
1 − fc

� ffiffiffi
s

p
2

; μ

��

×

�
1 − fd

� ffiffiffi
s

p
2

; μ

��
; ð69Þ

where tmin ¼ −ðs − 4m2Þ for the nonidentical particle case
and tmin ¼ −1=2ðs − 4m2Þ for identical particles in the
final state.
Once Wab is calculated as a function of s, one has to do

the thermal averaging of the transition rate using Eq. (66).
To perform the integration over dπadπb in Eq. (66), we note
that the volume element dpadpb is given by

dpadpb ¼ 4πjpajEadjpaj4πjpbjEbdjpbj
1

2
dðcos θÞ; ð70Þ

where θ is the angle between the three-momenta pa and pb.
It is somewhat convenient to change the integration
variables from Ea, Eb, θ to Eþ, E−, s given by

Eþ ¼ Ea þ Eb; E− ¼ Ea − Eb

s ¼ 2m2 þ 2EaEb − 2jpa∥pbj cos θ;

so that the volume element becomes

dpadpb ¼ 2π2EaEbdEþdE−ds: ð71Þ

The integration region (E1 > m, E2 > m, j cos θj ≤ 1)
transforms into

jE−j < X; Eþ ≥
ffiffiffi
s

p
; s ≥ 4m2;

where X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

s

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2þ − s

p
. It is then possible to

perform the integration over the variable E− analytically

DEB, KADAM, and MISHRA PHYSICAL REVIEW D 94, 094002 (2016)

094002-8



when the distribution functions in Eq. (66) are fermionic
distribution functions fðxÞ ¼ ð1þ expðβðx − μÞÞÞ−1. Thus
the thermal-averaged transition rate is given by

W̄ab ¼
1

nanb

gagb
ð2πÞ4

1

8

Z
∞

4m2

ds
Z

∞

ffiffi
s

p dEþ

Z
X

−X
dE−fa

×

�
Ea þ Eb

2
; μ; β

�
fbððEa − EbÞ; μ; βÞWabðsÞ:

ð72Þ

The thermal relaxation time for each species is then given
as [57]

τ−1a ¼
X
b

nbW̄ab ≡ ω̄a ¼
1

na

X
b

Z
dpa

ð2πÞ3 ωaðEaÞfðEaÞ;

ð73Þ

where we have defined a mean interaction frequency ω̄a
similar to Ref. [24] with the energy-dependent interaction
frequency given as

ωaðEaÞ ¼
1

2Ea

Z
dπbfðEbÞWab: ð74Þ

In Eq. (73), the summation runs over all species of
quarks and W̄ab is the sum of the transition rates of all

processes, with a, b as the initial states. In the present
case of two flavors we consider the following possible
scattering:

uū → uū; ud̄ → ud̄; uū → dd̄;

uu → uu; ud → ud; ū ū → ū ū;

ū d̄ → ū d̄; dd̄ → dd̄; dd̄ → uū;

dū → dū; dd → dd; d̄ d̄ → d̄ d̄ :

One can use i-spin symmetry, charge conjugation sym-
metry, and crossing symmetry to relate the matrix element
square for the above 12 processes to get them related to one
another and one has to evaluate only two independent
matrix elements to evaluate all 12 processes. We can choose
these, as in Ref. [26], to be the processes uū → uū and
ud̄ → ud̄ and use the symmetry conditions to calculate the
rest. We note however that while the matrix elements are
related, the thermal-averaged rates are not, as they involve
also the thermal distribution functions for the initial states
as well as the Pauli blocking factors for the final states. For
the sake of completeness we also write down the square of
the matrix elements for these two processes explicitly,
which is given in Ref. [26]. This for the process uū → uū is
given as [26]

jM̄uū→uūj2 ¼ s2jDπð
ffiffiffi
s

p
; 0Þj2 þ t2jDπð0;

ffiffiffiffiffi
−t

p Þj2ðs − 4m2Þ2jDσð
ffiffiffi
s

p
; 0Þj2 þ ðt − 4m2Þ2jDσð0;

ffiffiffiffiffi
−t

p Þj2

þ 1

Nc
Re½stD�

πð
ffiffiffi
s

p
; 0ÞDπð0;

ffiffiffiffiffi
−t

p Þ þ sð4m2 − tÞD�
πð

ffiffiffi
s

p
; 0ÞDσð0;

ffiffiffiffiffi
−t

p Þ

þ tð4m2 − sÞDπð0;
ffiffiffiffiffi
−t

p ÞD�
σð

ffiffiffi
s

p
; 0Þ þ ð4m2 − sÞð4m2 − tÞDσð0;

ffiffiffiffiffi
−t

p ÞD�
σð

ffiffiffi
s

p
; 0Þ�: ð75Þ

Similarly, the same for the process ud̄ → ud̄ is given as [26]

jM̄ud̄→ud̄j2 ¼ 4s2jDπð
ffiffiffi
s

p
; 0Þj2 þ t2jDπð0;

ffiffiffiffiffi
−t

p Þj2ðs − 4m2Þ2jDσð
ffiffiffi
s

p
; 0Þj2 þ ðt − 4m2Þ2jDσð0;

ffiffiffiffiffi
−t

p Þj2

þ 1

Nc
Re½−2stD�

πð
ffiffiffi
s

p
; 0ÞDπð0;

ffiffiffiffiffi
−t

p Þ þ 2sð4m2 − tÞD�
πð

ffiffiffi
s

p
; 0ÞDσð0;

ffiffiffiffiffi
−t

p Þ�: ð76Þ

The meson propagators in the above are given by Eq. (6)
and depend on both the masses and the widths of the
mesons, depending on the medium.
The reason for doing an averaging as in Eq. (73) is due to

the fact that otherwise it becomes numerically challenging
otherwise. In certain cases, e.g., π-π scattering within chiral
perturbation theory, it can be numerically managed as the
corresponding scattering amplitude square jMj2 occurring
in Eq. (67) is a polynomial function of s, t variables
[58,59]. On the other hand, for the processes considered
here, jMj2 is a nonpolynomial nontrivial function of these

variables arising from the meson propagators DMð
ffiffiffi
s

p
; 0Þ

and DMð0;
ffiffi
t

p Þ as may be seen in Eqs. (75) and (76).

IV. RESULTS

The two-flavor NJL model as given in Eq. (1), within
which we shall be discussing the results, has three
parameters, namely, the four-point coupling G, the three-
momentum cutoff Λ to regularize the integrals appearing in
the mass gap equation, and in the integrals involving meson
masses and the current quark mass m that we take to be the
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same for u and d quarks. Within the mean field approxi-
mation for the thermodynamic potential, and the RPA
approximation for the meson masses, these three param-
eters are fixed by fitting the pion mass, the pion decay
constant, and the quark condensate. While the pion mass
mπ ¼ 135 MeV [60] and pion decay constant fπ ¼
92.4 MeV [61] are known somewhat accurately, the uncer-
tainties in the quark condensates are rather large. Whereas
extraction from the QCD sum rules turns out to be in
the range 190 MeV < −hūui1=3 < 260 MeV (at a renorm-
alization scale of 1 GeV) [62], extraction from lattice
simulation turns out to be −hūui1=3 ∼ 231 MeV [63].
Here we have used the parameter set m ¼ 5.6 MeV,
Λ ¼ 587.9 MeV, and GΛ2 ¼ 2.44. This leads to the vac-
uum value of the constituent quark mass M ≃ 400 MeV,
and the condensate value is −hūui1=3 ¼ 241 MeV.
Let us first discuss the thermodynamics of the two-flavor

NJL model as relevant for the calculation of the transport
coefficients.
With the parameters as above, the gap equation is first

solved using Eq. (3) for a given temperature and chemical
potential. This is then used to solve for the masses of the
pion and sigma masses using Eqs. (12) and (13) within the
random phase approximation. In Fig. 1(a), we have plotted
the constituent quark mass and the meson masses so
derived as a function of temperature for μ ¼ 0. In the
chirally broken phase, the pion mass, being the mass of an
approximate Goldstone mode, is protected and varies
weakly with temperature. On the other hand, the mass
of σ, which is approximately twice the constituent quark
mass, drops significantly near the crossover temperature.
At high temperature, being chiral partners, the masses of
sigma and pi mesons become degenerate and increase

linearly with temperature. The constituent quark mass
decreases to small values but never vanishes. The chiral
crossover transition Tχ turns out to be about 188 MeV for
μ ¼ 0 and about 180 MeV for μ ¼ 100 MeV. These are
defined by the peak in the derivative of the constituent mass
(dM=dT), which we have shown in Fig. 1(b). Let us note
here that the constituent mass at Tχ turns out to be about
145 MeV. On the other hand, one can have the other
characteristic temperature, namely, the Mott temperature
TM defined through the relation mπðTMÞ ¼ 2MðTMÞ, i.e.,
the temperature when twice the constituent quark mass
becomes equal to that of the pion mass. As may be
observed in Fig. 1(a) the Mott temperature for pions is
about 197 MeV. This temperature is relevant in the present
case where we estimate the relaxation time using quark
scattering involving meson exchange.
Next, we show, in Fig 2(a), the temperature dependence

of the square of the velocity of sound v2n ¼ ðdp=dϵÞn at
constant quark number density as defined in Eq. (40).
The velocity of sound does not show any dip around the
critical temperature Tχ , but rises around the critical temper-
ature and approaches the value of 1

3
at high temperatures. In

Fig. 2(b), we show the dependence of the trace anomaly
ðϵ − 3pÞ=T4. The conformal symmetry is broken maxi-
mally at the critical temperature and is larger for higher
chemical potential.
We would like to mention that the behavior of the

velocity of sound shows a different behavior as compared
to lattice simulations [8], where it shows a minimum and
then rises to a value a little less than the ideal gas limit of
1=3. The present results for the sound velocity are similar in
nature to the linear sigma model calculations of Ref. [24]
with a lighter sigma meson of mass about 600 MeV. This
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FIG. 1. (a) Temperature dependence of the masses of constituent quarks (M), pions (Mπ), and sigma mesons (Mσ) for μ ¼ 0 and
(b) temperature derivative of the constituent quark mass for (b) μ ¼ 0 MeV and μ ¼ 100 MeV.
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behavior, as we shall observe later, gets reflected in the
results for the bulk viscosity.
We then plot the thermal-averaged transition rate W̄ab of

Eq. (66) for quark scatterings for the quark-antiquark
channel and quark-quark channel in Fig. 3. Quark-
antiquark scattering is dominant compared to quark-quark
scattering. After thermal averaging, the transition rate
shows a peak around the Mott transition temperature.
Above the Mott temperature, the transition rates decrease

with temperature. This one would expect as the meson
propagators D−1

M ð ffiffiffi
s

p
; 0Þ ∼ ½ðs − ðmM − iΓ=2Þ2� and both

the resonance mass and the width increase with temperature
[49]. The behavior of the transition rate is qualitatively
similar to that in Ref. [56]. The difference could be due to
the fact that in Ref. [56], where the three-flavor case is
considered, there could be more channels possible for
quark scattering and also the parameters of the model are
different. In the present case, the transition rate decreases
faster as compared to Ref. [56] beyond the Mott temper-
ature, leading to a rise of average relaxation time as can be
expected from Eq. (73).
A comment regarding estimation of the mean relaxation

time may be relevant here, although ideally one would like
to keep the energy-dependent relaxation time and perform
the phase space integration in the expression for the transport
coefficients. In the present calculations, this is carried out by
calculating a mean interaction frequency of the energy-
dependent interaction frequency related to the standard
quantum field theoretic transition rate as in Eqs. (73),
(74), and (67). On the other hand, in Refs. [26,34,43],
this averaging is performed by first obtaining an energy-
averaged cross section, e.g., for the process u; d̄ → u; d̄,

σ̄ud̄→ud̄ðT; μÞ ¼
Z

dsσud̄→ud̄ðT; μÞPðs; T; μÞ; ð77Þ

where Pðs; T; μÞ is the probability of yielding a quark-
antiquark pair with energy

ffiffiffi
s

p
and is normalized as

Z
dsPðs; T; μÞ ¼ 1: ð78Þ
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FIG. 2. (a) Temperature dependence of the square of the velocity of sound (v2n) and (b) trace anomaly ½ðϵ − 3pÞ=T4Þ� for μ ¼ 0 MeV
and μ ¼ 100 MeV.
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FIG. 3. Thermal-averaged transition rate shown as a function of
temperature. The red curves correspond to the present calcula-
tions while the blue curves correspond to the estimation in
Ref. [56]. The solid and dotted lines correspond to the scattering
in the quark-antiquark channels and quark-quark channels,
respectively.
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However, in the three references cited above, the expressions
for Pðs; T; μÞ are different. In the earliest one [26], Zhuang
et al. take

Pzhuangðs;T;μÞ¼C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs−4m2Þ

q
fð ffiffiffi

s
p

=2−μÞfð ffiffiffi
s

p
=2þμÞ

ð79Þ

while Refs. [34] and [43] consider, respectively, the prob-
ability function as

Psasðs; T; μÞ ¼ Cðs − 4m2Þfð ffiffiffi
s

p
=2 − μÞfð ffiffiffi

s
p

=2þ μÞ;
ð80Þ

Pmartyðs; T; μÞ ¼ Cðs − 4m2Þ ffiffiffi
s

p
fð ffiffiffi

s
p

=2 − μÞfð ffiffiffi
s

p
=2þ μÞ:

ð81Þ

In Eqs. (79)–(81), the constant C is fixed from the normali-
zation condition of Eq. (78). The contribution of this
averaged cross section to the relaxation time is given as

τ−1
ud̄→ud̄

¼ nd̄σ̄ud̄→ud̄: ð82Þ

The resulting energy-averaged cross section, as well as
the corresponding relaxation time for the different assump-
tions for the probability function as compared to the present
averaging procedure, is shown in Fig. 4. The general
behavior of the cross section of having a peak around
the Mott transition is seen in all the figures. However, the
sharp fall of the cross section beyond the Mott transition is
seen with the present averaging while the same for Ref. [43]

is rather slow. This gets reflected in the behavior of the
relaxation time for this process in Fig. 4(b). In particular the
relaxation time corresponding to Ref. [43] shows a mon-
otonic decrease beyond the Mott temperature. In this
context, it is also relevant to analyze whether the function
τðEÞ is reasonably smooth so that the energy averaging is a
reasonable approximation. To verify this we also examine
the energy-dependent interaction frequency ωðEÞ of
Eq. (74), which explicitly simplifies to

ωaðEaÞ ¼
1

8π2Ea

Z
∞

mb

dEbfðEbÞ
Z

1

−1
dxWabðsÞ; ð83Þ

where x ¼ cos θ. To evaluate the above integral, we
note that

s − ðpa þ pbÞ2 ¼ 2EaEb

�
s

2EaEb
− yðxÞ

�
; ð84Þ

with

yðxÞ ¼ 1þm2
a þm2

b

2EaEb
−
jpa∥pbj
EaEb

x: ð85Þ

Inserting the identity involving the delta function

1 ¼
Z

ds
1

2EaEb
δ

�
s

2EaEb
− y

�
ð86Þ

in the integral Eq. (83), we have
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ωðEaÞ ¼
1

8π2Ea

Z
dEbpbEb

×
Z

dxWabðsÞ
			
s¼2EaEbð1þ

m2
aþm2

b
2EaEb

−jpa∥pb j
EaEb

xÞ
: ð87Þ

Using Eq. (69) for the transition rate WabðsÞ, we have
calculated the energy-dependent transition frequency
ωðEaÞ for a typical scattering process (ud̄ → ud̄) and have
plotted it in Figs. 5(a) and 5(b) for temperatures below and
above the Mott temperatures, respectively. As may be seen,
the energy dependence of the transition frequency is indeed
a smooth function of energy. Below the critical temper-
ature, with an increase in temperature the interaction
frequency increases essentially due to the fact that the
sigma meson mass decreases with temperature. This
behavior of ωðEÞ with energy arising from quark scattering
is different from interacting pion gas, which diverges at
large energy. Indeed, the energy-dependent relaxation time
[inverse of ωðEÞ] arising from pion scattering shows a peak
structure at lower energy as shown in Ref. [59]. Since pions
are not the elementary degrees of freedom in the NJL
model, there is no elementary pionic interaction within the
model. For the different possible behavior ofωðEÞ to have a
finite shear viscosity, we refer to Ref. [64]. On the other
hand, for temperatures above the Mott temperature, as may
be seen in Fig. 5(b), the transition frequency weights the
lower energy strongly. When the temperature increases, the
peak value of ωðEÞ is reduced somewhat and the decay
from the peak value is slower. The decrease of transition
frequency with temperature beyond the Mott temperature is
associated with the fact that the meson masses increase with
temperature. The rise of the transition frequency at low

energies near the Mott temperature also demonstrates the
limitation of the approximation of taking an average
transition frequency. However, for the estimation of the
transport coefficients, this low-energy peak does not make
the estimation worse as it is multiplied by a function that
itself is suppressed at low momenta, as may be seen from
the expression for, e.g., shear viscosity in Eq. (48).
Next, with this limitation close to the Mott temperature,

we discuss the estimation of averaged relaxation time from
all the scatterings in the present approach as a function of
temperature. Let us recall that this quantity is inversely
related to the transition rate W̄abnb as in Eq. (73), where
Wab is the transition rate of all processes with species a, b
in the initial states and is related to the corresponding
scattering cross section as in Eq. (69). In general, the
dominant contribution here comes from quark-antiquark
scattering from the s channel through propagation of the
resonance states, the pions, and the sigma. The mass of the
sigma meson decreases with an increase in temperature,
becoming a minimum at the Mott transition temperature
TM and leading to an enhancement of the cross section.
This, in turn, leads to a minimum in the relaxation time.
Beyond the transition temperature the resonance masses
increase with temperature linearly, leading to a smaller
cross section and hence an increase in the relaxation time
beyond the Mott temperature. This generic feature is
observed in Fig. 6(a).
Let us note that τa depends both on the transition rate and

the density of the particles of the initial state other than the
species a. It turns out that the transition rate is dominant for
the process ud̄ → ud̄. At finite chemical potential, for
temperatures greater than the transition temperature, quark
density is larger compared to that of the antiquarks. As
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there are fewer antiquarks to scatter off, the cross section
for quark-antiquark scattering decreases, leading to τðμÞ >
τðμ ¼ 0Þ. On the other hand, for antiquarks, there are more
quarks to scatter off at nonzero μ as compared to μ ¼ 0.
This leads to a lower value for the relaxation time for
the antiquark at finite μ as compared to the μ ¼ 0 case. On
the other hand, for temperatures below the critical temper-
ature, while the quark-antiquark transition rate is dominant,
the density of antiquarks is suppressed very much by the
constituent quark mass for μ ≠ 0. The quark number
density, however, is enhanced as the contribution from
quark-quark scattering becomes more important, resulting
in a smaller value for the relaxation time at finite μ
compared to the μ ¼ 0 case.
At this stage, perhaps it may be relevant to discuss

the validity of the Boltzmann kinetic approach that has
been used to estimate the transport coefficients within the
relaxation time approximation. The same can be a reliable
approximation provided that the mean free path λ is
larger than the range d. One can define the average mean
free path as

λf ¼ vfτf

for a given flavor f. Here the mean velocity vf is given by

vf ¼ 2Nc

ð2πÞ3nf

Z
dp
Ep

jpjfðEpÞ: ð88Þ

It turns out that at TMott, λf ¼ 1.2fm. At the same
temperature, the mass of the pion or sigma meson turns out
to be about 200 MeV with the corresponding Compton
wavelength to be about a Fermi so that the value of the ratio

λ=d is about 1.2. This ratio is minimal at the Mott
temperature and increases rapidly both below and above
the Mott temperature. Thus, within the NJL model, it is not
too unreliable to use the Boltzmann equation within the
relaxation time approximation except at the Mott transition
temperature. Keeping this in mind, we next proceed to
estimate the transport coefficients.
In Fig. 6(b) we have plotted the shear viscosity to entropy

ratio (ηs) as a function of temperature for μ ¼ 0 MeV and
μ ¼ 100 MeV. As expected from the τ behavior with
temperature, η=s has a minimum with η=sjmin ∼ 0.24 at
the critical temperature, beyond which it increases slowly.
This behavior of having a minimum around the Mott
transition due to the suppression of scattering cross sections
at higher temperatures is in contrast to the results ofRef. [43],
where it shows a monotonic decrease with the value of the
ratio going below the KSS bound. At finite μ, the ratio η=s is
larger as compared to vanishing μ. This is due to two reasons.
Firstly, τ at finite μ is larger and, further, the quark density is
also larger as compared to the antiquarks at finite density.
We also compare our results for η=s with different

existing results for low temperatures below the Mott
transition based on different hadronic models for the
vanishing baryon chemical potential in Fig. 7(a). These
include results within an interacting pion gas model by
Lang et al. [58], models based on chiral perturbation theory
by Fernandez-Fraile and Nicola [39], the linear sigma
model within relaxation time approximation [24], and a
hadronic model based on scaling of hadronic masses and
couplings (SHMC) by Khvorostukhin et al. [52]. In
general, the behavior of η=s seems to be in conformity
with these models with the ratio monotonically decreasing
with temperature in the range of temperatures considered.
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In all these models the dominant contributions arise
from the pions. The decreasing behavior of the ratio in
the present NJL model, on the other hand, arises from the
scattering of the constituent quarks exchanging mesons
whose mass decreases with temperature, leading to a
decreasing behavior of the relaxation time. On the other
hand, the present estimation of η=s overestimates the
results of all the models shown in the figure. This could
be due to the fact that within the NJL model, the degrees of
freedom at these temperatures are a system of constituent
quarks rather than pions, which should be the dominant
physical degrees of freedom. This is also reflected in the
behavior of the energy-dependent interaction frequency,
which is very different compared to the same due to pion
scattering [59,64]. Apart from this, a somewhat larger value
for the ratio within the present model could be due to the
small values for the entropy density corresponding to the
heavy constituent quarks as compared to the pions.
In Fig. 7(b) we compare our results for η=s with those of

other models for higher temperatures. In contrast to the
results in Refs. [34] and [43], the ratio does not show a
monotonically decreasing behavior. The minimum value of
η=s ¼ 0.24, much above the KSS bound around TMott, and
beyond which it increases monotonically. Such a rising
behavior with temperature is also seen in the two-flavor
NJL model using Kubo formalism in Ref. [64].
In Fig. 8(a) we have plotted the specific bulk

viscosity normalized to entropy density as a function of

temperature. We have also shown here the results of earlier
calculations, based on the linear sigma model [24], NJL
model [43], and SHMC model [52]. The ratio of bulk
viscosity to entropy density increases rapidly near the
critical temperature as temperature decreases from a high
temperature beyond the critical temperature to temper-
atures below it. However, it is not a maximum at the
critical temperature. After the rapid rise near the critical
temperature it increases slowly. As may be observed, in all
these calculations the ratio ζ=s decreases monotonically
with temperature. We mention here that such a behavior of
decreasing the bulk viscosity to entropy ratio was also
observed in estimations based on PHSD transport codes
[31] as well as in the linear sigma model in the large N
limit [65]. This is in contrast with results in Refs. [66–68],
where ζ=s shows a peak near the critical temperature. On
the other hand, we have also plotted the bulk viscosity in
units of GeV3 in Fig. 8(b) where it shows a maximum
around the Mott temperature. Such a feature of a maxi-
mum was also seen for the NJL model for two flavors in
Ref. [34]. Such a peak in ζ was also observed in Ref. [69]
within a chiral perturbation theory framework with a
maximum value of about ζ ∼ 0.008 GeV3 as compared
to ζ ∼ 0.01 Gev3 in the NJL model here. However, the
ratio ζ=s does not show such a peak, probably because of
the fact that the entropy of the system with massive
constituent quarks becomes rather small to mask the peak
structure in ζ.
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Beyond the Mott transition temperature the ratio ζ=s
vanishes. Let us note that one can rewrite the expression for
the bulk viscosity as

ζ ¼ 1

9T

X
a

Z
dΓa τ

a

E2
a
f0að1 − f0aÞ

×
�
p2ð1 − 3v2nÞ − 3v2n

�
M2 − TM

dM
dT

− μM
dM
dT

�

þ 3

�∂P
∂n

�
ϵ

�
M

dM
∂μ − Eata

��
2

: ð89Þ

At zero baryon density, bulk viscosity depends quad-
ratically upon the violation of conformality measures C1 ¼
1 − 3v2n and C2 ¼ M2 − TM dM

dT [24]. The behaviors of
these two parameters are plotted as a function of temper-
ature in Fig. 9. For comparison, we have also plotted the
corresponding quantities at nonzero μ. Both of these
measures peak where the trace anomaly is maximal as
shown in Fig. 2(b). As may be observed, ζ=s is largest
when the violation of conformality is large. At finite baryon
density, (1 − v2n) does not vanish, nor does the factor
ð∂P=∂nÞϵ, as a result of which the ratio ζ=s does not
vanish, unlike the μ ¼ 0 case. The behavior of bulk
viscosity is similar qualitatively to that of the linear sigma
model of Ref. [24]. Our results regarding the ratio η=s
qualitatively look similar as compared to those of Ref. [34].
However, the bulk viscosity to entropy ratio looks different
as we have implemented the Landau-Lifshitz matching
conditions explicitly, leading to a different expression for ζ.

Apart from this, while estimating the average relaxation
time we have used the transition rate calculated in a
covariant manner similar to Ref. [56], whereas Ref. [34]
uses a probability distribution to calculate the thermal-
averaged cross section, similar to [26].
Finally, in Fig. 10 we have plotted the thermal conduc-

tivity of quark matter at μ ¼ 100 MeV in units of T2. Let us
note that thermal conduction, which involves the relative
flow of energy and baryon number, vanishes at zero baryon
density. In fact, λ diverges as λ ∼ 1=n2 as may be observed
in Eq. (65). Such a divergence, however, is inconsequential
because, e.g., in the dissipative current as in Eq. (23), it
enters as λn2 [53,54] and the heat conduction vanishes for
μ ¼ 0 [70]. We have therefore shown the results for thermal
conductivity for nonvanishing μ arising from quark scatter-
ings. As may be noted, the ratio λ=T2 shows a non-
monotonic behavior with a minimum at the critical
temperature. The origin of this again is related to the
minimum of the relaxation time at the critical temperature.
The present behavior is in contrast to the same obtained in
Ref. [43], where the same ratio shows a monotonically
decreasing function of temperature. The behavior of λ=T2

was also studied in Ref. [40], where the ratio showed an
increasing behavior with temperature with however a
slower rise with temperature as compared to the results
shown in Fig. 6. The reason for a faster rise of λ with
temperature beyond Tmott is twofold. Firstly, the prefactor
in Eq. (65), ðw=nTÞ2, varies at T2, because w rises as T4,
while n varies as μT2 in the massless limit for small
chemical potential. In addition, at large temperature, the
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integral itself rises as T3 apart from the temperature
dependence of relaxation time, which again is an increasing
function of temperature beyond Tmott. Within the Green-
Kubo approach, thermal conductivity was estimated for
two flavors using the NJL model [41] as well as in Ref. [42]
within the instanton liquid model, where however the
thermal conductivity saturates beyond T ¼ 150 MeV in
contrast to the present result.
We may remark here however that, for situations, where,

e.g., the pion number is conserved, particularly at low
temperatures, heat conductivity can be sustained by pions,
which themselves have zero baryon number. This is due to

the fact that it is possible to have pion scattering in a
medium where the number of pions is conserved. This has
been the basis of estimating thermal conductivity at zero
baryon density [39,44,45] using chiral perturbation theory.
We may note here that, since pions are not the elementary
degree of freedom in the NJL model, there is no elementary
pion-pion interaction within the model. However, it is
possible to construct effective meson-meson interaction
using the NJL model considering leading-order diagrams in
a 1=Nc expansion, similar to Refs. [50,71]. In such an
approach, the pions are coupled through a quark loop as
well as the exchange of sigma mesons, which couple to
pions through quark triangles. Such an approach, in
principle, can be made to estimate the relaxation time
involving pion scattering and hence its contribution to
transport coefficients. This is, however, beyond the scope
of the present investigation and will be reported elsewhere.

V. SUMMARY

We have attempted here to compute the transport coef-
ficient in the NJL model. The approach uses solving the
Boltzmann kinetic equation within the relaxation time
approximation. To estimate the relaxation time we have
considered the quark-antiquark two-body scatterings
through the exchange of pion and sigma resonances.
Since the meson masses are minimal at the transition
temperatures, beyondwhich they are degenerate and increase
linearly with temperature, themeson propagator occurring in
the transition amplitude leads to a large contribution to the
cross section for quark-antiquark scattering. This eventually
leads to a smaller relaxation time, which, in turn, leads to a
minimum in the temperature dependence of the relaxation
time. While computing the averaged relaxation time we
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FIG. 10. Thermal conductivity(λ) in units of T2 for
μ ¼ 100 MeV.
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have performed the procedure in a manifestly covariant
manner as in Ref. [56], rather than multiplying an ad hoc
probability function to estimate the thermal-averaged cross
section [26]. We have used the expressions for the
transport coefficients that are manifestly positive definite,
as they should be. The expression for shear viscosity
only depends on the relaxation time and the distribution
functions. However, the expressions for both the coef-
ficients of bulk viscosity and thermal conductivity involve
equation of state. The expressions for the transport
coefficients are a direct generalization of their counterparts
at zero chemical potential [47]. All three transport
coefficients are minimal at the Mott temperature.
For the estimation of the relaxation time we have only

included two-body scattering. One can generalize this to
include decay processes involving the mesons decaying to a

pair of quarks and antiquarks [58,72]. We have investigated
here the temperature dependence of the transport coeffi-
cients in relation to the chiral transition in quark matter. It
would be interesting to study the interplay of the chiral and
deconfinement transitions using a Polyakov loop NJL
model. Some of these calculations are in progress and will
be reported elsewhere.
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