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Because Majorana fermions are their own antiparticles, their electric and magnetic dipole moments must
vanish, leaving the anapole moment as their only static electromagnetic property. But the existence of
induced dipole moments is not necessarily prohibited. Through a study of real Compton scattering, we

explore the constraints that the Majorana fermion’s self-conjugate nature has on induced moments. In terms
of the Compton amplitude, we find no constraints if the interactions are separately invariant under charge
conjugation, parity, and time reversal. However, if the interactions are odd under parity and even under time
reversal, then these contributions to the Compton amplitude must vanish. We employ a simple model to
confirm these general findings via explicit calculation of the Majorana fermion’s polarizabilities. We then
use these polarizabilities to estimate the cross section for s-wave annihilation of two Majorana fermions

into photons. The cross section is larger than a naive estimate might suggest.
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I. INTRODUCTION

The static electromagnetic (EM) properties of spin—%
Majorana fermions are highly constrained. Because these
particles are their own antiparticles, they must be electri-
cally neutral with vanishing electric and magnetic dipole
moments. In fact, their only nonzero static EM property is
the anapole moment [1-4]. Within the Standard Model
(SM), the neutrino is the only possible Majorana fermion.
Several decades ago, interest arose in the neutrino’s EM
properties, and the program of discovery is ongoing both
from a theoretical and experimental standpoint [5,6]. In
terms of the neutrino’s anapole moment, there was much
controversy surrounding its status as a meaningful observ-
able in part due to questions about its gauge invariance
[7,8]. Reference [9] contains a complete review of this
debate; in the end, the neutrino’s anapole moment was
determined to be finite and gauge invariant. With that said,
our primary interest in this paper is in physics beyond the
SM, where theories are rife with Majorana fermions. In
particular, in supersymmetric theories, the lightest super-
symmetric particle is often a Majorana fermion that
functions as the dark matter (DM) of the universe [10].
The search for dark matter led to an uptick of interest in the
EM interactions of neutral particles, in general, and
Majorana fermions, in particular. Knowledge of these
interactions is important for both direct and indirect DM
searches and for establishing the relic DM density. Early
constraints on the EM properties of DM, including the
anapole moment and higher-order interactions, can be
found in Ref. [11]. More recent studies of DM interacting
via an anapole moment can be found in Refs. [12-15].
Additionally, DM anapole interactions, along with higher
order EM interactions, can be studied from the perspective
of an effective field theory (EFT); see Ref. [16] and the
references therein.
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In this paper, we will discuss the EM properties of
Majorana fermions but move beyond the static limit and
focus upon their polarizabilities. In Sec. II, we first review
the well-known static EM properties of the Majorana
fermion. In field theory, these static properties are assessed
through interactions mediated by a single low-energy
photon. Higher-order classical interactions involving
induced EM moments, i.e., the particle’s polarizability,
are quadratic in the EM fields. As a result, in field theory,
these processes involve the interaction between the particle
and two photons. Our first novel results, contained in
Sec. III, address these processes. There, we determine
model-independent constraints on the polarizability of the
Majorana fermion that arise as a result of its self-conjugate
nature. Within the context of Compton scattering, we show
generally that two-photon interactions with a Majorana
fermion are not forbidden if the process is separately
invariant under charge conjugation, parity, and time rever-
sal, but for interactions which are odd under parity, but even
under time reversal, the Compton amplitude vanishes.
Finally, in Sec. IV, using a simple model, we explicitly
compute the anapole moment of a Majorana fermion along
with the leading-order contributions to its polarizabilities.
This section serves as an explicit demonstration of the
model-independent results of Sec. III; additionally, it
suggests a relevant application. From the explicit model,
we show that the Majorana fermion is able to undergo
s-wave annihilation into two photons, mediated by a spin-
dependent polarizability, with a cross section that is larger
than a naive EFT estimate might suggest.

II. STATIC EM PROPERTIES

We begin with a review of the known static EM
properties of Majorana fermions because the arguments
in this section will provide a natural segue to the novel
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FIG. 1. Interaction vertex between an on-shell fermion and an
oft-shell photon of momentum g.

material that follows in Sec. III. To assess the static EM
properties of the fermion, we consider the interaction vertex
between a single off-shell photon and a spin—% fermion as in
Fig. 1. The Lagrangian term mediating this interaction is a
contraction of the EM current Jiy; = YI*¥ with the
photon vector field A,. The structure of this vertex can
be ascertained through the principles of Lorentz covariance
and gauge invariance. Generally, the matrix element for a
conserved EM current operator Jf,, is characterized by four
form factors which are functions of the only nontrivial
scalar, the square of the momentum transfer, ¢ = p’ — p,

0 lp5) = 80) |11+l
+ fal@) (@1 — ¢*4)y
+ fE(qz)O-Wvas] u(p). (1)

At zero momentum transfer, these four functions encode
the static EM properties of the fermion. The first two form
factors, f; and f,, are associated with the charge and
anomalous magnetic dipole moment of the fermion. Both
of these terms transform as a classical current four-vector,
J%,, under parity and time reversal. Namely, under a parity
transformation the spatial part of the current picks up a
minus sign PJ4 (7, x)P~! = (=1)*J% (7, —x) and likewise
under a time reversal 7J% (¢, x)7 " = (=1)1J% (-1, %),
where the shorthand (—1)* is defined to be +1 for p=0
and —1 for 4 = j. After the discovery of parity violation in
particle physics, Zel’dovich realized the necessity of the
third term in the interaction vertex [17]. The anapole
moment f,(0) has mass dimension [M]~2, and relative
to a classical current, this term is odd under a parity
transformation but even under time reversal. The fourth
term is associated with the particle’s electric dipole
moment. The function fz(g?) has mass dimension
[M]~!, and this term is odd under both parity and time
reversal transformations. Though a general fermion can
have nonzero form factors for all four terms, the EM
properties of Majorana particles are highly constrained;
only its anapole moment can be nonzero.

Majorana fields are special solutions of the Dirac
equation. There is a particular representation of the
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Dirac matrices that renders all four matrices purely imagi-
nary. In this Majorana representation, the solutions to the
Dirac equation are real; the particles represented by these
solutions are termed Majorana fermions. For other repre-
sentations of the Dirac matrices, this notion of “realness”
generalizes to the statement that Majorana fields are equal
to their Lorentz-covariant conjugates [18]. These fields
have half as many degrees of freedom as a spin-% Dirac
fermion, which translates to the notion that the Majorana
fermion is its own antiparticle. We see that Majorana
fermions can be defined without reference to discrete
symmetry transformations like charge conjugation, but it
is perhaps more intuitive to invoke these ideas in regarding
these particles as their own antiparticles. On the face of it, it
might seem that Majorana fermions are eigenstates of the
charge conjugation operator C. In the absence of any
interaction, this is true; however, this notion is of limited
utility. In light of parity violating interactions, the dressed
Majorana fermion propagator breaks symmetry under C [1].
More generally, a Majorana fermion is defined as a self-
conjugate field under CP7 [1,3,4,18]. Because all local
Lorentz covariant field theories are invariant under CP7
transformations, regarding Majorana fermions as their own
CPT conjugates results in no great restriction. Before
examining why the EM properties of Majorana fermions
are so constrained, we first review how to implement the
discrete transformations on spin—% fields.

A. Discrete transformations

Under a parity transformation, the spatial part of a four-
vector is reflected; that is, (#,x) — (#,—x), or using the
shorthand above x* > (—1)#x*. On the other hand, axial
vectors acquire an additional minus sign, relative to vectors,
under the parity transformation; as a consequence, a
quantity like angular momentum is unchanged under this
transformation so that a particle’s spin satisfies s — s. This
parity transformation of space-time can be implemented by
a unitary operator P on the fermionic field,

d3 1
\/_
XZ ayu(p. YemiPx 4

where ay, and by, are annihilation operators for fermions and
antifermions, respectively. Acting on the field operators, a
parity transform reverses the momentum direction for the
annihilation operators; e.g., we have Paf,P‘l =al,,upto
a phase which does not impact our considerations in this
work. Employing the Weyl representation of the Dirac
matrices, spinors have the property

U(t,x) =

by v(p.s)e),  (2)

u(p.s) =y'u(-p.s). 3)
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v(p.s) = —1"v(-p.s). (4)

so that the parity transformation on the fields can be taken
as PU(1,x)P~! = iy’ ¥(¢, —x).

Under charge conjugation, particles are mapped to
antiparticles while maintaining the same momentum and
spin. That is, the action of the charge conjugation operator
maps fermion annihilation operators to antifermion anni-
hilation operators, CayC~' = b}, up to a phase. To deter-
mine the impact of this map on the field U(z, x), Eq. (2), we
introduce the unitary charge conjugation matrix C. The
defining feature of this matrix is its action upon the Dirac
matrices, namely C}/”C‘1 = —y;, where T denotes the
transpose. In addition to its unitarity, the charge conjuga-
tion matrix is antisymmetric, CT = —C. In the Weyl
representation of the Dirac matrices, the charge conjugation
matrix can be taken as C = —iy?y°, and it provides a map
between u and v spinors,

u(p. s) = CY%*(p.s), (5)
v(p.s) = Cr'u*(p.s). (6)

With this map, the (linear) charge conjugation operator
satisfies CU (2, x)C™! = CyOU*(t,x) = CU' (¢, x).

In what follows, we will be particularly interested in the
transformation of Dirac bilinears under charge conjugation.
Extending the work of the previous paragraph, we find the
effect of C on the Dirac adjoint of the fermion field to be
CU(t,x)C~" = U(z,x) " C. Given this, a Dirac bilinear will
transform as CUWAWC™! = U(z,x)"CACU', where A is
some element of the Dirac algebra. We can put this
expression in a more useful form by taking its transpose;
recalling that we acquire a minus sign upon the anticom-
mutation of the fermion fields, we find CPAYC! =
WCATC~'W. Given the defining property of the charge
conjugation matrix, C(y*)"C~! = —y#, we can establish
the following relationships:

Clr'ct=p, (7)
CleTC™! = -, (8)
Clryl et =py, 9)

Clomy|TC™! = =0y, (10)

We see, for instance, that the first term in the EM current,
Eq. (1), is C-odd, CUy*W¥C~' = —Wy*W. In addition to
elements of the Dirac algebra, we also find momentum-
dependent terms in Eq. (1) which signify the presence of a
derivative coupling in the effective Lagrangian for the EM
vertex. Charge conjugation commutes with derivatives, but
when transposing fields in a bilinear, the derivative will
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shift positions; e.g., CPA(9,¥)C~! = (9,¥)CT'TC~'W. As
an example, we can confirm that the anomalous magnetic
moment term in Eq. (1) is C-odd,

Cl(8, )6 W + To (9, W)]C!
= -V (0,¥) — (0,V)c" V. (11)

Pursuing this example, we compute the matrix element,
modulo some factors, for this operator assuming initial and
final fermion states with momenta p and p’ and spins s and
s, respectively:

(Olag [(2,8)o ¥ + To(0,7)]ay|0)
~i(p, = p (el ) ulp. ). (12)

For completeness, we execute the same computation for
antifermions:

(Olby [(0,T)o" ¥ + o (9, W)]by'|0)
~=i(=p, + p)v(p. s)o" v(p’, s"). (13)

To determine the matrix element for antifermions, we see
that an overall minus sign arises from the anticommutation
of fermion fields, and momentum-dependent factors can be
gotten from the fermion amplitude via the substitution
pr —p and p’' +— —p.

The final discrete transformation that we discuss is time
reversal. For this transformation, the temporal part of a
spacetime vector acquires a minus sign, (¢, x) > (—t, Xx),
and the direction of angular momentum is flipped
s — —s. To implement this on a fermionic field, the
transformation must be conjugate linear; that is, for a
scalar @, the transformation conjugates the scalar
TaVT ' =a*TUYT'. In the Weyl representation, we
note that spinors of opposite spin can be related via

u(—p,—s) = —r'y’u*(p.s). (14)

v(=p.—s) = —y'rv*(p.s). (15)

So, we can implement the time reversal operator on fields
as TU(t,x)7T ' = (=y'y?)¥(~t,x) = =Cp ¥ (~t,x).

We can combine all these transformations to determine
the joint effect of the antiunitary operator CP7; we find
(CPT)¥(t,x)(CPT)~" = —iy’y" ¥ (~t, —x). Combining
the three relationships amongst the spinors in Egs. (3)—(6),
(14), and (15), we find the useful relationship

u(p,—s) = =r’v(p.s), (16)

v(p,—s) = P’u(p.s). (17)

Of interest is how Dirac bilinears transform under CP7.
To evaluate these bilinears, we must determine the
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zaction of CP7 on the Dirac adjoint of the field,
(CPT)¥(t,x)(CPT)™" = —i¥(~t,—x) Ty’ . Then, for

the operator A, we find that the bilinear transforms as
(CPT)WAY(CPT)™ = —UTyO0A 00T, (18)

Taking the transpose of the above number and introducing a
minus sign upon anticommutation of the fermion fields,
this simplifies to

(CPT)TAT(CPT)~" = UpSApST, (19)

where we have assumed Hermiticity, y°ATy? = A. Using
Eq. (19), we are able to determine that the EM fermionic
current J%,, is odd under CP7. This could be ascertained in
another manner. Noting that the photon field A, is odd
under CP7T, then the EM current must also be odd in order
for this local quantum field theory to be invariant
under CPT.

B. Constraints on the amplitude

Knowing how the current transforms under CP7 will
help us constrain the EM form factors of a Majorana
fermion. To do so, we recall that Majorana fermions are
their own CP7 conjugates; that is, a state transforms as
CPT|p,s) = |p,—s). Under an antiunitary transformation
U , the entries in an inner product are switched, i.e.,
(Ua|Ub) = (b|a). Because the CPT transformation is
antiunitary, then the matrix element for the EM current
for a Majorana fermion satisfies

(0, 5[ Tem[p, 5) = = (P, =s|em[P', =), (20)
where the minus sign arises for the transformation proper-
ties of Jiy, under CPT. The left-hand side of this equation
can be expanded as above in Eq. (1). The right-hand side
(rhs) of Eq. (20) follows suit:

(P, —s|gm[p’, =) = @(p, —s)T(p, p'Ju(p’. =5'),  (21)

but we can use the relations in Egs. (3) and (14) to find
an alternate expression for the spinors u(p,—s) =
—/°Cy’u*(p,s). Using this expression and the related
one for the Dirac adjoint, we can rewrite the rhs of
Eq. (20) as

a(p, —s)I*(p, p)u(p’. =)
= —u'(p,s)r’C¥(p. p")Y°Criu*(p’.s")  (22)
=a(p'. sy CM*(p.p")]"C 'Y u(p.s),  (23)
where we take the transpose of the number on the rhs

of Eq. (22) to arrive at the final expression. Noting
p — p' == —q, then we find
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P Cl(p. pHITC'y = fi(g*)r* + ﬁfz(qz)v"”qy
— fald)(@*r = ¢"q9)r°
+ fe(q)o" q, 7. (24)

Returning to Eq. (20) where we first implemented the CP7
transformation, we find in light of Eq. (24) that only the
Majorana fermion’s anapole is nonvanishing; that is,
f 1» f 25 f E= 0.

These restrictions upon the static EM properties of the
Majorana fermion can be understood heuristically by
considering the nonrelativistic limit of the field theory.
This argument originally appeared in Refs. [1,2] and
bears repeating given its insightful simplicity. Clearly, a
Majorana fermion must carry no electric charge if it is to be
its own antiparticle, but why must both its magnetic and
electric dipole moments vanish? In the low-energy limit,
the interaction Hamiltonian between the EM field and a
particle’s magnetic, u, and electric, d, dipole moments is
H;, = —u(s - B) — d(s - E), where we denote the particle’s
spin by s. Spin is odd under CP7 whereas the electric and
magnetic fields are both even under the transformation. If
our interaction is CP7 invariant, then the magnetic and
electric dipole must vanish. On the other hand, the non-
relativistic Hamiltonian for the term involving the anapole
moment a is Hy,, = —af(s - J), because the EM four-current
is given by the divergence of the EM tensor 0, F* = J*.
The current J is odd under CP7 so that overall this
interaction is invariant under CP7.

III. TWO-PHOTON INTERACTIONS

We turn our attention to processes involving fermions
and two real photons. As an exemplar, we consider the
extensively studied process of real Compton scattering. The
low-energy limit of the Compton scattering process is
determined by the Born contribution computed via tree-
level Feynman diagrams involving only a single virtual
fermion with real photons coupling via the above vertex,
Eq. (1) and Fig. 1. As such, in a low-energy expansion, the
leading order contribution to the Compton scattering
amplitude is determined exclusively by the static EM
properties of the fermion [19-22]. But, as shown above,
the only nonzero static EM property of a Majorana fermion
is its anapole moment, and the coupling between this
anapole moment and real photons vanishes. Thus, for
Majorana fermions, the typical leading order contributions
to the Compton amplitude will vanish.

But, moving beyond the Born approximation, there are
model-dependent corrections to the amplitude, namely
electric and magnetic polarizabilities, that are relevant at
higher energies. Majorana fermions are not forbidden from
interacting with photons through such induced electric and
magnetic dipole moments [23]. Two-photon processes
are the simplest avenue to explore induced moments;
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heuristically, one photon can be thought of as inducing an
EM moment which can then interact with the other photon.
These higher-order corrections to the Compton amplitude
have been well studied, particularly for nucleons [24-37],
and though the precise details of a particle’s polarizabilities
are model dependent, the general framework for Compton
scattering established in these previous studies is relevant
for Majorana fermions. We begin our exploration of two-
photon processes by constructing a manifestly covariant
expression for the Compton scattering amplitude for a
general spin—% particle, including both the P-even, 7 -even
and P-odd, 7 -even contributions. Supposing a Majorana
fermion is the scatterer, we then determine what additional
constraints this imposes upon the structure of the ampli-
tude. In the end, we show that the existence of electric and
magnetic polarizabilities is not forbidden for Majorana
fermions. After the formal manipulations are complete, we
conclude this section with a more intuitive, nonrelativistic
discussion of the polarizabilities.

A. Manifestly covariant amplitude

In Fig. 2, we lay out the kinematics for a real photon
scattered by a general spin-% fermion. The incoming
photon momentum, k, is on shell k> = 0, and the photon
polarization, e, is transverse, € - k = (. Similar relations
hold for the outgoing photon’s momentum k" and polari-
zation vector €. The incoming and outgoing fermions
are on mass shell, p? = p> =m? The structure of
the amplitude for real Compton scattering is M =
e, e, u(p',s" )" (p'. ks p, k)u(p, s). Following Ref. [24],
we will construct a manifestly covariant expression for the
tensor I# which characterizes the Compton amplitude.
Using crossing symmetry and assuming separate invariance
under the discrete symmetries C, P, and 7, the tensor can
be decomposed into six terms [24]. Because parity viola-
tion is a necessary ingredient for the existence of anapole
moment, we extend the work of Ref. [24] to show that the
parity-violating (but 7 -even) portion of the Compton
scattering tensor can be decomposed into four terms.

We construct a covariant representation of the tensor I'*#
from the set of orthogonal basis vectors: K* = 1 (k* + k'*),
P#=pr— %K”, q" = p'" — p*, and N* = ¢"*°P,K ,q,
where P# =1(p'* + p#) [24]. By exploiting Lorentz
covariance, transverse polarization, and the Ward identity,

<

&4 p X

FIG. 2. Two-photon interaction with a fermion. The photons are
assumed to be real and transverse, and the fermion is on mass
shell.
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™k, = 0 = I""k,, we can constrain the structure of the
tensor so that it is a linear combination of the following
four tensors: P#P'¥, NENY, PNV + N*P'". The coeffi-
cients of these tensors each contain, as a factor, a bilinear
a(p’.s)Au(p,s), where A is 1,K.y°, or Ky>. If the
amplitude is to be invariant under parity, then the tensors
P*P'" and N*N* will carry the scalar coefficients formed
whenever the operator A is 1 or K, whereas the remaining
tensors P'*NY £ N¢P'Y require pseudoscalar coefficients
with A = 5> or Ky°. This results in eight different terms.

These eight terms can be further reduced to six terms by
requiring that the amplitude be invariant under charge
conjugation and by exploiting crossing symmetry. Again,
the matrix elements for the two-photon operator involves
factors of momenta, p* and p’#, signaling derivative
couplings between the fermion fields and photons. As
outlined in the previous section, we effect the charge
conjugation via

CrH(p' K p, k)C™! = C[T%(=p, K';=p' k)] TC~. (25)

As noted in Ref. [24], under the action of charge con-
jugation alone, it is difficult to arrive at additional con-
straints on the structure of the Compton amplitude because
the Mandelstam variables change under this map, s > u
and u — s. But, if one makes use of crossing symmetry for
the photons, namely k <> —k’ and u <> v, in conjunction
with charge conjugation, then it is easy to see that only six
of the eight terms in the decomposition of I'*# are C-even.
Implementing crossing symmetry, the condition for being
even under C can be expressed as

I (p' K5 p.k) = C[T"(=p,—k;—p',—K)]TC™.  (26)

Under this joint map, the basis vectors P’ and K are odd
while ¢ and N are even. In the end, assuming separate
invariance under C, P, and 7, the tensor can be decom-
posed as

= (T,1+ nK)% + (T, 1 + RK‘)%
(P'*N¥ — NFP'Y)

VP2N?
sg (P"N" + N“P")

/ P2N2 ’

where the T; are functions of the Mandelstam invariants
and we omit the spinors &(p’, s’) and u(p, s) to condense
notation [24]. (Note, we have opted to construct our tensors
using normalized vectors as in Ref. [26].)

Moving beyond the work in Ref. [24], we also consider
contributions to the Compton amplitude which are P-odd
and 7 -even (and thus C-odd). The tensor structure for ['z**
derives from the same set of four tensors; however, in order

+ iT3y5

(27)
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to have P-odd terms, the P’#P'* and N*N" tensors require
pseudoscalar coefficients, and P’* N + N*P'¥ require sca-
lar coefficients. If we use crossing symmetry and require
the amplitude to be C-odd, then we arrive at the following
condition:

Cp(p' K p.k) = =C[Up(=p,—k;—p'.=K')]TC~".
(28)

We find four terms in the amplitude which are P-odd and

T -even:

Pl'u Plz/
Pl2

NENY
5
+Tp,y K 2
(P'"NY + NHP'V)
R /P/2N2
As an aside, we note that one can refine the expressions for

the covariant tensors, freeing them of both kinematic
|

Tp = Tp 1K

+ (Tp,1 4 Tp,K) (29)
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singularities and zeros [27], but this is not necessary for
our purposes.

B. Center-of-momentum frame

Before we discuss the restrictions that a Majorana
scatterer will place upon the tensor decomposition,
Egs. (27) and (29), we will first connect this manifestly
covariant expression with a more familiar frame-specific
representation of the scattering amplitude. We consider the
center-of-momentum (CoM) frame where the photon 4-
momenta are given by k = (o, wk) and k' = (o, wk') with
a scattering angle 6 that satisfies k -k’ = cosf. For
completeness, the fermion 4-momenta are p = (E, —wk)
and p’ = (E, —wk’) with E = v/m? + @? for fermion mass
m. In this frame, the Compton amplitude can be simply
expressed in terms of Pauli spinors for the initial (final)
fermion state £ (¢). Omitting these spinors, the portion of
the amplitude even under C, P, and 7, i.e., Eq. (27), can be
written as

M=A(€"€)+ Ay (" -K)(€- k') + iAs]o - (€ x €*)] + iAs|o - (k x K)](¢'* - €)
Tidso - (€ x R)e &) — (e x K€ - R)] + idgo - (€ x K)(e - K) - (e xK)(e - K),  (30)

where the coefficients are functions of the photon energy
and scattering angle A;(w,6) [25]. A map between the
covariant expression, Eq. (27), and the CoM amplitude,
Eq. (30), was constructed in Ref. [26]:

Ay =c Ty —c)Ts, (31)

2 = sin29 [Cl (Tl -+ cos 9T2) - Cz(T4 —+ cos eTs)], (32)

A3 = (E — m)[Tl + cos 9T2
—(E+m+ w)(T4 + cos0T5)]

T 20[Ts - (E+ )Ty, (33)
Ay =(E—=m)[T, — (E+ m+ w)Ts], (34)
E—-m
As = ~ g O O[(T, + cos6T,)

—(E+m+ @)(Ty + cosOTs)]

[(1+cosO)T3+ (E+ w)(1 —cosh)Tg,

sin’6)
(35)
E—-m
Ag = — 29 [Ty + cosOT, — (E +m+ w)(T4 + cos 0T5)]
sin
+ﬁ [(14cosO)T3 — (E+ w)(1 —cosO)Tg).

(36)

|

We define ¢, =E+m—(E—m)cosf and ¢, =

(E4+m)(m—E—-w)—(E—m)(m+E+ w)cosf. (NB:

Our expressions for A; in terms of T'; differ slightly from

those in Ref. [26] due to differing choices in conventions.)
In Ref. [37], we find the forward Compton amplitude in

the CoM frame,

Mp =Ap (¢ -€)o- (k' + k)]

+ Ap, (€ - k)(e-k)o- (k' + k)|
+iAp, (k' + k) [e" x €]
+iApc-[(k—K') x (" x€)], (37)

where Ap = Ap (w.0) and we omit the Pauli spinors. We
can construct a map from our covariant expression for the
P-odd, 7-even portion of the Compton amplitude,
Eq. (29), to the CoM frame via

Ap, = o(E+ )Ty, (38)
1
P, = m{w(E + o)[Tp, + cos 0T p,]
+i(1 = cos)(E—m)[Tp, — (E+ m+ o)Tp,},
(39)
(1 =cos0)
A]a3 = —ZW [ClT;p3 + C2Tp4], (40)

093010-6



TWO-PHOTON INTERACTIONS WITH MAJORANA FERMIONS

A;;4 =<E — m)[T?”s — (E +m 4+ w)T;;4]. (41)

With these connections between the covariant and CoM
expressions, we can more easily make contact with the
leading order contributions to the polarizabilities of the
Majorana fermion by executing a low-energy expansion in
the CoM frame [37,38].

C. Constraints on the amplitude

Now, we address any constraints that the Majorana
character of the scatterer might have upon the structure
of the Compton amplitude tensor. In this case, it is more
useful to exploit the self-conjugate nature of the Majorana
fermion under Lorentz-covariant conjugation, rather than
appeal to self-conjugacy under CP7. A fermionic field is
Majorana if ¥ = y°CW¥* [18]; as a consequence, there is
nothing to distinguish particle from antiparticle in the field
expansion

dp 1
\If(t,)c):/(zﬂ)3\/E

x> (apu(p. s)e7 P + ay v(p. s)e”).  (42)

Given this, the Compton scattering amplitude for Majorana
fermions is

M = e, e, {u(p’, s )T (p', k' p. k)u(p, 5)
—o(p, )l (=p, K =p", k)o(p’,s")}. - (43)

But, using Eq. (6), we can rewrite this as

M =ee,u(p', s ) (p'. ks p. k)
+ T (=p K5 =p' k) C ' u(p,s).  (44)

We recall the effective action of the charge conjugation
operator on I'*#, Eq. (25). From this, we find that if
the amplitude is C-even then M =2¢,%¢,ii(p’,s") x
™ (p',k's p,k)u(p,s); that is, the amplitude for a
Majorana fermion is double the expected value for a
Dirac fermion. But, if the amplitude is C-odd, then it
vanishes identically. The fact that the Majorana fermion is
self-conjugate means that particle cannot be distinguished
from antiparticle, forcing any C-odd portions to vanish.
By examining the Compton amplitude at low energies,
we will be able to understand the existence of the Majorana
polarizabilities from a classical standpoint. We focus on the
electric polarizability of a substance consisting of spheri-
cally symmetric atoms. The atom has no permanent electric
dipole moment, but when placed in an external electric
field, opposite forces on the protons and electrons will
create a nonzero dipole moment parallel to the external
field. At leading order, this dipole moment is proportional

PHYSICAL REVIEW D 94, 093010 (2016)

to the field strength, d = 47zaE, where a is the spin-
independent electric polarizability. In terms of energetics,
the dielectric medium contributes in the usual way, H;, =
—2zaE?. A similar construction applies for the magnetic
field with an induced dipole moment, y = 4z/B, charac-
terized by the spin-independent magnetic polarizability .
Together, the classical interaction Hamiltonian for the spin-
independent polarizabilities is H;,, = —2zaE* — 273B>.
At low energies, the field theoretic scattering amplitude
should mirror the classical interactions. The Hamiltonian is
quadratic in the fields, and we can connect this with the
field theoretic amplitude by identifying one occurrence of
the field with the incident photon and the other with the
outgoing photon. Writing the interaction Hamiltonian in
terms of the electromagnetic tensor, this becomes
Hin ~ aFYFj; — 5 BF/*F’, . We assume a classical plane-
wave vector potential, A = Aoeeiw(ﬁ"‘">, for the kth mode
of the electric and magnetic fields. Then focusing on, say,
the magnetic polarizability term in the CoM frame, we
find Hyy, ~—po?[(k-K)(*-€)— (¢ -k)(e-k')]. At low
energies, we expect the magnetic spin-independent polar-
izability to appear in the Compton amplitude, Eq. (30), via
A, ~ cos Bpw? and A, ~ —fw?. In fact, this is the case. A
low-energy expansion (LEX) of the Compton amplitude in
the CoM frame for the P-even, 7-even contribution
to the scattering amplitude can be found in Ref. [29].
We reproduce that expansion here omitting terms that

are O(w*)

Aj(@,0) = 8xm,,(a+cosOp)w + 8r(a+f)(1 +cosb)w’
(45)

Ay(w,0) » —8zm, fur* — 8r(a + fw? (46)

A3(w,0) = =8am, [y, — (r2 + 2y4) cosfla®  (47)

Ay(w,0) = —8zm,r 0’ (48)
As(w,0) = 8zm,y,0° (49)
Ag(w,0) = 8zm,y;0°. (50)

In addition to a and S, we find the appearance of four
spin-dependent polarizabilities, y; [38]. There are two
electric polarizabilities d = 4zy[s x (Vx B)] and d =
47y3V(s - B) induced by a nonuniform magnetic field,
and two magnetic polarizabilities m = 4zy,V(s - E) and
m = 4zy,[s X (V x E)] induced by a nonuniform electric
field. The interaction Hamiltonian follows the usual
prescription for an induced dipole, e.g., Hj =
—27y,[s x (Vx B)]-E’. Adding these four -classical
spin-dependent interactions to the spin-independent
Hamiltonian results in a low-energy scattering amplitude
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consistent with the structure of the LEX of the Compton
amplitude in the CoM frame, Eq. (30).

Now we turn to the Majorana condition, recalling that a
Majorana fermion is equal to its conjugate under CP7.
Examining the classical Hamiltonian for the P-even,
T-even contribution to Compton scattering, we see that
no fundamental constraints on these polarizabilities
arise from the particle’s self-conjugate nature. For the
spin-independent terms, it is trivial to show that the
Hamiltonian, H;, ~ E*, B2, is invariant under CP7. For
the spin-dependent terms, the product of the electric and
magnetic fields in H;,, will be even under CP7, and the
minus sign that arises from transforming the spin is
canceled by the minus sign that comes from the spatial
derivatives. So there is no a priori reason for a Majorana
fermion’s polarizabilities to vanish for the P-even, 7 -even
contribution to the amplitude.

We now shift to a discussion of the P-odd, 7 -even
portion of the amplitude. A survey of the expression
for the CoM amplitude, Eq. (37), indicates the presence
of one spin-independent polarizability and three spin-
dependent ones. As before, we can construct a classical
Hamiltonian from these that should reproduce the field
theoretic results at low energies. As above, each term in
the classical Hamiltonian will be quadratic in the electric
and/or magnetic fields. By judicious choice (using
derivatives and the spin pseudovector), we can construct
expressions that are P-odd; however, if we attempt to
make each term in the Hamiltonian C-odd (and 7 -even),
we run into a problem. Both the electric and magnetic
field are odd under charge conjugation, rendering their
product even, and the other aforementioned structures
(derivatives and spin) are C-even. With these ingredients,
we cannot construct a C-odd term. We would need an
additional C-odd structure (like a current or charge
density), but in the case of the Majorana fermion, its
self-conjugate nature prohibits such a term from existing.
So, we see at the classical level why P-odd, 7 -even
terms in the Compton amplitude are forbidden for
Majorana fermions—there is no available structure to
make interactions C-odd.

To summarize, for a Dirac spin—% fermion there are six
independent terms which contribute to the P-even, 7 -even
portion of the Compton scattering amplitude and four terms
which contribute to the P-odd, 7-even portion of the
amplitude. For a Majorana spin-% fermion, the Majorana
condition results in no additional constraints on the P-even,
T-even portion of the amplitude; however, we find that
the P-odd, 7-even portion of the amplitude vanishes
identically.

d*k

(2k* = g")a(p') (K + p)ru(p)

PHYSICAL REVIEW D 94, 093010 (2016)

FIG. 3. Leading order contributions to the anapole moment for
the Majorana fermion.

IV. MODEL CALCULATION

In this section, we use a simple model to compute the
anapole moment and structure-dependent polarizabilities
for a Majorana fermion, y, of mass m,. Through explicit
calculation, we will see the model-independent results from
the previous section borne out in a concrete manner. The
anapole moment is generated through a parity-violating
coupling to a scalar ¢ of mass M, and fermion y of mass
m; The interaction term of the Lagrangian is given by

Ly =w(gLPL + grPr)x¢" +He., (51)

where we define the projections P =7%(1 Fp°).
Assuming g; # gr (which we take to be real), the chiral
projections result in the parity violation necessary to
generate an anapole moment. Other than this interaction,
the Dirac fermion and scalar follow the usual rules of QED
and scalar electrodynamics; we take their charge to be e.

A. Anapole moment

The leading order contributions to the anapole moment
are depicted in Fig. 3. The photon carries momentum ¢ but
is not (necessarily) on mass shell whereas both of the
Majorana fermion spinors are assumed to be on mass shell
so that pu(p) = m,u(p). Because we are dealing with a
Majorana fermion, the usual Feynman rules for Dirac
fermions must be adapted; we follow the procedure out-
lined in Refs. [39,40] by Denner et al. Alternate rules for
dealing with Majorana fermions exist, e.g., Ref. [41], and
yield equivalent results. Following Denner et al., we
represent fermions in our Feynman diagrams with solid
straight lines and distinguish Dirac from Majorana fer-
mions with an arrow. In addition to the diagrams in Fig. 3,
we include diagrams with reversed fermion flow for the
Dirac fermion propagator. Considering both directions of
the fermion flow, the diagrams in panels (a) and (b) of
Fig. 3 contribute to the overall amplitude M+ = MY +

M, according to

M = ie(gf —g?e)/

(27)*[(k + p)* = mF|[k* = M][(k - q)* = M}]

(52)
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d*k a(p")(k+ gk +mzlyu(p)
(27)* [(k + q)* = m3][k* — m7][(k = p)* = M)

M = ie(g - &) / (53)

The overall factor of (g7 — g%) in the amplitude illustrates the necessuy of parity violation in generating the anapole
moment. We recall that the amplitude can be written as M* = it(p') f4(¢*)(¢*7* — ¢*4)y’u(p), Eq. (1), where the function
fa(q* = 0) represents the static anapole moment. At low momentum transfer, we find that Eqs. (52) and (53) result in the

anapole moment

The integral above can be evaluated in closed form (e.g.,
see the Appendix in Ref. [42]); however, for simplicity, we
will not be concerned with such details and view the
anapole vertex as if it were an effective interaction, relevant
below some large mass scale. We suppose that the scalar
mass dominates the loop, that is, m;, m,, < M ;. Given this,

we find
2 _ 3 M>
2 e(g; —gz) [1 ¢ 1
=0)m oL IR (2} — 2
falg =0) (471')2M§S [3 Og<mj%> 2 (55)

As one might anticipate, the form factor is dominated by
the inverse square of the heaviest mass in the loop.
Additionally, we note that structure of this anapole moment
is similar to the computation of the neutrino charge radius
in Ref. [43].

B. Polarizabilities

We now consider a two-photon process, computing the
Compton amplitude for a Majorana fermion in the CoM
frame. We refer to Fig. 4 for representative Feynman
diagrams. In addition to these, we also include diagrams
with reversed fermion flow, and all but the seagull diagram
have a partner diagram with “crossed” photons. With our
simple model, we find that the amplitude conforms to the
structure for Majorana fermions discussed in the previous
section. Namely, there are six independent terms in the
amplitude with each even under C, P, and 7 transforma-
tions as in Eq. (30). There are no terms that are P-odd,
7 -even, in contrast to the situation that would occur for

Y _>k ) _,k’ Y
AAVAVAVAVAV e AVAVAVAVAVAY)
1 1
0! '
2o ‘ ) ¢
X 1 (0 1 X
1 1 - —_—— e —
p P

FIG. 4. Leading order contributions to Compton scattering via a
Majorana fermion.

dx

. 2
+lm ) / +log(ﬁ>} (54)
37 myx® + (M3, — my — m7)x + mj; M;) )

I

Dirac fermions. Finally, we note that if we allowed complex
couplings g; g # g;  (admitting CP-violating interactions)
in Eq. (51) then the amplitude would contain P-odd, 7 -odd
terms consistent with those discussed in Ref. [37].

In our computations, we effect a low-energy expansion
neglecting terms that are O(w*). The exact expressions, to
this order, for coefficients A, through A4 from Eq. (30) are
contained in the Appendix. We confirm that they have the
expected structure from the LEX in Egs. (45)—(50). Rather
than work with the unwieldy exact expressions, we make
some approximations consistent with those made in the
previous section. First, the Compton amplitude is the
sum of two sets of terms proportional to the couplings
g% + g7 and g; gg. Here, we will focus only upon the terms
proportional to g% + g7. If the interaction in Eq. (51)
violated parity maximally, say g; = 0, then only this first
term would survive. Again, we consider the approximation
in which the scalar mass dominates mg, m, < M.
Keeping only the leading order terms in this limit, we find
the Majorana fermion’s polarizabilities:

e2 m

0+ 90) G s Elg(ﬁfﬁ-ﬂ (56)

e2 m, [2 M?, 13
B (9% +g%)WM—3 {510g<m—§) _F}’ (57)

e 1 1

e 1 58
(@ 302 (58)

n~— (g% +9)

2 M> 3
~ e 112 o\ _2

f
ez 1 1
1R +9) —S5-5 (60)
R L (47[)36Mémj2c
ez 1 1
74z—(9%+9%)wgm- (61)
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We note that the spin-independent polarizabilities are
commensurate in size particularly for small m,. Also,
the spin-dependent polarizabilities exhibit relationships
similar to those computed to leading order for nucleons
in chiral perturbation theory; namely, we find y3 = —yy4,
72~ 0, and y; = y4 —y3 [30]. But, the most interesting
feature is the mass dependence of the polarizabilities.
Atlow energies, the vertex characterizing one- and two-
photon interactions with a Majorana fermion can be cast
within the framework of an effective field theory. That is,
the anapole moment should capture one-photon inter-
actions and the polarizabilities should capture those for
two photons without needing to worry about the details
of a UV-complete theory contained in the Feynman dia-
grams, Figs. 3 and 4. At the Lagrangian level, the anapole
interaction takes the form £,,, ~ ;’(yﬂys;(ﬁbF”" while the
two-photon interaction should be captured by terms
Lo ~ 7(al 4 by’ )yF*F,,, cf. Refs. [44-46]. The ana-
pole term in the Lagrangian has a mass dimension of 6 so
the coupling constant must have mass dimension of
negative 2, gana ~ # where A is the energy scale associated
with the effective interaction. For our explicit computation
of the anapole moment above, Eq. (54), we see that this
energy scale is set by the (assumed large) scalar mass
A ~ M. Turning to the two-photon effective Lagrangian,
we see that it has a mass dimension of 7, and thus our
expectation is that couplings should be characterized by a

scale gpo ~ 15 ~ M% Looking at our explicit calculation of

the model’s polarizabilities, Egs. (56)—(61), we see that the
spin independent polarizabilities roughly meet the expect-

ation a, N;Z' But, three of the spin-dependent polar-
&

izabilities have a mass dependence of ﬁ On the face of
ey

it, processes in which these polarizabilities are relevant are
suppressed by only two factors of the scale % rather than
three. This sort of mismatch between EFT expectations and
results from a UV-complete theory has been discussed
extensively; see Ref. [16] and the references therein.

C. Application

The explicit computation of the anapole moment and
polarizabilities for this particular model support the general
conclusions of Sec. III, but we can also use these polar-
izabilities to estimate cross sections for some low-energy
processes. In particular, we can compute the amplitude for
the annihilation of two Majorana fermions into two
photons. This annihilation cross section is relevant for
models of dark matter—both to determine the relic dark-
matter density and to inform indirect DM searches. For
these purposes, DM would be nonrelativistic, so we
compute the annihilation cross section assuming small
relative velocity, v, ~ 0; that is, we would like to estimate
the s-wave contribution to annihilation, if it exists.

PHYSICAL REVIEW D 94, 093010 (2016)

Because real photons do not couple to anapoles, the Born
contribution (with anapole vertex) to the process vanishes, so
we move on to the contribution from the box diagrams, Fig. 4,
that result in the Majorana fermion’s polarizabilities. If the
annihilation is s-wave, then in the rest frame of the fermion
the resulting photons will be emitted back to back with energy
@ = m,, and orthogonal polarization, €’ - € = 0. Using cross-
ing symmetry, we can get the amplitude for this process from a
computation of the forward Compton amplitude (k" = k and
p' = p) in the scatterer’s rest frame, p = (m,,0), with
photon momentum k = (1, k) where @ = m,. Boosting
to the CoM frame, we can use the decomposition of the
Compton amplitude in Eq. (30) to see which terms would
contribute to the process. Only one term survives, M =
iA3ET[6 - (€ x €')]¢, and this term retains its structure in the
fermion rest frame. In the CoM frame, we recall the LEX for
this term A3 ~ —8zm,, [y, — (y + 274k’ - k]@?, where @ is
the boosted photon energy (m,/ v/3). Boosting this back to
the fermion rest frame, the leading order term remains,
namely A ~ —8zm, [y, — (r, + 274)k’ - k], but errors
that are O(1) accrue. Still, this is sufficient to obtain an
order of magnitude estimate. Using crossing symmetry and
the polarizabilities in Egs. (58), (59), and (61), we estimate the
s-wave annihilation amplitude to be M(yy—7yy)~

my

2 2
i . o
over spins and summing over final polarization states, we find

i39%a =8 [6- (e x€')|E, assuming g, =0. Averaging

d g‘,‘eoc2 m;
|Urel| E Oyy—yy & WM;I/H; . (62)

Per our discussion on EFT, we would naively expect this cross
section to be suppressed by at least a factor of M ;6, but we see

that our estimate from the explicit calculation is much larger.
Given this and the fact that the annihilation is s-wave, it could
have a significant impact upon determining the relic density in
a theory of Majorana DM.

V. CONCLUSIONS

Because the electromagnetic properties of Majorana
fermions are severely constrained, these fermions cannot
couple to a single real photon, but if we move beyond the
Born contribution, Majorana fermions can interact with real
photons in a two-photon process. For a Majorana scatterer,
we have shown generally that contributions to the Compton
amplitude are not necessarily forbidden as long as the
process is separately invariant under the discrete symmetries
C, P, and 7. However, there are some restrictions upon the
Compton amplitude; namely, contributions to the amplitude
that are P-odd and 7 -even must vanish because Majorana
fermions are self-conjugate fields. These general findings
were borne out in an explicit computation of the polar-
izabilities of a Majorana fermion assuming a simple model.
From the explicit computation, we learned that some of the
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spin-dependent polarizabilities were not suppressed by the APPENDIX: COMPTON AMPLITUDE
appropriate mass scale expected in an effective field theory. COEFFICIENTS

Of consequence is the fact that Majorana fermions can
undergo s-wave annihilation into two photons with a much
greater cross section than one might naively expect.

We include the full expression for the CoM Compton
amplitude coefficients A; for the simple model discussed in
Sec. IV accurate to O(w?). For the portion of the amplitude
that is P-even and 7 -even, the amplitude is the sum of
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A3 = (g% +g%)(4 2)2/1 {w2 P’(?f()z <§x—4x2+2x3>
+ w? [P( )’)2 <3x —4x? +gx3 + P’ZE)S <§ 3 —13—6)64 +§x5>] } + O(a*), (A2)
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e’ 1 m,m;s (4 mim 8 16 8
AD — _» = [ d 2120 (2 gy 4 2y2 T (22 03 24
1 QRQL(4H)2A x{w { P% 3 X+ 2x° ) + Pi’ 3x + 3x 3x

4 ; 1
+ cos 02T <—§—|—4x - 2x2>} + o’ [w <—§x2 +?6x3 —%x“)] (1+ cosﬁ)} +O0(w*), (A7)

e? 1 m,my (4 momy (8 16 8
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1
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