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Because Majorana fermions are their own antiparticles, their electric and magnetic dipole moments must
vanish, leaving the anapole moment as their only static electromagnetic property. But the existence of
induced dipole moments is not necessarily prohibited. Through a study of real Compton scattering, we
explore the constraints that the Majorana fermion’s self-conjugate nature has on induced moments. In terms
of the Compton amplitude, we find no constraints if the interactions are separately invariant under charge
conjugation, parity, and time reversal. However, if the interactions are odd under parity and even under time
reversal, then these contributions to the Compton amplitude must vanish. We employ a simple model to
confirm these general findings via explicit calculation of the Majorana fermion’s polarizabilities. We then
use these polarizabilities to estimate the cross section for s-wave annihilation of two Majorana fermions
into photons. The cross section is larger than a naive estimate might suggest.
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I. INTRODUCTION

The static electromagnetic (EM) properties of spin-1
2

Majorana fermions are highly constrained. Because these
particles are their own antiparticles, they must be electri-
cally neutral with vanishing electric and magnetic dipole
moments. In fact, their only nonzero static EM property is
the anapole moment [1–4]. Within the Standard Model
(SM), the neutrino is the only possible Majorana fermion.
Several decades ago, interest arose in the neutrino’s EM
properties, and the program of discovery is ongoing both
from a theoretical and experimental standpoint [5,6]. In
terms of the neutrino’s anapole moment, there was much
controversy surrounding its status as a meaningful observ-
able in part due to questions about its gauge invariance
[7,8]. Reference [9] contains a complete review of this
debate; in the end, the neutrino’s anapole moment was
determined to be finite and gauge invariant. With that said,
our primary interest in this paper is in physics beyond the
SM, where theories are rife with Majorana fermions. In
particular, in supersymmetric theories, the lightest super-
symmetric particle is often a Majorana fermion that
functions as the dark matter (DM) of the universe [10].
The search for dark matter led to an uptick of interest in the
EM interactions of neutral particles, in general, and
Majorana fermions, in particular. Knowledge of these
interactions is important for both direct and indirect DM
searches and for establishing the relic DM density. Early
constraints on the EM properties of DM, including the
anapole moment and higher-order interactions, can be
found in Ref. [11]. More recent studies of DM interacting
via an anapole moment can be found in Refs. [12–15].
Additionally, DM anapole interactions, along with higher
order EM interactions, can be studied from the perspective
of an effective field theory (EFT); see Ref. [16] and the
references therein.

In this paper, we will discuss the EM properties of
Majorana fermions but move beyond the static limit and
focus upon their polarizabilities. In Sec. II, we first review
the well-known static EM properties of the Majorana
fermion. In field theory, these static properties are assessed
through interactions mediated by a single low-energy
photon. Higher-order classical interactions involving
induced EM moments, i.e., the particle’s polarizability,
are quadratic in the EM fields. As a result, in field theory,
these processes involve the interaction between the particle
and two photons. Our first novel results, contained in
Sec. III, address these processes. There, we determine
model-independent constraints on the polarizability of the
Majorana fermion that arise as a result of its self-conjugate
nature. Within the context of Compton scattering, we show
generally that two-photon interactions with a Majorana
fermion are not forbidden if the process is separately
invariant under charge conjugation, parity, and time rever-
sal, but for interactions which are odd under parity, but even
under time reversal, the Compton amplitude vanishes.
Finally, in Sec. IV, using a simple model, we explicitly
compute the anapole moment of a Majorana fermion along
with the leading-order contributions to its polarizabilities.
This section serves as an explicit demonstration of the
model-independent results of Sec. III; additionally, it
suggests a relevant application. From the explicit model,
we show that the Majorana fermion is able to undergo
s-wave annihilation into two photons, mediated by a spin-
dependent polarizability, with a cross section that is larger
than a naive EFT estimate might suggest.

II. STATIC EM PROPERTIES

We begin with a review of the known static EM
properties of Majorana fermions because the arguments
in this section will provide a natural segue to the novel
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material that follows in Sec. III. To assess the static EM
properties of the fermion, we consider the interaction vertex
between a single off-shell photon and a spin-1

2
fermion as in

Fig. 1. The Lagrangian term mediating this interaction is a
contraction of the EM current JμEM ¼ ΨΓμΨ with the
photon vector field Aμ. The structure of this vertex can
be ascertained through the principles of Lorentz covariance
and gauge invariance. Generally, the matrix element for a
conserved EM current operator JμEM is characterized by four
form factors which are functions of the only nontrivial
scalar, the square of the momentum transfer, q ¼ p0 − p,

hp0; s0jJμEMjp; si ¼ ūðp0Þ
�
f1ðq2Þγμ þ

i
2m

f2ðq2Þσμνqν
þ fAðq2Þðq2γμ − qμqÞγ5

þ fEðq2Þσμνqνγ5
�
uðpÞ: ð1Þ

At zero momentum transfer, these four functions encode
the static EM properties of the fermion. The first two form
factors, f1 and f2, are associated with the charge and
anomalous magnetic dipole moment of the fermion. Both
of these terms transform as a classical current four-vector,
Jμcl, under parity and time reversal. Namely, under a parity
transformation the spatial part of the current picks up a
minus sign PJμclðt;xÞP−1 ¼ ð−1ÞμJμclðt;−xÞ and likewise
under a time reversal T Jμclðt;xÞT −1 ¼ ð−1ÞμJμclð−t;xÞ,
where the shorthand ð−1Þμ is defined to be þ1 for μ¼ 0
and −1 for μ ¼ j. After the discovery of parity violation in
particle physics, Zel’dovich realized the necessity of the
third term in the interaction vertex [17]. The anapole
moment fAð0Þ has mass dimension ½M�−2, and relative
to a classical current, this term is odd under a parity
transformation but even under time reversal. The fourth
term is associated with the particle’s electric dipole
moment. The function fEðq2Þ has mass dimension
½M�−1, and this term is odd under both parity and time
reversal transformations. Though a general fermion can
have nonzero form factors for all four terms, the EM
properties of Majorana particles are highly constrained;
only its anapole moment can be nonzero.
Majorana fields are special solutions of the Dirac

equation. There is a particular representation of the

Dirac matrices that renders all four matrices purely imagi-
nary. In this Majorana representation, the solutions to the
Dirac equation are real; the particles represented by these
solutions are termed Majorana fermions. For other repre-
sentations of the Dirac matrices, this notion of “realness”
generalizes to the statement that Majorana fields are equal
to their Lorentz-covariant conjugates [18]. These fields
have half as many degrees of freedom as a spin-1

2
Dirac

fermion, which translates to the notion that the Majorana
fermion is its own antiparticle. We see that Majorana
fermions can be defined without reference to discrete
symmetry transformations like charge conjugation, but it
is perhaps more intuitive to invoke these ideas in regarding
these particles as their own antiparticles. On the face of it, it
might seem that Majorana fermions are eigenstates of the
charge conjugation operator C. In the absence of any
interaction, this is true; however, this notion is of limited
utility. In light of parity violating interactions, the dressed
Majorana fermion propagator breaks symmetry under C [1].
More generally, a Majorana fermion is defined as a self-
conjugate field under CPT [1,3,4,18]. Because all local
Lorentz covariant field theories are invariant under CPT
transformations, regarding Majorana fermions as their own
CPT conjugates results in no great restriction. Before
examining why the EM properties of Majorana fermions
are so constrained, we first review how to implement the
discrete transformations on spin-1

2
fields.

A. Discrete transformations

Under a parity transformation, the spatial part of a four-
vector is reflected; that is, ðt;xÞ ↦ ðt;−xÞ, or using the
shorthand above xμ ↦ ð−1Þμxμ. On the other hand, axial
vectors acquire an additional minus sign, relative to vectors,
under the parity transformation; as a consequence, a
quantity like angular momentum is unchanged under this
transformation so that a particle’s spin satisfies s ↦ s. This
parity transformation of space-time can be implemented by
a unitary operator P on the fermionic field,

Ψðt; xÞ ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ep

p
×
X
s

ðaspuðp; sÞe−ip·x þ bs†p vðp; sÞeip·xÞ; ð2Þ

where asp and bsp are annihilation operators for fermions and
antifermions, respectively. Acting on the field operators, a
parity transform reverses the momentum direction for the
annihilation operators; e.g., we have PaspP−1 ¼ as−p, up to
a phase which does not impact our considerations in this
work. Employing the Weyl representation of the Dirac
matrices, spinors have the property

uðp; sÞ ¼ γ0uð−p; sÞ; ð3Þ

FIG. 1. Interaction vertex between an on-shell fermion and an
off-shell photon of momentum q.
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vðp; sÞ ¼ −γ0vð−p; sÞ; ð4Þ

so that the parity transformation on the fields can be taken
as PΨðt;xÞP−1 ¼ iγ0Ψðt;−xÞ.
Under charge conjugation, particles are mapped to

antiparticles while maintaining the same momentum and
spin. That is, the action of the charge conjugation operator
maps fermion annihilation operators to antifermion anni-
hilation operators, CaspC−1 ¼ bsp, up to a phase. To deter-
mine the impact of this map on the fieldΨðt;xÞ, Eq. (2), we
introduce the unitary charge conjugation matrix C. The
defining feature of this matrix is its action upon the Dirac
matrices, namely CγμC−1 ¼ −γ⊤μ , where ⊤ denotes the
transpose. In addition to its unitarity, the charge conjuga-
tion matrix is antisymmetric, C⊤ ¼ −C. In the Weyl
representation of the Dirac matrices, the charge conjugation
matrix can be taken as C ¼ −iγ2γ0, and it provides a map
between u and v spinors,

uðp; sÞ ¼ Cγ0v�ðp; sÞ; ð5Þ

vðp; sÞ ¼ Cγ0u�ðp; sÞ: ð6Þ

With this map, the (linear) charge conjugation operator
satisfies CΨðt;xÞC−1 ¼ Cγ0Ψ�ðt;xÞ ¼ CΨ⊤ðt;xÞ.
In what follows, we will be particularly interested in the

transformation of Dirac bilinears under charge conjugation.
Extending the work of the previous paragraph, we find the
effect of C on the Dirac adjoint of the fermion field to be
CΨðt;xÞC−1 ¼ Ψðt;xÞ⊤C. Given this, a Dirac bilinear will
transform as CΨAΨC−1 ¼ Ψðt;xÞ⊤CACΨ⊤, where A is
some element of the Dirac algebra. We can put this
expression in a more useful form by taking its transpose;
recalling that we acquire a minus sign upon the anticom-
mutation of the fermion fields, we find CΨAΨC−1 ¼
ΨCA⊤C−1Ψ. Given the defining property of the charge
conjugation matrix, CðγμÞ⊤C−1 ¼ −γμ, we can establish
the following relationships:

C½γ5�⊤C−1 ¼ γ5; ð7Þ

C½σμν�⊤C−1 ¼ −σμν; ð8Þ

C½γμγ5�⊤C−1 ¼ γμγ5; ð9Þ

C½σμνγ5�⊤C−1 ¼ −σμνγ5: ð10Þ

We see, for instance, that the first term in the EM current,
Eq. (1), is C-odd, CΨγμΨC−1 ¼ −ΨγμΨ. In addition to
elements of the Dirac algebra, we also find momentum-
dependent terms in Eq. (1) which signify the presence of a
derivative coupling in the effective Lagrangian for the EM
vertex. Charge conjugation commutes with derivatives, but
when transposing fields in a bilinear, the derivative will

shift positions; e.g., CΨAð∂νΨÞC−1 ¼ ð∂νΨÞCΓ⊤C−1Ψ. As
an example, we can confirm that the anomalous magnetic
moment term in Eq. (1) is C-odd,

C½ð∂νΨÞσμνΨþΨσμνð∂νΨÞ�C−1
¼ −Ψσμνð∂νΨÞ − ð∂νΨÞσμνΨ: ð11Þ

Pursuing this example, we compute the matrix element,
modulo some factors, for this operator assuming initial and
final fermion states with momenta p and p0 and spins s and
s0, respectively:

h0jas0p0 ½ð∂νΨÞσμνΨþΨσμνð∂νΨÞ�as†p j0i
∼ iðp0

ν − pνÞūðp0; s0Þσμνuðp; sÞ: ð12Þ

For completeness, we execute the same computation for
antifermions:

h0jbs0p0 ½ð∂νΨÞσμνΨþΨσμνð∂νΨÞ�bs†p j0i
∼ −ið−pν þ p0

νÞv̄ðp; sÞσμνvðp0; s0Þ: ð13Þ

To determine the matrix element for antifermions, we see
that an overall minus sign arises from the anticommutation
of fermion fields, and momentum-dependent factors can be
gotten from the fermion amplitude via the substitution
p ↦ −p0 and p0 ↦ −p.
The final discrete transformation that we discuss is time

reversal. For this transformation, the temporal part of a
spacetime vector acquires a minus sign, ðt;xÞ ↦ ð−t;xÞ,
and the direction of angular momentum is flipped
s ↦ −s. To implement this on a fermionic field, the
transformation must be conjugate linear; that is, for a
scalar α, the transformation conjugates the scalar
T αΨT −1 ¼ α�T ΨT −1. In the Weyl representation, we
note that spinors of opposite spin can be related via

uð−p;−sÞ ¼ −γ1γ3u�ðp; sÞ; ð14Þ

vð−p;−sÞ ¼ −γ1γ3v�ðp; sÞ: ð15Þ

So, we can implement the time reversal operator on fields
as T Ψðt;xÞT −1 ¼ ð−γ1γ3ÞΨð−t;xÞ ¼ −Cγ5Ψð−t;xÞ.
We can combine all these transformations to determine

the joint effect of the antiunitary operator CPT ; we find
ðCPT ÞΨðt;xÞðCPT Þ−1 ¼ −iγ5γ0Ψ⊤ð−t;−xÞ. Combining
the three relationships amongst the spinors in Eqs. (3)–(6),
(14), and (15), we find the useful relationship

uðp;−sÞ ¼ −γ5vðp; sÞ; ð16Þ

vðp;−sÞ ¼ γ5uðp; sÞ: ð17Þ

Of interest is how Dirac bilinears transform under CPT .
To evaluate these bilinears, we must determine the
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zaction of CPT on the Dirac adjoint of the field,
ðCPT ÞΨðt;xÞðCPT Þ−1 ¼ −iΨð−t;−xÞ⊤γ0γ5. Then, for
the operator A, we find that the bilinear transforms as

ðCPT ÞΨAΨðCPT Þ−1 ¼ −Ψ⊤γ0γ5A�γ5γ0Ψ⊤: ð18Þ

Taking the transpose of the above number and introducing a
minus sign upon anticommutation of the fermion fields,
this simplifies to

ðCPT ÞΨAΨðCPT Þ−1 ¼ Ψγ5Aγ5Ψ; ð19Þ

where we have assumed Hermiticity, γ0A†γ0 ¼ A. Using
Eq. (19), we are able to determine that the EM fermionic
current JμEM is odd under CPT . This could be ascertained in
another manner. Noting that the photon field Aμ is odd
under CPT , then the EM current must also be odd in order
for this local quantum field theory to be invariant
under CPT .

B. Constraints on the amplitude

Knowing how the current transforms under CPT will
help us constrain the EM form factors of a Majorana
fermion. To do so, we recall that Majorana fermions are
their own CPT conjugates; that is, a state transforms as
CPT jp; si ¼ jp;−si. Under an antiunitary transformation
~U, the entries in an inner product are switched, i.e.,
h ~Uaj ~Ubi ¼ hbjai. Because the CPT transformation is
antiunitary, then the matrix element for the EM current
for a Majorana fermion satisfies

hp0; s0jJμEMjp; si ¼ −hp;−sjJμEMjp0;−s0i; ð20Þ

where the minus sign arises for the transformation proper-
ties of JμEM under CPT . The left-hand side of this equation
can be expanded as above in Eq. (1). The right-hand side
(rhs) of Eq. (20) follows suit:

hp;−sjJμEMjp0;−s0i ¼ ūðp;−sÞΓμðp; p0Þuðp0;−s0Þ; ð21Þ

but we can use the relations in Eqs. (3) and (14) to find
an alternate expression for the spinors uðp;−sÞ ¼
−γ0Cγ5u�ðp; sÞ. Using this expression and the related
one for the Dirac adjoint, we can rewrite the rhs of
Eq. (20) as

ūðp;−sÞΓμðp; p0Þuðp0;−s0Þ
¼ −u⊤ðp; sÞγ5CΓμðp; p0Þγ0Cγ5u�ðp0; s0Þ ð22Þ

¼ ūðp0; s0Þγ5C½Γμðp; p0Þ�⊤C−1γ5uðp; sÞ; ð23Þ

where we take the transpose of the number on the rhs
of Eq. (22) to arrive at the final expression. Noting
p − p0 ≔ −q, then we find

γ5C½Γμðp; p0Þ�⊤C−1γ5 ¼ f1ðq2Þγμ þ
i
2m

f2ðq2Þσμνqν
− fAðq2Þðq2γμ − qμqÞγ5
þ fEðq2Þσμνqνγ5: ð24Þ

Returning to Eq. (20) where we first implemented the CPT
transformation, we find in light of Eq. (24) that only the
Majorana fermion’s anapole is nonvanishing; that is,
f1; f2; fE ≡ 0.
These restrictions upon the static EM properties of the

Majorana fermion can be understood heuristically by
considering the nonrelativistic limit of the field theory.
This argument originally appeared in Refs. [1,2] and
bears repeating given its insightful simplicity. Clearly, a
Majorana fermion must carry no electric charge if it is to be
its own antiparticle, but why must both its magnetic and
electric dipole moments vanish? In the low-energy limit,
the interaction Hamiltonian between the EM field and a
particle’s magnetic, μ, and electric, d, dipole moments is
Hint ¼ −μðs · BÞ − dðs ·EÞ, where we denote the particle’s
spin by s. Spin is odd under CPT whereas the electric and
magnetic fields are both even under the transformation. If
our interaction is CPT invariant, then the magnetic and
electric dipole must vanish. On the other hand, the non-
relativistic Hamiltonian for the term involving the anapole
moment a isHint ¼ −aðs · JÞ, because the EM four-current
is given by the divergence of the EM tensor ∂μFμν ¼ Jν.
The current J is odd under CPT so that overall this
interaction is invariant under CPT .

III. TWO-PHOTON INTERACTIONS

We turn our attention to processes involving fermions
and two real photons. As an exemplar, we consider the
extensively studied process of real Compton scattering. The
low-energy limit of the Compton scattering process is
determined by the Born contribution computed via tree-
level Feynman diagrams involving only a single virtual
fermion with real photons coupling via the above vertex,
Eq. (1) and Fig. 1. As such, in a low-energy expansion, the
leading order contribution to the Compton scattering
amplitude is determined exclusively by the static EM
properties of the fermion [19–22]. But, as shown above,
the only nonzero static EM property of a Majorana fermion
is its anapole moment, and the coupling between this
anapole moment and real photons vanishes. Thus, for
Majorana fermions, the typical leading order contributions
to the Compton amplitude will vanish.
But, moving beyond the Born approximation, there are

model-dependent corrections to the amplitude, namely
electric and magnetic polarizabilities, that are relevant at
higher energies. Majorana fermions are not forbidden from
interacting with photons through such induced electric and
magnetic dipole moments [23]. Two-photon processes
are the simplest avenue to explore induced moments;
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heuristically, one photon can be thought of as inducing an
EM moment which can then interact with the other photon.
These higher-order corrections to the Compton amplitude
have been well studied, particularly for nucleons [24–37],
and though the precise details of a particle’s polarizabilities
are model dependent, the general framework for Compton
scattering established in these previous studies is relevant
for Majorana fermions. We begin our exploration of two-
photon processes by constructing a manifestly covariant
expression for the Compton scattering amplitude for a
general spin-1

2
particle, including both the P-even, T -even

and P-odd, T -even contributions. Supposing a Majorana
fermion is the scatterer, we then determine what additional
constraints this imposes upon the structure of the ampli-
tude. In the end, we show that the existence of electric and
magnetic polarizabilities is not forbidden for Majorana
fermions. After the formal manipulations are complete, we
conclude this section with a more intuitive, nonrelativistic
discussion of the polarizabilities.

A. Manifestly covariant amplitude

In Fig. 2, we lay out the kinematics for a real photon
scattered by a general spin-1

2
fermion. The incoming

photon momentum, k, is on shell k2 ¼ 0, and the photon
polarization, ϵ, is transverse, ϵ · k ¼ 0. Similar relations
hold for the outgoing photon’s momentum k0 and polari-
zation vector ϵ0. The incoming and outgoing fermions
are on mass shell, p2 ¼ p02 ¼ m2. The structure of
the amplitude for real Compton scattering is M ¼
ϵ0ν�ϵμūðp0; s0ÞΓνμðp0; k0;p; kÞuðp; sÞ. Following Ref. [24],
we will construct a manifestly covariant expression for the
tensor Γνμ which characterizes the Compton amplitude.
Using crossing symmetry and assuming separate invariance
under the discrete symmetries C, P, and T , the tensor can
be decomposed into six terms [24]. Because parity viola-
tion is a necessary ingredient for the existence of anapole
moment, we extend the work of Ref. [24] to show that the
parity-violating (but T -even) portion of the Compton
scattering tensor can be decomposed into four terms.
We construct a covariant representation of the tensor Γνμ

from the set of orthogonal basis vectors: Kμ ¼ 1
2
ðkμ þ k0μÞ,

P0μ ¼ Pμ − P·K
K2 Kμ, qμ ¼ p0μ − pμ, and Nμ ¼ ϵμνρσP0

νKρqσ
where Pμ ¼ 1

2
ðp0μ þ pμÞ [24]. By exploiting Lorentz

covariance, transverse polarization, and the Ward identity,

Γνμkμ ¼ 0 ¼ Γνμk0ν, we can constrain the structure of the
tensor so that it is a linear combination of the following
four tensors: P0μP0ν, NμNν, P0μNν � NμP0ν. The coeffi-
cients of these tensors each contain, as a factor, a bilinear
ūðp0; s0ÞAuðp; sÞ, where A is 1; K; γ5, or Kγ5. If the
amplitude is to be invariant under parity, then the tensors
P0μP0ν and NμNν will carry the scalar coefficients formed
whenever the operator A is 1 or K, whereas the remaining
tensors P0μNν � NμP0ν require pseudoscalar coefficients
with A ¼ γ5 or Kγ5. This results in eight different terms.
These eight terms can be further reduced to six terms by

requiring that the amplitude be invariant under charge
conjugation and by exploiting crossing symmetry. Again,
the matrix elements for the two-photon operator involves
factors of momenta, pμ and p0μ, signaling derivative
couplings between the fermion fields and photons. As
outlined in the previous section, we effect the charge
conjugation via

CΓνμðp0; k0;p; kÞC−1 ¼ C½Γνμð−p; k0;−p0; kÞ�⊤C−1: ð25Þ

As noted in Ref. [24], under the action of charge con-
jugation alone, it is difficult to arrive at additional con-
straints on the structure of the Compton amplitude because
the Mandelstam variables change under this map, s ↦ u
and u ↦ s. But, if one makes use of crossing symmetry for
the photons, namely k ↔ −k0 and μ ↔ ν, in conjunction
with charge conjugation, then it is easy to see that only six
of the eight terms in the decomposition of Γνμ are C-even.
Implementing crossing symmetry, the condition for being
even under C can be expressed as

Γνμðp0; k0;p; kÞ ¼ C½Γμνð−p;−k;−p0;−k0Þ�⊤C−1: ð26Þ

Under this joint map, the basis vectors P0 and K are odd
while q and N are even. In the end, assuming separate
invariance under C, P, and T , the tensor can be decom-
posed as

Γνμ ¼ ðT11þ T4KÞ
P0μP0ν

P02 þ ðT21þ T5KÞN
μNν

N2

þ iT3γ
5
ðP0μNν − NμP0νÞffiffiffiffiffiffiffiffiffiffiffiffi

P02N2
p

þ iT6γ
5K

ðP0μNν þ NμP0νÞffiffiffiffiffiffiffiffiffiffiffiffi
P02N2

p ; ð27Þ

where the Tj are functions of the Mandelstam invariants
and we omit the spinors ūðp0; s0Þ and uðp; sÞ to condense
notation [24]. (Note, we have opted to construct our tensors
using normalized vectors as in Ref. [26].)
Moving beyond the work in Ref. [24], we also consider

contributions to the Compton amplitude which are P-odd
and T -even (and thus C-odd). The tensor structure for ΓP

νμ

derives from the same set of four tensors; however, in order

FIG. 2. Two-photon interaction with a fermion. The photons are
assumed to be real and transverse, and the fermion is on mass
shell.
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to have P-odd terms, the P0μP0ν and NμNν tensors require
pseudoscalar coefficients, and P0μNν � NμP0ν require sca-
lar coefficients. If we use crossing symmetry and require
the amplitude to be C-odd, then we arrive at the following
condition:

ΓP
νμðp0; k0;p; kÞ ¼ −C½ΓP

μνð−p;−k;−p0;−k0Þ�⊤C−1:

ð28Þ

We find four terms in the amplitude which are P-odd and
T -even:

ΓP
νμ ¼ TP1

γ5K
P0μP0ν

P02 þ TP2
γ5K

NμNν

N2

þ ðTP3
1þ TP4

KÞ ðP
0μNν þ NμP0νÞffiffiffiffiffiffiffiffiffiffiffiffi

P02N2
p : ð29Þ

As an aside, we note that one can refine the expressions for
the covariant tensors, freeing them of both kinematic

singularities and zeros [27], but this is not necessary for
our purposes.

B. Center-of-momentum frame

Before we discuss the restrictions that a Majorana
scatterer will place upon the tensor decomposition,
Eqs. (27) and (29), we will first connect this manifestly
covariant expression with a more familiar frame-specific
representation of the scattering amplitude. We consider the
center-of-momentum (CoM) frame where the photon 4-
momenta are given by k ¼ ðω;ωk̂Þ and k0 ¼ ðω;ωk̂0Þ with
a scattering angle θ that satisfies k̂ · k̂0 ¼ cos θ. For
completeness, the fermion 4-momenta are p ¼ ðE;−ωk̂Þ
and p0 ¼ ðE;−ωk̂0Þ with E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ω2

p
for fermion mass

m. In this frame, the Compton amplitude can be simply
expressed in terms of Pauli spinors for the initial (final)
fermion state ξ (ξ0). Omitting these spinors, the portion of
the amplitude even under C, P, and T , i.e., Eq. (27), can be
written as

M ¼ A1ðϵ0� · ϵÞ þ A2ðϵ0� · k̂Þðϵ · k̂0Þ þ iA3½σ · ðϵ × ϵ0�Þ� þ iA4½σ · ðk̂ × k̂0Þ�ðϵ0� · ϵÞ
þ iA5σ · ½ðϵ0� × k̂Þðϵ · k̂0Þ − ðϵ × k̂0Þðϵ0� · k̂Þ� þ iA6σ · ½ðϵ0� × k̂0Þðϵ · k̂0Þ − ðϵ × k̂Þðϵ0� · k̂Þ�; ð30Þ

where the coefficients are functions of the photon energy
and scattering angle Ajðω; θÞ [25]. A map between the
covariant expression, Eq. (27), and the CoM amplitude,
Eq. (30), was constructed in Ref. [26]:

A1 ¼ c1T2 − c2T5; ð31Þ

A2 ¼
1

sin2θ
½c1ðT1 þ cos θT2Þ − c2ðT4 þ cos θT5Þ�; ð32Þ

A3 ¼ ðE −mÞ½T1 þ cos θT2

− ðEþmþ ωÞðT4 þ cos θT5Þ�
þ 2ω½T3 − ðEþ ωÞT6�; ð33Þ

A4 ¼ðE −mÞ½T2 − ðEþmþ ωÞT5�; ð34Þ

A5 ¼ −
E −m
sin2θ

cos θ½ðT1 þ cos θT2Þ
− ðEþmþ ωÞðT4 þ cos θT5Þ�
−

ω

sin2θ
½ð1þ cos θÞT3 þ ðEþ ωÞð1 − cos θÞT6�;

ð35Þ

A6 ¼
E −m
sin2θ

½T1 þ cos θT2 − ðEþmþ ωÞðT4 þ cos θT5Þ�

þ ω

sin2θ
½ð1þ cos θÞT3 − ðEþ ωÞð1 − cos θÞT6�:

ð36Þ

We define c1 ¼ Eþm − ðE −mÞ cos θ and c2 ¼
ðEþmÞðm − E − ωÞ − ðE −mÞðmþ Eþ ωÞ cos θ. (NB:
Our expressions for Aj in terms of Tj differ slightly from
those in Ref. [26] due to differing choices in conventions.)
In Ref. [37], we find the forward Compton amplitude in

the CoM frame,

MP ¼ AP1
ðϵ0� · ϵÞ½σ · ðk̂0 þ k̂Þ�

þ AP2
ðϵ0� · k̂Þðϵ · k̂0Þ½σ · ðk̂0 þ k̂Þ�

þ iAP3
ðk̂0 þ k̂Þ · ½ϵ0� × ϵ�

þ iAP4
σ · ½ðk̂ − k̂0Þ × ðϵ0� × ϵÞ�; ð37Þ

where APj
¼ APj

ðω; θÞ and we omit the Pauli spinors. We
can construct a map from our covariant expression for the
P-odd, T -even portion of the Compton amplitude,
Eq. (29), to the CoM frame via

AP1
¼ ωðEþ ωÞTP2

; ð38Þ

AP2
¼ 1

sin2θ
fωðEþ ωÞ½TP1

þ cos θTP2
�

þ ið1 − cos θÞðE −mÞ½TP3
− ðEþmþ ωÞTP4

�g;
ð39Þ

AP3
¼ −i

ð1 − cos θÞ
sin2θ

½c1TP3
þ c2TP4

�; ð40Þ
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AP4
¼ðE −mÞ½TP3

− ðEþmþ ωÞTP4
�: ð41Þ

With these connections between the covariant and CoM
expressions, we can more easily make contact with the
leading order contributions to the polarizabilities of the
Majorana fermion by executing a low-energy expansion in
the CoM frame [37,38].

C. Constraints on the amplitude

Now, we address any constraints that the Majorana
character of the scatterer might have upon the structure
of the Compton amplitude tensor. In this case, it is more
useful to exploit the self-conjugate nature of the Majorana
fermion under Lorentz-covariant conjugation, rather than
appeal to self-conjugacy under CPT . A fermionic field is
Majorana if Ψ ¼ γ0CΨ� [18]; as a consequence, there is
nothing to distinguish particle from antiparticle in the field
expansion

Ψðt; xÞ ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ep

p
×
X
s

ðaspuðp; sÞe−ip·x þ as†p vðp; sÞeip·xÞ: ð42Þ

Given this, the Compton scattering amplitude for Majorana
fermions is

M ¼ ϵ0ν�ϵμfūðp0; s0ÞΓνμðp0; k0;p; kÞuðp; sÞ
− v̄ðp; sÞΓνμð−p; k0;−p0; kÞvðp0; s0Þg: ð43Þ

But, using Eq. (6), we can rewrite this as

M ¼ ϵ0ν�ϵμūðp0; s0Þ½Γνμðp0; k0;p; kÞ
þ CΓνμð−p; k0;−p0; kÞ⊤C−1�uðp; sÞ: ð44Þ

We recall the effective action of the charge conjugation
operator on Γνμ, Eq. (25). From this, we find that if
the amplitude is C-even then M ¼ 2ϵ0ν�ϵμūðp0; s0Þ×
Γνμðp0; k0;p; kÞuðp; sÞ; that is, the amplitude for a
Majorana fermion is double the expected value for a
Dirac fermion. But, if the amplitude is C-odd, then it
vanishes identically. The fact that the Majorana fermion is
self-conjugate means that particle cannot be distinguished
from antiparticle, forcing any C-odd portions to vanish.
By examining the Compton amplitude at low energies,

we will be able to understand the existence of the Majorana
polarizabilities from a classical standpoint. We focus on the
electric polarizability of a substance consisting of spheri-
cally symmetric atoms. The atom has no permanent electric
dipole moment, but when placed in an external electric
field, opposite forces on the protons and electrons will
create a nonzero dipole moment parallel to the external
field. At leading order, this dipole moment is proportional

to the field strength, d ¼ 4παE, where α is the spin-
independent electric polarizability. In terms of energetics,
the dielectric medium contributes in the usual way, Hint ¼
−2παE2. A similar construction applies for the magnetic
field with an induced dipole moment, μ ¼ 4πβB, charac-
terized by the spin-independent magnetic polarizability β.
Together, the classical interaction Hamiltonian for the spin-
independent polarizabilities is Hint ¼ −2παE2 − 2πβB2.
At low energies, the field theoretic scattering amplitude

should mirror the classical interactions. The Hamiltonian is
quadratic in the fields, and we can connect this with the
field theoretic amplitude by identifying one occurrence of
the field with the incident photon and the other with the
outgoing photon. Writing the interaction Hamiltonian in
terms of the electromagnetic tensor, this becomes
Hint ∼ αF0jF0

0j − 1
2
βFjkF0

jk. We assume a classical plane-

wave vector potential, A ¼ A0ϵeiωðk̂·x−tÞ, for the kth mode
of the electric and magnetic fields. Then focusing on, say,
the magnetic polarizability term in the CoM frame, we
find Hint∼−βω2½ðk̂0 · k̂Þðϵ0� ·ϵÞ− ðϵ0� · k̂Þðϵ · k̂0Þ�. At low
energies, we expect the magnetic spin-independent polar-
izability to appear in the Compton amplitude, Eq. (30), via
A1 ∼ cos θβω2 and A2 ∼ −βω2. In fact, this is the case. A
low-energy expansion (LEX) of the Compton amplitude in
the CoM frame for the P-even, T -even contribution
to the scattering amplitude can be found in Ref. [29].
We reproduce that expansion here omitting terms that
are Oðω4Þ

A1ðω;θÞ≈8πmχðαþ cosθβÞω2þ8πðαþβÞð1þ cosθÞω3

ð45Þ

A2ðω; θÞ ≈ −8πmχβω
2 − 8πðαþ βÞω3 ð46Þ

A3ðω; θÞ ≈ −8πmχ ½γ1 − ðγ2 þ 2γ4Þ cos θ�ω3 ð47Þ

A4ðω; θÞ ≈ −8πmχγ2ω
3 ð48Þ

A5ðω; θÞ ≈ 8πmχγ4ω
3 ð49Þ

A6ðω; θÞ ≈ 8πmχγ3ω
3: ð50Þ

In addition to α and β, we find the appearance of four
spin-dependent polarizabilities, γj [38]. There are two
electric polarizabilities d ¼ 4πγ1½s × ð∇ ×BÞ� and d ¼
4πγ3∇ðs ·BÞ induced by a nonuniform magnetic field,
and two magnetic polarizabilities m ¼ 4πγ2∇ðs ·EÞ and
m ¼ 4πγ4½s × ð∇ × EÞ� induced by a nonuniform electric
field. The interaction Hamiltonian follows the usual
prescription for an induced dipole, e.g., Hint ¼
−2πγ1½s × ð∇ × BÞ� ·E0. Adding these four classical
spin-dependent interactions to the spin-independent
Hamiltonian results in a low-energy scattering amplitude

TWO-PHOTON INTERACTIONS WITH MAJORANA FERMIONS PHYSICAL REVIEW D 94, 093010 (2016)

093010-7



consistent with the structure of the LEX of the Compton
amplitude in the CoM frame, Eq. (30).
Now we turn to the Majorana condition, recalling that a

Majorana fermion is equal to its conjugate under CPT .
Examining the classical Hamiltonian for the P-even,
T -even contribution to Compton scattering, we see that
no fundamental constraints on these polarizabilities
arise from the particle’s self-conjugate nature. For the
spin-independent terms, it is trivial to show that the
Hamiltonian, Hint ∼ E2; B2, is invariant under CPT . For
the spin-dependent terms, the product of the electric and
magnetic fields in Hint will be even under CPT , and the
minus sign that arises from transforming the spin is
canceled by the minus sign that comes from the spatial
derivatives. So there is no a priori reason for a Majorana
fermion’s polarizabilities to vanish for the P-even, T -even
contribution to the amplitude.
We now shift to a discussion of the P-odd, T -even

portion of the amplitude. A survey of the expression
for the CoM amplitude, Eq. (37), indicates the presence
of one spin-independent polarizability and three spin-
dependent ones. As before, we can construct a classical
Hamiltonian from these that should reproduce the field
theoretic results at low energies. As above, each term in
the classical Hamiltonian will be quadratic in the electric
and/or magnetic fields. By judicious choice (using
derivatives and the spin pseudovector), we can construct
expressions that are P-odd; however, if we attempt to
make each term in the Hamiltonian C-odd (and T -even),
we run into a problem. Both the electric and magnetic
field are odd under charge conjugation, rendering their
product even, and the other aforementioned structures
(derivatives and spin) are C-even. With these ingredients,
we cannot construct a C-odd term. We would need an
additional C-odd structure (like a current or charge
density), but in the case of the Majorana fermion, its
self-conjugate nature prohibits such a term from existing.
So, we see at the classical level why P-odd, T -even
terms in the Compton amplitude are forbidden for
Majorana fermions—there is no available structure to
make interactions C-odd.
To summarize, for a Dirac spin-1

2
fermion there are six

independent terms which contribute to the P-even, T -even
portion of the Compton scattering amplitude and four terms
which contribute to the P-odd, T -even portion of the
amplitude. For a Majorana spin-1

2
fermion, the Majorana

condition results in no additional constraints on the P-even,
T -even portion of the amplitude; however, we find that
the P-odd, T -even portion of the amplitude vanishes
identically.

IV. MODEL CALCULATION

In this section, we use a simple model to compute the
anapole moment and structure-dependent polarizabilities
for a Majorana fermion, χ, of mass mχ . Through explicit
calculation, we will see the model-independent results from
the previous section borne out in a concrete manner. The
anapole moment is generated through a parity-violating
coupling to a scalar ϕ of mass Mϕ and fermion ψ of mass
mf The interaction term of the Lagrangian is given by

LI ¼ ψ̄ðgLPL þ gRPRÞχϕ� þ H:c:; ð51Þ

where we define the projections PL;R ¼ 1
2
ð1 ∓ γ5Þ.

Assuming gL ≠ gR (which we take to be real), the chiral
projections result in the parity violation necessary to
generate an anapole moment. Other than this interaction,
the Dirac fermion and scalar follow the usual rules of QED
and scalar electrodynamics; we take their charge to be e.

A. Anapole moment

The leading order contributions to the anapole moment
are depicted in Fig. 3. The photon carries momentum q but
is not (necessarily) on mass shell whereas both of the
Majorana fermion spinors are assumed to be on mass shell
so that puðpÞ ¼ mχuðpÞ. Because we are dealing with a
Majorana fermion, the usual Feynman rules for Dirac
fermions must be adapted; we follow the procedure out-
lined in Refs. [39,40] by Denner et al. Alternate rules for
dealing with Majorana fermions exist, e.g., Ref. [41], and
yield equivalent results. Following Denner et al., we
represent fermions in our Feynman diagrams with solid
straight lines and distinguish Dirac from Majorana fer-
mions with an arrow. In addition to the diagrams in Fig. 3,
we include diagrams with reversed fermion flow for the
Dirac fermion propagator. Considering both directions of
the fermion flow, the diagrams in panels (a) and (b) of
Fig. 3 contribute to the overall amplitude Mμ ¼ Mμ

a þ
Mμ

b according to

Mμ
a ¼ ieðg2L − g2RÞ

Z
d4k
ð2πÞ4

ð2kμ − qμÞūðp0Þðkþ pÞγ5uðpÞ
½ðkþ pÞ2 −m2

f�½k2 −M2
ϕ�½ðk − qÞ2 −M2

ϕ�
ð52Þ

FIG. 3. Leading order contributions to the anapole moment for
the Majorana fermion.
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Mμ
b ¼ ieðg2L − g2RÞ

Z
d4k
ð2πÞ4

ūðp0Þ½ðkþ qÞγμkþm2
fγ

μ�γ5uðpÞ
½ðkþ qÞ2 −m2

f�½k2 −m2
f�½ðk − pÞ2 −M2

ϕ�
: ð53Þ

The overall factor of ðg2L − g2RÞ in the amplitude illustrates the necessity of parity violation in generating the anapole
moment. We recall that the amplitude can be written asMμ ¼ ūðp0ÞfAðq2Þðq2γμ − qμqÞγ5uðpÞ, Eq. (1), where the function
fAðq2 ¼ 0Þ represents the static anapole moment. At low momentum transfer, we find that Eqs. (52) and (53) result in the
anapole moment

fAðq2 ¼ 0Þ ¼ eðg2L − g2RÞ
ð8πÞ2m2

χ

��
M2

ϕ −m2
f þ

1

3
m2

χ

�Z
1

0

dx
m2

χx2 þ ðM2
ϕ −m2

χ −m2
fÞxþm2

f

þ log

�
m2

f

M2
ϕ

��
: ð54Þ

The integral above can be evaluated in closed form (e.g.,
see the Appendix in Ref. [42]); however, for simplicity, we
will not be concerned with such details and view the
anapole vertex as if it were an effective interaction, relevant
below some large mass scale. We suppose that the scalar
mass dominates the loop, that is,mf;mχ ≪ Mϕ. Given this,
we find

fAðq2 ¼ 0Þ ≈ eðg2L − g2RÞ
ð4πÞ2M2

ϕ

�
1

3
log

�
M2

ϕ

m2
f

�
−
1

2

�
: ð55Þ

As one might anticipate, the form factor is dominated by
the inverse square of the heaviest mass in the loop.
Additionally, we note that structure of this anapole moment
is similar to the computation of the neutrino charge radius
in Ref. [43].

B. Polarizabilities

We now consider a two-photon process, computing the
Compton amplitude for a Majorana fermion in the CoM
frame. We refer to Fig. 4 for representative Feynman
diagrams. In addition to these, we also include diagrams
with reversed fermion flow, and all but the seagull diagram
have a partner diagram with “crossed” photons. With our
simple model, we find that the amplitude conforms to the
structure for Majorana fermions discussed in the previous
section. Namely, there are six independent terms in the
amplitude with each even under C, P, and T transforma-
tions as in Eq. (30). There are no terms that are P-odd,
T -even, in contrast to the situation that would occur for

Dirac fermions. Finally, we note that if we allowed complex
couplings gL;R ≠ g�L;R (admitting CP-violating interactions)
in Eq. (51) then the amplitude would contain P-odd, T -odd
terms consistent with those discussed in Ref. [37].
In our computations, we effect a low-energy expansion

neglecting terms that are Oðω4Þ. The exact expressions, to
this order, for coefficients A1 through A6 from Eq. (30) are
contained in the Appendix. We confirm that they have the
expected structure from the LEX in Eqs. (45)–(50). Rather
than work with the unwieldy exact expressions, we make
some approximations consistent with those made in the
previous section. First, the Compton amplitude is the
sum of two sets of terms proportional to the couplings
g2R þ g2L and gLgR. Here, we will focus only upon the terms
proportional to g2R þ g2L. If the interaction in Eq. (51)
violated parity maximally, say gL ¼ 0, then only this first
term would survive. Again, we consider the approximation
in which the scalar mass dominates mf;mχ ≪ Mϕ.
Keeping only the leading order terms in this limit, we find
the Majorana fermion’s polarizabilities:

α ≈ ðg2R þ g2LÞ
e2

ð4πÞ3
mχ

M4
ϕ

�
2

3
log

�
M2

ϕ

m2
f

�
−
5

6

�
; ð56Þ

β ≈ ðg2R þ g2LÞ
e2

ð4πÞ3
mχ

M4
ϕ

�
2

3
log

�
M2

ϕ

m2
f

�
−
13

6

�
; ð57Þ

γ1≈ − ðg2R þ g2LÞ
e2

ð4πÞ3
1

3

1

M2
ϕm

2
f

; ð58Þ

γ2 ≈ ðg2R þ g2LÞ
e2

ð4πÞ3
1

M4
ϕ

�
2

3
log

�
M2

ϕ

m2
f

�
−
3

2

�
; ð59Þ

γ3 ≈ ðg2R þ g2LÞ
e2

ð4πÞ3
1

6

1

M2
ϕm

2
f

; ð60Þ

γ4≈ − ðg2R þ g2LÞ
e2

ð4πÞ3
1

6

1

M2
ϕm

2
f

: ð61ÞFIG. 4. Leading order contributions to Compton scattering via a
Majorana fermion.
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We note that the spin-independent polarizabilities are
commensurate in size particularly for small mf. Also,
the spin-dependent polarizabilities exhibit relationships
similar to those computed to leading order for nucleons
in chiral perturbation theory; namely, we find γ3 ¼ −γ4,
γ2 ≈ 0, and γ1 ¼ γ4 − γ3 [30]. But, the most interesting
feature is the mass dependence of the polarizabilities.
At low energies, the vertex characterizing one- and two-

photon interactions with a Majorana fermion can be cast
within the framework of an effective field theory. That is,
the anapole moment should capture one-photon inter-
actions and the polarizabilities should capture those for
two photons without needing to worry about the details
of a UV-complete theory contained in the Feynman dia-
grams, Figs. 3 and 4. At the Lagrangian level, the anapole
interaction takes the form Lana ∼ χ̄γμγ

5χ∂νFμν while the
two-photon interaction should be captured by terms
Lpol ∼ χ̄ða1þ bγ5ÞχFμνFμν, cf. Refs. [44–46]. The ana-
pole term in the Lagrangian has a mass dimension of 6 so
the coupling constant must have mass dimension of
negative 2, gana ∼ 1

Λ2 where Λ is the energy scale associated
with the effective interaction. For our explicit computation
of the anapole moment above, Eq. (54), we see that this
energy scale is set by the (assumed large) scalar mass
Λ ∼Mϕ. Turning to the two-photon effective Lagrangian,
we see that it has a mass dimension of 7, and thus our
expectation is that couplings should be characterized by a
scale gpol ∼ 1

Λ3 ∼ 1
M3

ϕ
. Looking at our explicit calculation of

the model’s polarizabilities, Eqs. (56)–(61), we see that the
spin independent polarizabilities roughly meet the expect-
ation α; β ∼ mχ

M4
ϕ
. But, three of the spin-dependent polar-

izabilities have a mass dependence of 1
M2

ϕm
2
f
. On the face of

it, processes in which these polarizabilities are relevant are
suppressed by only two factors of the scale 1

Λ rather than
three. This sort of mismatch between EFTexpectations and
results from a UV-complete theory has been discussed
extensively; see Ref. [16] and the references therein.

C. Application

The explicit computation of the anapole moment and
polarizabilities for this particular model support the general
conclusions of Sec. III, but we can also use these polar-
izabilities to estimate cross sections for some low-energy
processes. In particular, we can compute the amplitude for
the annihilation of two Majorana fermions into two
photons. This annihilation cross section is relevant for
models of dark matter—both to determine the relic dark-
matter density and to inform indirect DM searches. For
these purposes, DM would be nonrelativistic, so we
compute the annihilation cross section assuming small
relative velocity, vrel ∼ 0; that is, we would like to estimate
the s-wave contribution to annihilation, if it exists.

Because real photons do not couple to anapoles, the Born
contribution (with anapole vertex) to the process vanishes, so
wemove on to the contribution from the box diagrams, Fig. 4,
that result in the Majorana fermion’s polarizabilities. If the
annihilation is s-wave, then in the rest frame of the fermion
the resulting photonswill be emitted back to backwith energy
ω ¼ mχ and orthogonal polarization, ϵ0 · ϵ ¼ 0. Using cross-
ing symmetry,we canget the amplitude for this process froma
computation of the forward Compton amplitude (k0 ¼ k and
p0 ¼ p) in the scatterer’s rest frame, p ¼ ðmχ ; 0Þ, with
photon momentum k ¼ ωð1; k̂Þ where ω ¼ mχ . Boosting
to the CoM frame, we can use the decomposition of the
Compton amplitude in Eq. (30) to see which terms would
contribute to the process. Only one term survives, M ¼
iA3ξ

0†½σ · ðϵ × ϵ0Þ�ξ, and this term retains its structure in the
fermion rest frame. In the CoM frame, we recall the LEX for
this term A3 ≈ −8πmχ ½γ1 − ðγ2 þ 2γ4Þk̂0 · k̂� ~ω3, where ~ω is
the boosted photon energy (mχ=

ffiffiffi
3

p
). Boosting this back to

the fermion rest frame, the leading order term remains,
namely A3 ≈ −8πmχ ½γ1 − ðγ2 þ 2γ4Þk̂0 · k̂�ω3, but errors
that are Oð1Þ accrue. Still, this is sufficient to obtain an
order of magnitude estimate. Using crossing symmetry and
thepolarizabilities inEqs. (58), (59), and (61),we estimate the
s-wave annihilation amplitude to be Mðχχ→ γγÞ≈
i4
3
g2Rα

m4
χ

M2
ϕm

2
f
ξ0†½σ ·ðϵ×ϵ0Þ�ξ, assuming gL ≡ 0. Averaging

over spins and summing over final polarization states,we find

jvrelj
d
dΩ

σχχ→γγ ≈
g4Rα

2

ð6πÞ2
m6

χ

M4
ϕm

4
f

: ð62Þ

Per our discussion onEFT,wewould naively expect this cross
section to be suppressed by at least a factor ofM−6

ϕ , butwe see
that our estimate from the explicit calculation is much larger.
Given this and the fact that the annihilation is s-wave, it could
have a significant impact upondetermining the relic density in
a theory of Majorana DM.

V. CONCLUSIONS

Because the electromagnetic properties of Majorana
fermions are severely constrained, these fermions cannot
couple to a single real photon, but if we move beyond the
Born contribution, Majorana fermions can interact with real
photons in a two-photon process. For a Majorana scatterer,
we have shown generally that contributions to the Compton
amplitude are not necessarily forbidden as long as the
process is separately invariant under the discrete symmetries
C, P, and T . However, there are some restrictions upon the
Compton amplitude; namely, contributions to the amplitude
that are P-odd and T -even must vanish because Majorana
fermions are self-conjugate fields. These general findings
were borne out in an explicit computation of the polar-
izabilities of a Majorana fermion assuming a simple model.
From the explicit computation, we learned that some of the
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spin-dependent polarizabilities were not suppressed by the
appropriate mass scale expected in an effective field theory.
Of consequence is the fact that Majorana fermions can
undergo s-wave annihilation into two photons with a much
greater cross section than one might naively expect.
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APPENDIX: COMPTON AMPLITUDE
COEFFICIENTS

We include the full expression for the CoM Compton
amplitude coefficients Aj for the simple model discussed in
Sec. IVaccurate toOðω3Þ. For the portion of the amplitude
that is P-even and T -even, the amplitude is the sum of
terms proportional to the factor ðg2R þ g2LÞ and gRgL which
we will denote as AS

j and AD
j respectively so that

Aj ¼ AS
j þ AD

j . We find for AS
j ,

AS
1 ¼ −ðg2R þ g2LÞ

e2

ð4πÞ2
Z

1

0

dx

�
ω2
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where PðxÞ ≔ m2
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