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The induced magnetic moment that arises due to the propagation of neutrinos in a dispersive medium can
affect the dynamics of the neutrino spin in an external electromagnetic field. In particular, it can cause a
helicity flip of a massive neutrino in a magnetic field. In some astrophysical media, this helicity transition
mechanism could be more effective than a similar process caused by the anomalous magnetic moment of
the neutrino. If the neutrino energy is sufficiently high, the two helicity transition mechanisms mentioned
above can compensate each other. Then a helicity flip in an external field will not occur. Calculations
are carried out using both the methods of relativistic quantum mechanics and the quasiclassical Bargmann-
Michel-Telegdi equation.
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I. INTRODUCTION

Studying the electromagnetic properties of the neutrino
is one of the intriguing problems of modern neutrino
physics [1]. Electromagnetic interactions of neutrinos
can lead to a number of physical effects that are of great
importance, both for the physics of elementary particles
and for astrophysics and cosmology [2–4].
The greatest interest has been traditionally attracted by

the magnetic moments of neutrinos. The existence of a
(diagonal) anomalous magnetic moment (AMM) can lead
to a helicity flip of a Dirac neutrino moving in the strong
magnetic field [5–7]. Nondiagonal transition magnetic
moments interact with the magnetic field, causing a
neutrino helicity flip that occurs simultaneously with the
change of the neutrino flavor, and this effect can take place
for both Dirac and Majorana neutrinos (spin-flavor oscil-
lations [8–11]). Various physical processes in regard to the
change of neutrino helicity in external fields were widely
discussed in connection with the solar neutrino problem,
the dynamics of stellar collapse, and the evolution of the
early Universe [1,12].
The minimally extended Standard Model, in which

neutrinos acquire Dirac masses, predicts very small values
both for the diagonal AMM [6,13]

μν ¼
3eGFmν

8
ffiffiffi
2

p
π2

≃ 3.2 × 10−19μB

�
mν

1 eV

�
ð1:1Þ

and for the transition magnetic moments of neutrinos
[1,2,14]. In the formula (1.1), e is the absolute value of
the electron charge, GF ¼ 10−5m−2

p is the Fermi constant,
mν is the neutrino mass, and μB ¼ e=2me is the Bohr
magneton.

Recent neutrino experiments, as well as the analysis
of astrophysical observations [1], provide a limit on
the neutrino magnetic moments at this level μν ≲
ð10−11–10−12ÞμB, and it is many orders of magnitude higher
than the theoretical predictions of the StandardModel. Some
extended models that are widely discussed in the literature
predictmuch larger values of themagneticmoments than the
Standard Model does, thereby bringing the theoretical
predictions closer to the existing experimental limitations
(see a review in Ref. [1]).
Turning to the discussion of the issues related to the

impact of the surrounding material medium on a neutrino,
we note there is a great significance in regard to the theory
of coherent interaction of a neutrino with the particles of the
medium. The famous solar neutrino “puzzle” can be
completely solved within this framework [15,16] on the
basis of the Mikheyev-Smirnov-Wolfenstein effect (MSW
effect) [17,18]. This approach predicts new phenomena
such as the spin light of a neutrino in matter [19–22], which
is accompanied by a neutrino helicity flip. There are
suggestions that the influence of certain anisotropic media
can also lead to a change of the neutrino helicity [23–26].
When the neutrino propagates in a dispersive medium,

the effective vertex of the electromagnetic interaction of a
neutrino is modified—there are new form factors specify-
ing the interaction of neutrinos with real particles, which
belong to the medium [27–31] (e.g., with electrons, if the
neutrino propagates in the electron plasma).
The appearance of additional electromagnetic character-

istics of the neutrino, which take place only in a medium,
has the following physical explanation. This is mainly due
to the medium polarization caused by weak interactions of
a neutrino moving in this medium [32]. In other words, the
neutrino motion in an electron medium leads to the
appearance of some inhomogeneities in the electron density*ternov.ai@mipt.ru
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at small scales (of the order of the Debye radius in plasma)
along the path of the neutrino motion. These inhomoge-
neities in the electron density induce an electric charge of
the neutrino in a medium [33–38], while neutrino inter-
actions due to the pseudovector currents with parity non-
conservation result in the appearance of an axial magnetic
form factor [27–30] and induce a magnetic moment of the
neutrino [28,39,40].
The induced magnetic moment (IMM) of the neutrino

plays an important role in astrophysical applications.
Indeed, the IMM can reach extremely high values during
the propagation of neutrinos in a highly degenerate gas of
relativistic electrons in the collapsing core of a supernova or
in the interior of neutron stars. Under such conditions, as
was shown by Semikoz [39], the IMM of the electron
neutrino is equal

μindν ¼ eGFpF

2
ffiffiffi
2

p
π2

≃ 4.3 × 10−13μB

�
pF

1 MeV

�
; ð1:2Þ

where pF is the electron Fermi momentum given as

pF ≃ 130 ×

�
ne

1037 cm−3

�
1=3

MeV;

and ne is the density of electrons of the medium (see, also,
Refs. [41,42]). Note that the transition IMM for Majorana
neutrinos was also discussed in the literature, and it was
found that in a degenerate electron gas, they have the same
order of magnitude as (1.2) [43].
The interaction of the IMM with an external electro-

magnetic field changes the dispersion relation of the
neutrino. It was shown in Refs. [30,44–46] that in an
external magnetic field (in the rest frame of the medium, as
well as in the linear approximation in the field), additional
energy of interaction with the field takes the form

VH ¼ 2μindν ðpHÞ=jpj; ð1:3Þ
where H is the magnetic field strength, and p is the
neutrino momentum. The interaction (1.3) affects the
neutrino oscillations, and it was taken into account in
many studies that investigate the various schemes of
oscillations and propagation of neutrinos in the magnet-
ized media [41,42,47–52].
The explicitly anisotropic character of the interaction

(1.3) (dependence on the angle between the directions of p
and H) may cause an asymmetry of the neutrino emission
accompanying the collapse of the massive stellar core. On
the basis of this phenomenon, Kusenko and Segrè have
proposed a well-known mechanism to explain the observed
high drift velocities of pulsars [53,54].
It should be emphasized that the IMM predicted by the

Standard Model does not depend on the neutrino mass [in
contrast to AMM; see (1.1)], and it follows in particular
from the formula (1.2). Therefore, the IMM can also exist
in the case of a massless neutrino. In fact, the neutrino was

assumed massless in all papers cited above, where the
research of various aspects of the IMM was carried out
[formula (1.3) is also obtained in the massless limit].
Probably for this reason, many papers contain the statement
that the IMM cannot cause the helicity flip of a neutrino in
an external field1—the helicity of the massless neutrino is
strictly defined: the particle has left-handed (negative)
helicity, and the antiparticle a right-handed (positive) helicity.
In this paper, we perform a study of the IMM, assuming

that the neutrino possesses a Dirac mass. Because we are
primarily interested in the impact of the IMM on the
neutrino spin dynamics in an external field, we will not take
into account other possible contributions to the effective
potential of the neutrino in a medium (in particular, the
MSW potential [56]), we also will not take into account
the existence of the AMM of the neutrino. Assuming that
the value of the IMM is known and is defined, for instance,
by formula (1.2), we will show that the IMM may cause a
helicity flip of a massive Dirac neutrino in an external field
and, in some cases, more effectively than the AMM.

II. QUANTUM-MECHANICAL DESCRIPTION

As it is mentioned in the Introduction, the vertex function
of the effective electromagnetic interaction of the neutrino
hνðp0ÞjJEMμ ð0ÞjνðpÞi ¼ ūðp0ÞΓμðp; p0ÞuðpÞ is modified
during the propagation of the neutrino in a medium. In
particular, a new contribution to the vertex Γμ appears. This
contribution is caused by the existence of pseudovector
currents and is equal to [27–30]

ΓM0
μ ðk; uÞ ¼ iDMðω; kÞeμναβγνkαuβγ5; ð2:1Þ

where kμ ¼ pμ − p0μ, uμ ¼ fγm; γmug is the four-velocity
of the medium, γm ¼ ð1 − u2Þ−1=2 is the Lorentz factor of
the medium, γ5 ¼ −iγ0γ1γ2γ3, and DMðω; kÞ is the axial
magnetic form factor of the neutrino. In the static limit,
DMð0; 0Þ ¼ μindν is the IMM of the neutrino in the
medium [28,39].
The vertex (2.1) modifies the effective Lagrangian of the

neutrino interacting with the medium [29], and as a result,
the Dirac equation for a neutrino in the medium and in the
external field will take the form

fiγμ∂μ −mν þ μindν γμð1þ γ5Þ ~FμνuνgΨðr; tÞ ¼ 0; ð2:2Þ
where ~Fμν ¼ 1

2
eμναβFαβ. Here, we are left only with

the contribution of the IMM and added the projector on
the left-handed chirality of the neutrino (1þ γ5) in accor-
dance with [28,30,32]. We emphasize, once again, that in
our approach, we use only the IMM static value, and we do

1In Ref. [55], the possibility of a helicity flip of massive
neutrinos due to the interaction of the IMM with a magnetic field
is for the first time considered. The main conclusions of Ref. [55]
concerning the helicity flip caused by IMM are in agreement
with ours.
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not consider its possible dependence on properties of the
medium, on medium velocity, and also on the neutrino
energy and on the intensity of the external field.
Let us consider the constant uniform magnetic field H

directed along the z axis. Then in the rest frame of the
medium uμ ¼ f1; 0g, Eq. (2.2) takes the form

HψðrÞ¼ εψðrÞ; H¼H0þV;

H0¼ðαpÞþ γ0mν; V¼−μindν HΣ3ð1þ γ5Þ; ð2:3Þ

where Ψðr; tÞ ¼ e−iεtψðrÞ, ε is the energy of neutrino, p is
the neutrino momentum, H0 is the Hamiltonian of a free
neutrino, H ¼ jHj, and V is a term describing the inter-
action of the IMM with the magnetic field. We use the
standard representation for the Dirac matrices [57], and
αi ¼ γ0γi, Σi ¼ −γ5γ0γi.
The third component of the four-vector spin polarization

operator Tμ, which was discussed by Bargmann and
Wigner [58] (see, also, Refs. [59,60]), commutes with
the HamiltonianH and is in this case the exact spin integral
of motion:

T3 ¼ γ0Σ3 − γ5
pz

mν
: ð2:4Þ

The operator (2.4) describes the neutrino spin projection on
the direction of the magnetic field.
Let us define the dispersion relation of a massive Dirac

neutrino, taking into account the IMM. In our case, it is
sufficient to confine ourselves to the linear approximation
across the field H. The stationary wave function of a free
neutrino satisfies the conditions

H0ψ0 ¼ ε0ψ0; T3ψ0 ¼ ζ
λ

mν
ψ0; ð2:5Þ

and has the form of a plane wave

ψ0 ¼
1

L3=2

0
BBB@

C1

C2eiφ

C3

C4eiφ

1
CCCA exp ðiprÞ; ð2:6Þ

where tanφ ¼ py=px. Spin factors C1 − C4 are defined
from the joint solution of Eq. (2.5):

C1;4 ¼
ζ

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ

λ

ε0

s � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ pz

λ

r
þ ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

pz

λ

r �
;

C2;3 ¼
1

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ∓ ζ

λ

ε0

s � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ pz

λ

r
− ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

pz

λ

r �
;

where ε0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ν

p
, λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ν þ p2
z

p
. Keeping in mind

(2.6) and (2.4), we obtain the energy levels of a neutrino
with the IMM in an external magnetic field:

ε ¼ ε0 þ μindν H

�
pz

ε0
− ζ

1

ε0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ν þ p2
z

q �
: ð2:7Þ

As we can see from (2.7), the neutrino energy explicitly
depends on the spin orientation in an external field: the case
ζ ¼ −1 corresponds to a neutrino spin orientation against
and ζ ¼ þ1 along the magnetic field direction. Only in the
case of a relativistic neutrino motion along the field pz ≫
mν (neglecting the mass of a neutrino) does the dispersion
relation (2.7) turn into the formula

ε≃ ε0 þ μindν H
pz

ε0
ð1 − ζÞ; ð2:8Þ

which at ζ ¼ −1 corresponds to the interaction (1.3).
Note that for the neutrino moving along the field, the case
ζ ¼ −1 corresponds to the negative helicity of the neutrino.
If the neutrino possesses a positive helicity, then it should
not interact with a magnetic field in this limit [see (2.8)].
On the other hand, if a neutrino moves perpendicularly to

the direction of the magnetic field (pz ¼ 0, but the neutrino
at the same time can be relativistic), then, according to
(1.3), it cannot interact with an external field. In fact, as can
be seen from (2.7), an interaction with the field exists for
such a neutrino, although it is suppressed by a small factor
mν=ε0 (see, also, Ref. [55]).
We notice further that in (2.7), the term proportional

to the factor pz=ε0 comes from the term ∼Σ3γ
5 ¼ −α3 in

the Hamiltonian (2.3) [or, equivalently, from the term
∼γμ ~Fμνuν in (2.2)]. This term gives a constant contribution
to the neutrino energy (2.7); it does not depend on the spin
projection on the direction of the magnetic field, and it has,
in essence, no relation to the IMM. Later, we will not take
this term into account when analyzing the neutrino spin
precession.
It is interesting to compare the dispersion law (2.7) with

the dispersion relation for the Dirac neutrinowith the AMM
interacting with an external uniform magnetic field [the
result (2.9), which was calculated earlier [61–63]]:

ε ¼ ε0 − ~ζ
μνH
ε0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ν þ p2⊥
q

: ð2:9Þ

Here, μν is the AMM of neutrino, and the quantum number
~ζ ¼ �1 just like ζ corresponds to the orientation of the
neutrino spin along or against the magnetic field direction
H. We will notice, however, that the quantum number ~ζ is
defined not by the eigenvalue of the operator T3 [see (2.4)
and (2.5)] but by the eigenvalue of the magnetic polariza-
tion operator

μ3 ¼ Π12 ¼ mΣ3 þ iγ0γ5½Σ × p�3;
which is the component Π12 of the tensor of the spin
polarization [64] (see, also, Ref. [60]). Comparing for-
mulas (2.7) and (2.9), we can conclude that the interaction
between the AMM and the external field become apparent

MATTER-INDUCED MAGNETIC MOMENT AND NEUTRINO … PHYSICAL REVIEW D 94, 093008 (2016)

093008-3



principally for transverse neutrino motion (with respect to
the field direction), while the IMM interaction is most
essential in the case of longitudinal movement.
We consider further the movement of the longitudinally

polarized neutrino possessing the IMM in an external
magnetic field. The operator of longitudinal polarization
(i.e., helicity) ðΣpÞ=jpj does not commute with the
Hamiltonian (2.3) and, therefore, is not an integral of
motion in these conditions. We construct the superposition
of states (2.6)

ΨðtÞ ¼ Aψ0ðζ ¼ þ1Þe−iεþ1t þ Bψ0ðζ ¼ −1Þe−iε−1t;
ð2:10Þ

where ε�1 are energy levels determined by the for-
mula (2.7). We choose the coefficients A and B in (2.10)
so that the function ΨðtÞ satisfies the initial condition

ðΣpÞΨð0Þ ¼ −jpjΨð0Þ;
i.e., we assume that the spin of the neutrino at the initial
time is directed against its momentum (negative helicity).
Using the superposition (2.10), we find the average value of
the projection of the neutrino spin on the direction of
motion at an arbitrary time:

hðΣpÞ=jpjiIMM
t ¼−

�
p2
z

p2

ε20
λ2
þ
�
1−

p2
z

p2

��
1−

p2
z

λ2

�
cosωHt

�

¼−
1

1−v2sin2θ
×fcos2θþð1−v2Þsin2θcosωHtg;

ð2:11Þ
where ωH¼2μindν Hλ=ε0¼2μindν Hð1−v2sin2θÞ1=2, p ¼ jpj,
and θ is the angle between the neutrino momentum p and
the magnetic field direction H.
It follows from (2.11) that if the neutrino with the IMM

moves along the magnetic field (cos θ ¼ 1), then the
longitudinal polarization (i.e., helicity) is conserved [as
in the case of the neutrino with an AMM; see below (2.13)].
When the neutrino moves perpendicularly to the field
direction (cos θ ¼ 0), we have

hðΣpÞ=jpjiIMM
t ¼ cosωHt;

ωH ¼ 2μindν H
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
¼ 2μindν Hmν=ε0;

ð2:12Þ

or the helicity precesses with a frequency ωH.
It is interesting to compare the formula (2.11) that

describes the time evolution of the helicity for a neutrino
with an IMM, with the corresponding result describing the
time evolution of the helicity of a massive Dirac neutrino
due to the interaction of the AMM with the external
magnetic field [61,62]:

hðΣpÞ=jpjiAMM
t

¼ −
1

1 − v2cos2θ
fð1 − v2Þcos2θ þ sin2θ cos ~ωHtg;

ð2:13Þ

where the helicity precession frequency2 is equal to
~ωH ¼ 2μνHð1 − v2cos2θÞ1=2. Comparing expressions
(2.13) and (2.11) and (2.12), we can conclude that in
the case of a neutrino moving perpendicularly to the
direction of the field, the precession frequency ωH con-
nected with the IMM includes (unlike the frequency ~ωH
characterizing the precession connected with the AMM) the
additional small factor mν=ε0 ¼ γ−1, where γ is the Lorentz
factor of the neutrino.
Thus, the characteristic time of a helicity flip3 due to

the IMM

T ¼ π

ωH
¼ π

2μindν H
γ ð2:14Þ

proves to be very large for the ultrarelativistic neutri-
nos (γ ≫ 1).
However, if we assume for estimates that the electron

density is equal to ne ≃ 1037 cm−3 (for the internal regions
of neutron stars), then the IMM of neutrino according to
(1.2) will be equal to μindν ≃ 0.6 × 10−10μB. If we set mν ≃
1 eV [70], εν ¼ 1 MeV, then (for p⊥H) the frequency of
the spin precession, which is caused by the IMM [see
(2.12)] will be equal to 2μindν Hmν=εν ≃ 1.2 × 10−16μBH.
As can be seen from a comparison of (2.13) and (2.12), the
spin precession with exactly the same frequency could be
caused by the AMM being equal to μν ≃ 6 × 10−17μB. The
Standard Model under these conditions gives the AMM
value of the order μν ≃ 3.2 × 10−19μB [see (1.1)]. Thus,
under the conditions considered (in the sense of the impact
on the spin precession), the IMM of a neutrino is about 200
times more effective than the vacuum AMM predicted by
the Standard Model. It is clear that the presence of the
AMM of a neutrino can be completely disregarded in
this case.
As it follows from (2.14), the time of a helicity flip due to

the IMM decreases with the decreasing of neutrino energy
and reaches the minimum value in the nonrelativistic limit
(γ → 1). We note that the average values of the helicity of
neutrinos possessing the IMM and AMM behave equally in
this limit [see (2.11) and (2.13)]:

hðΣpÞ=jpjiIMM;AMM
t ≃ cos2θ þ sin2θ cosωð1;2Þ

H t;

2Equation (2.13) also describes the time evolution of the
longitudinal polarization of a neutron with an AMM [65] and of
an electron with an AMM [66,67] in a uniform magnetic field.

3In papers [68,69], the spin dynamics of a Dirac neutrino with
an AMM in an external field and in a medium is considered when
determining the helicity using a method different from ours.
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where the precession frequency is equal to ωð1Þ
H ¼ 2μindν H

for a neutrino with an IMM and ωð2Þ
H ¼ 2μνH—for a

neutrino with an AMM. Considering the values given
above for the IMM (1.2) and for the AMM (1.1), we come
to a conclusion that under the conditions of a degenerate
electron gas, the IMM can flip the helicity of nonrelativistic
neutrinos in a magnetic field about 109 times more
efficiently than the AMM can.
It is well known that calculations made within the

framework of some extended theoretical models (beyond
the Standard Model) give values of the AMM of a neutrino
that are considerably larger than the one in formula (1.1). In
such a case, the precession frequencies [see (2.11) and
(2.13)] might be of the same order of magnitude. Then it is
necessary to take into account that the neutrino helicity flip
in a magnetic field can occur both due to the IMM and due
to the AMM. Generally, it appears impossible to separate
the contributions of these two mechanisms because both
processes lead to the same physical consequence—to the
helicity flip of a neutrino. Note that if the IMM and the
AMM of a neutrino are oppositely directed (the IMM can
be positive or negative depending on the neutrino flavor
[41,42]), these two mechanisms can compensate each other.
For example, if the AMM and the IMM have different
signs, and the neutrino moves perpendicularly to the
magnetic field direction, then the helicity flip will not
occur under the condition

jμνj ¼ jμindν j=γ: ð2:15Þ
It is interesting to note that the condition (2.15) can

also be fulfilled in the framework of the Standard Model
[when the AMM is defined by the formula (1.1)], if the
neutrino energy is sufficiently high. Using for estimates
the data discussed earlier in this section (for the inner
regions of a neutron star), we find that the condition (2.15)
will be satisfied when the neutrino energy is equal
to εν ≃ 200 MeV.

III. QUASICLASSICAL DESCRIPTION

As is known, in the framework of the quasiclassical
theory of spin (see Ref. [71] and references cited therein),
the evolution of the spin of a relativistic electron in an
external electromagnetic field is described by the
Bargmann-Michel-Telegdi equation [72] (BMT equation;
see, also, Refs. [57,73]). Because the electron is a charged
particle, the evolution of its spin is determined by the
interaction of both the normal magnetic moment (equal to
the Bohr magneton μB ¼ e=2me) and the AMM (approx-
imately equal to the Schwinger value μBα=2π [74], α≃
1=137 is the fine structure constant) with the external field.
In the case of a massive Dirac neutrino, the entire

magnetic moment is anomalous (1.1); therefore, the
BMT equation for a neutrino will look like (see, also,
Ref. [23])

dsμ

dτ
¼ 2μνfFμνsν þ vμðsαFαβvβÞg: ð3:1Þ

In the formula (3.1), we use the notation τ for the proper
time, μν for the AMM of neutrino, vμ ¼ fγ; γvg for the
four-vector of its velocity, γ ¼ εν=mν for the Lorentz factor,
v ¼ p=εν for the three-dimensional neutrino velocity, and
sμ for the “classical” four-vector of neutrino spin polari-
zation having components [57,73]

sμ ¼
�
ζp
mν

; ζ þ pðζpÞ
mνðεν þmνÞ

�

¼
�
ðζvÞγ; ζ þ γ2

1þ γ
vðζvÞ

�
: ð3:2Þ

Here, ζ is the unit vector in the direction of polarization in
the particle rest frame (p ¼ 0). It is equal to the doubled
mean value of the Pauli spin operator 1

2
σ (i.e., ζ ¼ hσi0),

and the mean value of the Pauli sigma matrices is calculated
over the spin state specified by the three-dimensional
spinor φ in the bispinor of a free neutrino [57]

uðpÞ ¼ 1ffiffiffiffiffiffiffiffi
2mν

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εν þmν
p

φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εν −mν

p ðσnÞφ
�
;

n ¼ p=jpj; ūðpÞuðpÞ ¼ 1: ð3:3Þ

On the basis of (3.1), it is possible to obtain an equation
describing the time evolution of the vector ζ, directly
characterizing the polarization of the particle in its “instan-
taneous” rest frame [57,73]:

dζ
dt

¼ 2μν

�
½ζ ×H� − ½ζ × ½v × E�� − γ

1þ γ
½ζ × v�ðvHÞ

�
;

ð3:4Þ
where H and E are the magnetic and electric fields in the
laboratory frame.
Below, we will carry out a generalization of the BMT

equation [(3.1) and (3.4)] in the case of a neutrino having
the IMM. It is known that the BMTequation is the classical
approximation of the general equation of spin evolution in
the Heisenberg representation. The corresponding method
of obtaining the BMT equation for the electron has been
developed in [75,76] (this method was used also in
Ref. [77]), and the general idea of this method ascends
to Ref. [59].
We consider the three-dimensional vector operator of

spin polarization

O ¼ γ0Σ − γ5
p
εν

− γ0
pðΣpÞ

ενðεν þmνÞ
ð3:5Þ

introduced by Stech [78] (see, also, Ref. [59]). The operator
O characterizes the “true” spin in the particle rest frame
because the averaging over the wave functions of a free
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neutrino (3.3) yields hOi ¼ hσi0 ¼ ζ. Obtaining the
explicit form of the quasiclassical equation of the evolution
of the neutrino spin, in the case where a neutrino has the
IMM, includes three stages [79].
(i) We write down the quantum equation for the time

evolution of the spin operator (3.5) in the Heisenberg
representation:

dO
dt

¼ iðHO −OHÞ;

where the HamiltonianH is given by the formula (2.3). The
operator describing the interaction of the IMM with the
external field in expression (2.3) in the rest frame of
the medium in the presence of only a uniform magnetic
field of arbitrary direction takes the form V ¼ −μindν ðHΣÞ,
where (as in Sec. II) we mean that μindν is the IMM static
value. Then we obtain the expression

dO
dt

¼ 2μindν

�
γ0½Σ ×H� þ γ0

ðΣ½p ×H�Þp
ενðεν þmνÞ

�
: ð3:6Þ

Direct physical interpretation of this equation is difficult
because, as iswell known (see, e.g., [80]), in theDirac theory,
the relation between the operators and classical quantities
becomes complicated because of the special nature of the
particle motion—a rapidly oscillating trembling, which
has been called by Schrödinger “Zitterbewegung,” i.e.,
“trembling motion.”
(ii) We turn, therefore, to the operators with a definite

parity, assuming that the even part of any operator F is
defined by the expression [81]

Feven ¼ ½F� ¼ 1

2εν
ðFHþHFÞ:

The introduction of the even operators that do not mix the
states with different signs of energy allows for the exclusion
of the phenomenon of Zitterbewegung in the one-particle
quantum theory, as well as allowing for the restoration of
the correct relations between the operators and the corre-
sponding classical quantities. This opens up the possibility
of an intuitive physical interpretation of the results
[75,76,81]. In this way, from (3.6), we can obtain the
equation for the even part of the operator ½dO=dt�. We do
not write this equation here due to its cumbersome nature.
(iii) Furthermore, it is necessary to average the operator

equation for ½dO=dt� over the state of the quasiclassical
wave packet [57,59,75,76]: ½dO=dt� → h½dO=dt�i, assum-
ing that hOi ¼ ζ, hpi ¼ vεν. Note that in our case (the
electric charge of the neutrino is equal to zero), the
specified averaging can be performed over the solutions
of the free Dirac equation (3.3). As a result, we obtain an
equation describing the neutrino spin evolution, one origi-
nating from the interaction of the IMM with a homo-
geneous magnetic field in the rest frame of the medium:

dζ
dt

¼ 2μindν

�
1

γ
½ζ ×H� þ γ

1þ γ
½ζ × v�ðvHÞ

�
: ð3:7Þ

Analyzing the resulting equation (3.7) in comparison
with Eq. (3.4) for a neutrinowith the AMM [in this case it is
necessary to set E ¼ 0 in (3.4)], we note that when the
neutrino is moving perpendicularly to the field direction
(v⊥H), then the neutrino spin precession frequency in (3.7)
contains, in contrast to (3.4), a small factor γ−1, and this
leads to an increase in the period of the precession of the
neutrino with the IMM. We already paid attention to this
fact in Sec. II; see (2.14).
If the directions of v and H coincide, the vector ζ will

precess around the common direction of v↑↑H, with an
angular velocity equal to 2μindν H or 2μνHγ−1 for a neutrino
with the IMM or for a neutrino with the AMM, respec-
tively. Thus, in this case, the spin precession frequency for a
neutrino with an IMM does not contain the suppression
factor γ−1 in contrast to the precession frequency for a
neutrino with an AMM.
We now assume that in addition to the magnetic field,

there exists also a uniform electric field E. In this case, the
generalization of Eq. (3.7), taking into account the nonzero
velocity of the medium (u ≠ 0), leads to the equation

dζ
dt

¼ 2μindν
γm
γ

�
½ζ ×H� − ½ζ × ½u ×E��

þ γ2

1þ γ
½ζ × v�ðvHÞ − γ2

1þ γ
½ζ × v�ðv½u ×E�Þ

�
− 2μindν γm½ζ × v�ðuHÞ; ð3:8Þ

where u is the three-dimensional speed of the medium and
γm is its Lorentz factor.
Analyzing Eq. (3.8), we pay attention to two facts. First,

the motion of the medium can lead to an increase in the
precession frequency of the neutrino spin. Indeed, setting in
(3.8) E ¼ 0 and u⊥H (the medium moves perpendicularly
to the magnetic field direction), we obtain the equation
coinciding with (3.7) with the only difference: the multi-
plier 2μindν is replaced by 2μindν γm. This means that the
angular velocity of precession of the vector ζ increases by a
factor γm in the case of a neutrino moving perpendicularly
to the field direction, as well as in case of v↑↑H.
Second, if we set u ¼ v in Eq. (3.8) (the neutrino moves

in the same direction as the medium with a speed equal to
the velocity of medium), then the condition γm ¼ γ will be
fulfilled, and Eq. (3.8) will take the form of Eq. (3.4),
describing the spin precession of a neutrino with an AMM.
Thus, in this case, the impact of the IMM on the neutrino
spin dynamics is indistinguishable from the influence of the
AMM. The corresponding equations will differ only by a
common factor on the right-hand side (μν or μindν ).
We further obtain the covariant generalization of the

BMT equation (3.1) for a neutrino possessing the IMM.
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This can be done by a method that is similar to the one by
which Eqs. (3.7) and (3.8) were obtained. However, now
we set as basis for the calculations, not a three-dimensional
vector operator O (3.5) but the four-vector operator of the
spin polarization [58–60]

Tμ ¼ γ5γμ − γ5pμ=mν: ð3:9Þ
Note that earlier we used the third component of the
operator (3.9) when determining the dispersion relation
for neutrinos with the IMM (2.7). We now should take into
account that the averaging over the state (3.3) gives
hTμi ¼ sμ, where the four-vector of spin polarization sμ

is defined by the above formula (3.2).
As a result, performing calculations, we find the covar-

iant generalization of the BMT equation in the form

dsμ

dτ
¼ 2μindν fFμνsνðuαvαÞ − FμνvνðuαsαÞ
þ uμðsαFαβvβÞg: ð3:10Þ

It should be noted that Eq. (3.10) has an elegant covariant
form which generalizes Eqs. (3.7) and (3.8) obtained under
some special assumptions.
If we set uμ ¼ vμ in Eq. (3.10) (i.e., 4-velocities of the

medium and of the neutrino coincide), then we will obtain
that uαvα ¼ vαvα ¼ 1 and also uαsα ¼ vαsα ¼ 0 (see
Refs. [57,73]). As a result, Eq. (3.10) will coincide with
(3.1) exactly if one performs the redesignation μindν → μν.
The coincidence of the three-dimensional equations (3.8)
and (3.4) in a similar case was discussed above.
Explicitly writing out the time component in (3.10), we

derive the equation for the projection of the spin polari-
zation vector ζ on the direction of motion (defined by the
unit vector n ¼ v=jvj), for longitudinal polarization (or
helicity) of neutrino (ζn):

d
dt

ðζnÞ ¼ 2μindν
γm
γ
fðζ⊥½H × n�Þ þ ðE½u × ½n × ζ⊥��Þg;

ð3:11Þ
where ζ⊥ is the component of the vector ζ perpendicular to
the velocity v. According to the formula (3.11), the general
scheme of the neutrino helicity evolution in a purely
magnetic field (E ¼ 0), as well as in a static medium
(u ¼ 0), corresponds to the result obtained in Sec. II. The
motion of medium (u ≠ 0) leads to an increase in the
helicity precession frequency (the frequency is multiplied
by the Lorentz factor of medium γm).
It should be noted that our conclusion (see Sec. II) that

two mechanisms of the neutrino helicity flip (due to the
IMM and due to the AMM) can compensate each other
when acting together, remains true also in the framework of
the quasiclassical theory. The validity of this conclusion
can be verified, in particular, by analyzing Eqs. (3.4) and
(3.7) under the assumption that the AMM and the IMM are

oppositely directed, and the conditions E ¼ 0 and u ¼ 0
are satisfied. Then the spin precession will be missing if the
neutrino moves perpendicularly to the magnetic field
direction (v⊥H), and the relation (2.15) is fulfilled. This
means that under such conditions, the projection of the spin
on the direction of the neutrino velocity remains constant;
i.e., a helicity flip will not occur. The same conclusion can
be made by comparing Eq. (3.11) with the known quasi-
classical equation describing the helicity evolution caused
by the AMM [57,73].

IV. CONCLUSIONS

In this paper, we considered the influence of the
magnetic moment induced by the medium (IMM) on the
neutrino spin dynamics in external fields. The above
consideration was carried out both by methods of relativ-
istic quantum mechanics and by a quasiclassical method
using the generalized Bargmann-Michel-Telegdi equation.
We showed that the IMM interacting with the external

field can cause the helicity flip of a massive neutrino and, in
some cases, with higher efficiency than the AMM. In
particular, the consideredmechanismof the neutrino helicity
flip may be important in the study of various schemes of
conversion of longitudinally polarized neutrinos in the dense
astrophysical media, such as a degenerate electron gas in the
core of a supernova or in the interior of a neutron star in the
presence of strong electromagnetic fields.
Indeed, if we use for estimates the data represented in

Sec. II, which are typical for the interior regions of the
neutron star, assuming that the magnetic field is equal to
H ∼ 1014 G (see, e.g., [82,83]), we will obtain the char-
acteristic length of the helicity flip of the neutrino [the so-
called half rotation length; see (2.14)], equal to

L ¼ cT ¼ cπ=ωH ≃ 5.6 × 106 cm:

This length coincides in the order of magnitude with the
typical values of the radii of neutron stars R≃ 10–15 km
(see, e.g., [83]).
Note also that the linear approximation in the magnetic

field is quite adequate for the problem considered. The
conditions of applicability of this approach follow from the
formula (2.7). The most stringent restriction that follows
from (2.7) and that is valid for nonrelativistic neutrinos,
gives μindν H ≪ mν. Taking into account the data from
Sec. II, we obtain the following field strength limitation:

H ≪ 2.9 × 1018 G: ð4:1Þ
The value H ∼ 1014 G used for our estimates does not
contradict the condition (4.1).
Further, the expression (1.2) for μindν is true in the so-

called weak field approximation, namely, when

eH ≪ p2
F; ð4:2Þ
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see [84]. The data used by us for numerical estimates in
Secs. II and IV do not violate also the condition (4.2).
It should be stressed that in this case, the conversion of

neutrinos from left handed to right handed can take place
without the participation of the AMM of the neutrino (the
AMM value predicted by the Standard Model is many
orders lower than the IMM of neutrino).
With an increase in the neutrino energy, the efficiency of

the helicity flip mechanism associated with the IMM
decreases. When the energy of a neutrino is sufficiently
high, it is necessary to take into account that the helicity flip
in an external field can occur both due to the IMM and due
to the AMM. It is shown that under certain conditions,
these two mechanisms can compensate each other (see
Secs. II and III for details). As a result, a helicity flip in an
external field will not occur.

The increase in the frequency of the precession of the
neutrino helicity in moving media (Sec. III) can be
important when considering the interaction of neutrinos
with the relativistic plasma jets, which are observed in
many astrophysical objects, for example, in active galactic
nuclei, in microquasars, and in cosmological gamma-ray
burst sources [82,85].
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