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We consider a low-scale seesaw scenariowhere themasses of its heavyMajorana neutrinos are arranged in
a pattern of three quasidegenerate pairs, in the range ofOð1–6 GeVÞ. Since they canviolate lepton number by
two units, they contribute to rare decays of Ds and Bc mesons, providing the conditions for maximal CP
violation. We find that new phenomenology is possible depending on how many of on-shell pairs mediate
these decays. In particular, we present new constraints on muon-heavy neutrino mixing parameters.
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I. INTRODUCTION

Recent experiments have shown that neutrinos have non-
zero masses [1,2], and that the mixing pattern between mass
and flavor states is explained by the Maki-Nakagawa-Sakata
(MNS) matrix, UMNS [3]. Given the requirement that the
matrix which diagonalizes the whole neutrino mass matrix is
unitary, current uncertainties in the elements ofUMNS allow a
small range for mixing between standard model (SM) flavor
states and new sterile ones [4–7], which would imply a tiny
interaction of the latter with SMparticles. Likewise, as the θ13
angle of UMNS is nonzero [8,9] the possibility that the light
neutrino sector could violate theCP symmetry remains open;
certainly, this is not enough to explain baryogenesis via
leptogenesis. Additionally, depending on whether the neu-
trino nature is Dirac or Majorana we would have one (Dirac)
or three (Majorana) CP violation phases. [10]. It has been
proposed [11–18] that the detection of rare decays of mesons
of the typeM → l1l2M0 (withM,M0 beingmesons,whereas
l1, l2 are charged leptons)—which exhibit (i) asymmetry
between modes which are charge conjugates of each other
(CP asymmetry), and (ii) lepton number violation (LNV)
and/or lepton flavor violation—would reveal, respectively,
the presence of such phase(s) and that neutrinos are in fact
Majorana particles. Concerning processes with ΔL ¼ 2, the
rare meson decays (RMDs) studied in this paper play a
different role than neutrinoless double-beta decay, allowing
one to extend the neutrino mass range from ≲100 MeV to a
few GeV. In this line, it is known that the CP asymmetry of
such processes is maximized when two quasidegenerate
heavy neutrinos (QDHν) participate as an on-shell inter-
mediate state [17–20], producing a resonance as their masses
become almost degenerate. The proposed framework with
such QDHν is the type I seesaw mechanism (S1) [21–24],
defined by the addition of one SM-fermion singlet (right-
handed neutrinos, νRi) per generation, resulting in a neutrino
mass matrix given, in the basis ν ¼ ðνcL; νRÞ, by

Mν ¼
�

0 Yv

ðYvÞT MR

�
: ð1Þ

Here, v ¼ 246 GeV is the vacuum expectation value (VEV)
of the Higgs Field, Y is a 3 × 3Yukawa coupling matrix, and
MR is a 3 × 3massmatrix corresponding to aMajoranamass
term.Since the neutrinomass sector of S1gives amassmatrix
[Eq. (1)] contractedwith a basismadeupof charge conjugates
(νc and ν), we say that the whole mass matrix is a Majorana-
type matrix, and its MR term is the source of explicit LNV.
DiagonalizationofEq. (1) provides both light andheavymass
states: the former have masses given by the eigenvalues of
mSS

l ∼ ðYvÞ2=MR, whereas the latter have massesMh ∼MR.
The only restriction over Y and MR is that they have to
reproduce the magnitude of light neutrinos masses,
ðYvÞ2=MR ∼ 0.1 eV. In particular, there is a minimal exten-
sion to the SM—called the νMSM [25–28]—whose main
features are that (i) the masses of SM neutrinos are due to a
small Yukawa coupling Y ∼ 10−8 and MR ≳ 102 MeV,
(ii) one of the heavy neutrinos, whose mass is in the
Oð10Þ keV range, becomes a candidate for dark matter,
and (iii) the masses of the other two heavy states (which lie in
the range Mh ≳ 100 MeV) are close enough to produce the
above-mentioned effect for RMD. Recently the CERN-SPS
Collaboration [29] has proposed searching for heavy neutral
leptons from the rare decay ofB,Bc,K, and, preferentially,D
and Ds mesons.
From an experimental perspective, the drawbacks of

seesaw mechanisms (type I, as well as types II [24,30–33]
and III [34]) is that they require values of M that are
very large in order to reproduce ml ∼Oð0.1Þ eV. In fact,
assuming that Y lies in the range of the Yukawa coupling
for SM fermions (i.e., Y ∼ 10−6–100) we obtain that
M ∼ 103–1015 GeV, and, consequently, the mixing
between SM flavor states and heavy neutrino mass states
is Yv

M ∼ 10−6–10−11, so any manifestation of such heavy
neutrinos is out of reach of current reactors. In order to
avoid this problem, low-scale seesaw (LSS) models add not

*gaston.moreno@usm.cl
†jzamorasaa@jinr.ru

PHYSICAL REVIEW D 94, 093005 (2016)

2470-0010=2016=94(9)=093005(11) 093005-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.093005
http://dx.doi.org/10.1103/PhysRevD.94.093005
http://dx.doi.org/10.1103/PhysRevD.94.093005
http://dx.doi.org/10.1103/PhysRevD.94.093005


one but two right-handed neutrinos per family to the SM
(νRα and Sα). Typically, νR are the same as those of S1 (with
the same SM charges) and are used to construct the SM-like
Yukawa term YDLΦνR [YD plays the same role as Y in
Eq. (1)]. Likewise, S are SM singlets which—with the
addition of a SM-singlet scalar field χ—allow for the
Yukawa term Yχν

c
RSχ. Of course, all of these new terms

have to be invariant under any new gauge group that we
want to impose. Then, with the addition of the SM singlets
νR, S, and χ we can reproduce (after the scalar fields acquire
a VEV) a neutrino mass matrix, written in the basis
ðνcL; νR; SÞ, given by

Mν ¼

0
B@

0 YDv 0

ðYDvÞT 0 Mχ

0 MT
χ 0

1
CA; ð2Þ

where Mχ ¼ Yχhχi, whose diagonalization yields exactly
massless active neutrinos. It is possible to introduce the
blocks ðMνÞ33 ¼ μ and ðMνÞ13 ¼ ε, after which active
neutrinos acquire masses given by mIS

l ∼ ðYDvÞ2μM−2
χ

(inverse seesaw, IS) and mLS
l ∼ ðYDvÞεM−1

χ (linear seesaw,
LS), respectively. In these regimes the smallness of the
neutrino masses is not due to a largeMχ in the denominator
ofml, but rather to a small μ or ε in the numerator, allowing
(incidentally) the scale of new physicsMχ to not need to be
as large as in S1 [whenMχ ≳ 101ðYDvÞ the heavy neutrino
states have masses in the range of mN ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðYDvÞ2 þM2

χ

q
].

For instance, values as small as 100 eV for μ or ϵ allow
Mχ ∼ 1–10 TeV, which is a reachable scale in the short and
middle terms. The IS mechanism was originally proposed
as a superstring SO(10) model whose symmetry is broken
by the VEV of a scalar field, producing the mass term
for S [35]. On the other hand, the LS mechanism was
proposed as a model invariant under the gauge group
SUð3Þc ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB�L, where the sca-
lar and fermionic fields correspond to irreducible high-
dimensional representations of a supersymmetric SO(10)
theory [36]. Also, in Ref. [37] we find an extension of the
SM which adds [besides the right-handed neutrinos ðνR; SÞ
and the scalar singlet χ] a scalar doublet H. In the scalar
potential of this model only the term λðΦ†Hχ2 þ H:c:Þ
gives a relation between the U(1) charges of all these fields,
so it is only when λ → 0 that the potential is invariant
under any transformation ðΦ; H; χÞ → ðe{α1Φ; e{α2H; e{α3χÞ,
where αj are independent global phases. Therefore, we can
propose λ to be naturally small, in the ’t Hooft sense,
because its cancellation increases the symmetries of the
Lagrangian. Likewise, as the charges under the U(1) gauge
groups of this model have been defined in order to allow for
the Yukawa term YHL̄HS, the spontaneous symmetry
breaking jHj → vH yields the mass term ενLS, where ε ¼
ðMνÞ13 ¼ YHvH is, consequently, naturally small.

The key to obtaining two QDHν in the νMSM lies in the
fact that when its masses are exactly equal (and, by
construction, the keV mass vanishes) the model presents
a global U(1) symmetry; so, by slightly breaking this
symmetry we obtain both the keV mass and the quasi-
degeneration between the states with M ≳ 100 MeV [28].
Furthermore, as this quasidegeneracy comes from the
removal of a symmetry in the Lagrangian, its smallness is
protected from radiative corrections (we say they are
naturally small, in the ’t Hooft sense [38]). On the other
hand, the mechanism for obtaining an enhancement in the
CP asymmetry between a processP and its charge conjugate
Pc is, essentially, that their amplitude is the sum of two
diagrams, each of which is mediated by Majorana neutrinos
withmassesM1 andM2. Then, assuming that (i) suchQDHν
are on-shell, and (ii) their interactions with SM particles are
veryweak (i.e., the narrow-width approximation, NWA), we
obtain both the amplitude of RMDs and the CP asymmetry
is maximized when ΔmN ¼ mN2

−mN1
∼ ΓN , where ΓN is

the decay width of the heavy neutrinoN [18,19] (ΓN is a soft
function of mN [39]).
In this paper we propose that LSS scenarios—i.e., those

obtained when we add blocks ðMνÞ33 ¼ μ or ðMνÞ13 ¼
ðMνÞT31 ¼ ε to Eq. (2)—can provide not one but three pairs
of QDHν, which could enhance the branching ratio (BR) of
RMD of mesons going to two charged leptons and another
meson, and, eventually, the CP asymmetry between modes
which are charge conjugates of each other. For this purpose,
in principle, all of the intermediate heavy neutrinos must be
on shell (i.e., mM −ml1 > mN > mM0 þml2), so their
masses have to be in the range of Oð100Þ MeV for K
decay, and in the range of Oð1Þ GeV for B and D decays.
Since LSS models propose that masses of heavy neutrinos
can be as large as ∼TeV, we regard scenarios where at least
one pair of QDHν lie in the range of Oð10−2 − 1Þ TeV, so
they could contribute to processes that are testable at
the LHC.
The program of this paper is the following. In Sec. II we

explain how to get three pairs of QDHν in a LSS scenario.
In Secs. III and IV we present the formalism for meson
decays mediated by three pairs of quasidegenerate heavy
neutrinos and its corresponding results for B, Bc,D, andDs
cases. Finally, in Sec. V we present our conclusions.

II. PROPOSAL

We consider the LSS extension of the SM consisting of
two families of sterile neutrinos fνRig and fSig (with i ¼ e,
μ, τ) [35,40,41], which yields, in principle, the blocks of
Eq. (2) (up to here, active neutrinos remain massless).
Then, by generating the term 1

2
μijSci Sj (μ term) or εijνLiSj

(ε term), we obtain masses for active neutrinos according to
inverse and linear seesaw regimes, respectively. With this,
we express the neutrino mass sector in either the flavor
basis ðνcL; νR; SÞ or mass basis ðνl; N1; N2Þ according to
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Lν
mass ¼ mDνLνR þMνcRSþ ½μ term or ε term� þ H:c:

¼ mlν
c
lνl þm1Nc

1N1 þm2Nc
2N2

¼ mlν
c
lνl þm1ðNc

1N1 þ Nc
2N2Þ þ ΔNc

2N2; ð3Þ
where mD ∝ vY and Δ ¼ m2 −m1 (all of them are 3 × 3
matrices). Now, following the reasoning of Ref. [28], we can
fix Δ ¼ 0, obtaining three pairs of exactly degenerate heavy
neutrinos (their masses are given by the eigenvalues of
m1 ≃M, i.e., we have three pairs of exactly degenerate
heavy neutrinos); after this, we produce a tiny term Δ0Nc

2N2,
with Δ0 ≪ m1, which causes the spectrum in the N1;2 states
to become quasidegenerate. Later, in Sec. III, we show that
the assumption of weakly interacting heavy neutrinos
(ΓN ≪ mN), together with the requirement of maximum
CP violation, is enough to justify small values for Δ. Then,
we ask about the symmetry that we have lost in the transition
from the Δ ¼ 0 case to the one in Eq. (3). In fact, noting that
the second term in the third line of Eq. (3) can be written as
m1ΨcΨ, where Ψ ¼ N1 þ Nc

2 (they have the same absolute
eigenvalues), we can establish that the states νl and Ψ ¼
N1 þ Nc

2 have definite charges ðql; qΨÞ ¼ ð0;≠ 0Þ under a
certain U(1) group, so the operation

νl → e{qlανl;

Ψ → e{qΨαΨ ð4Þ
(where α is some global phase) leaves Lν

massjΔ¼0 invariant.
Thus, the inclusion of Δ0ΨcΨ, with Δ0 ≪ M, slightly spoils
this symmetry (it is clear that qN2

¼ −qΨ). Besides, the fact
that Δ0 ¼ 0 restores a (global) symmetry in the Lagrangian
[which is due to Eq. (4) in Eq. (3)] is enough to expect Δ0 to
be naturally small, in the ’t Hooft sense [38]. This means that
any correlation function which does not conserve the charges
q of Eq. (4) should be proportional to Δ0, and thus the
running coupling ofΔ0 is necessarily proportional to itself. In
other words, if we start with a smallΔ0 at some given energy,
the corresponding β function (which is also proportional to
Δ0) implies that it remains small at another energy. (This is
the same as in the correction to fermion masses: the mass
term itself breaks the chiral symmetry in the Lagrangian, and
therefore the anomalous dimension is proportional to m.)
Therefore, because we know how to get QDHν, we shall

consider three possible scenarios, depending on howmany of
themcanmediate as on-shell particles in the above-mentioned
RMD. For this purpose we require that the massesmNi

of all
the intermediate neutrinos lie in the range [18]

mM0 þml2 ≤ mNi
≤ mM −ml1 ; ð5Þ

where li are the final charged leptons. Scenario I includes
only one on-shell pair anddoes not offer newphenomenology
(at theGeVneutrino-mass scale)with respect to that proposed
in the νMSM model [25,26], where the masses of quaside-
generate neutrinos are in the few-GeV range, which was
studied in Ref. [27] (see Refs. [17–19] for predictions about
RMD). Scenario II has two pairs of QDHν in the on-shell
range. It is important tomention that, because theirmasses are
sufficiently large, both Scenarios I and II offer opportunities
for searching for sterile neutrinos in collider experiments such
as the LHC [42–46] (particularly for neutrino masses on the
order of TeV); however, it has been shown (with some
caveats) that sterile neutrinos heavier than the LHC mass
scale do not cause leptogenesis in cases where LNV is
observed at the LHC [47] (see Ref. [48], Sec. 6, for a helpful
discussion). Finally, Scenario III takes into account all three
pairs in theon-shellmass range (see Fig. 1). For simplicity,we
shall assume that the mass gap η between different pairs
satisfies η=mN ∼ Δml=ml, or η ∼ 0.1mN, where ml is the
mass of light neutrinos (i.e., heavy neutrino pairs are as
degenerate as light ones). In Sec. IVwe show results of RMD
within the assumptions of each of these scenarios. As
mentioned, future experiments such as SHiP [29] will be
meson factories and could explore intermediate particle
masses, from ≈106 MeV to ≈6 GeV, depending on the
initial and final states.

III. MESON DECAYS MEDIATED BY
THREE PAIRS OF QDHν

Now we describe the RMD process Mþ → lþ
1 l

þ
2 M

0−,
whereM andM0 are pseudoscalar mesons:M ¼ Ds; Bc and
M0 ¼ π; K;Ds. The most relevant contribution to this decay
is shown in Fig. 2, and occurs via exchanges of on-shell
neutrinos Nj. The contributions mediated by off-shell neu-
trinos and processes including loops (t-channel) are strongly

FIG. 1. Schematic representation of the pair distribution in the on-shell mass range for Scenario III.

FIG. 2. The s-channel of the lepton-number-violating decay
Mþ → lþ

1 l
þ
2 M

0−.
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suppressed [16,49]. Therefore, we focus on the on-shell mass
region [Eq. (5)] and tree-level processes (s-channel).
As we can see in Fig. 2, the process violates the lepton

number by two units; in consequence, the intermediate
neutrinos (Nj) must be Majorana fermions.
In order to fix notation, we consider that states fNj; Nkg

are neutrinos with masses m1;…; mNh
(Nh ¼ 6), where the

quasidegenerate pairs are 12, 34, and 56, whereas the states
with arbitrary differences (∼101;2 MeV) are 13, 14, 15, 16,
23, 24, 25, 26, 35, 36, 45, and 46. With this, let [20]

Mi ¼ −G2
FVquqdVq0uq0d

fMfM0
Bl1Ni

Bl2Ni
mNi

p2
Ni

−m2
Ni

þ {mNi
ΓNi

× ūðl2ÞpM0pMð1 − γ5Þvðl1Þ ð6Þ

be the amplitude for the process Mþ → lþ
1 l

þ
2 M

0−

ntermediated by the eigenstate Ni, with mass mNi
, which

enters the charged current through the mixing BliNj
¼P

αðV lep
iα Þ�Uαj [where V lep

iα (Uβj) is the matrix element
which relates the ith (jth) charged lepton (neutrino) mass
state with the αth (βth) flavor one]. Here we consider
that the BlN elements includes all the CP-violating phases
[50]. Further, pM, pM0 are the momenta of mesons M, M0
and l1, l2 are the momenta of charged leptons l1, l2,
whereas fM, fM0 are the meson decay constants, and Vαβ

corresponds to the Cabibbo-Kobayashi-Maskawa (CKM)
element (for instance, if M is a kaon Kþ, Vquqd ¼ Vus).
Thus, the squared amplitude probability for this process is
given by

jMj2 ¼
XNh

a;b¼1

M†
aMb ¼

XNh

i¼1

jMij2 þ
X
j;k>j
adpairs

ðM†
jMk þM†

kMjÞ þ
X
i¼1;3;5
i0¼iþ1

ðM†
iMi0 þM†

i0MiÞ

¼
XNh

i¼1

jMij2 þ 2
X
j;k>j
adpairs

Re½M†
jMk� þ 2

X
i¼1;3;5
i0¼iþ1

Re½M†
iMi0 �; ð7Þ

where “ad pairs” refers to neutrino pairs which have
arbitrarily different masses (13,14,15,� � �). Given the fact
that heavy neutrinos are weakly interacting particles it is
useful to implement the NWA,

mN

ðp2
N −m2

NÞ2 þ ðmNΓNÞ2
→ π

δðp2
N −m2

NÞ
ΓN

; ð8Þ

where ΓN is the total decay width of the intermediate
on-shell neutrinos, which can be approximated in the
following way:

ΓN ≈ KMa
j

G2
FM

5
Nj

96π3
: ð9Þ

Here

KMa
j ≡KMa

j ðMNj
Þ ¼ NMa

eNj
jBeNj

j2 þNMa
μNj

jBμNj
j2

þNMa
τNj

jBτNj
j2; ðj ¼ 1;…; nÞ;

ð10Þ
where NMa

lNj
are the effective mixing coefficients presented

in Fig 3.
In the mass range of our interest (∼1–6 GeV), and taking

into account the upper limits over the mixing elements
(jBeNj

j2, jBμNj
j2, and jBτNj

j2) presented in Ref. [39], the
parameter KMa

j can take values between 10−4–10−6, and
consequently ΓN ∼ 10−14–10−16 GeV (i.e., heavy neutrinos
are weakly interacting particles). In order to obtain an
analytical expression for the terms of Eq. (7), and by
extending the treatment of the decay width for only one pair
of QDHν, in Refs. [18,19] we find the corresponding decay
width for three pairs:

ΓRMD ¼ 1

2!
ð2 − δl1l2Þ

1

2MMð2πÞ6
Z

d3jMj2

¼ 2ð2 − δl1l2Þ
�X6
i¼1

jBl1Ni
j2jBl2Ni

j2 ~ΓðiiÞ
M þ

X
j;k>j
adpairs

2jBl1Nj
jjBl1Nk

jjBl2Nj
jjBl2Nk

j ~ΓðjjÞ
M cos θjkδjk

þ 2jBl1N1
jjBl1N2

jjBl2N1
jjBl2N2

j ~Γð11Þ
M cos θ12δ12 þ 2jBl1N3

jjBl1N4
jjBl2N3

jjBl2N4
j ~Γð33Þ

M cos θ34δ34

þ 2jBl1N5
jjBl1N6

jjBl2N5
jjBl2N6

j ~Γð55Þ
M cos θ56δ56

�
: ð11Þ
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Here d3 is the number of states available per unit of
energy in the final state (three-body phase space) where the
factor ð2 − δl1l2Þ refers to the symmetry factor of
the amplitude, the factor 2 in front of the latter is due to
the contribution of the crossed channel (l1 ↔ l2), θjk
represents the phase difference θjk ¼ ðϕ1j þ ϕ2j − ϕ1k −
ϕ2kÞ related to the heavy-light neutrino mixing elements by
means of BljNk

≡ jBljNk
jeiϕjk (where j, k ¼ 1, 2; see

Ref. [19]), and δjk measures the effect of Nk-Nj overlap

and is given by δjk ¼ Re ~ΓðjkÞ
M

~ΓðjjÞ
M

; their values are obtained via

numerical calculations implemented independently in
PYTHON and FORTRAN using the VEGAS algorithm [51],
and are presented in Fig. 4. It is worth mentioning that δjk
only depend on the mass difference Δmjk. Finally,

~ΓðjjÞ
M ¼ K2

Mm
5
M

128π2
mNj

ΓNj

λ1=2ð1; xj; xl1Þ × λ1=2
�
1;
x0

xj
;
xl2
xj

�

×Qðxj; xl1 ; xl2 ; x0Þ ðj ¼ 1;…; 6Þ ð12Þ

is the normalized decay width of each sterile neutrino [19]
(xj, xlj , the functions λ and Q coming from the integration
in d3, and KM are detailed in the Appendix).
The main difference with the case with only one pair of

QDHν (Scenario I) is the presence, in Eq. (11), of all the
interference terms except the one corresponding to N1N2.
As we shall see in Sec. IV, these contributions will increase
the branching ratios for RMD, allowing strict restrictions
over the couplings BlN . Besides, in Eq. (12) we use the fact

that the interference term ~ΓðjkÞ
M between heavy neutrinos is

proportional to ~ΓðjkÞ
M ∝ ~ΓðjjÞ

M δjk ∝
mN
ΓN

δjk. On the other hand,
the numerical integrations over the squared amplitude of
Eq. (7) show that only the adjacent pairs (12, 34, and 56)
contribute, whereas all the other interferences
(13; 14;…; 46) are strongly suppressed due to the fact that
Δm13;Δm14;…;Δm46 ∼ η ∼ 0.1mN ⋙ ΓN , and we see in
Fig. 4 that δij → 0 whenΔmij ⋙ ΓN . Therefore, the decay
width of the pseudoscalar meson [Eq. (11)] depends on the
neutrino masses mN , the matrix elements BlN , and indi-

rectly on the degeneracy level yjk ≡ Δmjk

ΓNj
[18]. It is

important to note that the relation between Δmjk and yjk
is independent of the already assumed NWA; besides, this
yjk enters only indirectly into Eq. (12), through the overlaps
δjk. The latter are manifested implicitly in the parameter
ΓNj

present in Eq. (12). Previous studies [18,19,49,52] have
shown that Δmjk ¼ ΓN is the best choice for measurable
CP violation and feasible baryogenesis via leptogenesis
[53–55]. From now on we shall choose δjk ¼ 0.5
(Δmjk ¼ ΓN) in order to leave an open door for lepto-
genesis. In addition, we must take into account the
acceptance factor, which is defined as the probability of
the on-shell neutrino Nj to decay inside the detector of
length L,

FIG. 3. Effective mixing coefficients for Majorana neutrinos.

FIG. 4. Left: δij parameter which measures the Ni − Nj overlap. Right: Some values of δij and their respective errors.
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PNj
≈

L
γNj

τNj
βNj

≈
LΓNj

γNj

; ð13Þ

where γNj
is the Lorentz time dilation factor in the lab

system (∼2). Consequently, the effective branching ratio
(EBR) is

BreffðMÞ ¼ PNj
BrðMÞ ¼ PNj

ΓRMD

ΓðM� → allÞ : ð14Þ

IV. RESULTS

Now we apply what we know about the decay of mesons
mediated by three pairs of on-shell QDHν to the processes
Dþ

s → μþμþπ−, Dþ
s → μþμþK−, Bþ

c → μþμþπ−, and

Bþ
c → μþμþD−

s . As we mentioned in the previous section,
we can deal with three possible scenarios, depending on
how many pairs of QDHν can mediate as on-shell particles
in the RMD, which depends on whether their masses
lie in the range of Eq. (5). For simplicity, we shall assume
that mass gaps between different pairs η satisfy
η=mN ∼ Δml=ml, or η ∼ 0.1mN, where ml represents
the masses of active neutrinos. Then, the masses of
QDHν are labeled as mN1

¼ mN − η, mN3
¼ mN , and

mN5
¼ mN þ η, where just the second one will be our

independent variable for phenomenological purposes. In
consequence, the masses of the heavy neutrinos
ðN1; N2;N3; N4;N5; N6Þ are given, respectively, by
ðmN1

;mN1
þΔm12;mN3

;mN3
þΔm34;mN5

;mN5
þΔm56Þ.

In Fig. 5 we show the EBR per unit of coupling jBlN j4

FIG. 5. Effective branching ratio divided by jBlN j4, for the processes (a) Dþ
s → μþμþπ−, (b)Dþ

s → μþμþK−, (c) Bþ
C → μþμþπ−, and

(d) Bþ
C → μþμþD−

s , as a function of sterile neutrino mass, for L ¼ 1½m�, γN ¼ 2, and η ¼ 0.1mN . The dashed line represents the values
for Scenario I, the solid line represents the value for Scenario II, and the dotted line represents the values for Scenario III. We regard the
cases with CP violation (δij ¼ 0.5) and cos θjk ¼ 1ffiffi

2
p .
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[Eq. (14)] for different meson decays (M ¼ Ds; Bc and
M0 ¼ Ds; π; K) assuming jBμNi

j ¼ jBlN j for i ¼ 1;…; 6
(all equal), as a function of such mN3

¼ mN , regarding all
three scenarios for different initial and final states. In all of
them we see that the inclusion of two or three pairs of
QDHν (Scenario II or III, respectively) results in an
increase of the EBR in comparison with the case with
only one such pair [18,19]. In Fig. 6 we show the ratio
between the EBR calculated with three pairs of QDHν
(EBR3) and the one with only one pair (EBR1) for the
decays of Fig. 5. In fact, we see that even when mN lies in
the range of Eq. (5) (i.e., [0.25–1.76] GeV and [0.60–
1.76] GeV for Ds, [0.25–6.30] GeV and [1.98–6.30] GeV
for Bc), the actual ranges for the plots of Scenario III in
Figs. 5–6 are the ones for which

mM0 þml2

1 − f
≤ mN ≤

mM −ml1

1þ f
; ð15Þ

where f ¼ η=mN ∼ 0.1, because we demand that all three
pairs contribute to the EBR, and, then to their respective
ratios with EBR1 (otherwise we are in Scenario I or II,
which are not the goal of this work). This is the reason why
the decays of Ds and Bc exhibit an abrupt cut at mN ≃
1.7 GeV and mN ≃ 5.7 GeV, respectively. Besides, in
Fig. 6 we see that predictions for EBR3 are between 3
and 4 times greater than EBR1. It is interesting to note that,
even when these ratios are almost constant in the allowed
range for mN, they have a significant increase (cusp) near
the extremes. To see why this happens, in Fig. 6 we show
the corresponding ratios for different values of η (the

FIG. 6. Quotients of the effective branching ratios for different values of η using one pair and three pairs of QDHν, for the processes
(a) Dþ

s → μþμþπ− and (b) Dþ
s → μþμþK−, (c) Bþ

c → μþμþπ−, and (d) Bþ
c → μþμþD−

s , as a function of sterile neutrino mass. We used
L ¼ 1½m� and γN ¼ 2.
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degeneracy among QDHν), and we note that we get a
smaller increase as we reduce η. This is easy to understand
in light of Figs. 1 and 5: (i) as mN ¼ mN3

≃mN4
, the EBR

for values of small (large) mN always get contributions
from one pair with masses around m ∼mN þ η (∼mN − η),
so (ii) only when η is sufficiently small do all the pairs lie in
the extreme zone, given a total EBR corresponding only to
extreme masses; (iii) otherwise, when η is large an EBR
labeled with an extreme mass contains contributions from
masses closer to the middle region of Eq. (15), which
clearly yields greater values of the EBR. It is worth
mentioning that when we ignore the η effect (i.e., making
η ≪ mN), the EBR3 is just amplified by a factor of 3 with
respect to EBR1 (hence the shape of the dashed lines in the
plots of Fig. 6). [This is because all the mass dependence
from phase space in Eq. (12) is the same for each

intermediate heavy neutrino.] Finally, we note that the η
effect produces an increase or a decrease of these ratios
when mN is, respectively, smaller or larger than a certain
mN (a function of the masses of external particles). This can
be understood by looking at Fig. 5, where the peak of
EBR3 always occurs for a mass smaller than the mass for
which EBR1 has its maximum; therefore, comparing the
slopes of EBR1 and EBR3 after their respective maxima,
we see that the latter decreases faster than the former,
contributing to the decrease of the ratio in comparison with
the dashed curves of Fig. 6. Also, we note that the
interference terms in Eq. (11) do not seem to manifest
in the ratios of Fig. 6. This is due to the fact that—as we
have one such interference in the denominator and three in
the numerator—they mutually cancel, with only the above-
mentioned factor of 3 remaining. It is important to point out

FIG. 7. Limits for jBμN j2 from Ref. [39] vs the ones we get using one pair and three pairs of QDHν for the processes
(a) Dþ

s → μþμþπ−, (b) Dþ
s → μþμþK−, (c) Bþ

c → μþμþπ−, and (d) Bþ
c → μþμþD−

s , based on expected luminosities for mesons. As
before, we used L ¼ 1½m�, γN ¼ 2, and η ¼ 0.1mN .
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that our choice of θij ¼ π=4 in Figs. 5–6 is a necessary
condition to simultaneously maximize CP violation
(yjk ¼ 1, i.e., δjk ¼ 0.5) and the decay width presented
in Eq. (11). It is worth mentioning that the exact point of
maximal CP violation implies δjk ¼ 0.5 and simultane-
ously cos θij ¼ 0 [18,19].
Finally, in Fig. 7 we show a comparison between the

current upper limits for jBμN j2 provided by Ref. [39] (based
on type I seesaw model) and the ones obtainable from the
predictions of our Scenarios I and III, again under the
assumption that jBμN j ∼ jBlN j; for an extra discussion
about heavy-light neutrino mixing see Refs. [56–58].
This was done by demanding that the number of predicted
events for RMD was NRMD ¼ ðjBμN j4fkÞ × Nmes ≥ 1,
where Nmes is the production rate of mesons per year at
SHiP,1 NDs

≃ 5.0 × 1016 and NBc
∼ 1012, and fk is the

factor that includes all the kinematics due to each scenario
(in fact, the η effect is present). Therefore, the plots of
Scenarios 1 and 3 indicate the minimum value of jBμN j2
capable of producing one event of RMD. Even when
predictions for EBR3 allow smaller limits for jBμN j, their
differences with respect to the ones for EBR1 are domi-
nated only by the factor

ffiffiffi
3

p
coming from the three pairs of

QDHν, which is even less notable in a logarithmic plot.
Now, the fact that these limits are so close implies that it
will be difficult to decide which underlying seesaw scenario
is the origin of these RMDs.

V. CONCLUSION

We studied the rare decays of mesons (Dþ
s → μþμþπ−,

Dþ
s → μþμþK−, Bþ

c → μþμþπ−, and Bþ
c → μþμþD−

s ) as
they can produce six on-shell heavy neutrinos with masses
in the range of ∼1–6 GeV. For this purpose, we worked in
the context of a low-scale seesaw model constructed with
the SM field νL and two extra neutrinos νR and S, where the
mass of light neutrinos (ml) is obtained by the introduction
of a small parameter in the neutrino mass matrix (μ or ε for
the inverse or linear seesaw regime, respectively), allowing
that the large scale of the model (M), the same as the heavy
neutrino masses (mN), lies in the above-mentioned range.
In order to reproduce the conditions we find in the literature
(those leading to maximum CP violation and feasible
baryogenesis through leptogenesis) we promoted an argu-
ment, based on naturalness, which produces a heavy
neutrino mass spectrum with three pairs of quasidegenerate
neutrinos (Fig. 1), where the differences between adjacent
masses satisfy mN2

−mN1
≃ ΓN1

, mN4
−mN3

≃ ΓN3
, and

mN6
−mN5

≃ ΓN5
, where ΓNi

∼ 10−20 GeV are the total
decay widths of Ni ’s. In other words, we assumed that
heavy neutrinos are particles interacting weakly with SM

physics. Likewise, we fixed the difference among pairs of
heavy neutrinos, η ∼ 0.1mN , such that these pairs have
similar relative mass patterns as the active neutrinos. In
our calculations we simplified many numerical details
concerning the effective branching ratios, making all
the couplings between the heavy neutrinos and muons
equal, BμNi

¼ BμNj
. We enhanced CP violation effects

by choosing the conditions yjk ¼ 1, implying that the
overlap parameters δjk between neutrino resonances
become appreciable (δjk ¼ 0.5). For definiteness, we chose
the CP-violating phase differences ϕi − ϕj such that

cosðϕi − ϕjÞ ¼ 1=
ffiffiffi
2

p
when the overlap between wave

functions of heavy neutrinos Ni and Nj is δij ¼ 0.5.
Since the masses of the on-shell heavy neutrinos needed
to be in a determined kinematic range related with the
masses of the external particles of the decays, we consid-
ered three possible scenarios depending on how many pairs
this range actually contains, and we obtained a consistent
increase in the EBR of RMD as we increased the number of
QDHν. In particular, we concluded that the inclusion of two
new pairs of QDHν essentially triples the EBR of the RMD
decay width in comparison with the case with only one pair.
Besides, we worked with an effective range for neutrino
masses in order to consider all three pairs, and we found
that the ratio between EBR3 and EBR1 was not exactly 3,
but there was a small variation due to the fact that these
pairs were separated by an amount η ≤ 0.1mN ; this effect
vanishes as η → 0. The approximate tripling of the EBR we
found is consistent with the fact that the mass factor coming
from the phase-space integral is approximately the same,
independently of the number of intermediate on-shell
neutrino pairs. On the other hand, RMD detection—
together with the maximization of CP asymmetry (and
hence the necessity of QDHν)—.is not necessarily attrib-
utable only to scenarios like the νMSM, but also to low-
scale seesaw mechanisms. Furthermore, the latter needs a
smaller coupling between charged leptons and sterile
neutrinos than the former (Fig. 7). Even when our
RMDs need neutrinos with masses around a few GeV, it
is interesting to note that the off-shell range neutrinos of
Scenarios I and II could display new phenomenology, given
that their masses lie in the appropriate range [59].
Therefore, there is a phenomenological distinction between
this proposal and the one, for instance, of the νMSM: in
fact, Scenarios I and II simultaneously provide QDHν pairs
of neutrinos which contribute to the EBR of RMD and
heavier neutrinos (not necessarily QDHν) whose phenom-
enology is testable at the LHC. As a consequence, if
experiments find both RMD in a manner compatible with
QDHν and phenomenology of heavier neutrinos at, say, the
100 GeV scale, it could be a signal in favor of the LSS
mechanism rather than the type I seesaw mechanism.
Finally, it is worth mentioning that, for instance, our
Scenario II provides a couple of quasidegenerate neutrinos

1M. Drewes (TU Munich) and N. Serra (Zurich U) (private
communication).
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whose masses are still free to be set in the appropriate range
in order to contribute to neutrinoless double-beta decay;
some work has already been done in this context [60–63].
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APPENDIX: KINEMATIC FUNCTIONS

The kinematic functions shown in Eq. (12), coming from
the phase-space integration, are given by the expressions

λðy1; y2; y3Þ ¼ y21 þ y22 þ y23 − 2y1y2 − 2y2y3 − 2y3y1;

Qðx; xl1 ; xl2 ; x0Þ ¼
�
1

2
ðx − xl1Þðx − xl2Þð1 − x − xl1

Þ
�
1 −

x0

x
þ xl2

x

�

þ ½−xl1xl2ð1þ x0 þ 2x − xl1
− xl2Þ − x2l1ðx − x0Þ þ x2l2ð1 − xÞ

þ xl1ð1þ xÞðx − x0Þ − xl2ð1 − xÞðxþ x0Þ�
�

¼ 1

2
½ð1 − xÞxþ xl1

ð1þ 2x − xl1Þ�
�
x − x0 − 2xl2

−
xl2
x

ðx0 − xl2
Þ
�
; ðA1Þ

where

xj ¼
M2

Nj

M2
M
; xls ¼

M2
ls

M2
M
; x0 ¼ M2

M0

M2
M
; ðj ¼ 1; 2;ls ¼ l1;l2Þ:

Since the valence quark content of Mþ and M0− is quq̄d and q0uq̄0d, respectively, the constants involved in the normalized
decay widths of Eq. (12) are

KM ¼ −G2
FVquqdVq0uq0d

fMfM0 with KM ¼ ðKMÞ�;

where fM and fM0 are the meson decay constants of Mþ and M0−, whereas Vquqd and Vq0uq0d
are its CKM elements.
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