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Correlations between light neutrino observables are arguably the strongest predictions of lepton flavor
models based on (discrete) symmetries, except for the very few cases which unambiguously predict the full
set of leptonic mixing angles. A subclass of these correlations is neutrino mass sum rules, which connect
the three (complex) light neutrino mass eigenvalues among each other. This connection constrains both the
light neutrino mass scale and the Majorana phases, so that mass sum rules generically lead to a nonzero
value of the lightest neutrino mass and to distinct predictions for the effective mass probed in neutrinoless
double beta decay. However, in nearly all cases known, the neutrino mass sum rules are not exact and
receive corrections from various sources. We introduce a formalism to handle these corrections
perturbatively in a model-independent manner, which overcomes issues present in earlier approaches.
Our ansatz allows us to quantify the modification of the predictions derived from neutrino mass sum rules.
We show that, in most cases, the predictions are fairly stable: while small quantitative changes can appear,
they are generally rather mild. We therefore establish the predictivity of neutrino mass sum rules on a level
far more general than previously known.
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I. INTRODUCTION

Neutrinos keep on surprising us when it comes to
experiments. We are still puzzled by their curious proper-
ties which are experimentally established but which we still
do not understand on a fundamental level. For example, the
neutrino mass is extremely small compared to any other
fermionic mass we know, namely below 1 eV (or possibly
even 0.1 eV). This we know from several experiments and
observations, either in the lab by kinematical determina-
tions of the neutrino mass [1] and from the hunt for
neutrinoless double beta decay [2] or in space by the
time-of-flight measurements of supernova neutrinos [3] or
from cosmological considerations [4]. Similarly, the lep-
tonic mixing angles are a mystery to us, for we have
measured their values to be fairly large (see nu-fit.org [5]),
but yet we have absolutely no theoretical understanding of
these numbers.
Although far from perfect, still the best idea we have to

explain leptonic mixing is to motivate the values of the
mixing angles by relating them to discrete flavor sym-
metries; see Ref. [6] for recent reviews.1 However, flavor
models based on discrete symmetries generically face one
big problem: they often do not give us any testable
prediction beyond fitting the known mixing angles within

their experimental ranges (note that, if a model did not, it
would in any case be discarded). On the other hand, at least
some groups of flavor models are more powerful than that,
in the sense that they predict certain correlations between
different observable quantities. Among these correlations,
the most popular ones discussed in the literature are mixing
angle sum rules [9], but, when looking at the total mass
matrix of neutrinos, a second class of correlations arises,
neutrino mass sum rules.
It is these mass sum rules (in the following referred to

by “SRs”) that we will investigate in this text. Basically,
what they do is to connect the three complex neutrino
mass eigenvalues ~mi in a simple relation, where all three
contributions sum to zero. For example, ~m1þ ~m2− ~m3¼0

would be a valid SR, as well as ~m−1
1 þ ~m−1

2 − ~m−1
3 ¼ 0.

Several studies of SRs have been presented earlier.
Among the first works investigating SRs were
Refs. [10–12]. However, these actually did not mention
the name “sum rules” at all. That term came up only later,
in Refs. [13–16]. The probably most comprehensive study
of SRs, which includes all known cases we are aware of,
had been presented in Ref. [17]. Based on this study,
Ref. [18] has shown that, indeed, with realistic assump-
tions on the experimental side, one could truly distinguish
at least some classes of models with near-future data—as
long as our current understanding of the nuclear physics
aspects of neutrinoless double beta decay is not totally
flawed.
However, it is clear in nearly all cases that sum

rules, even though predicted, are in fact not
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1For alternative ideas, one could for example consider anarchy
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exact.2 These can arise, e.g., from higher-order correction
terms arising from flavor symmetry breaking or from
corrections transmitted from the charged lepton sector. A
further correction that we had investigated earlier are
those arising from renormalization group running; see
Ref. [20]. We have indeed been able to show that at least
these corrections do not change the predictions from SRs
significantly, but we cannot claim that this particular type
of corrections would be the most general one.
In this manuscript, we will try to close this gap by

computing the effect of nonexact SRs on the predictions in a
very general framework, based on a perturbative approach.
The only attempt to investigate approximate sum rules that
we are aware of had been presented in Ref. [15]; however, it
had been pointed out [17,20] that the approach in that
reference is likely to be insufficient because the corrections
have been attributed to one particular mass eigenvalue only,
namely m3. However, this may create problems both due to
measure dependence of the perturbations and due to the fact
thatm3 plays a very different role for the two mass orderings.
This is another shortcoming which we will at least partially
overcome with our approach, by describing a procedure by
which the dependence on a choice of mass eigenvalue can be
minimized. Using the techniques developed, we will inves-
tigate the predictions of all sum rules we found in the
literature. As we will see, while the predictions are of course
changed for approximate SRs, in most cases these changes

are comparatively mild, thereby keeping the predictivity of
the SRs alive. Only in one case, namely SR 10, a qualitative
change does happen which could in fact be visible in an
experiment.
This work is organized as follows. We start in Sec. II by

reintroducing the parametrization of SRs used by us, and
we will also visualize how to interpret neutrino mass sum
rules, no matter if exact or not, in a geometrical manner.
Section III is dedicated to a discussion of the possible
origins of the various corrections, to clarify which cases are
covered by our formalism. Our numerical results, along
with detailed plots for each sum rule, are presented in
Sec. IV. We conclude in Sec. V. Technical details on how to
derive the physical leptonic mixing parameters from the
charged lepton and neutrino sectors are summarized in the
Appendix.

II. PARAMETRIZATION AND GEOMETRICAL
INTERPRETATION

To start off, let us define our conventions. First of all, we
parametrize the leptonic mixing matrix, the so-called
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, by
using the standard parametrization suggested by the
Particle Data Group (PDG) [21],

UPMNS ¼ R23U13R12P0 ¼

0
B@ c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

1
CAP0; ð2:1Þ

where δ is the Dirac CP-phase and P0 ¼
diagðe−iϕ1=2; e−iϕ2=2; 1Þ is a diagonal matrix containing
the two Majorana phases ϕ1;2. However, note that our
definition of the Majorana phases is different compared to
what the PDG uses [21] in their Eq. (14.78): ϕ1 ¼ −α31 and
ϕ2 ¼ α21 − α31. As for the mixing parameters, we have
used the v2.0 version from nu-fit.org, as reported in
Table I.3

With that said, let us next introduce our formalism to
treat neutrino mass sum rules. In Ref. [20], we have
investigated the effect of renormalization group corrections

to neutrino mass SRs. In this paper, we want to examine the
impact of next-to-leading-order corrections to neutrino
mass matrices on mass SRs.
A general exact SR can be parametrized according to

Ref. [20],

sðm1; m2; m3;ϕ1;ϕ2; c1; c2; d;Δχ13;Δχ23Þ
≡ c1ðm1e−iϕ1ÞdeiΔχ13 þ c2ðm2e−iϕ2ÞdeiΔχ23 þmd

3¼! 0;
ð2:2Þ

where ϕi, i ¼ 1, 2 are the Majorana phases. The quantities
c1, c2, d, Δχ13, and Δχ23 are parameters which characterize
the SR, e.g., SR 1, ~m1 þ ~m2 ¼ ~m3, is characterized by
ðc1; c2; d;Δχ13;Δχ23Þ ¼ ð1; 1; 1; π; πÞ, while SR 7, ~m−1

1 ¼
2 ~m−1

2 þ ~m−1
3 , is characterized by ðc1; c2; d;Δχ13;Δχ23Þ ¼

ð1; 2;−1; π; 0Þ; see Table II for a summary. Note that, in
this notation, ~mi are the complex mass eigenvalues, i.e.,
with the phase information included. In Table II, we have

2See Ref. [19] for a notable exception, where the SR at least
holds to next-to-leading order.

3Note that, just while this work was in its final stages, a new
version of mixing parameters v2.1 was released. We have
verified that our results are not significantly changed for some
example cases; however, given the time-consuming numerics
behind this manuscript, we have decided against rerunning all of
our code and have instead decided to consistently present the
results obtained for v2.0.

GEHRLEIN, MERLE, and SPINRATH PHYSICAL REVIEW D 94, 093003 (2016)

093003-2



collected all the SRs we found in the literature with their
parameters c1; c2; d;Δχ13, and Δχ23.
A complex perturbation governed by the complex

parameter δmieiδϕi to the neutrino mass matrix shifts its
complex eigenvalues to

~mi ¼ mie−iϕi ¼ mð0Þ
i e−iϕ

ð0Þ
i þ δmieiδϕi : ð2:3Þ

Thus, explicitly, the corrections are connected to the
physical parameters as follows:

mi ≈mð0Þ
i

�
1þ δmi

mð0Þ
i

cosðδϕi − ϕð0Þ
i Þ

�
; ð2:4Þ

ϕi ≈ − arctan

�
−mð0Þ

i sinðϕð0Þ
i Þ þ δmi sinðδϕiÞ

mð0Þ
i cosðϕð0Þ

i Þ þ δmi cosðδϕiÞ

�
: ð2:5Þ

Thus, e.g., δϕi is not the correction to the phase of the
complex mass. We assume that, in general, the correction to
each mass can have a different phase δϕi than that of the
zeroth-order SR; i.e., δϕi need not be a small number. We

furthermore assume that δmi=m
ð0Þ
i ≪ 1, with δmi > 0

without loss of generality. So, we can expand Eq. (2.2)
in the small parameters δmi to obtain the deviation from the
exact SR. This results in

0 ≠ s ≈ sð0Þ þ δs; ð2:6Þ

where

sð0Þ ¼ c1ðmð0Þ
1 e−iϕ

ð0Þ
1 ÞdeiΔχ13 þ c2ðmð0Þ

2 e−iϕ
ð0Þ
2 ÞdeiΔχ23

þ ðmð0Þ
3 Þd ð2:7Þ

and

TABLE I. The best-fit values and the 3σ ranges for the parameters taken from Ref. [5], v2.0. The two minima for
both θ13 and θ23 correspond to normal and inverted mass ordering, respectively.

Parameter Best fit (�1σ) 3σ range

θ12 in ° 33.48þ0.78
−0.75 31.29 → 35.91

θ13 in ° 8.50þ0.20
−0.21 ⊕ 8.51þ0.20

−0.21 7.85 → 9.10 ⊕ 7.87 → 9.11

θ23 in ° 42:3þ3.0
−1.6 ⊕ 49:5þ1.5

−2.2 38.2 → 53.3 ⊕ 38.6 → 53.3

δ in ° 251þ67
−59 0 → 360

Δm2
21 in 10−5 eV2 7.50þ0.19

−0.17 7.02 → 8.09

Δm2
31 in 10−3 eV2 (NO) 2.457þ0.047

−0.047 2.317 → 2.607

Δm2
32 in 10−3 eV2 (IO) −2.449þ0.048

−0.047 −2.590 → −2.307

TABLE II. Summary table of the SRs we will analyze in the following. The parameters c1, c2, d, Δχ13, and Δχ23
that characterize them are defined in Eq. (2.2). In SRs 9 and 10, two possible signs appear which lead to two possible
values of Δχi3.

Sum rule References c1 c2 d Δχ13 Δχ23
1 [12,15,22–28] 1 1 1 π π

2 [29] 1 2 1 π π

3 [14,15,23–27,30–32] 1 2 1 π 0

4 [33] 1=2 1=2 1 π π

5 [34] 2ffiffi
3

p þ1

ffiffi
3

p
−1ffiffi

3
p þ1

1 0 π

6 [12,15,19,22,35,36] 1 1 −1 π π

7 [10,13–15,31,32,37] 1 2 −1 π 0

8 [38] 1 2 −1 0 π

9 [39] 1 2 −1 π π=2, 3π=2

10 [11,40] 1 2 1=2 π; 0; π=2 0, π, π=2

11 [16] 1=3 1 1=2 π 0

12 [41] 1=2 1=2 −1=2 π π
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δs ¼ d

�
c1ðmð0Þ

1 e−iϕ
ð0Þ
1 ÞdeiðΔχ13þϕð0Þ

1
Þ δm1eiδϕ1

mð0Þ
1

þ c2ðmð0Þ
2 e−iϕ

ð0Þ
2 ÞdeiðΔχ23þϕð0Þ

2
Þ δm2eiδϕ2

mð0Þ
2

þ ðmð0Þ
3 Þd δm3eiδϕ3

mð0Þ
3

�
: ð2:8Þ

With the leading-order (LO) expressions for the masses, the
SR is exactly fulfilled (i.e., sð0Þ ¼ 0), in case the SR does
allow for the mass ordering under consideration. Note that
the SR is complex, and hence the correction δs will in
general be complex as well.
Graphically, the deviation from a SR corresponds to an

“incomplete” triangle in the complex plane, as illustrated in
Fig. 1. Note that the parameters which appear in the triangle
are now the corrected masses and phases, which are
complicated functions of the leading-order parameters
and of the corrections. We will use the parameters δsr
and δsi to measure the effect of the perturbation, where δsr
(δsi) corresponds to the real (imaginary) part of the
deviation.
At this point, we also want to note that δs is a

dimensionful quantity and hence not well suited to express
corrections since the notion of small and big is not
meaningful. We therefore introduce the normalized hatted
quantities

ŝ≡ s
md

n
and δŝ≡ δs

md
n
; ð2:9Þ

where mn is chosen in such a way that the coefficients in

front of δmi=m
ð0Þ
i in Eq. (2.8) are not artificially enhanced

by mi=mj ≫ 1. Explicitly, that is

mn ¼

8>>><
>>>:

m3 for d > 0 and NO;

m2 for d > 0 and IO;

m1 for d < 0 and NO;

m3 for d < 0 and IO;

ð2:10Þ

where NO (IO) stands for normal (inverted) ordering. With
this choice, jδŝj should be much smaller than 1—if we want
to talk about small corrections and one of the sides of the
triangle in Fig. 1 has a length of Oð1Þ.
Before going on, it is important to realize that Eq. (2.10)

implies that the quantity δŝ < b can in fact have a slightly
different meaning even for one and the same bound b,
depending on the mass ordering and on the sign of d. This
is, however, not so much an inconsistency as simply a
convenient approach to use the same formalism for all cases
considered. The decisive point is that, in any case, the two
mass orderings are physically different, and so are cases
with a different sign of d, so that it is simply impossible to
put all SRs on the same footing for all cases. Thus, a bound
such as, e.g., δŝ < 0.1 may be more or less restrictive,
depending on the actual case under consideration.
However, as we will see, the difference induced by this
subtlety is not really decisive and will thus not be a major
concern for the remainder of this manuscript.

III. MAIN ORIGIN OF CORRECTIONS

In this section, we will give examples for a possible
origin of deviations from exact SRs. Note that, in principle,
no matter where the corrections arise from, they will always
be covered by our formalism, cf. Sec. II. However, the
important restriction is that our Eq. (2.8) relies on the
assumption that one can expand the full SR s in the small

quantities δmi=m
ð0Þ
i . If this is not possible for some reason,

our formalism will not apply.
Keeping this in mind, we will now discuss three possible

origins for deviations to SRs. The first origin is higher-
dimensional operators, Sec. III A,which typically arise from
including suppressed terms that ultimately arise from the
flavor symmetry being broken. The next possibility to
modify SRs is to have corrections from the charged-lepton
mass matrix. These can arise if the mass matrix in the
charged lepton sector is not diagonal but has to be diagon-
alized to arrive at the standard definition of leptonic mixing
angles; this is discussed in Sec. III B. Finally, as discussed in
our earlier reference [20], renormalization group evolution
(RGE) corrections can also lead to modifications. This
possibility, to be introduced in Sec. III C, is discussed in
some more detail in what follows, for the simple reason that
we can give a detailed comparison to the previous results.

A. Higher-dimensional operators

In many models, the mass matrices have a leading-order
structure which is supposed here to give one of the mass

FIG. 1. Definition of the parameters δsr and δsi used to measure
the corrections to the SRs. Note that these parameters are
dimensionful. We normalize δs according to Eq. (2.10) such
that we obtain dimensionless quantities. The parameters mi and
ϕi are already corrected.
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sum rules. But then due to some higher-dimensional
operators, this leading structure gets disturbed. As an
example for a possible higher order correction we want to
study the A5 × SUð5Þ model proposed in Refs. [35,42,43]
where a correction to the leading Yukawa matrix is
introduced to account for the observed baryon asymmetry
of the universe via the leptogenesis mechanism. In order
to simplify the notation, we introduce the dimensionless
matrices

ŷ ¼

0
B@ 1 0 0

0 0 1

0 1 0

1
CA and δŷ ¼

0
B@ 0 1 0

−1 0 0

0 0 0

1
CA: ð3:1Þ

The neutrino Yukawa coupling in this model is then
proportional to ŷþ cei γδŷ, with c ≪ 1 and γ being an
arbitrary phase coming from a higher-dimensional operator.
The mass matrix for the right-handed neutrinos is

proportional to (see also Ref. [19]):

m̂RR ¼

0
BBB@

Xffiffi
6

p þ Yeiχffiffiffiffi
30

p − Yeiχffiffiffiffi
15

p − Yeiχffiffiffiffi
15

p

− Yeiχffiffiffiffi
15

p 15X−
ffiffi
5

p
Yeiχ

10
ffiffi
6

p −5X−
ffiffi
5

p
Yeiχ

10
ffiffi
6

p

− Yeiχffiffiffiffi
15

p −5X−
ffiffi
5

p
Yeiχ

10
ffiffi
6

p 15X−
ffiffi
5

p
Yeiχ

10
ffiffi
6

p

1
CCCA: ð3:2Þ

The light neutrino mass matrix is then generated via the
type I seesaw mechanism [44]. It is up to OðcÞ given by

mν ¼ −ŷm̂−1
RRŷ − ceiγðδŷm̂−1

RRŷþ ŷm̂−1
RRδŷÞ; ð3:3Þ

where we have absorbed all coefficients into c and m̂−1
RR,

and we thus have only five effective parameters. These are
the dimensionful X, Y; the phases χ and γ, and the small
parameter c. One can easily map our simplified notation
here to the original notation used in Refs. [42,43], by
rewriting these parameters with the respective prefactors.
Since the leading-order neutrino mass matrix (c≡ 0)

depends only on two (complex) parameters, we find a mass
SR which corresponds to SR 6 from Table II:

eiϕ1

mð0Þ
1

þ eiϕ2

mð0Þ
2

−
1

mð0Þ
3

¼ 0: ð3:4Þ

The corrections to the complex masses from Eq. (2.3) are
up to order c,

δm1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð3þ

ffiffiffi
5

p
Þ

q
Y sin γ
X cos χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðX2 þ Y2 þ 2XY cos χÞ

s
c;

ð3:5Þ

δm2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð3 −

ffiffiffi
5

p
Þ

q
Y sin γ
X cos χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðX2 þ Y2 − 2XY cos χÞ

s
c

ð3:6Þ

δm3 ¼ 0; ð3:7Þ

δϕ1 ¼ arctan

�
1

tan χ
þ X

Y
1

sin χ

�
; ð3:8Þ

δϕ2 ¼ arctan

�
1

tan χ
−
X
Y

1

sin χ

�
; ð3:9Þ

δϕ3 ¼ 0: ð3:10Þ

Note that for sin γ ¼ 0, δm1 and δm2 get corrected only
at Oðc2Þ, and ~m3 does not get a correction at OðcÞ.
The correction is enhanced by the ratio Y=X and χ ≈
nπ=2 (n ∈ Z).
As an example parameter point, we consider normal

ordering with X ¼ 24.0, Y ¼ 185.3, χ ¼ 0.4 so that, for
c ¼ 0.05 and γ ¼ 0.2, we obtain δŝr ≈ −0.013 and
δŝi ≈ 0.13, which corresponds to δŝ ≈ 0.13.

B. Charged lepton sector

Despite the fact that the mass SR is a feature of the
neutrino sector of a given model, it can be influenced by a
nondiagonal charged lepton mass matrix. The phases which
appear in the PMNS matrix (i.e., the Dirac CP phase and
the two Majorana phases) depend on the phases from the
neutrino and the charged lepton mixing matrices, since
UPMNS ¼ U†

eUν. This leads to relations between the lep-
tonic mixing angles and phases. In the derivation of the
formulas, however, some subtleties can arise, since all
unphysical phases have to be correctly extracted. In the
Appendix, we present a comprehensive derivation of
relations between the parameters in the PMNS matrix
and the neutrino and charged lepton mixing parameters.
Here, we will quote the results for the approximate
expressions for the PMNS parameters in terms of SRs of
neutrino mixing angles and the charged lepton mixing
angles. For θν13 ≈ 0 and θe23 ≈ θe13 ≈ 0, they read

cPMNS
13 cPMNS

12 eiðη1−ϕ1=2Þ

¼ ce12c
ν
12e

iων
1 þ cν23s

e
12s

ν
12e

iðων
2
þδν

12
−δe

12
Þ; ð3:11Þ

sPMNS
12 cPMNS

13 eiðη1−ϕ2=2Þ

¼ sν12c
e
12e

−iδν
12eiω

ν
1 − se12c

ν
23c

ν
12e

−iδe
12eiω

ν
2 ; ð3:12Þ

sPMNS
13 eiðη1−δÞ ¼ −se12sν23e−iðδ

e
12
þδν

23
Þeiων

2 : ð3:13Þ

The superscript ν denotes the neutrino mixing parameters,
while the superscript e signifies the charged lepton mixing
parameters. The phases ηi and ων

i are unphysical, but they
nevertheless have to be treated with care in order to obtain
the correct results for the phases. Together with
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cPMNS
12 ðcPMNS

13 Þ2cPMNS
23 sPMNS

13 ðsPMNS
12 sPMNS

23 e−iδ

− cPMNS
12 cPMNS

23 sPMNS
13 Þ

¼ ðUPMNS
11 Þ�UPMNS

13 UPMNS
31 ðUPMNS

33 Þ�; ð3:14Þ

which we get if we exploit the structure of the PMNS
matrix, we can close the system to solve the four equa-
tions (3.11) to (3.14) to determine the Majorana phases. In
Refs. [45–47], these expressions were also derived, but
their formulas apply directly to the case where the unphys-
ical phases are taken correctly into account and then
subsequently absorbed. From Eqs. (3.11), (3.12), (3.13),
we see that the Majorana phases indeed depend on the
charged lepton phases.
As a concrete example, we consider again the A5 ×

SUð5Þ model proposed in Refs. [35,42,43], which features
a nondiagonal charged lepton mass matrix, a vanishing
reactor angle, and a maximal atmospheric neutrino mixing
angle. We introduced only a small 1–2 mixing in the
charged lepton sector. The parameters in the neutrino mass
matrix are complex, and hence the δνij depend on these
parameters. But, for simplicity, we take the neutrino mass
matrix to be real (χ ¼ c ¼ 0). Taking into account all
phases in the PMNS matrix, we obtain for the physical
Majorana phases

ϕ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ

ffiffiffi
5

pq
θe12 sin δ

e
12 and

ϕ2 ¼ π −
ffiffiffi
5

p
− 1ffiffiffi
2

p θe12 sin δ
e
12: ð3:15Þ

This result tells us that δe12 ≈ π=2 leads to the maximal
correction to the Majorana phases and ϕ1 gets more
affected by the charged lepton phases than ϕ2. We see
that the physical Majorana phases have a dependence on
the charged lepton phases, and thus the Majorana phases
which appear in the SR are in general not equal to the
physical Majorana phases one obtains in a model with a
nondiagonal charged lepton mass matrix. For this reason, a
SR can get destroyed in this type of models.
To demonstrate how powerful our formalism is, we will

now express these corrections in terms of δŝ for the given
example. On leading order, we find that

ϕð0Þ
1 ¼ 0; ϕð0Þ

2 ¼ π; ð3:16Þ

m1 ¼ mð0Þ
1 þOðδm2

1Þ; m2 ¼ mð0Þ
2 þOðδm2

2Þ;
m3 ¼ mð0Þ

3 þOðδm2
3Þ: ð3:17Þ

Note that the physical neutrino masses will only get
corrected at the order Oðδm2

i Þ. With

δm1 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ

ffiffiffi
5

pq
θe12m

ð0Þ
1 sin δe12; ð3:18Þ

δϕ1 ¼ −
1

2
ðπ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ

ffiffiffi
5

pq
θe12 sin δ

e
12Þ; ð3:19Þ

δm2 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 −

ffiffiffi
5

pq
θe12m

ð0Þ
2 sin δe12; ð3:20Þ

δϕ2 ¼ −
1

2
ðπ − θe12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 −

ffiffiffi
5

pq
sin δe12Þ; ð3:21Þ

δm3 ¼ 0; ð3:22Þ

we get from Eq. (2.8) normalized to md
1 in leading order

in θe12

δŝ ≈ −i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 −

ffiffiffi
5

pp
m1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ ffiffiffi

5
pp

m2

m2

θe12 sin δ
e
12; ð3:23Þ

where we have used that mi ≈mð0Þ
i in this approximation.

With θe12 ≈ 12° and δe12 ¼ π=2, we obtain as the maximal
correction δŝ ≈ 0.36, and the correction vanishes for
δe12 ¼ 0.

C. RGE corrections

Finally, a very generic correction to the mass SR are
renormalization group effects on the masses and Majorana
phases. In Ref. [20], we have already investigated the effect
of such most generic corrections on the predictions of SRs.
Now, we want to match the corrections to the complex
masses from Eq. (2.3) to the corrections coming from the
RGEs, as far as possible. We therefore extract the RGE
corrections from the absolute values of the masses and from
the phases, and we rewrite the corrected complex masses as

mie−iϕi ¼ ðmð0Þ
i þmRGE

i Þeið−ϕð0Þ
i þϕRGE

i Þ; ð3:24Þ
where the superscript (0) denotes the LO masses and
Majorana phases, and the superscript RGE labels the
corrections from the renormalization group running. The
connection to Eq. (2.3) is

δmi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmRGE

i Þ2 þ ðmð0Þ
i Þ2ðϕRGE

i Þ2
q

; ð3:25Þ

δϕi ¼ −ϕð0Þ
i þ arctan

�
mð0Þ

i ϕRGE
i

mRGE
i

�
: ð3:26Þ

Note that the index i in Eq. (3.25) runs from 1 to 3, whereas
i in Eq. (3.26) is either 1 or 2. The explicit formulas for
ϕRGE
i and δmRGE

i can be found in Ref. [48]. The RGE
corrections to the phases and masses have a dependence on
the mass scale and in the minimal supersymmetric Standard
Model (MSSM) additionally on tan β. For large mass scales
and large tan β, the effect of the corrections is enhanced.
The β functions of the Majorana phases also depend on the
phases themselves which leads to a dependence of δmi and
δϕi on both leading-order Majorana phases. The RGE
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correction to the masses is always positive in the MSSM
and negative in the Standard Model (SM), and hence the

sign of the contribution to ϕð0Þ
i in Eq. (3.26) is fixed. Except

for ϕð0Þ
1 ≈ ϕð0Þ

2 , where the running of the phases is sup-
pressed, the running of the Majorana phases is stronger
than the running of the masses, since the β-functions of the
masses depend on the values of the masses themselves (see

also the discussion in Ref. [20]). For ϕð0Þ
1 ≠ ϕð0Þ

2 , the main

contribution to δmi comes from the term mð0Þ
i ϕRGE

i , and the

correction to ϕð0Þ
i is close to maximal (i.e., π=2)

in Eq. (3.26).
In the next section, we will discuss the effect of RGE

corrections to various sum rules in more detail.

IV. NUMERICAL RESULTS

In this section, we will present our numerical results.
We will answer the nontrivial question of whether it is
possible to reconstitute forbidden mass orderings by
corrections, since some SRs allow for only one of the
two mass orderings. Furthermore, we will present our
numerical results for the allowed ranges for the effective
mass jmeej and for the lightest neutrino mass eigenvalues
m, which we obtain from the corrected SRs.

A. Reconstituting forbidden orderings

Some SRs only allow for one particular mass ordering
[15–17], i.e., normal (m1 < m2 < m3) or inverted
(m3 < m1 < m2). The question might arise if we can
reconstitute those forbiddenmass orderings by large enough
corrections. In Ref. [20], we did a similar study concerning
the generic corrections arising from renormalization group
effects, where we concluded that this was not possible.
For SRs 2, 3, 4, 5, 10, and 12 from Table II, only onemass

ordering is allowed. Hence, we have s ≠ 0 for the forbidden
orderings. In order to obtain sð0Þ ¼ 0, we need the leading-
order masses to respect the allowed ordering in these SRs,
and due to corrections, the observed masses will obey the
forbidden ordering. In other words, the corrections to
the masses have to alter the mass ordering. In principle,
the ordering of the leading-order masses is not restricted to
be normal or inverted, and one can also imagine having

mð0Þ
1 > mð0Þ

3 > mð0Þ
2 or other variations as long as they fulfill

the leading-order SR. However, one would usually discard
such cases, as they apparently do not correspond to reality.
To be more precise, we want to ask the question of how

large δŝ has to be at least, such that sð0Þ ¼ 0 is fulfilled and
the eigenvalues follow the “forbidden” mass ordering. This
can be done most easily by considering again the geomet-
rical interpretation of the SRs, as done in Fig. 1. We see that
a SR without corrections is fulfilled if the values of δsr ¼
δsi ¼ 0 (i.e., the triangle closes). Now, on the other hand, it
can happen that—for experimentally allowed values of the
neutrino masses—the triangle never closes. For this case,

we want to determine δŝ with jδŝj being minimal.
Obviously, jδŝj is minimal for

δŝi ¼ 0; ð4:1Þ

Δχ23 − dϕ2 ¼ π; ð4:2Þ

dϕ1 − Δχ13 ¼ −π: ð4:3Þ

Then, jδŝj ¼ jδŝrj is minimal.
Plugging these expressions into the general formulas

results in rather long expressions, and hence we prefer to
discuss what happens for the concrete example of SR 2,
where ðc1; c2; d;Δχ13;Δχ23Þ ¼ ð1; 2; 1; π; πÞ, and we want
to focus on inverted mass ordering for the observed
(corrected) masses. Since we have δŝi ¼ 0, the minimal
value for δŝr corresponds to the situation where the sides of
the triangle lie on the baseline, which is

δŝr ¼ 2 −
m3

m2

−
m1

m2

: ð4:4Þ

For three different exemplary mass scales (m3 ¼ 0.0,
0.001, 0.05 eV), we obtain

δŝrðm3 ¼ 0 eVÞ ¼ 1.02; ð4:5Þ

δŝrðm3 ¼ 0.001 eVÞ ¼ 1.00; ð4:6Þ

δŝrðm3 ¼ 0.05 eVÞ ¼ 0.30: ð4:7Þ

The corrections thus have to have at least this size to
reconstitute inverted mass ordering.
In Table III, we have calculated the minimal values of δŝr

for different mass scales, for a large mass scale, for a small
mass scale, and for a vanishing value of m for the SRs
which allow for only one mass ordering (SRs 2, 3, 4, 5, 10,
and 12). We see that, in principle, we can reconstitute all
forbidden orderings, although we might need quite sizeable
corrections. Especially for the case of very small neutrino
masses, the corrections are so large that a perturbative
approach is not suitable anymore, and it is simply not
appropriate to talk of a neutrino mass SR at all.
Furthermore, the attentive reader might be surprised that

we can suddenly reconstitute all forbidden orderings which
was in no case possible for the RGE corrections only. We
will show now that this is due to the fact that the correction
to the SR had in nearly all cases a fixed sign pointing in the
“wrong” direction; i.e., the RGE corrections—although
potentially sizeable—tend to make the forbidden mass
orderings even less likely than the LO SRs. In other words,
instead of making the deviation of the SR smaller, RGE
corrections increased it. Only for one case, the sign
mentioned above was in principle suitable, but for that
particular case, the corrections were way too small. Thus,
our previous conclusions remain perfectly valid for the
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RGE-corrected case; however, as we will see, the general
case actually can make the otherwise forbidden orderings
possible—as to be expected.
As an example, we will consider SR 2 in Table II, where

we try to reconstitute inverted mass ordering by RGE
corrections. In order to do so, we will analyze the
corrections to the lengths of the sides of the triangle. If
these corrections are positive and large enough, they can
close the open triangle. The nontrivial lengths of the
triangle in case of SR 2 are m1=m2 and m3=m2 where
we set

mi ¼ mð0Þ
i þmRGE

i : ð4:8Þ

The RGE corrections for the masses are of the form

mRGE
i ¼ 1

16π2
½αRGEmð0Þ

i þ Fim
ð0Þ
i � log

�
μ

MZ

�
; ð4:9Þ

where αRGE ≈ 3 is a function which depends on the
gauge and Yukawa couplings, μ > MZ is the high
energy scale, and Fi is a function which depends on the
angles and on tan β in the MSSM. In the MSSM, we expect
the largest effect for Fi > 0, whereas Fi < 0 holds in the
SM. We will focus on the MSSM case first. If we plug
Eq. (4.9) into Eq. (4.8) and expand inmRGE

i , we see that the
terms ∝ αRGE drop out since αRGE is the same for all
masses. We obtain for the corrections of the length of the
sides:

δ

�
m1

m2

�
¼ mð0Þ

1

mð0Þ
2

ðF1 − F2Þ; ð4:10Þ

δ

�
m3

m2

�
¼ mð0Þ

3

mð0Þ
2

ðF3 − F2Þ: ð4:11Þ

In the 3σ ranges for the mixing angles from Table I, we
have F1 − F2 < 0 and F3 − F2 > 0. Hence, the length
m3=m2 increases, whereas the length m1=m2 decreases. If
m3=m2 increases more strongly than m1=m2 decreases, we
can hope to close the triangle. But for SR 2, this is not the

case since m1=m2 decreases more strongly than m3=m2

increases. We conclude that the RGE corrections make the
deviation from the SR even larger. Hence, the inverted
ordering cannot be reconstituted.
This statement can be transferred to SRs 3 and 10, where

we also have to normalize the sides of the triangle by m2.
Also, in these cases, the corrections to the lengths of the
sides are ∝ ðF1 − F2Þ and ∝ ðF3 − F2Þ. In case of SRs 4
and 5, the sides of the triangle have to be normalized tom3.
The corrections to the length of the sides are ∝ ðF1 − F2Þ
and ∝ ðF2 − F3Þ. For the 3σ ranges of the mixing angles,
F1 − F2 < 0 and F2 − F3 < 0. Hence, the sides of the
triangle both decrease due to RGE corrections. Also, in
these cases, we cannot reconstitute the forbidden orderings.
Only in the case of SR 12, both sides of the triangle
increase. In SR 12, d < 0, and we have to normalize the
sides by md

3 to reconstitute normal ordering. This leads to
terms ∝ ðF3 − F1Þ and ∝ ðF3 − F2Þ in the corrections to
the lengths of the sides, which are both positive. However,
numerically we would need a mass scale larger than 1 eV
for tan β ¼ 200 to fulfill the sum rule, which is simply
unrealistic.
In fact, for any SR that is not fulfilled with the low

energy masses, the RGE effects in the MSSM have the
wrong sign if d > 0 for both orderings and if d < 0 for
normal ordering. In the SM, δŝ has the right sign to
decrease the deviation from the SR, but nevertheless the
effects are too small to fulfill the sum rule.
In conclusion, the fixed sign of the RGE corrections

makes it barely possible to reconstitute forbidden order-
ings. Only in the case of d < 0 for inverted ordering or in
the SM case, the sign was suitable, but the effects are
nevertheless too small. Since, however, any corrections to
the masses beyond those from RGEs do not have a fixed
sign, it is nevertheless possible to reconstitute forbidden
orderings in the general case.
In the following section, we want to confirm these

estimates also numerically.

B. Effects on the lower bound of m

One major prediction of the SRs is the lower bound on
the smallest neutrino mass eigenvalue m. The question

TABLE III. Summary table of the SRs which allow only one mass ordering and the minimal value of the
correction δŝr that is needed to reconstitute the forbidden mass orderings for different mass scales.

δŝrðmÞ
Sum rule Forbidden ordering m ¼ 0 eV m ¼ 0.001 eV m ¼ 0.05 eV

2 IO 1.02 1.00 0.30
3 IO 1.02 1.00 0.30
4 NO 0.92 0.90 0.30
5 NO 0.95 0.94 0.30
10 IO 1.01 0.87 0.16
12 IO 1 0.86 0.16
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arises as to how this bound changes in the light of
corrections to the SR.
To answer this question, we will consider—similarly as

in the previous section—the case where the sides of the
triangle lie on the baseline, i.e., the case where the SR is just
fulfilled. This clearly leads to the lower bound on the
lightest mass m. In Table IV, we have summarized the
results for the relative change of the mass scale in leading

order in ζ ≡ Δm2
21

jΔm2
32
j ≈ 0.03. The results are presented in the

form

m

mð0Þ ¼ 1 − κδŝ; ð4:12Þ

where κ is a parameter that depends on the SR and on the
mass ordering.
For SRs 1 and 4 in IO, the effect of the correction is

enhanced because of the small ζ in the denominator. For the
other SRs, we find that the relative change is between 20%
and 80% for δŝ ¼ 0.1 and 0.3. In the next section, we will
verify these estimates numerically. The enhancement of the
effect of the corrections for the mass scale for SR 1 and
SR 4, for IO in both cases, is not visible when considering
RGE corrections only, because δŝ for a small mass scale is
very small.
In the case of SR 7 for NO, we additionally get a

correction to the upper mass bound,

m

mð0Þ ¼ 1þ 4

3
δŝ; ð4:13Þ

which is 1.4 for δŝ ¼ 0.3. Furthermore, we obtain for
δŝ ≠ 0 a new allowed mass region in NO. To open up this
region, we need for the lightest neutrino mass m ¼
ð0.01; 0.05; 0.1Þ eV a δŝ ¼ ð−0.31;−0.27;−0.10Þ. These
values are well within our scan regions.
In the case of RGE effects only, we encountered a

parametric enhancement for the RGE effects for SR 1 and 4
in IO for a medium mass scale. This enhancement is not
present now because we parametrized the corrections
differently, to avoid any artificial parametric enhancement.

C. Neutrinoless double beta decay

Finally, our main predictions are those for the effective
mass

jmeej ¼ jm1U2
e1 þm2U2

e2 þm3U2
e3j

¼ jm1c212c
2
13e

−iϕ1 þm2s212c
2
13e

−iϕ2 þm3s213e
−2iδj
ð4:14Þ

as probed in neutrinoless double beta decay; see, e.g.,
Refs. [49] for detailed discussions on this quantity. We
have, for each SR, numerically scanned the parameter
space, and we have derived the allowed regions for both
normal and inverted mass orderings; see Figs. 2–13. For
each SR, we have investigated the following three cases
depending on the size of ŝ, as defined in Eq. (2.9):

(i) ŝ < 10−4 (left panels): This case basically means
that the SR is taken to be exact. All plots perfectly
match the unperturbed SR predictions, as presented
in Refs. [17,20].

(ii) ŝ < 0.1 (middle panels): This corresponds to a
considerable perturbation of each SR. In particular,
a correction of this size will reveal that, in cases
where one mass ordering is forbidden for an exact
SR, this ordering will open up due to the corrections.

(iii) ŝ < 0.3 (right panels): Here, the SRs are even less
exact. This case is more or less the limiting case of
what can be described by the approach followed in
this work, given that we ultimately rely on a
perturbative expansion. This case should in particu-
lar include the RGE corrections, as discussed in
Ref. [20], as long as they can be described accurately
as small perturbations.

Let us discuss the results for the different SRs one by
one, with a particular focus on how the allowed regions for
the perturbed SRs compare to those derived from the RGE-
corrected SRs (cf. Ref. [20], in which reference Sec. IV. X
always contains the plots and the discussion on SR X). The
parameters for the respective SRs can be read off from
Table II.

TABLE IV. Estimates for the relative change of the lower

bound of the lightest mass, where ζ ≡ Δm2
21

jΔm2
32
j. Please see the main

text for more details.

SR Ordering κ

1 NO 4=3
IO 2=ζ ≈ 65.3

2 NO 9=8

3 NO 9=8

4 IO 4=ζ ≈ 130.6

5 IO 33þ19
ffiffi
3

p
24

≈ 2.75

6 NO
ffiffiffi
3

p
2=ð27ζÞ ≈ 1.34

IO 4=3

7 NO 4=3
IO 9=8

8 NO 4=3
IO 9=8

9 NO 4=3
IO 9=8

10 NO 81=40 ≈ 2.03

11 NO 512=175 ≈ 2.93
IO 243=65 ≈ 3.74

12 NO 2
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Starting with SR 1 in Fig. 2, it is immediately visible
from the left panel that, indeed, a very small deviation from
an exact SR, ŝ < 10−4, practically does not change the
prediction compared to that of the exact SR. This obser-
vation will hold true for all SRs, as to be expected. If
we increase ŝ, it is visible that, for NO, the allowed
regions visibly increase. In particular, the lowest allowed
value for m evolves as (0.027,0.023,0.017) eV for
ŝ < ð10−4; 0.1; 0.3Þ, while at the same time the lowest
possible value for the effective mass jmeej changes as
(0.025,0.022,0.016) eV. In particular, with increasing ŝ, the
allowed range for the effective mass becomes even slightly
larger than if only RGE corrections were included
(cf. Sec. IV. 1 in Ref. [20]), where the minimal value for
the effective mass would be at 0.026 eV.
For IO, in turn, while the allowed region also increased

with increasing ŝ, the main difference is that the area does
not grow sufficiently large as to cover the complete allowed
region obtained when taking into account RGE corrections.
As already hinted, this is a reflection of the RGE correc-
tions not always staying within the perturbative range for ŝ,
which is what we are considering in this work.
As shown in Ref. [20], we encounter a parametric

enhancement for the RGE effects for a small mass scale,

because the correction is proportional to the inverse mass
scale. Since we avoid parametric enhancements of the
corrections in our parametrization from Eqs. (2.6) to (2.8),
we do not obtain the same result as in Ref. [20].
Nevertheless, given that even with RGE corrections the
change in the prediction was less than dramatic, in
particular when taking into account the nuclear uncertain-
ties, we can again conclude that the predictions of the SRs
are relatively robust compared to corrections.
Let us press on and jump to SR 2; see Fig. 3. Starting

with NO, the qualitative change with increasing ŝ is similar
to that with increasingly strong RGE corrections; however,
the allowed regions are different (and possibly slightly
larger for the RGE corrections). For ŝ < ð10−4; 0.1; 0.3Þ,
the lowest m evolves as (0.015,0.013,0.009) eV and the
lower bound on the effective mass jmeej as (0.014,
0.012,0.008) eV (compared to 0.016 and 0.015 eV for
the RGE corrections). For IO, something interesting hap-
pens. As is visible from the left panel of Fig. 3, this mass
ordering is not allowed for an exact SR. As noted in
Sec. IVA, this behavior remained true for the RGE
corrections. However, with a more general correction to
the SR, as implied by an approximate SR, the IO starts
opening up. While it is hardly visible for ŝ < 0.1, it is easy

FIG. 3. Effective mass with SR 2 for ŝ ¼ 10−4, 0.1, 0.3.

FIG. 2. Effective mass with SR 1 for ŝ ¼ 10−4, 0.1, 0.3.
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to spot for ŝ < 0.3. However, while the otherwise forbidden
ordering does in principle open up, the resulting predicted
region unfortunately lies in the part of the plot that is in any
case strongly disfavored by cosmology, cf. the gray
rectangle on the right in the plots. Thus, in essence, the
prediction of IO being forbidden does not change.
Similarly to the previous case, for SR 3 the allowed area

for NO also broadens, while for IO a small regions opens
up which is, however, strongly disfavored, cf. Fig. 4.
However, the difference is that, for large enough ŝ, the
allowed region for NO may enter the “tube” in which
cancellations inside jmeej to practically zero are possible.
This implies that, for ŝ < ð10−4; 0.1; 0.3Þ, while the small-
est neutrino mass eigenvalue m is only reduced as
(0.015,0.013,0.009) eV, the minimum value of the effective
mass jmeej changes more dramatically, (0.0030,0.0020,
0.00029) eV, compared to a considerably larger lowest
value of 0.0036 eV for RGE corrections only.
For SR 4, cf. Fig. 5, no dramatic changes are visible. The

allowed region is a bit broader for strong RGE corrections,
but the minimal value of the effective mass is in any case
0.015 eV, the lowest value at all possible for IO. The
minimal value for the smallest neutrino mass eigenvalue m
decreases more strongly than for RGE corrections only;

however, such small values are in any case not accessible
by experiments. For NO, a small area opens up which is
allowed by the SR as such, but again it is located in the
disfavored region of the plot.
Sum rule 5 exhibits once more the characteristic behav-

ior; see Fig. 6. For IO, the allowed region broadens even
more strongly than for RGE corrections only, leading to a
smallest neutrino mass m of (0.024,0.020,0.012) eV and a
minimum effective mass jmeej of (0.051,0.050,0.047) eV
for ŝ < ð10−4; 0.1; 0.3Þ. For NO, the small region opening
up is again disfavored.
Sum rule 6—see Fig. 7—looks similar to SR 5 for IO

and to SR 3 for NO, in both cases fully including the
regions predicted by the RGE corrections. For ŝ < ð10−4;
0.1; 0.3Þ, the smallest neutrino mass m and the minimum
effective mass jmeej change as (0.028,0.025,0.020) eV and
(0.053,0.051,0.045) eV, respectively, for IO. The corre-
sponding values for NO are, in turn, (0.011,0.0090,0.0061)
and ð0.0011; 0.00031; 3.5 × 10−12Þ eV, where the latter
value simply indicates that a full cancellation of the
effective mass can happen.
Figures 8 and 9 look nearly identical and quite interest-

ing, too, as several changes happen. Starting with IO, the
allowed region again broadens; however, while a new edgy

FIG. 4. Effective mass with SR 3 for ŝ ¼ 10−4, 0.1, 0.3.

FIG. 5. Effective mass with SR 4 for ŝ ¼ 10−4, 0.1, 0.3.
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corner had appeared for the RGE corrections, see Sec. IV. 7
for SR 7 in Ref. [20], in the case of approximate SRs, the
band simply broadens. The lowest value possible for the
effective mass quickly reaches its absolute minimum and
then cannot change anymore, (0.017,0.015,0.015) eV for
ŝ<ð10−4;0.1;0.3Þ, while the smallest neutrino mass m
varies as (0.017,0.015,0.012) eV.

For NO, in turn, the changes are more dramatic. First
of all, the allowed patch considerably grows for
ŝ < ð10−4; 0.1; 0.3Þ, such that the minimum [maximum]
mass eigenvalue m varies as (0.0043,0.0040,0.0040) eV
[(0.0060,0.0071,0.010) eV], while the minimum [maxi-
mum] effective mass changes as (0.0043,0.0040,
0.0039) eV [(0.0087,0.0073,0.012) eV]. Furthermore, for

FIG. 7. Effective mass with SR 6 for ŝ ¼ 10−4, 0.1, 0.3.

FIG. 6. Effective mass with SR 5 for ŝ ¼ 10−4, 0.1, 0.3.

FIG. 8. Effective mass with SR 7 for ŝ ¼ 10−4, 0.1, 0.3.
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large enough mass m, a second (disjoint) allowed region
opens up for NO in the quasidegenerate mass region for
ŝ < ð0.1; 0.3Þ. However, again this new addition is located
in that part of the parameter space that is strongly
disfavored by cosmology.
Sum rule 9, cf. Fig. 10, hardly changed at all for RGE

corrections only. And also for approximate SRs, hardly any

significant change is visible for IO. Already for the exact
SR, the entire range is allowed for jmeej, while the smallest
mass m changes slightly, (0.017,0.015,0.012) eV,
for ŝ < ð10−4; 0.1; 0.3Þ. However, for NO, the ranges
for m change as (0.0043...0.0060,0.0040...0.0071,
0.0040...0.010) eV, while the ones for jmeej evolve like
(0.0027...0.0067,0.0022...0.0073,0.0017...0.0095) eV.

FIG. 9. Effective mass with SR 8 for ŝ ¼ 10−4, 0.1, 0.3.

FIG. 10. Effective mass with SR 9 for ŝ ¼ 10−4, 0.1, 0.3.

FIG. 11. Effective mass with SR 10 for ŝ ¼ 10−4, 0.1, 0.3.
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Again, for NO, a small region opens up for large masses
which are, however, disfavored.
Coming to SR 10, the change in NO looks more dramatic

than it actually is, given that in all cases the full range for the
effectivemass is allowed.Also, the smallest neutrinomassm
is always below detectability. However, for IO—which
looks rather innocent at first sight—a small region opens
up that can actually be detectable. While IO is completely
forbidden for ŝ ¼ 10−4 and only opens up in the disfavored
region for ŝ ¼ 0.1, for the largest value of ŝ ¼ 0.3 the IO
points start to penetrate the allowed region, predicting
smallest values of ðm; jmeejÞ ¼ ð0.031; 0.054Þ eV.
For SR 11, both the NO and IO allowed band broaden to

some extent for increasing ŝ, see Fig. 12, and in particular
they broaden more than if only the RGE corrections
were taken into account. For IO, the smallest value
of m (of jmeej) varies as (0.024,0.021,0.016) eV [as
(0.044,0.039,0.031) eV] for ŝ < ð10−4; 0.1; 0.3Þ. For NO,
the smallest value of m varies as (0.031,0.029,0.023) eV,
while that of jmeej varies as (0.022,0.017,0.013) eV. As a
comparison, the minimum values for ðm; jmeejÞ have been
determined to be (0.024,0.042) eV [(0.032,0.021) eV] for
IO (NO), cf. Sec. IV. 11 in Ref. [20].

Finally, for SR 12, the broadening for NO appears to
be much stronger than in the case where only RGE
corrections are taken into account. For ŝ<ð10−4;0.1;0.3Þ,
the smallest value for m (of jmeej) varies as (0.0026,
0.0021,0.0012) eV [as (0.0029,0.0025,0.0014) eV] in the
case of NO. For IO, again a small region opens up for
larger ŝ, but only in the disfavored region.

V. SUMMARY AND CONCLUSIONS

In this paper, we have used a perturbative approach to
investigate how the predictions of neutrino mass sum rules
change if the sum rules are not exact relations but rather
approximate to a given degree. After establishing a for-
malism to treat corrections to an exact sum rule, we show
that the perturbations can be linked to the geometrical
image of a “nonperfect” triangle. This illustration makes it
relatively easy to understand the generality of our approach,
as long as the corrections are small enough to be covered by
a perturbative computation.
We then discuss several scenarios in which corrections to

an exact sum rule can potentially arise. The three most
generic frameworks are higher-order terms resulting from

FIG. 12. Effective mass with SR 11 for ŝ ¼ 10−4, 0.1, 0.3.

FIG. 13. Effective mass with SR 12 for ŝ ¼ 10−4, 0.1, 0.3.
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flavor symmetry breaking, corrections to the light neutrino
masses arising from the charged lepton sector, and mod-
ifications of sum rules due to renormalization group
running. We have for each approach presented several
analytic approximations, which serve as analytic estimates
to be compared to the numerical computations.
The latter are our main results. We have, for each of the

known mass sum rules, investigated the effect of perturba-
tions to the exact formulas. As to be expected, as long as the
correction terms are very small, we basically recover the
result obtained from an exact sum rule. However, as we turn
on the perturbations, we can see that the allowed regions are
modified. The first type of modification is a simple increase
of the allowed area in the parameter space. This is to be
expected, since suddenly more parameter combinations are
allowed, but in fact these broadenings are rather mild for
most of the cases (at least so long as we stay in the
perturbative regime). On the other hand, in several cases,
qualitatively new predictions arise: depending on the sum
rule, the exact formulas may forbid one of the neutrino
mass orderings, which can be restored in the perturbed
case. This could strongly alter the predictions; however, it
turns out that in most cases (except for SR 10) the newly
allowed regions are not very big and are practically
excluded by the cosmological bounds on the neutrino
mass. Finally, an interesting result is that the predictions
for approximate sum rules in many cases do not cover the
regions which had been derived by us in an earlier work on
the corrections from renormalization group running. While
this result may seem to come as a surprise at first sight, it is
in fact easy to understand, since in some cases the
corrections induced by running due to some parametric
enhancement are larger than a 30% correction, so that they
are not covered by our formalism.
Summing up, we have treated the topic of neutrino mass

sum rules in unprecedented generality, to the point that we
may have delivered the final step to what can at all be said
about neutrino mass sum rules from a phenomenological
point of view. Using this work as well as previous ones, any
model predicting a new sum rule can be analyzed to the
point that it can clearly be matched to the experimental
results. We thus pass the ball to the experimentalists, who
will hopefully be able to deliver further new bounds which
allow us to constrain whole groups of flavor models in a
reliable manner. This can push our understanding of the
leptonic flavor sector to a new level.
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APPENDIX: NOTES ON PARAMETRIZATIONS
AND PHASES

In this Appendix, we want to give a comprehensive
derivation of the relations between the mixing parameters
in the PMNS matrix and the neutrino and charged lepton
mixing parameters.
First of all, we parametrize the relevant matrices as

unitary 3 × 3 matrices by three angles and six phases. One
possible parametrization is [46]

U ¼ P1U23U13U12; ðA1Þ
where the Uij are

U23 ¼

0
B@ 1 0 0

0 c23 s23e−iδ23

0 −s23eiδ23 c23

1
CA; ðA2Þ

and analogous expressions for U12 and U13. We use the
usual abbreviations cij ≡ cos θij and sij ≡ sin θij. The
matrix P1 is a diagonal matrix which only contains phases:

P1 ¼

0
B@ eiω1 0 0

0 eiω2 0

0 0 eiω3

1
CA: ðA3Þ

The phase matrix P1 can be removed by an additional
charged lepton phase rotation to make the charged lepton
masses real [46]. Hence, we are left with only three phases
δij and

U ¼ U23U13U12: ðA4Þ

In the standard parametrization of the PMNS matrix
which contains the Dirac phases and the two Majorana
phases, we will also introduce an unphysical phase matrix
P2, which can be removed by a charged lepton phase
rotation as

P2 ¼

0
B@ eiη1 0 0

0 eiη2 0

0 0 eiη3

1
CA ðA5Þ

in the combination

P2R23U13R12P0; ðA6Þ

where δ13 in U13 is replaced with the Dirac phase δ and P0

contains the Majorana phases:
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P0 ¼

0
B@ e−iϕ1=2 0 0

0 e−iϕ2=2 0

0 0 1

1
CA: ðA7Þ

Rij are the Euler matrices which are of the form of Eq. (A2)
but without any phases. The relation between the δij in
Eq. (A1) and the phases in the matrix P0 is [46]

ϕ1 ¼ −2ðδ12 þ δ23Þ; ðA8Þ

ϕ2 ¼ −2δ23; ðA9Þ

δ ¼ δ13 − δ23 − δ12: ðA10Þ

Replacing the δij in Eq. (A1) with Eqs. (A8), (A9),
and (A10) leads to

P1U23U13U12 ¼|{z}
Eqs:ðA:8;A:9;A:10Þ

P2R23U13R12P0: ðA11Þ

By comparing both sides of the equation, we see that the
phases in P1 are related to the phases in P2 as

ω1 ¼ η1 −
ϕ1

2
; ðA12Þ

ω2 ¼ η2 −
ϕ2

2
; ðA13Þ

ω3 ¼ η3: ðA14Þ

In the following, we will use the parametrization in
Eq. (A1) for the mixing matrix of the neutrinos and the
charged leptons. For the PMNS matrix, we will replace the
ωi in Eq. (A1) by Eqs. (A12), (A13), and (A14).
Our aim is to obtain expressions for the physical phases

in the PMNS matrix (the Majorana phases and the Dirac
phase) in terms of the neutrino and charged lepton mixing
parameters. We therefore use the relation UPMNS ¼ U†

eUν.
From the elements in the first row of the PMNS matrix, we
obtain

cPMNS
13 cPMNS

12 eiðη1−ϕ1=2Þ ¼ ce12c
ν
12c

e
13c

ν
13e

−iðωe
1
−ων

1
Þ þ e−iðδ

e
12
þδe

13
þδe

23
þωe

3
−ων

3
Þðeiðδe12þδe

23
Þθe13c

e
12 − eiδ

e
13θe23s

e
12Þ

× ðeiδν13cν12cν23sν13 − eiðδ
e
12
þδν

23
Þsν12s

ν
23Þ þ e−iðδ

e
12
þδν

23
þωe

2
−ων

2
Þse12ðeiðδ

ν
12
þδν

23
Þcν23s

ν
12 þ eiδ

ν
13cν12s

ν
13s

ν
23;

ðA15Þ

sPMNS
12 cPMNS

13 eiðη1−ϕ2=2Þ ¼ e−iðδ
e
12
þδν

12
þδe

13
þδe

23
þδν

23
þωe

1
þωe

2
þωe

3
Þðeiðδν12þδν

23
þωe

1
Þcν12ð−eiðδ

e
13
þδe

23
þων

2
þωe

3
Þcν23s

e
12

þ eiðδ
e
12
þδe

23
þδν

23
þωe

2
þων

3
Þθe13c

e
12s

ν
23 − eiðδ

e
13
þδν

23
þωe

2
þων

3
Þθe23s

e
12s

ν
23 þ sν12ðeiðδ

e
12
þδe

13
þδe

23
þδν

23
þων

1
þωe

2
ωe
3
Þce12c

ν
13

þ eiðδ
e
13
þδν

13
þδν

23
þωe

1
þωe

2
þων

3
Þθe13c

e
12c

ν
23s

ν
13 − eiðδ

e
13
þδν

13
þδν

23
þωe

1
þωe

2
þων

3
Þθe23c

ν
23s

e
12s

ν
13

þ eiðδ
e
13
þδν

13
þδe

23
þωe

1
þων

2
þωe

3
Þse12s

ν
13s

ν
23ÞÞ; ðA16Þ

sPMNS
13 eiðη1−δÞ ¼ e−iðδ

e
12
þδe

13
þδν

13
þδe

23
þδν

23
þωe

1
þωe

2
þωe

3
Þð−eiðδe12þδν

13
þδe

23
þδν

23
þωe

1
þωe

2
þων

3
Þθe13c

e
12c

ν
13c

ν
23

þ eiðδ
e
13
þδν

13
þδν

23
þωe

1
þωe

2
þων

3
Þθe23c

ν
13c

ν
23s

e
12 þ eiðδ

e
12
þδe

13
þδe

23
þδν

23
þων

1
þωe

2
þωe

3
Þce12s

ν
13

− eiðδ
e
13
þδν

13
þδe

23
þωe

1
þων

2
þωe

3
Þcν13s

e
12s

ν
23Þ: ðA17Þ

These expressions are exact to leading order in θe13 and θ
e
23. If we exploit the structure of the PMNS matrix, we furthermore

obtain

cPMNS
12 ðcPMNS

13 Þ2cPMNS
23 sPMNS

13 ðsPMNS
12 sPMNS

23 e−iδ − cPMNS
12 cPMNS

23 sPMNS
13 Þ ¼ ðUPMNS

11 Þ�UPMNS
13 UPMNS

31 ðUPMNS
33 Þ�: ðA18Þ

Together with Eqs. (A15), (A16), (A17), and (A18), we
obtain equations for δ, η1, and for the Majorana phases.
The mixing angles in Eq. (A18) can be expressed in terms
of the leptonic mixing parameters using Eqs. (A15), (A16),
and (A17).
As a concrete example to employ the formalism to derive

the expressions for the Majorana phases, we consider the
A5 × SUð5Þ model proposed in Refs. [35,42,43]. We have
θe13 ≈ 0; θe23 ≈ 0; θe12 ≠ 0, and in the neutrino sector, we
have golden ratio mixing with θν13 ¼ 0; θν23 ¼ 45° and

θν12 ¼ arctanð 2

1þ ffiffi
5

p Þ. Since θe13 and θe23 are negligibly small,

we will set their values to zero in the following. The phase
δe12 in the charged lepton sector will be treated as a free
parameter. For simplicity, we take the neutrino mass matrix
to be real. The phases in the neutrino sector which lead to
positive eigenvalues are then

ων
1 ¼ π=2; ων

2 ¼ π; ων
3 ¼ π=2;

δν12 ¼ 3π=2; δν23 ¼ 3π=2: ðA19Þ
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With these parameters, we obtain for Eqs. (A15), (A16),
(A17), and (A18) to first order in θe12:

cPMNS
12 eiðη1−ϕ1=2Þ ≈

eiπ=2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ ffiffiffi

5
pp

þ θe12e
−iδe

12Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ ffiffiffi

5
pp ; ðA20Þ

sPMNS
12 eiðη1−ϕ2=2Þ ≈ −

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10þ 2

ffiffiffi
5

pp þ θe12e
−iδe

12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 −

ffiffiffi
5

pp ; ðA21Þ

θPMNS
13 eiðη1−δÞ ≈

eiπ=2θe12e
−iδe

12ffiffiffi
2

p ; ðA22Þ

sPMNS
12 sPMNS

23 e−iδ ≈
−

ffiffiffi
2

p ð15þ 7
ffiffiffi
5

p Þe−iδe12 þ ð5þ 2
ffiffiffi
5

p Þθe12e−2iδ
e
12 þ ð20þ 9

ffiffiffi
5

p Þθe12
4ð5þ 2

ffiffiffi
5

p Þ3=2 : ðA23Þ

One might wonder if it is possible to take the limit θe12 → 0
in Eq. (A22) and to obtain a sensible result. This is not
possible since a diagonal charged lepton mass matrix
corresponds to θPMNS

13 ¼ 0 where δ is unphysical and in
the derivation of Eq. (A22) from Eq. (A10) we have to
divide by θPMNS

13 . For a nondiagonal charged lepton mass
matrix, we obtain for δ

δ ≈ π þ δe12 þ
θe12 sinðδe12Þffiffiffi

2
p : ðA24Þ

We can easily obtain that η1 is

η1 ≈ −
π

2
þ 1ffiffiffi

2
p θe12 sinðδe12Þ: ðA25Þ

Finally, we get

ϕ1 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ

ffiffiffi
5

pq
θe12 sinðδe12Þ; ðA26Þ

ϕ2 ≈ π −
ffiffiffi
5

p
− 1ffiffiffi
2

p θe12 sinðδe12Þ: ðA27Þ

One might wonder if it is necessary to include the
unphysical phases in order to derive the expressions for
Majorana phases. Indeed, the correct consideration of the
unphysical phases is essential since taking the ωi in
Eq. (A1) to zero which corresponds to ηi ¼ ϕi=2 for
i ¼ 1, 2 changes the matrix element from which we extract
the Majorana phases. For example, to obtain information
about ϕ2, we consider the 1–2 element if we include the
unphysical phases, but if we neglect the unphysical phases,
we would have to consider the 2–3 element of the PMNS
matrix. The dependence of these elements on the charged
lepton mixing parameters differs in general. Even in the
case of only a 1–2 mixing in the charged lepton, we would
miss the correct θe12 dependence of ϕ2 without the unphys-
ical phases.
The formulas derived in Refs. [45–47] assume that the

unphysical phases have been already correctly taken into
account. The reader has to be aware that these formulas
therefore strictly apply to this case only.
A phase matrix on the left side of the PMNS matrix can

always be absorbed by an additional charged lepton phase
rotation. For this reason, the phases ηi do not appear in
physical observables.
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