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We report a search for a dark vector gauge boson U0 that couples to quarks in the decay chain
D�þ → D0πþ; D0 → K0

Sη; η → U0γ, U0 → πþπ−. No signal is found and we set a mass-dependent limit on
the baryonic fine structure constant of 10−3 − 10−2 in the U0 mass range of 290 to 520 MeV=c2. This
analysis is based on a data sample of 976 fb−1 collected by the Belle experiment at the KEKB asymmetric-
energy eþe− collider.

DOI: 10.1103/PhysRevD.94.092006

The standard model (SM) of particle physics cannot
explain the nature of dark matter that is understood to have
mostly gravitational effects on visible matter, radiation, and
the large-scale structure of the Universe [1–4]. The dark
matter can be naturally explained by the introduction of a
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weakly interacting particle predicted in the supersymmetric
extension of the SM [5]. The absence of observation of any
supersymmetric particles in hadron collider experiments [6]
motivates studies of new classes of models, commonly
referred to as dark models, which introduce new gauge
symmetries [7] and predict the existence of new particles
that couple weakly to SM particles. Most accelerator-based
experiments have focused on the dark photon or dark
particles coupling to the SM photons [8], though many dark
models suggest a new gauge boson that could couple
predominantly to quarks [9,10]. This new dark boson
(hereafter referred to as the U0 boson, instead of B as is
originally proposed in Ref. [9], to avoid confusion with the
SM B meson) can be produced from light SM meson
decays through P → U0γ or V → U0P, where P refers to a
pseudoscalar meson (e.g., π0; η; η0) and V to a vector meson
(e.g., ω;ϕ). Two recent experimental limits on searches
for a dark photon A0 via π0 → A0γ; A0 → eþe− [11] and
ϕ → A0γ; A0 → eþe− [12] can be applied to the U0 boson
search in a model-dependent way to constrain the baryonic
fine structure constant αU0 ≡ g2U0=ð4πÞ, where gU0 is the
universal gauge coupling between the U0 boson and
the quarks [10]. There are also limits from η → π0γγ and
ϕ → ηπ0γ decays based on their total rate, as well as from
the analysis of hadronic ϒð1SÞ decays [10].
We search for U0 bosons decaying to πþπ− pairs using

η → πþπ−γ decays, where η is produced in the decay chain
D�þ → D0πþ,D0 → K0

Sη [13]. The kinematics here allows
us to suppress the combinatorial background significantly.
The decayU0 → πþπ− is expected to have a relatively small
branching fraction of 2%–4% [10] but nevertheless pro-
vides a very clean signature for a possible dark vector
gauge boson. The dominant decay modes are π0γ at low U0

mass and πþπ−π0 at higher U0 mass; however they suffer
from higher combinatorial background and therefore are
not used in the analysis. We use the decay η → πþπ−π0
to validate our event reconstruction by measuring the
branching fraction of η → πþπ−γ relative to that of
η → πþπ−π0.
The data used in this analysis were recorded at theϒðnSÞ

resonances (n ¼ 1;…; 5) and 60 MeV below the ϒð4SÞ
resonance with the Belle detector [14] at the eþe−

asymmetric-energy collider KEKB [15]. The sample
corresponds to an integrated luminosity of 976 fb−1. We
generated two million Monte Carlo (MC) events [16] each
for η → πþπ−γ, η → πþπ−π0, and η → U0γ → πþπ−γ at a
particular U0 mass selected in the range from 280 to
540 MeV=c2 in steps of 10 MeV=c2 (i.e., 58 million
events in all). The lifetime of the U0 is assumed to be
negligible. The U0 samples are used to determine the
Mðπþπ−Þ resolution. The U0 signal shape parameters for
intermediate U0 mass values are determined using spline
interpolation.
Except for tracks from K0

S decays, we require that the
charged tracks originate from the vicinity of the interaction

point (IP) with impact parameters along the beam direction
(z axis) and perpendicular to it of less than 4 and 2 cm,
respectively. All such charged tracks are required to have at
least two associated hits in the silicon vertex detector
(SVD), both in the z and perpendicular directions. Such
charged tracks are identified as pions or kaons by requiring
that the ratio of particle identification likelihoods,
LK=ðLK þ LπÞ, constructed using information from the
central drift chamber (CDC), time-of-flight scintillation
counters, and aerogel threshold Cherenkov counters, be
larger or smaller than 0.6, respectively. For both kaons and
pions, the efficiencies and misidentification probabilities
are 86% and 14%, respectively.
For photon selection, we require the energy of the

candidate photon to be greater than 60 MeV (100 MeV)
when the candidate photon is reconstructed in the barrel
(end cap) calorimeter that covers 32° < θ < 130°
(12° < θ < 32° or 130° < θ < 157°) in the polar angle θ
with respect to the þz axis. To reject neutral hadrons, the
ratio of the energy deposited by a photon candidate in the
3 × 3 and 5 × 5 calorimeter arrays centered on the crystal
with the largest signal is required to exceed 0.85.
Candidate π0 mesons are reconstructed from pairs of γ

candidates; we require Mγγ ∈ ½120; 150� MeV=c2 and refit
γ momenta with the π0 mass constraint.
Candidate K0

S → πþπ− mesons are reconstructed from
two tracks, assumed to be pions, using a neural network
technique [17] that uses the following information: the K0

S
momentum in the laboratory frame; the distance along z
between the two track helices at their closest approach; the
K0

S flight length in the transverse plane; the angle between
the K0

S momentum and the vector joining the K0
S decay

vertex to the IP; the angles between the pion momenta
and the laboratory-frame direction in the K0

S rest frame;
the distances of closest approach in the transverse plane
between the IP and the two pion helices; and the pion hit
information in the SVD and CDC. We also require that the
πþπ− invariant mass be within �9 MeV=c2 (about 3σ in
resolution [18]) of the nominal K0

S mass [19].
For the η → πþπ−γ candidates, we require that the

photon not be associated with a π0 candidate and its
transverse momentum be greater than 200 MeV=c to
removeD�þ → Dþð→ K0

Sπ
þπ−πþÞγ background. For both

η → πþπ−γ and η → πþπ−π0 candidates, we perform a
vertex fit with the two charged pions and require the
reduced χ2 to be less than 10. The efficiency of this
requirement is 94%. We require the reconstructed mass
of each η candidate to be in the range ½500; 600� MeV=c2

and refit momenta of its daughters with the constraint of the
nominal η mass.
Combinations of aK0

S candidate and η candidate are fit to
a common vertex and their invariant mass is required to be
within �40 MeV=c2 of the nominal D0 mass. The D0 and
πþ combinations are fitted to the IP, and the mass difference
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ΔMD� ¼ MðK0
Sηπ

þÞ −MðK0
SηÞ is required to satisfy

ΔMD� ∈ ½143; 148� MeV=c2. To remove the combinatorial
background, the momentum of the D�þ candidates, mea-
sured in the center-of-mass system, is required to be greater
than 2.5, 2.6, and 3.0 GeV=c for the data taken below, at,
and above the ϒð4SÞ resonance, respectively. Figure 1
shows the invariant mass of theK0

Sη combinations (left) and
the mass difference (right) for η → πþπ−γ decays after
applying all selection criteria described above, except the
mass requirements themselves. Figure 2 shows the invari-
ant mass of the πþπ−γ combinations after all requirements.
There are clear peaks of signal events in all distributions;
the increase of the background at low masses in the
Mðπþπ−γÞ distribution is due to the feed-down from the
η → πþπ−π0 decays when a photon from π0 is not
reconstructed.
To extract the signal yield, we perform a binned

maximum likelihood fit to the Mðπþπ−γÞ distribution.
The fit function is the sum of the signal, the combinatorial
background, and the feed-down background components.
The signal probability density function (PDF) is the sum of
a Gaussian and a bifurcated Gaussian with the ratios of
widths fixed from the MC simulation. A linear function is

used for the combinatorial background PDF. The feed-
down contribution is described by a Gaussian with shape
parameters fixed from the MC simulation. The confidence
level (p-value) of the fit is 12% and the η → πþπ−γ signal
yield is Nη ¼ 2974� 90 events. The feed-down yield
agrees well with the expectation.
As a cross-check, we measure the ratio of branching

fractions Bðη → πþπ−γÞ=Bðη → πþπ−π0Þ. The fit to the
πþπ−π0 invariant mass distribution is similar to the one
described above, except that the combinatorial background
is described by a second-order polynomial and there is no
feed-down background. The reconstruction efficiencies,
determined from the MC simulation, are εðπþπ−γÞ ¼
5.1% and εðπþπ−π0Þ ¼ 4.8%. The measured ratio of
branching fractions, 0.185� 0.007, where the uncertainty
is statistical only, is in good agreement with the world-
average value of 0.184� 0.004 [19].
We define the η signal region as Mðπþπ−γÞ ∈

½535.5; 560.5� MeV=c2, and the sideband regions used
for background subtraction as Mðπþπ−γÞ∈ ½520.0;532.5�
or ½563.5; 576.0� MeV=c2. The Mðπþπ−Þ distribution for
the background-subtracted η signal is shown in Fig. 3.
To describe the Mðπþπ−Þ distribution, we use an

expression of the differential decay rate based on low-
energy quantum chromodynamics phenomenology [20,21]
using a combination of chiral perturbation theory and
dispersive analysis,

dΓ
ds

∝ jPðsÞFVðsÞj2ðm2
η − sÞ3sð1–4m2

π=sÞ3=2; ð1Þ

where s≡Mðπþπ−Þ2, PðsÞ is a reaction-specific pertur-
bative part, and FVðsÞ is the pion vector form factor.
We use jPðsÞj ¼ 1þ ð1.89� 0.64Þs [20] and jFVðsÞj ¼
1þ ð2.12� 0.01Þsþ ð2.13� 0.01Þs2 þ ð13.80� 0.14Þs3
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FIG. 1. Invariant mass of the K0
Sη combinations (left) and the

D� −D0 mass difference (right) for η → πþπ−γ decays.

)2c) (MeV/γ-π+πM(
500 520 540 560 580 600

)2 c
E

ve
nt

s/
(1

 M
eV

/

0

100

200

300

FIG. 2. Invariant mass distribution of the πþπ−γ combinations
(points with error bars), fit result (solid curve), and combinatorial
background component (dashed line) of the fit function. Arrows
with lines indicate boundaries of the signal and sideband regions.
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FIG. 3. πþπ− invariant mass distribution from the η → πþπ−γ
signal (points with error bars), the fitted differential decay rate
described in Eq. (1) (solid curve), and an example U0 signal at a
mass of 400 MeV=c2 from η → U0γ,U0 → πþπ− (histogram with
arbitrary normalization).
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[21] (s in GeV2=c4). The numerical values and the
uncertainties of the expansion coefficients of jPðsÞj and
jFVðsÞj are taken from fits to data of ηð0Þ → πþπ−γ decays.
We multiply the dΓ=ds expression from Eq. (1) by the
reconstruction efficiency. The efficiency as a function of
Mðπþπ−Þ is approximately flat but drops to 0 at the
kinematic limit of mη. The fit results are presented in
Fig. 3. Equation (1) describes the Mðπþπ−Þ distribution
well, and the confidence level of the fit is 95%.
We add the U0 signal to the above fit function and

perform fits while fixing the U0 mass at a value between
290 and 520 MeV=c2 in steps of 1 MeV=c2. The U0 signal
is described by the sum of two Gaussians. The signal
resolution of the core Gaussian is about 1 MeV=c2 near the
2mπ threshold and 2 MeV=c2 at the mη kinematic limit.
An example of the U0 signal with the mass of 400 MeV=c2

and arbitrary normalization is shown in Fig. 3. We do not
find a significant U0 signal at any mass value. The typical
uncertainty in the U0 yield NU0 is Oð1–10Þ events.
We express the baryonic fine structure constant αU0 using

the equation for the partial width ratio Γðη → U0γÞ=Γðη →
γγÞ from Ref. [10] as

αU0 ¼
�
α

2

�
1 −

m2
U0

m2
η

�
−3
����F ðm2

U0 Þ
����
−2 1

BðU0 → πþπ−Þ
�

×

�
Γðη → πþπ−γÞ
Γðη → γγÞ

��
Γðη → U0γ → πþπ−γÞ

Γðη → πþπ−γÞ
�
; ð2Þ

where α is the electromagnetic fine structure constant. The
first factor in Eq. (2), which is purely theoretical, contains
the phase space, the form factor F ðm2

U0 Þ, and the branching
fraction of U0 → πþπ− decay. The branching fraction is
about 2%–4%, as computed from formulas provided in
Ref. [10] and references therein. The second factor is
obtained from the latest measurements [19]. The third
factor is determined from the η and U0 yields and
reconstruction efficiencies ðNU0=εðη → U0γ → πþπ−γÞÞ=
ðNη=εðη → πþπ−γÞÞ.
To estimate the systematic uncertainties in the

η → πþπ−γ and η → U0γ → πþπ−γ yields, we change
the parametrization of the combinatorial background in
theMðπþπ−γÞ fit from a first- to a second-order polynomial
and account for the background nonlinearity while sub-
tracting the sidebands. The change in the η yield is at the
1% level, while the change in theU0 yield is negligible. The
systematic effect due to the uncertainties of the expansion
coefficients in jPðsÞj and jFVðsÞj is negligible in the U0
yield. The systematic uncertainty in the ratio of the
reconstruction efficiencies εðη → U0γ → πþπ−γÞ=εðη →
πþπ−γÞ is conservatively estimated to be 4% (1% per
track and 3% per photon). The total systematic uncertain-
ties are estimated by adding the above contributions in
quadrature.

Using Eq. (2), we set a 95% confidence level upper limit
on αU0 using the Feldman-Cousins approach [22], adding
the statistical and systematic uncertainties in quadrature.
The upper limit as a function of theU0 boson mass is shown
in Fig. 4. Considering other results in this mass region, we
find that our limit is stronger than that from a model-
dependent analysis [10] of the ϕ → eþe−γ decays [12] for
mU0 > 450 MeV=c2, but weaker than the limit based on the
η → π0γγ total rate [10]. Recently, we learned that the data
set in Ref. [23] contains many more η → πþπ−γ decays and
can provide a more stringent limit on αU0 in future.
To conclude, we perform a search for a dark vector

gauge bosonU0 that couples to quarks [10], using the decay
chain D�þ → D0πþ, D0 → K0

Sη, η → U0γ, U0 → πþπ−.
Our results limit the baryonic fine structure constant αU0

to below 10−3–10−2 at 95% confidence level over the U0

mass range 290 to 520 MeV=c2. This is the first search
for U0 in the πþπ− mode. We find that our limit is stronger
than that from a model-dependent analysis [10] of the ϕ →
eþe−γ decays [12] for mU0 > 450 MeV=c2, but weaker
than the limit based on the η → π0γγ total rate [10].
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