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We investigate possible entropy production in Yang-Mills (YM) field theory by using a quantum
distribution function called the Husimi function fHðA; E; tÞ for the YM field, which is given by a coarse
graining of the Wigner function and non-negative. We calculate the Husimi-Wehrl entropy SHWðtÞ ¼
−TrfH log fH defined as an integral over the phase space, for which two adaptations of the test-particle
method are used combined with Monte Carlo method. We utilize the semiclassical approximation to obtain
the time evolution of the distribution functions of the YM field, which is known to show chaotic behavior in
the classical limit. We also make a simplification of the multidimensional phase-space integrals by making
a product ansatz for the Husimi function, which is found to give a 10–20% overestimate of the Husimi-
Wehrl entropy for a quantum system with a few degrees of freedom. We show that the quantum YM theory
does exhibit the entropy production and that the entropy production rate agrees with the sum of positive
Lyapunov exponents or the Kolmogorov-Sinai entropy, suggesting that the chaoticity of the classical YM
field causes the entropy production in the quantum YM theory.
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I. INTRODUCTION

Thermalization or entropy production in an isolated
quantum system is a long-standing problem. The entropy
of a quantum system may be given by von Neumann
entropy SvN ¼ −Trρ log ρ with ρ being the density matrix
[1], and taking into account that the time evolution of the
quantum system is described by a unitary transformation
UðtÞ ¼ e−iHt=ℏ, von Neumann entropy SvN is shown to
remain unchanged in time, which is an absurd consequence
in contradiction to reality. One possible way to avoid this
puzzle is to assume that there is no isolated quantum system
because any quantum system is surrounded by the envi-
ronment composed of quantum fields described by, say,
QED; the partial trace with respect to the environment
would lead to a density matrix of a mixed state due to the
entanglement [2]. For thermalization of a macroscopic
quantum system, the old idea of von Neumann was recently
rediscovered, and since then a lot of related works and
developments have been made [3,4]; see Ref. [5] and
references cited therein. It might be worth mentioning
that the entanglement entropy of a quantum system may
have a geometrical interpretation as is clearly shown by
Ryu-Takayanagi’s formula [6].
In this work, we do not intend to develop a master theory

to describe thermalization or entropy production of a generic
quantum system. Instead, we concentrate on entropy pro-
duction in quantum systems of which the classical

counterparts are chaotic and the semiclassical approxima-
tion is valid. There are many physical systems satisfying
these characteristics [7]: among them, we have in mind the
problem of the early thermaliztion in high-energy heavy-ion
collisions (see the review [8] and recent studies [9–25]) at the
Relativistic Heavy-Ion Collider in the Brookhaven National
Laboratory [26–29] and the Large Hadron Collider at
CERN [30].
Chaotic classical systems are characterized by the

sensitive dependence of the trajectory on the initial con-
dition, and trajectories starting from adjacent initial con-
ditions with the difference δXð0Þ in the phase space deviate
exponentially jδXðtÞj ¼ expðλtÞjδXð0Þj from each other;
the exponent λ is called a Lyapunov exponent. Then, one
can readily imagine that the chaotic behavior makes the
phase-space distribution fðq; pÞ so complicated that it
generates a finite amount of entropy via a coarse graining
in the classical Hamiltonian system. In this respect, it is
interesting that the sum of positive Lyapunov exponents
coincides with the Kolomogorov-Sinai entropy (see refer-
ences in Ref. [31]) or the production rate of entropy [32].
Indeed, these have been demonstrated for a discrete
classical system [33], where an explicit calculation of
the Boltzmann-like entropy SB ¼ −Trf log f was made
with the distribution function fðq; pÞ as obtained by a
coarse graining of the phase space of the discrete system.
A natural extension of the above interesting work to a

quantum systems might be done with the application of the
quantum mechanical distribution function, i.e., the Wigner
function fWðq; pÞ derived as a Weyl transform of the
density matrix ρ [34]. However, since fW is a mere Weyl
transform of ρ, it cannot describe an entropy production of
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a pure quantum system, even apart from the fact that fW is
not positive definite.
To circumvent this well-known difficulty, let us recall

that one cannot distinguish two phase-space points in a
unit cell in quantum mechanics, and smearing in the phase-
space volume of ð2πℏÞD may be allowed, where D is the
degrees of freedom (DOF) of the system. For such a
smeared distribution function, we adopt the Husimi
function fH [35], which is obtained by a Gaussian smearing
of the Wigner function and is semipositive definite.
Then, we can define the entropy in terms of fH as
SHW ¼ −TrfH log fH, where Tr means the integral over
the phase space. This entropy was first introduced and
called the classical entropy by Wehrl [36], and we call it
Husimi-Wehrl (HW) entropy [37,38]. It should be noted
that the HW entropy is a kind of microscopic entropy, and
does not necessarily increase in time. Indeed, it may show
an oscillatory behavior in time depending on the initial
configuration as shown for quantum mechanical systems
[38]; we will find that it is also the case for the Yang-Mills
field. Nevertheless, it is noteworthy that the HWentropy in
the thermal equilibrium tends to coincide with the von
Neumann entropy at high temperatures [37].
In the previous work [38], the present authors examine

thermalization of isolated quantum systems by using the
HW entropy evaluated in the semiclassical approximation.
It was shown that the semiclassical treatment works well in
describing the entropy-production process of a couple of
quantum mechanical systems of which the classical coun-
tersystems are known to be chaotic. Two novel methods
were also proposed to evaluate the time evolution of the
HW entropy, the test-particle method and the two-step
Monte Carlo method, and it was demonstrated that the
simultaneous application of the two methods ensures the
reliability of the results of the HW entropy at a given time.
In this article, we extend the previous work [38] to the

Yang-Mills (YM) field, which is known to be chaotic and
has a macroscopic number of positive Lyapunov exponents
[18]. We investigate the possible entropy production by
constructing the Husimi function and calculating the HW
entropy of the YM field in the semiclassical approximation.
The initial condition we adopt for the equation of motion
(EOM) of the YM field is motivated by the early stage of
relativistic heavy-ion collisions [7,39].
There is, however, a caveat against this simple prescrip-

tion that works for quantum mechanical systems with a
few degrees of freedom because of the large number of the
degrees of freedom in the field theory. Thus, we also take a
simple ansatz for the Husimi function, where we construct
it by a product of the Husimi function for each degree of
freedom, although the classical EOM itself is solved
numerically with the fully included nonlinear couplings.
When applied to a quantum mechanical system with
2 degrees of freedom, the ansatz gives a 10–20% over-
estimate of the HW entropy. We also develop a novel

efficient numerical method for calculating the HWentropy,
which is a modification of the test-particle method. We
calculate the HW entropy in YM field theory in a semi-
classical way for the first time and show that the entropy
production rate agrees with the sum of positive Lyapunov
exponents or Kolmogorov-Sinai (KS) entropy.

II. HUSIMI-WEHRL ENTROPY ON THE LATTICE

We consider the SUðNcÞ YM field on a L3 lattice. In the
temporal gauge, the Hamiltonian in noncompact formalism
is given by

H ¼ 1

2

X
x;a;i

Ea
i ðxÞ2 þ

1

4

X
x;a;i;j

Fa
ijðxÞ2; ð1Þ

with Fa
ij¼∂iAa

j ðxÞ−∂jAa
i ðxÞþ

P
b;cf

abcAb
i ðxÞAc

jðxÞ. ND¼
3L3ðN2

c−1Þ is the total DOF. We take the dimensionless
gauge field A and conjugate momentum E normalized
by the lattice spacing a throughout this article. The
coupling constant g is also included in the definitions of A
and E.
The Husimi-Wehrl entropy of the YM field is obtained as

a natural extension of that in quantum mechanics by
regarding ðAðxÞ; EðxÞÞ as canonical variables. First, we
define the Wigner function (referred to as the Wigner
functional [40]) in terms of AðxÞ and EðxÞ,

fW½A;E; t� ¼
Z

DA0

ð2πℏÞND
eiE·A

0=ℏ

× hAþ A0=2jρ̂ðtÞjA − A0=2i; ð2Þ

where A · E ¼ P
i;a;xA

a
i ðxÞEa

i ðxÞ is the inner product.
The time evolution of the Wigner function is derived from
the von Neumann equation,

∂
∂t fW½A;E; t� ¼

∂H
∂A ·

∂fW
∂E −

∂H
∂E ·

∂fW
∂A þOðℏ2Þ: ð3Þ

In the semiclassical approximation, we ignoreOðℏ2Þ terms,
and then fW is found to be constant along the trajectory
satisfying the classical EOM (a good review can be found
in Ref. [41]),

_E ¼ −
∂H
∂A ; _A ¼ ∂H

∂E : ð4Þ

Second, we introduce the Husimi function as the
smeared Wigner function with the minimal Gaussian
packet,

fH½A; E; t� ¼
Z

DA0DE0

ðπℏÞND
e−ΔðA−A0Þ2=ℏ−ðE−E0Þ2=Δℏ

× fW½A0; E0; t�; ð5Þ
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where Δ is the parameter for the range of Gaussian
smearing. As in quantum mechanics, the Husimi function
is semi-positive definite; fH½A;E; t� ≥ 0, and we define the
Husimi-Wehrl entropy as Boltzmann’s entropy or Wehrl’s
classical entropy [36] by adopting the Husimi function for
the phase-space distribution,

SHWðtÞ ¼ −
Z

DADE
ð2πℏÞND

fH½A;E; t� log fH½A;E; t�: ð6Þ

III. NUMERICAL METHODS

We calculate the time evolution of the HW entropy by
two methods: the test particle (TP) method and the parallel
test particle (pTP) method. The TP method is developed in
Ref. [38]. The pTP method, an alternative method for
the two-step Monte Carlo method, requires less numerical
cost and gives almost the same results as the two-step
Monte Carlo method. We have demonstrated that the HW
entropy in some quantum mechanical systems is success-
fully obtained in these two methods, which are reviewed
in the following.
In the test particle method (TP) for the Yang-Mills field

theory, the “test particles” represent the gauge field
amplitude A and its canonical conjugate E, and in terms

of these variables, the Wigner function is a sum of the delta
functions,

fW½A;E; t� ¼
ð2πℏÞND

NTP

XNTP

i¼1

δNDðA − AiðtÞÞδNDðE − EiðtÞÞ;

ð7Þ
where NTP is the total number of the test particles. The
initial conditions of the test particles are ðAið0Þ; Eið0ÞÞ
ði ¼ 1; 2;…; NTPÞ, which are chosen so as to sample
well fW½A;E; 0�. The time evolution of the coordinates
ðAiðtÞ; EiðtÞÞ is determined so that it reproduces the EOM
for fW½A;E; t�, which is reduced to the canonical EOM (4)
in the semiclassical approximation.
With the test particle representation of theWigner function,

Eq. (7), the Husimi function is readily expressed as

fH½A;E;t�¼
2ND

NTP

XNTP

i¼1

e−ΔðA−AiðtÞÞ2=ℏ−ðE−EiðtÞÞ2=Δℏ: ð8Þ

It is noteworthy that the Husimi function here is a smooth
function in contrast to the corresponding Wigner function
in Eq. (7).
Substituting theWigner function (8) into Eq. (6), the HW

entropy in the test particle method is finally given as

SðTP;pTPÞHW ¼ −
1

NTP

XNTP

i¼1

Z
DADE
ðπℏÞND

e−ΔðA−AiðtÞÞ2=ℏ−ðE−EiðtÞÞ2=Δℏ log
�
2ND

NTP

XNTP

j¼1

e−ΔðA−AjðtÞÞ2=ℏ−ðE−EjðtÞÞ2=Δℏ
�

≃ −
1

NMCNTP

XNMC

k¼1

XNTP

i¼1

log

�
2ND

NTP

XNTP

j¼1

e−ΔðĀkþAiðtÞ−AjðtÞÞ2=ℏ−ðĒkþEiðtÞ−EjðtÞÞ2=Δℏ
�
: ð9Þ

Note here that the integral over ðA;EÞ has a support
only around the positions of the test particles ðAiðtÞ; EiðtÞÞ
due to the Gaussian function for each i, and we can
effectively perform the Monte Carlo integral. We generate
random numbers ðAi;k; Ei;kÞðk ¼ 1;…; NMCÞ with zero

mean and standard deviations of ð ffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2Δ

p
;

ffiffiffiffiffiffiffiffiffiffiffiffi
ℏΔ=2

p Þ, with
NMC being the total number of Monte Carlo samples. Then,
we obtain the HW entropy as shown in the second line
of Eq. (9).

IV. NUMERICAL PROCEDURE

Our numerical procedure is summarized as follows:
(1) According to the initial state density matrix, an

ensemble of field configurations referred to as test
particles is generated.

(2) Subsequently, the classical equations of motions are
solved for each test particle.

(3) The Husimi function can be estimated according to
Eq. (8), and the HW entropy takes the form as given
in the first line of Eq. (9).

(4) We perform the functional integral by using a
Monte Carlo method as shown in the second line
of Eq. (9), where ðAi;m; Ei;mÞ are Gaussian random
numbers.

V. TEST IN QUANTUM MECHANICAL SYSTEM

In the parallel test particle method, we prepare two
independent sets of test particles in and out of the logarithm
in Eq. (9), while they are the same samples in TP. Figure 1
shows the numerical results of the HW entropy in the two-
dimensional quantum mechanical system, the Hamiltonian
of which is given by

H ¼ p2
1

2
þ p2

2

2
þ 1

2
q21q

2
2 þ

ϵ

4
q41 þ

ϵ

4
q42: ð10Þ
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This system is called a modified quantum Yang-Mills
(mqYM) model in Ref. [38]. We set the initial condition
of the Wigner function as a Gaussian corresponding to the
coherent state; fWðp; q; t ¼ 0Þ ¼ 4 expð−ωððp1 − p1;0Þ2þ
ðp2 − p2;0Þ2Þ=ℏ − ωðq21 þ q22Þ=ℏÞ. In this calculation, we
set ℏ ¼ ω ¼ Δ ¼ 1 and p1;0 ¼ p2;0 ¼ 10. With increasing
test particle number, the HW entropy is found to converge
from below (above) in the TP (pTP) method, and then it is
possible to give upper and lower limits of the entropy and
to guess the converged value by comparing the results in
the two methods.

VI. PRODUCT ANSATZ AND EXAMPLE
IN A TWO-DIMENSIONAL QUANTUM

MECHANICAL SYSTEM

While the extension to the field theory on the lattice is
straightforward, the DOF are so large and numerical-cost
demanding in quantum field theories that we need to invoke
some approximation scheme in practical calculations. We
adopt the product ansatz here to avoid this difficulty.
In the ansatz, we construct the Husimi function as a

product of that for 1 degree of freedom,

fðPAÞH ½A; E; t� ¼
YND

i

fðiÞH ðAi; Ei; tÞ; ð11Þ

where fðiÞH ¼ R Q
j≠idAjdEj=2πℏfH½A;E; t�. By substitut-

ing this ansatz into Eq. (6), we obtain the HW entropy as a
sum of the HW entropy for 1 degree of freedom,

SðPAÞHW ¼ −
XND

i¼1

Z
dAidEi

2πℏ
fðiÞH log fðiÞH : ð12Þ

The entropy estimated with the product ansatz gives the
upper bound of the entropy, since it holds subadditivity.
The subadditivity of the entropy is expressed as

S1ðρ1Þ þ S2ðρ2Þ ≥ S12ðρ12Þ; ð13Þ

where ρ1 ¼
R
dΓ2ρ12 and ρ2 ¼

R
dΓ1ρ12 and S1 and S2 are

subsystem entropies. In this paper, we apply it to the
Husimi function and the Husimi-Wehrl entropy. Thus, the

obtained entropy SðPAÞHW gives the upper bound of SHW due to
the subadditivity;

SHW ≡ S12:::ND
ðρ12:::ND

Þ ≤ S1ðρ1Þ þ S23:::ND
ðρ23:::ND

Þ

≤
XND

n

SnðρnÞ ¼ SðPAÞHW : ð14Þ

To check the variety, we apply it to the mqYM model
previously discussed. Figure 2 shows the numerical results

of the HWentropy with the product ansatz (SðPAÞHW ) as well as
the full entropy (SHW), which can be found in Fig. 1. While

SðPAÞHW slightly overestimates SHW, the difference is small
enough to confirm entropy production. The HW entropy
with the product ansatz is found to agree with that without
the ansatz within 10–20% error in a few-dimensional
quantum mechanical system. We also find that numerical
results with the ansatz converge with smaller Monte Carlo
samples; then, it is much more efficient from the viewpoint
of numerical-cost reduction.

VII. ENTROPY PRODUCTION
IN YANG-MILLS FIELD THEORY

We apply the above-mentioned framework to the
SU(2) Yang-Mills field theory. The initial condition of
the Winger function is set to be a Gaussian distribution,
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FIG. 1. Time evolution of Husimi-Wehrl entropy for the
modified quantum Yang-Mills mechanics in the TP and pTP
methods.
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methods where the numbers of test particles are NTP ¼ 200, 500,
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fW½A;E; t ¼ 0� ¼ 2ND expð−ωA2=ℏ − E2=ωℏÞ, which cor-
responds to a coherent state. The Wigner-function evolu-
tion is obtained by solving the classical EOM, and the
HW entropy with the product ansatz is calculated by using
the TP and pTP methods. We take the parameter set,
ℏ ¼ Δ=ω ¼ 1. Calculating the HWentropy needs NMCN2

TP
times summation as found in Eq. (9) and is numerically
demanding, so we show here the results on the relatively
small lattices, 43; 63, and 83.
In Fig. 3, we show the time evolution of the Husimi-

Wehrl entropy per DOF with the product ansatz in the TP
and pTP methods. We find that the HW entropy per DOF
is independent of the lattice size, and the extensive nature
of entropy is confirmed. The dependence on the number
of test particle number is the same as that in quantum

mechanics; with increasing Monte Carlo samples, SðPAÞHW
converges from below and above in the TP and pTP
methods, respectively. The results in the TP and pTP
methods approach each other with increasing NTP, and
we can guess that the converged value lies between these
curves. The oscillatory behavior of the HWentropy around
ωt ¼ 0.5 is caused by a collective motion of the phase-
space distribution starting from the initial distribution that
is different from the equilibrium one. After the oscillation
around ωt ¼ 0.5, the HWentropy increases in a monotonic
way, and its growth rate decreases. This means that the
collective motion in the earliest stage damps, and at later
times, the entropy production rate becomes smaller, which
might suggest that the system approaches a quasistationary
nonequilibrium state [42]. Although this is an interesting
possibility, an exploration of the possibility is beyond the
scope of the present paper.
The straight lines in Fig. 3 show the KS entropy rate,

which is given in Ref. [18]. The upper and lower lines show

the sum of positive local and intermediate Lyapunov
exponents (LLE and ILE), respectively. The LLE are
obtained as the eigenvalues of the second derivative matrix
of the Hamiltonian, and the ILE show the exponential
growth rate in some time duration. Since the classical YM
fields are conformal, the KS entropy rate should be
proportional to ε1=4 where ε is the energy per site. The
coefficients are evaluated in Ref. [18] as RLLE

KS =L3 ≃ 3 ×
ε1=4 and RILE

KS =L
3 ≃ 2 × ε1=4 for the sum of positive LLE

and ILE (local and intermediate KS entropy rates), respec-
tively. These findings show that the local KS entropy rate
characterizes the growth rate of the HWentropy in the early
time and the intermediate KS entropy rate agrees with the
average entropy growth after the initial stage.
Let us mention here the gauge dependence of the HW

entropy. The present result shows the HW entropy rate is
consistent with the KS entropy rate, which is shown to be
gauge invariant [21]. We also note that the gauge degrees of
freedom do not contribute to the chaoticity and instability
[21,23]. For these reasons, we expect that the gauge
dependence of the HW entropy production is not serious.

VIII. CONCLUSION

In summary, we have developed a novel numerical
formulation and have calculated the time evolution of
the Husimi-Wehrl entropy in Yang-Mills field theory in
the semiclassical approximation for the first time. We have
shown that the HW entropy is produced and the growth
rates roughly agree with Lyapunov exponents. It should be
noted that the time reversal invariance is kept in the present
framework, in the time evolution of the Wigner function as
well as in measuring the entropy. The produced entropy
mainly comes from the complexity of the phase-space
distribution.
The entropy growth will contribute to the thermalization

process in relativistic heavy-ion collisions. The setup in this
article is motivated by the initial stage dynamics in
relativistic heavy-ion collisions. For more realistic analysis,
we should choose the initial condition like the one given by
the McLerran-Venugopalan model [7].
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