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We report new results on the conformal properties of an important strongly coupled gauge theory, a
building block of composite Higgs models beyond the Standard Model. With twelve massless fermions in
the fundamental representation of the SU(3) color gauge group, an infrared fixed point (IRFP) of the
β-function was recently reported in the theory [A. Cheng, A. Hasenfratz, Y. Liu, G. Petropoulos, and D.
Schaich, J. High Energy Phys. 05 (2014) 137] with uncertainty in the location of the critical gauge coupling
inside the narrow ½6.0 < g2� < 6.4� interval and widely accepted since as the strongest evidence for a
conformal fixed point and scale invariance in the theory with model-building implications. Using the exact
same renormalization scheme as the previous study, we show that no fixed point of the β-function exists in
the reported interval. Our findings eliminate the only seemingly credible evidence for conformal fixed point
and scale invariance in the Nf ¼ 12 model whose infrared properties remain unresolved. The implications
of the recently completed 5-loop QCD β-function for arbitrary flavor number are discussed with respect to
our work.
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I. INTRODUCTION AND MOTIVATION

Investigations of strongly coupled gauge theories with
massless fermions in the fundamental or two-index sym-
metric (sextet) representation of the SU(3) color gauge
group serve considerable theoretical interest with added
relevance as important building blocks of composite Higgs
theories beyond the Standard Model (BSM). Two comple-
mentary aspects of the composite Higgs paradigm are
investigated in this large class of theories: (1) a near-
conformal and unexpectedly light scalar particle, perhaps
dilatonlike with mass at the electroweak scale or (2) a
parametrically light pseudo Nambu-Goldstone boson
(PNGB) combined with partial compositeness for fermion
mass generation to avoid the flavor problem. Both para-
digms are based on strongly coupled gauge dynamics to
address important aspects of conformal and chiral sym-
metries and their symmetry breaking patterns in BSM
theories. The precise determination of near-conformal or
conformal behavior of SU(3) gauge theory with twelve
flavors is relevant for both paradigms.
(1) Light scalar, perhaps dilatonlike? Near-conformal

strong dynamicswith spontaneous chiral symmetry breaking
(χSB) is focused on its emergent light scalar with 0þþ

quantum numbers of the σ-meson, perhaps with dilatonlike
properties.With early results reviewed in [1], this paradigm is
very different from scaled up quantum chromodynamics
(QCD) which was the prototype of old Higgs-less

technicolor. Comparing near-conformal models, with details
explained in Fig. 1, a light composite scalar of the massless
SU(2) flavor doublet in the sextet fermion representation of
SU(3) color was reported in [1,2] whereas the Nf ¼ 8 light
scalar with fermions in the fundamental representation was
discovered in [3] and confirmed recently [4]. The sextet
model β-function, with the minimal flavor doublet required
for the composite Higgs mechanism, indicates the closest
position to the lower edge of the conformal window (CW)
among recently investigated SU(3) gauge theories, exhibit-
ing the lightest scalar accordingly. The β-function of the
sextet theory with three massless flavors has a weakly
coupled conformal fixed point close to the upper end of
the CW [5] with apparent crossing into the CW between
two and three flavors. In contrast, uncertainties in crossing
into the CWwith fermions in the fundamental representation
appear to extend into the wider Nf ¼ 8–12 flavor range.
For example, it is not known if for more than eight flavors
the theory gets very close to the CW with a much lighter
scalar mass than at Nf ¼ 8. Based on the findings of [6]
and a similar zero in the β-function reported earlier [7,8], the
Nf ¼ 12 model has been investigated as a composite Higgs
model built on a conformal fixed point inside the CW [9].
The importance of the question warrants independent
determination.
(2) PNGB with partial compositeness? Challenges for the

near-conformal light scalar paradigm to generate fermion
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masses andYukawa couplingsmotivates the alternate PNGB
scenariowith amassless scalar bosonemerging fromvacuum
misalignment of χSB as reviewed recently [14]. Model
studies with a parametrically light Higgs based on
Nf ¼ nf þ νf fermion flavors in the fundamental represen-
tation of the SU(3) color gauge group could address the
hierarchy problem and fermion mass generation with partial
compositeness, if Nf is large enough to bring the theory
inside the CW before mass deformations of conformal
symmetries are turned on [14–16]. For the simple choice
nf ¼ 4, the global flavor symmetry SUð4Þ × SUð4Þ is
broken to the diagonal SU(4) flavor group and a Higgs-like
scalar state is identified in the PNGB set via χSB. The
custodial SO(4) symmetry of the Standard Model remains
protected [15,16] while a large enough νf is required to bring
the theory close to a strongly coupled IRFPwith expectations
of large baryon anomalous dimensions as the key ingredients
of partial compositeness. The Nf ¼ 12 choice with nf ¼ 4

and νf ¼ 8 for this PNGB paradigm is discussed in [9]
building on the conformal fixed point of twelve flavors,
warranting again independent confirmation.

II. LATTICE IMPLEMENTATION
OF THE STEP β-FUNCTION

The gradient flow based diffusion of the gauge fields of
lattice configurations from Hybrid Monte Carlo (HMC)
simulations became the method of choice for studying
renormalization effects with great accuracy [17–23]. In
particular, we adapted the method and introduced the scale-
dependent renormalized gauge coupling g2ðLÞ where the
scale is set by the linear size L of the finite volume [10,24].
This implementation is based on the gauge invariant
trace of the non-Abelian quadratic field strength,
EðtÞ ¼ − 1

2
TrFμνFμνðtÞ, renormalized as a composite oper-

ator at gradient flow time t on the gauge configurations and
measured from the discretized lattice implementation, as in
[20]. Following [10,24], we define the one-parameter
family of renormalized nonperturbative gauge couplings
for strongly coupled gauge theories built on the SU(N)
color group with Nf massless dynamical fermions,

g2cðtðLÞÞ ¼
128π2ht2EðtÞi

3ðN2 − 1Þð1þ δðcÞÞ ; ð1Þ

where the volume-dependent gradient flow time tðLÞ is set
by the constant c ¼ ffiffiffiffi

8t
p

=L from the one-parameter family
of renormalization schemes, with c ¼ 0.2 chosen in this
work. The factor

δðcÞ ¼ −
c4π2

3
þ ϑ4ðe−1=c2Þ − 1 ð2Þ

in Eq. (1) is chosen to match g2cðtðLÞÞ to the conventional
coupling g2

MS
ðtðLÞÞ in leading order of perturbation theory

for any choice of c and with periodic boundary conditions

for the gauge fields in all four directions. The origin of the
third Jacobi elliptic function ϑ in Eq. (2) was explained in
[10] including the treatment of zero modes from periodic
gauge fields in finite volumes [25–29].
A scale-dependent renormalized gauge coupling g2ðLÞ

was introduced earlier to probe the step β-function, defined
as ðg2ðsLÞ − g2ðLÞÞ=logðs2Þ for some preset finite scale
change s in the linear physical size L of the four-
dimensional volume in the continuum limit of lattice
discretization [30,31]. The gauge coupling g2ðLÞ for the
determination of the step β-function is identified in our case
with the definition in Eq. (1) as we drop the preset label c in
the notation and tðLÞ is simply replaced by L. The
renormalization scheme with the preset choice c ¼ 0.2
and the preset scale factor s ¼ 2 in our work is identical to
the one of the previous study [6] including the boundary
conditions on gauge fields and fermion fields. In the
continuum limit, the monotonic function g2ðLÞ implies
in any of the volume-dependent schemes that a selected
value of the renormalized gauge coupling sets the physical
size L measured in some particular dimensionful physical
unit. Fixed physical size L on the lattice is equivalent to
holding g2ðLÞ fixed at some selected value as the lattice
spacing a is varied and the fixed physical length L is held
by the variation of the dimensionless linear scale L=a as the
bare lattice coupling is tuned without changing the selected
fixed value of the renormalized gauge coupling. The
continuum limit at fixed g2ðLÞ is obtained by a2=L2 → 0
extrapolation of the residual cutoff dependence in the step
β-function at the target gauge coupling.
In the convention we use, asymptotic freedom in the UV

regime corresponds to a positive step β-function given by
the perturbative loop expansion for small values of the
renormalized coupling. In the infinitesimal derivative limit
s → 1 the step β-function turns into the conventional one. If
the conventional β-function of the theory possesses a fixed
point, the step β-function will have a zero at the same
critical gauge coupling g2� as well. The scale-dependence of
the gauge coupling g2ðLÞ can be determined from repeated
application of the step β-function starting at some scale L0

set by the initial gauge coupling g2ðL0Þ we choose.

III. BSM MODELS CLOSE TO THE
CONFORMAL WINDOW

The effect of near-conformal behavior on the light scalar
mass is shown in Fig. 1, if the size of the nonperturbative
β-function is used at strong coupling as an indicator for
the approach to the CW in the fundamental and sextet
representations of massless fermions. The mass of the light
σ-like 0þþ scalar particle, as a composite Higgs candidate
when coupled to the electroweak sector, is displayed in
units of the Goldstone decay constant F in the massless
fermion limit of χSB as determined from spectroscopy in
each model. The striking trend of decreasing scalar mass is
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well established as the CW is approached. In BSM
applications F ¼ 250GeV sets the scale in physical units
[1]. The sextet model has the smallest nonzero β-function
relative to the other theories in the fundamental represen-
tation, together with the lightest scalar. The possibility of
the Nf ¼ 12 model being even closer to the CW with an
even lighter scalar is open, if the model is near-conformal
without IRFP. Our goal is an independent determination of
the fate of the Nf ¼ 12 IRFP reported earlier [6].

IV. Nf = 12 SIMULATIONS WITH
TARGETED RUN SETS

The algorithmic details of our new Nf ¼ 12 simulations
are similar to [10,11]. Periodic boundary conditions already

defined on the gauge fields, the fermion fields are chosen
to be antiperiodic in all four directions. We utilize the
staggered fermion action with massless fermions and four
steps of stout smearing with stout parameter ϱ ¼ 0.12 on
the gauge links [17]. The gauge action is the tree-level
improved Symanzik action [32,33]. The evolution along a
trajectory of the Hybrid Monte Carlo algorithm [34] is
implemented with multiple time scales [35] and Omelyan
integrator [36]. For integration along the gradient flow
we use the tree-level improved Symanzik action based
discretization scheme. The observable EðtÞ is discretized
as in [20].
The final 28 runs of Table I ranged in length between

5000 and 20,000 time units of molecular dynamics. The
statistical analysis of the renormalized gauge coupling
of each run followed [37] and used similar software.
Autocorrelation times were measured for each run in
two independent ways, using estimates from the autocor-
relation function of each run, and from jackknifed blocking
procedure. Errors on the renormalized couplings were
consistent from the two procedures and the one from
autocorrelation functions is listed in Table I. Each run
went through thermalization and these segments were not
included in the analysis. For detection of residual thermal-
ization effects the replica method of [37] was used in the
analysis. All 28 runs passed Q value tests when mean
values and statistical errors of the replica segments were
compared for thermal and other variations.
We targeted the step β-function at three preselected

values of the renormalized gauge coupling to cover the
interval where the IRFP was reported [6]. In Table I
results are shown for gauge ensembles from the three
target groups A, B, C of the final run sets. The 28 runs were
grouped into 14 steps of pairs where the lower L=a value
was precisely tuned to the target value of the renormalized
gauge coupling. The higher L=a volume at the doubled
physical size determined the step β-function at finite
lattice spacing. The first group with 4 steps is target
A at g2ðLÞ ¼ 5.979ð2Þ with L=a ¼ 16 → 32; 18 → 36;
20 → 40; 24 → 48. Both target B at g2ðLÞ ¼ 6.185ð2Þ
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FIG. 1. The step β-functions of strongly coupled gauge theories
in two different fermion representations of the SU(3) gauge group
are color coded. The Nf ¼ 4 β-function is from [10] (dashed line
segment extrapolated) with the mσ=F ratio taken from QCD, the
Nf ¼ 8 β-function is from [11] with the mσ=F ratio from [3,4],
and the sextet β-function is from [12] with the mσ=F ratio taken
from [13]. The magenta IRFP of Nf ¼ 12 is from [6] and the
magenta line of our new nonvanishingNf ¼ 12 β-function is also
shown in the ∼0.1 range.

TABLE I. The final 28 runs are tabulated with 14 tuned runs and 14 paired steps.

Target A Target B Target C

L=a 6=g20 g2 6=g20 g2 6=g20 g2

16 3.1519 5.9801(29) 3.0830 6.1786(39) 3.0110 6.3930(30)
32 3.1519 5.9952(79) 3.0830 6.1597(64) 3.0110 6.3233(74)
18 3.1510 5.9767(40) 3.0785 6.1871(37) 3.0055 6.3909(51)
36 3.1510 6.0101(71) 3.0785 6.1840(81) 3.0055 6.3446(64)
20 3.1499 5.9828(64) 3.0704 6.1922(64) 2.9896 6.3942(59)
40 3.1499 6.0419(73) 3.0704 6.2137(67) 2.9896 6.4000(67)
24 3.1480 5.9784(68) 3.0680 6.1861(55) 2.9800 6.3976(60)
48 3.1480 6.0758(84) 3.0680 6.2497(109) 2.9800 6.4404(122)
28 3.0698 6.1839(58) 2.9819 6.3900(37)
56 3.0698 6.2792(142) 2.9819 6.4610(124)
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and target C at g2ðLÞ¼ 6.393ð2Þ have an added fifth step of
L=a ¼ 28 → 56 for more robust continuum extrapolation.
Precise tuning for g20 of the 14 steps of the three targets
eliminated the largest systematic uncertainty in the step
β-function from model-dependent interpolation in the bare
gauge coupling. Figure 2 shows the remarkable accuracy of
tuning for the three targets at better than per mille accuracy
level, like for the entries of Table I.

V. CONTINUUM EXTRAPOLATION
OF THE STEP β-FUNCTION

Cutoff effects have to be removed from the step
β-functions at finite lattice spacing. The leading cutoff
effects are a2=L2 corrections in each L=a → 2L=a pair for
the step β-function at the targeted renormalized couplings.
Linear fits to the lattice step functions in a2=L2 allows
continuum extrapolation to the a2=L2 → 0 limit, as shown
in Fig. 3. For all three targets linear four-point fits of the
step functions were used with consistently good χ2 results.
The final results of our continuum step β-function are
shown in Fig. 4 with overwhelming statistical evidence
against the IRFP of [6] in the targeted interval. Leaving
open the existence of the IRFP in [6], a new study of the
β-function appeared recently in a different renormalization
scheme of the model and without our targeted goal [38].

VI. NEW DEVELOPMENTS AND CONCLUSIONS

Originally the zero of the β-function for twelve flavors
was reported at a somewhat lower value of g2 using the
Schrödinger functional (SF) based scheme in agreement
with its 3-loop step β-function [8], as shown in Fig. 4 (cyan
color). In comparison, the dashed red line is the 3-loop

FIG. 2. The statistical significance of precise tuning to three
targeted gauge couplings is shown by fitting a constant to each g2

at the lower L=a values of the steps.

FIG. 3. Linear fits in a2=L2 are shown as explained in the text.
The 16 → 32 steps of target B and target C are not included in the
4-point fits without any influence on the overwhelming statistical
significance of the results. When they are included, the continuum
step β-function drops lower by approximately one standard
deviation with comparable errors and increased χ2=dof ∼ 1.5,
perhaps hinting at subleading small a4=L4 cutoff corrections at low
L=a when the renormalized gauge coupling gets stronger.
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prediction of the MS scheme within the simulation error of
the IRFP. The 4-loop MS result only slightly shifts the
prediction and is closer to [6]. Although in two different
schemes, tantalizing agreement of the simulations and the
loop expansion lead to the widely held view that twelve
massless fermion flavors in QCD bring the theory inside
the CW.
In a significant new development, the first MS calcu-

lation of the 5-loop β-function was completed for arbitrary
flavor number in QCD [39]. Based on the new 5-loop
results, it was immediately recognized that the zero in the
β-function turns complex and the IRFP disappears for
twelve flavors [40], consistent with the plot in Fig. 4. It was
also shown that two fixed points appear in the β-function

for thirteen flavors like in the intriguing scenario of [41],
with shifting estimates for the lower edge of the CWand for
the flavor dependence of the mass anomalous dimension
[40]. Five loop MS predicts two real zeros at g2 ¼ 5.11 and
g2 ¼ 6.52 for thirteen flavors, as shown in Fig. 4. It did not
escape our attention that new lattice studies of the running
coupling with thirteen flavors would be within easy reach
of the 5-loop MS predictions.
Credible proof of conformal behavior based on the

β-function requires two necessary steps in strongly coupled
gauge theories. First, the critical gauge coupling g2� has to
be determined where the scheme-dependent β-function
vanishes and signals the location of the conformal IRFP.
The slope of the β-function at the fixed point is a scheme-
independent scaling exponent ω which controls the leading
conformal scaling corrections to fermion mass deforma-
tions close to the IRFP [1,42–44]. The choice in scheme
dependence can move the position of the conformal IRFP
but cannot destroy its existence, or change the universal
scaling exponent ω. These are very demanding criteria,
unmatched in lattice simulations while reporting zeros in
the β-function.
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