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By using the worldline approach to quantum field theory, we demonstrate to all orders that the sources of
a quantum field theory over Mink4 naturally form a field theory over AdS5. In particular, this holds for
higher-spin sources of a free scalar theory. Wework entirely within quantum-field theory and do not select a
subset of diagrams. As the auxiliary fifth dimension Schwinger’s proper time is grouped with the physical
four spacetime dimensions into an AdS5 geometry. The four-dimensional sources are extended to five-
dimensional fields by a Wilson flow (gradient flow). A variational principle for said flow reproduces the
corresponding holographic computation.
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I. INTRODUCTION

Strong interactions are behind a wealth of phenomena,
but frequently overwhelm our computational abilities.
Holographic approaches promise analytic insight and have
been used intensely in quantum chromodynamics (QCD)
[1–3], extensions of the standard model [4,5], condensed-
matter physics [6], and studies of the Schwinger effect
[7–9]. Holography is based on the conjectured AdS/CFT
correspondence [10,11] and its extensions. All known
examples of this correspondence, however, hold for theo-
ries with a set of symmetries that are not realized in nature
and have a different particle content. Therefore, deformed
bottom-up AdS/QCD descriptions are usually considered,
which describe the QCD hadron spectrum surprisingly well
[1,12]. They do, however, lack a derivation from first
principles. Consequently, it is very important to understand
why and when these models represent an acceptable
approximation and which features are robust. For some
approaches to these questions see [13–15].
Recently, we demonstrated [9,16,17] how a quantum

field theory over four-dimensional Minkowski space nat-
urally turns into a field theory for its sources over AdS5 in
the framework of the worldline formalism [18] for quantum
field theory, and extends even to the nonrelativistic case
[19,20]. Schwinger’s proper time naturally becomes the
extra dimension. Here we show that such an AdS5
formulation arises to all orders in the elementary fields—
matter and gauge. (Previously, we had selected a subset of
diagrams based on the observation that at low energies the
contributions with the lowest number of exchanged gauge
bosons dominate [21–23].)
The paper is organized as follows: In Sec. II,

we demonstrate how a quantum field theory over four-
dimensional Minkowski space reorganizes into a field
theory for its sources over five-dimensional anti–de Sitter
(AdS) space to all orders in the elementary fields, with the
fifth dimension being Schwinger’s proper time of the

worldline formalism. In Sec. III, we analyze the example
of the free case and higher-spin sources in detail.
Section IV is concerned with dualities between pairs of
spacetimes other than Minkd ↔ AdSdþ1. The final sec-
tion concludes the paper.

II. WORLDLINE HOLOGRAPHY

A. Volume elements

To all orders, the correlators of the sources V are
described by the generating functional

Z ¼ hewi ¼
Z

½dG�ew− i
4e2

R
d4XG2

μν : ð1Þ

In order not to shroud the points important for the
present discussion we show the relevant expressions for
one scalar flavor of mass m and a vector source V, which
we incorporate in the “covariant derivative” D ¼ ∂ − iV ,
together with the gauge field G, V ¼ Gþ V. (Additional
sources and/or flavors can be handled straightforwardly.
We comment on corresponding extensions below.) Thus,

w ¼ −
1

2
Tr lnðD2 þm2Þ ð2Þ

instead of the 1
2
Tr lnðD2 þm2Þ, which we would have for

fermionic quarks (on which we comment below as well).
Accordingly, we do not display the path ordering and traces
required for non-Abelian gauge and flavor groups. In the
worldline formalism [18] analytically continued to
Euclidean spacetime w is expressed as [9,16,17]

w ¼
Z

d4x0

Z
∞

ε>0

dT
2c2T3

e−m
2TL≡

Z
d5x

ffiffiffiffiffi
jgj

p
e−m

2TL;

L ¼ 2c2N
ð4πÞ2

Z
P
½dy�e−

R
T

0
dτ½_y2

4
þi_y·Vðx0þyÞ�; ð3Þ

PHYSICAL REVIEW D 94, 086013 (2016)

2470-0010=2016=94(8)=086013(12) 086013-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.086013
http://dx.doi.org/10.1103/PhysRevD.94.086013
http://dx.doi.org/10.1103/PhysRevD.94.086013
http://dx.doi.org/10.1103/PhysRevD.94.086013


with the metric parametrization

ds2 ¼g þ dT2

4T2
þ dx0 · dx0

cT
; ð4Þ

for the identification of which we collect more pieces of
information below. “·” stands for the contraction with the
flat four-dimensional metric ημν, which after the above
analytic continuation from the Minkowski metric with the
signature ð−;þ;þ;þÞ is taken to be plus the Kronecker
symbol δμν. Then (4) is an AdS5;0 and before the continu-
ation an AdS4;1 line element. T represents Schwinger’s
proper time introduced to exponentiate the logarithm in (2).
This step gives rise to a factor of T−1 in the volume element.
The proper-time regularization T ≥ ε > 0 is the analogue
of the UV-brane regularization in holography. The sub-
sequent translation of the trace into a path integral con-
tributes another factor of T−2, due to one additional
integration over four-dimensional momentum space rela-
tive to the number of integrations over position space.
The Lagrangian density L consists of the path integral over
all closed paths, yμð0Þ ¼ yμðTÞ. The interaction piece takes
the form of a Wilson loop e−i

H
dy·V , making the local

invariance under the transformation Vμ → Ω½Vμ þ
iΩ†ð∂μΩÞ�Ω† manifest. Thus, hidden local symmetry
[24] is emergent. The d4x0 integral translates the above
paths to every position in space, xμ ≡ yμ þ xμ0. (The
translations are the zero modes of the kinetic operator
∂2
τ . _y≡ ∂τy.) The appearance of the AdS5 metric reflects

the symmetries, SO(4,2), of the conformal group of
3þ 1-dimensional Minkowski space, which are shared
by AdS5. Here conformal symmetry is broken by the mass
m. The factor e−m

2T can be seen as the tachyon potential
e−θ

2

evaluated on the tachyon profile θ ¼ m
ffiffiffiffi
T

p
.

ew contains all powers of w. They read

wn ¼
Yn
j¼1

Z
d4xj

Z
∞

ε>0

dTj

2c2T3
j
e−m

2TjLj

¼
Z

d5x
ffiffiffiffiffi
jgj

p
e−m

2T

Z
d4ðn−1ÞΔ̂

×
Yn
j¼1

Z
1

ϵ
T

dtj
2c2t3j

Lj × δ

�
1 −

Xn
k¼1

tk

�
:

In the second step, we introduced absolute x0 and dimen-
sionless relative coordinates Δ̂, such that the Jacobian
equals T2ðn−1Þ=2. Furthermore, we substituted overall
proper time T and proper-time fractions tj using

1 ¼
Z

dTδ
�
T −

Xn
j¼1

Tj

�Yn
j¼1

�Z
dtjδ

�
tj −

Tj

T

��
: ð5Þ

All but the first δ serve to carry out the dTj integrations,
leading to an additional factor of Tn. There is a factor of

T−1 from the first δ, which otherwise constrains the
integrations over the proper-time fractions tj. Collecting
all the powers of T, we find T−3nþ2ðn−1Þþn−1 ¼ T−3, which
enters into the overall volume element

ffiffiffiffiffijgjp
. The integra-

tion bounds for the tj are determined by the lower bound ϵ
for the dTj integrations. Accordingly, the T integration
starts at nϵ. Thus, also wn, like w1, takes the form of a
Lagrangian density integrated over AdS5.

B. Contractions

Expressing Lj with a mass-dimensionless integration
variable ŷj ¼ yj=

ffiffiffiffiffi
Tj

p
yields

Lj ¼
2c2N̂
ð4πÞ2

Z
P
½dŷj�

× e−
R

1

0
dτ̂j½

ð∂ τ̂j ŷjÞ2
4

þi
ffiffiffiffiffi
tjT

p ð∂ τ̂j ŷjÞ·e
ffiffi
T

p ð ffiffiffi
tj

p
ŷjþ cxj−x0Þ·∂x0 Vðx0Þ�; ð6Þ

where τ̂j ¼ τj=Tj. ( dxj − x0 depends only on Δ̂ not x0.)
Hence, every gradient ∂xj and every V appears with one

power of
ffiffiffiffi
T

p
. This remains true after integrating out the

gauge field G,

�Yn
j¼1

Lj

�
¼

�
2c2N̂
ð4πÞ2

�
nYn
j¼1Z

P
½dŷj�e−

R
1

0
dτ̂j½

ð∂ τ̂j ŷjÞ2
4

þi
ffiffiffiffiffi
tjT

p
ð∂ τ̂j

ŷjÞ·e
ffiffi
T

p ð ffiffiffi
tj

p
ŷjþcxj−x0Þ·∂x0 Vðx0Þ�

×

�Yn
l¼1

ei
H

dyl·GðxlþylÞ
�
; ð7Þ

as the average h…i over the product of Wilson loops (with
the integration over G carried out) is T independent,
homogeneous of degree 0 in fxj þ yjjj ¼ 1…ng, and
independent of x0 (because of translation invariance).
Because of the homogeneity of degree 0 and the inde-
pendence from x0, we can replace xj þ yj → x̂j þ ŷj ∀j
while preserving x0, without altering the value of said
average. Therefore, the powers of

ffiffiffiffi
T

p
remain exclusively

and consistently associated with every ∂xj and V.
Consequently, after carrying out the ½dŷ� integrations,
the result only contains the combinations TημνVμVν,
TημνVμ∂ν, and Tημν∂μ∂ν, which can be combined into
gμνVμVν, gμνVμ∂ν, and gμν∂μ∂ν, respectively. Hence, (1)
can be expressed as an action for the sources over AdS5.

C. Proper-time dependence

One way to continue studying (7) is by expanding it in
powers of the source V. Every power of the source comes
with a translation operator e

ffiffiffi
T

p
ŷ·∂. (For scalar sources that is

all there is.) When integrating out the coordinate field ŷ, the
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translation operators are pairwise combined into Gaussian
smearing operators [16] eP□, where P ∝ T is the so-called
worldline propagator [18]. All sources are accompanied by
smearing operators, which endue them with a T depend-
ence, VðxÞ → Vðx; PÞ ¼ eP□VðxÞ. Vðx; PÞ is also the
solution of the differential equation defining the Wilson
flow (gradient flow) [25],

∂PVν ¼ ημκDμVκν; ð8Þ

where D ¼ ∂ − iV, when expanded to lowest order in the
fields,

∂PV⊥ ¼ □V⊥; ð9Þ

where V⊥ denotes the transverse components.
Neither the expansion in the power of sources of (7)

nor of (9), however, is manifestly locally covariant.
Alternatively, adopting the Fock-Schwinger gauge
ðyj þ xj − x0Þ · Vðxj þ yjÞ ¼ 0, we can express the source
V entirely by locally covariant objects, namely, the field
tensor Vνμ and a covariant translation operator [26],

Vμðxj þ yjÞ

¼
Z

1

0

dηηeη
ffiffiffi
T

p ð ffiffiffi
tj

p
ŷjþdxj−x0Þ·Dðx0Þ½ ffiffiffiffiffiffiffi

Ttj
p

ŷj · V•μðx0Þ�; ð10Þ

where D ¼ ∂ − iV. “·V•μ” stands for the contraction of the
field tensor on the first index. ( dxj − x0 depends only on Δ̂
not x0.) Using (10) in (7), we can carry out an expansion in
field tensors, which are accompanied by covariant trans-
lation operators. For practical reasons, we can further
expand the latter in covariant derivatives. Here, an organ-
izing principle is afforded by Taylor expanding the inte-
grand in powers of T. This amounts to the so-called
inverse-mass expansion [27]. Here the aforementioned
induced T dependence of the sources is spread over
infinitely many orders of the expansion. The gradients
come in gradually, order by order, together with the fields.
This amounts to perturbatively approximating the profile ~v,
where ~Vðq; TÞ ¼ ~VðqÞ~vðq; TÞ in momentum space, by a
polynomial in

ffiffiffiffi
T

p
q. Among other things doing so makes

the dT integrand badly convergent at large T, especially for
small m (hence the name inverse-mass expansion). In this
perturbative context, variational perturbation theory [28,29]
corresponds to admitting a nontrivial profile for a given
order in the sources and a subsequent variation of Z with
respect to it. This is equivalent to working with an a priori
arbitrary τ dependence of the source, VðxÞ → Vðx; τÞ, and
varying Z with respect to this source. Equating the variation
to 0 identifies where Z is least sensitive to changes of the
profile, but it achieves more, as we shall see below.
Interpreting the absence of a fifth vector component as

VT ¼ 0 gauge for a five-vector, the latter also satisfies the

five-dimensional Fock-Schwinger gauge condition
ðYj − XjÞ ⊙ Vðxj þ yj; τjÞ ¼ 0, where Xj ¼ ðx0 − xj; TÞ
and Yj ¼ ðyj; τjÞ. Then the analogue of (10) is

Vμðxj þ yj; τjÞ

¼
Z

1

0

dηηeηðYjþXjÞ⊙Dðx0;TÞ½Yj ⊙ V•μðx0; TÞ�: ð11Þ

Thus, Z depends exclusively on five-dimensional locally
covariant objects. By the absence of the VT component—
which, however, represents a consistent gauge condition in
the five-dimensional context—Z is expressed in that gauge.
Thus, if we extremize Z, which has the form of a gauge-
fixed action over AdS5, with respect to V, we get the same
locally invariant result independent of the gauge condition.
Hence, additionally, the variationally determined profile
leads to a manifestly locally invariant result. Moreover,
while every four-dimensional index comes with a factor offfiffiffiffi
T

p
, allowing us to put together the gμν components, every

fifth-dimensional index comes with a factor of T, needed
for assembling gTT .
Diagrams with matter loops with a single outgoing gauge

boson that carries color do not contribute. Moreover, matter
loops with sources whose overall net flavor does not vanish
cannot be connected to any other parts by flavor neutral
gauge bosons. This causes a difference, for example,
between the two-point function of flavored and unflavored
sources, respectively. The former only have contributions
where all sources are connected to one matter loop; for the
latter this need not be the case. In the latter case there are
diagrams that are connected only by gauge bosons, i.e.,
which have purely gluonic Fock states (Fig. 1), which
influences their phenomenology [30]. Furthermore, matter
loops without any attached sources can be included in the
average over the gaugeWilson loops, i.e., we do not have to
expand the factor ewð0Þ in the first place, where the index in
parentheses indicates the order in V. Then the expression
for the two-point function for a flavored meson, for
example, condenses to

hwð2Þewð0Þ i ¼
Z

d5x
ffiffiffiffiffi
jgj

p
e−m

2ThLð2Þewð0Þ i

FIG. 1. An example for a contribution to the two-point function
of unflavored sources, which is absent for flavored ones.
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[(5) has been implemented]. For unflavored sources, there
is a second contribution, hwð1Þwð1Þewð0Þ i.
Moreover, that we do not have to expand ewð0Þ implies

that with a finite number of external sources, we never have
to expand the exponential series to infinite order, and there
is no principal issue with convergence. Furthermore, the
sourceless matter loops can be excluded from the total
proper time T in (5). Thus ewð0Þ becomes part of the
measure, hOewð0Þ i ¼ ⟪O⟫.
In the manifestly locally invariant formalism with non-

trivial profile, the lowest-order nontrivial contribution to Z
reads [16]

ZII ∝
Z

d5x
ffiffiffiffiffi
jgj

p
e−m

2TgMNgKJVMKVNJ; ð12Þ

in VT ¼ 0. Capital indicesK; J;M;N;… count over all five
dimensions, while the index T stands for the fifth compo-
nent. The variation with respect to the source VN yields

∂T

ffiffiffiffiffijgjp
e−m

2TgTTgκλ∂TVλffiffiffiffiffijgjp
e−m

2T
þ 2gμνgκλDμVνλ ¼ 0 ð13Þ

and also

D · _V ¼ 0; ð14Þ

if we include a variation with respect to the fifth compo-
nent. Thus, the flow _V is four-dimensionally covariantly
conserved like theWilson flow (8). [Also the first addend in
(13) is covariantly conserved.]
For Abelian-like source configurations, ½Vμ; Vν� ¼

0 ∀ μ; ν, ZII on a solution of (13) consists of a surface term,

Z̆II ∝
Z

d4q
ð2πÞ4 q

2j ~V⊥ðqÞj2½lnðq2ϵÞ þ 2m2=q2 þ const�;

ð15Þ

where the constant does not depend on m2, q2, or ϵ. (15)
stays finite when m2 → 0. This was also true for the two-
point function computed directly, but without maintaining
manifest local covariance. To the contrary,

R
dT
T e−m

2T

encountered in the inverse-mass expansion diverges like
lnm2. This provides another example for the improvement
of the infrared convergence through variational perturba-
tion theory [29]. These computations for obtaining a
manifestly locally invariant profile are equivalent to the
corresponding holographic computations [1,2,5]. The inte-
grand of (15) is proportional to q2j ~V⊥ðqÞj2=e2V of the field
theory for the sources, where eV is the charge of the vector.
Thus, by comparison, e−2V ∝ lnðq2=μ2Þ þ lnðμ2ϵÞ þ const
(m2 ¼ 0) corresponds to the renormalization running of the
vector charge, with initial conditions given at μ2. In the

entire paper, we absorb the charge in the source, making
that combination renormalization invariant.
Also mass renormalization is captured by the present

formalism. In order to see this consider the example of all-
orders QED, where the last line of (7) is an exponential of
double contour integrals e2

H H dy·dy0
ðy−y0Þ2 (Feynman gauge).

The contributions from where y → y0 are divergent. (This is
the same for any kind of exchanged gauge bosons.) After
regularization, ðy − y0Þ2 → ðy − y0Þ2 þ l2, the divergent
piece goes like e2Rl=l2, if y and y0 are on the same contour
with typical size R. On the saddle point of the dT
integration the mass and kinetic terms are ∝ Rm, i.e.,
linear in R and in m. Thus, Re2=l contributes to mass
renormalization [31,32]. With worldline scale setting, the
renormalization scale is chosen as ðproper timeÞ−1=2, which
leads to a proper-time dependence of m. m

ffiffiffiffi
T

p
can be seen

as the background value of a scalar sourcing ψψ (for
fermionic matter). For a varying m ¼ mðTÞ, the inverse-
mass expansion yields potential and kinetic terms,

Zθ ∝
Z

d5x
ffiffiffiffiffi
jgj

p
e−θ

2 ½1þ #gμνð∂μθÞð∂νθÞ þ � � ��;

where θðTÞ ¼ mðTÞ ffiffiffiffi
T

p
plays the role of the scalar part of

the tachyon in [33]. (We can also include the pseudoscalar
part as the source for ψγ5ψ.) Mass renormalization corre-
sponds to a different scaling dimension of the tachyon.
The equations of motion for the mass/tachyon and the

charge e (or, alternatively, the dilaton sourcing G2
μν)

describe renormalization effects. The β functions are
contained within the present formalism [31,32] and do
not have to be supplied as additional information. We have
motivated mass renormalization above, but this can be done
much more rigorously [31,32]. The renormalization of the
charge is due to loop-induced terms ∝ G2

μν, analogous to
the renormalization of the vector charge eV .
Using 1=T as the scale also here, the resulting running

gauge coupling eðTÞ from (1) ends up in the gauge-field
averagedWilson loops in (7). In eðTÞ, T is balanced against
a scale set by the initial condition for renormalization.
Hence, said average remains homogeneous of degree 0
under rescaling of the coordinates. Thus, after integrating
out y and Δ there remains the same function of e as before
only that now e → eðTÞ. The saddle-point approximation
to e2

H H dy·dy0
ðy−y0Þ2, for example, always returns e2 times a pure

number. Furthermore, the T dependence of e also contrib-
utes to the T dependence of the mass/tachyon
through γ ¼ γ½eðTÞ�.

III. FREE CASE

Without the gauge interaction the generating functional
becomes
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Z ¼ w ¼
Z

d4x0

Z
∞

ε>0

dT
2c2T3

e−m
2TL ð16Þ

≡
Z

d5x
ffiffiffiffiffi
jgj

p
e−m

2TL;

L ¼ 2c2N
ð4πÞ2

Z
P
½dy�e−

R
T

0
dτ½_y2

4
þi_y·Vðx0þyÞ�: ð17Þ

It has the form of an action constructed by integrating
a Lagrangian density over a five-dimensional space
spanned by the four original spacetime coordinates and
Schwinger’s proper time. The Lagrangian density consists
of a path integral over all closed particle trajectories modulo
translations. In this context, the integral over the four-
dimensional spacetime corresponds to the translations of
the particle trajectories. Translations are the zero modes of
the operator ∂2

τ in the free worldline action.
Reexpressing the corresponding Lagrangian density with

dimensionless coordinates τ̂ ¼ τ=T and ŷ ¼ y=
ffiffiffiffi
T

p
yields

L ¼ 2c2N̂
ð4πÞ2

Z
P
½dŷ�e−

R
1

0
dτ̂½ð∂ τ̂ ŷÞ2

4
þi

ffiffiffi
T

p ð∂ τ̂ ŷÞ·e
ffiffi
T

p
ŷ·∂x0 Vðx0Þ�:

Thus, one sees that after integrating out the position field ŷ
every source V and every gradient ∂ is accompanied by a
factor of

ffiffiffiffi
T

p
. Hence, all index contractions are carried out

by the combination Tημν. Together with the conditionffiffiffiffiffijgjp ¼ ð2c2T3Þ−1, this selects a metric parametrization
like (4).
The quickest way to compute the Abelian part of the

lowest-order term in the inverse-mass expansion is by
carrying out an expansion of the worldline action to second
order in fields and gradients,

N
Z
P
½dy�e−

R
T

0
dτ½_y2

4
þiey·∂x0 _y·Vðx0Þ�

⊃ −
1

2
N

Z
P
½dy�

Z
T

0

dτ1dτ2e
−
R

T

0
dτ _y

2

4 ð18Þ

× ½y1 · ∂x0 _y1 · Vðx0Þ�½y2 · ∂x0 _y2 · Vðx0Þ�

¼ 1

2

Z
T

0

dτ1dτ2 ð19Þ

× ðP12P̈12η
μκηνλ þ _P2

12η
μληνκÞð∂μVνÞð∂κVλÞ

¼ −
1

6
T2ðημκηνλ − ημληνκÞð∂μVνÞð∂κVλÞ: ð20Þ

Here yj ¼ yðτjÞ. Already in the first step, we only kept
terms in the integrand that give nonzero contributions to the
integrals. For the definition of the worldline propagator P12

and its derivatives see Appendix A. In the non-Abelian
version, the Abelian field tensor is replaced by the non-
Abelian one.

In the expressions for the N-point functions the sources
always appear in combination with nontrivial profile
functions, which correspond to aWilson-like flow (gradient
flow). A general indication for this is that the ubiquitous
translation operators ey·∂x0 are integrated into Gaussian
smearing operators,

N
Z
P
½dy�e−1

4

R
T

0
dτ _y2eðy1−y2Þ·∂x0 ¼ eP12□; ð21Þ

where P12 ¼ OðTÞ and □ is the flat four-dimensional
d’Alembertian. Keeping the full translation operator in the
previous computation, for example, would have put exactly
this factor inside (19). The inverse-mass expansion sacri-
fices these profiles for the sake of a manifestly covariant
expansion. Above we argued that we can reinstate a profile
and keep manifest covariance, effectively by admitting a
proper-time dependence of the sources, Vðx0Þ → Vðx0; τÞ,
and supplementing it by a variational principle. Thus, we
include in the above expansion also all terms up to two
derivatives in τ, which yields additionally

−
1

2
N

Z
P
½dy�

Z
T

0

dτ1dτ2e
−
R

T

0
dτ _y

2

4

× ðτ1 − TÞ_y1 · _V0ðτ2 − TÞ_y2 · _V0

¼ −
1

2

Z
T

0

dτ1dτ2ðτ1 − TÞðτ2 − TÞP̈12
_V0 · _V0 ð22Þ

¼ −
1

12
T3 _V0 · _V0: ð23Þ

This is equivalent to replacing y · ∂μFðxÞjx¼x0 →
½y1 · ∂μ þ ðτ1 − TÞ∂τ�F ðx; τÞjτ¼T

x¼x0 , which is expected
from (11). The above expression is independent of the
expansion point, which here we chose as T; it only appears
in the argument of the source. In case we chose another
expansion point, we could change their argument to T by a
change of integration variable. Then, after putting all terms
together,

Z∂2
2 ¼ −

1

3

1

ð4πÞ2
Z

d5x
ffiffiffiffiffi
jgj

p
e−m

2T

× ðgMKgNJ − gMJgNKÞð∂MVNÞð∂KVJÞ; ð24Þ

for c ¼ 8 all prefactors are absorbed in the metric g and the
final expression constitutes the kinetic term for a vector in
axial gauge VT ¼ 0 over AdS5;0 before undoing the
analytic continuation and AdS4;1 afterwards. Conformal
symmetry is broken, as already in the classical theory, by
the mass m, which here takes the guise of a tachyon
potential e−θ

2

evaluated on the tachyon profile θ ¼ m
ffiffiffiffi
T

p
.

Additionally, even in the free case the charge of the source
is renormalized. [See the discussion after (15).]
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A. Higher spins

Here we consider a sourceWμ1…μL of rank L; symmetric
in all indices,Wμ1…μL ¼Wðμ1…μLÞ; traceless, η

μ1μ2Wμ1…μL ¼
0; and transverse, ∂νη

νμ1Wμ1…μL ¼ 0. The Lagrangian takes
the form

L ¼ 2c2N
ð4πÞ2

Z
P
½dy�e−

R
T

0
dτ½_y2

4
−ð−i_y·ÞLWðx0þyÞ=L!�; ð25Þ

where ð_y·ÞLW denotes the L-fold contraction of W with _y.
The contribution to the two-point function comes from

L2 ¼
ð−iÞ2L
2ðL!Þ2

2c2N
ð4πÞ2

Z
T

0

dτ1dτ2

Z
P
½dy�e−

R
T

0
dτ _y

2

4

× ð_y1·ÞLW1ð_y2·ÞLW2; ð26Þ

where y1 ¼ yðτ1Þ. Expanding up to the second order in
four-gradients yields

L∂2x
2 ¼ ð−iÞ2L

2ðL!Þ2
2c2N
ð4πÞ2

Z
T

0

dτ1dτ2

Z
P
½dy�e−

R
T

0
dτ _y

2

4

×fW0ð·_y1ÞLW0ð·_y2ÞL
þ ½y1 · ∂x0W0ð·_y1ÞL�½y2 · ∂x0W0ð·_y2ÞL�g; ð27Þ

where we dropped the first order in the gradients and terms
where both gradients act on the same source, as they give 0
after integration also taking into account the tracelessness
of W. W0 ¼ Wðx0Þ. Carrying out the ½dy� integration
leads to

L∂2x
2 ¼ ð−iÞ2L

2L!
2c2

ð4πÞ2
Z

T

0

dτ1dτ2½P̈L
12W ·L W

− P̈L
12P12η

μνð∂μWÞ ·L ð∂νWÞ
− LP̈L−1

12
_P2
12η

μληνκð∂μWκÞ ·L−1 ð∂νWλÞ�; ð28Þ

where we have dropped the index 0 to counteract the
proliferation of indices. ·L stands for the L-fold contraction
of the 2 × L suppressed indices with the inverse flat metric
η··. P12 stands for the worldline propagator and _P12 (P̈12)
for its first (second) derivative with respect to its first
argument. (See Appendix A.) Performing the dτj integra-
tions leads to

L∂2x
2 ¼ −

2L−1T3−L

6L!
2c2

ð4πÞ2
× ðημνηκλ − LημληνκÞð∂μWκÞ ·L−1 ð∂νWλÞ: ð29Þ

There are no contributions from τ1 ¼ τ2 in the presence of
P12 or _P12, since P11 ¼ 0 ¼ _P11. Elsewhere, we regularize
powers of coincident δ distributions according to
½δðτ1 − τ2Þ�l → δðτ1 − τ2Þ=Tl−1, which is tantamount to
P̈L
12 → ð−2=TÞL−1P̈12.
In the next step, we again admit profiles in the proper-

time direction, Wðx0Þ → T ðx0; τÞ, and expand to second
order in proper-time gradients,

L
∂2T
2 ¼ ð−iÞ2L

2L!
2c2

ð4πÞ2
�
−
2

T

�
L−1

_T 0 ·L _T 0

×
Z

T

0

dτ1dτ2ðτ1 − TÞðτ2 − TÞP̈12 ð30Þ

¼ −
T4−L2L−1

12L!
2c2

ð4πÞ2
_T 0 ·L _T 0; ð31Þ

where T 0 ¼ T ðx0; TÞ and _T 0 ¼ ∂TT 0. Once more, we
dropped terms in the integrand that integrate to 0. Finally,
after collecting all terms, we change the mass dimension
of the source to L by rescaling with powers of T,
T ¼ TL−1W, such that

Z∂2
2 ¼ −

2L−1

ð4πÞ23L!
Z

d4x0

Z
∞

ε>0

dT
2T3

e−m
2T

	
T3−Lðημνηκλ − LημληνκÞð∂μT κÞ ·L−1 ð∂νT λÞ þ

1

2
T4−L _T ·L _T



ð32Þ

¼ −
2L−1

ð4πÞ23L!
Z

d4x0

Z
∞

ε>0

dT
2T3

e−m
2T ð33Þ

×

	
TLþ1ðημνηκλ − LημληνκÞð∂μWκÞ ·L−1 ð∂νWλÞ þ

1

2
TLþ2 _W ·L _W þ 1

2
TLðL − 1Þð1þm2TÞW ·L W




¼ −
ð2=cÞL−1
ð4πÞ23L!

Z
d5x

ffiffiffiffiffi
jgj

p
e−m

2T

× fðgMNgKJ − LgMJgNKÞð∂MWKÞðg••ÞL−1ð∂NWJÞ þ 4ðL − 1Þð1þm2TÞWðg••ÞLWg; ð34Þ
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where ðg••ÞL stands for the L-fold contraction with the five-
dimensional inverse metric gMN , with which all contrac-
tions can be carried out for c ¼ 8, remembering that all
fifth-dimensional components are 0. (We could reexpress
the above action using covariant derivatives, which corre-
sponds to shuffling contributions between the kinetic term
and the mass term.) (34) is a Frønsdal-like action [34] over
AdS5 (after analytic continuation of the time component)
for traceless fields without T components and in the
presence of a tachyon term. The variation of this action
with respect to Wμ1…μL yields the corresponding compo-
nents of the five-dimensional Frønsdal equations once the
constraints of tracelessness and transversality have been
imposed. There exist several approaches to obtaining the
Frønsdal equations from an un- or less constrained varia-
tional principle, like auxiliary compensator fields [36,37]
and the related relaxation to double tracelessness [34].
Here, when we evaluated the action on its saddle point in

the vector case, we argued that because the value of the
action is independent of the gauge, we could reinstate the T
components and perform the computation in another gauge,
with the difference that there is an additional equation from
the variation of the T component. Imposing VT ¼ 0 gauge
after the variation it is (14). In the form ∂Tð∂ · VÞ ¼ 0 it
implies the constancy in T of the divergence of V. Hence, if
V is transverse on the boundary, it stays transverse
everywhere.
Analogously, for higher spins, when reinstating the T

components in the action formulated with covariant deriv-
atives, the equations with at least one T component read

gMNð∇M∇NWM1…ML
− L∇M∇ðM1

WM2…MLÞNÞ ¼ 0;

where we imposed WT ¼ 0 gauge a posteriori. Equations
with more than two of the Mj ¼ T are identically satisfied
by imposing the gauge condition. All the nonzero
Christoffel symbols,

ΓT
μν ¼

4

2c
ημν; Γμ

Tν ¼ −
1

2T
δμν ¼ Γμ

νT;

ΓT
TT ¼ −

1

T
; ð35Þ

have an odd number of components in the T direction. The
equation with a single Mj ¼ T can thus only have one of
them combined with a partial derivative. The equation with
two indices in the T direction gets contributions from two
Christoffel symbols or two partial derivatives. The latter
equation implies ∂ ln trW

∂ lnT ¼ const, while in the former a sum
over multiples of divW, ∂divW

∂ lnT , and gradtrW vanishes.
Therefore, ifW is transverse and traceless on the boundary,
it remains so everywhere. If we had enforced transversality
from the very beginning of the derivation of the effective
action, the cross term would be absent and the previous
equations of motion would simplify to

0 ¼ gMN∇M∇NWTTM3…ML

¼ gμνΓκ
μTΓλ

νTWκλμ3…μL ¼ trW=ð4T2Þ; ð36Þ

and

0 ¼ gMN∇M∇NWTM2…ML

¼ −gμνð∂μΓκ
νT þ Γκ

μT∂νÞWκμ2…μL ¼ divW=T: ð37Þ

Thus, in that case the divergence and the trace would be
forced to vanish identically, a fact that has been observed
before in [14].
Independent of how we enforce transversality and trace-

lessness, our worldline holographic equations of motion for
the transverse traceless modes are given by�
−
T1−L

e−m
2T
∂T

e−m
2T

T1−L ∂T −
c
4

□

T
þ L − 1

T2
ð1þm2TÞ

�
W⊥

¼ 0: ð38Þ
Exploring the behavior at small values of T with a power-
law ansatz, W⊥ ∝ Tα leads to the following characteristic
equation,

−αðα − 2þ LÞ þ L − 1 ¼ 0; ð39Þ
with the solutions

α ¼ 1 & α ¼ 1 − L: ð40Þ
For spinless elementary matter these powers coincide
with those found in [1,13]. The space of solutions for

the Fourier transform ~Wðq; TÞ is spanned byMðL − c q2

4m2 ;

Lþ 1; m2TÞT (belonging to α ¼ 1) and UðL − c Q2

4m2 ;
Lþ 1; m2TÞT (belonging to α ¼ 1 − L), where M and
U are the Kummer functions and Q2 ¼ −q2. The boundary
condition for the profile at small values of T is
limT→0TL−1 ~W ¼ ~W, where ~W is the Fourier transformed
original source. The solutions are polynomial and square

normalizable for the discrete values c Q2

4m2 − L ¼ n ∈ N0,
i.e., for cQ2 ¼ 4m2ðnþ LÞ.
Taking stock, the present framework maps a free scalar

quantum field theory on Mink4 with sources of any spin
onto a field theory for the sources on AdS5. Such a duality
was conjectured to exist for four-dimensional conformal
theories [38]. Admitting a mass for the elementary matter
breaks conformality and shows up as a tachyon profile in
five dimensions. Hence, the value of the parameter m can
be interpreted as the boundary value for a growing tachyon
over an AdS background. From this vantage point, the five-
dimensional dual remains one of higher-spin fields over
AdS with a certain field taking on a nonzero background
value. [In fact, for L ¼ 0 W is the tachyon squared θ2

and (38) admits the solution θ2 ¼ WL¼0 ∝ T independent
of m2. Hence, m2 can be instated as initial value
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limT→0ðWTL−1¼−1Þ ¼ m2.] The absorption of the expo-
nential factor in the fields and/or metrics and/or coordinates
fails beyond the quadratic level (in the action).
The rank-two sources capture the deviation from the AdS

geometry. If the solutions of their equations of motion
acquire a nonzero background value in the presence of the
tachyon profile, this corresponds to a new effective geom-
etry. Vice versa the scalar profile is influenced by the new
effective geometry by interaction terms of the rank-zero and
rank-two sources. At the linearized level the equations of
motion for the rank-two source possess the general exclu-
sively T-dependent solutions without Lorentz breaking,

Wμν ¼ ημν
c1 þ c2

m4 ½1þ ð1 −m2TÞeþm2T �
cT

: ð41Þ

Matching the total metric to the boundary metric sets
c1 ¼ 0. The c2 term in the numerator only contributes from
OðT2Þ onwards. A nonzero value of c2 corresponds to a
modified action. (For values of c2 outside the interval
½− 1

2
; 0� the effective metric and the corresponding Ricci

scalar become singular at some positive T. For values
inside ½− 1

2
; 0½ the Ricci curvature starts at the constant

negative AdS value and grows more and more negative,
asymptotically ∝ T2.) At this level, however, any value of
c2 corresponds to a stationary point of the action. To select
a minimal action we have to take into account nonlinear
terms and also the backreaction of the tachyon. Moreover,
the sources of other ranks may get nonzero background
values as well.
Here, as above for rank-one sources, the analysis of the

five-dimensional saddle-point equations corresponds to
determining an optimal profile in the T direction for the
sources. Such a profile is induced by the worldline
formalism anyhow, albeit not in a manifestly covariant
manner. The variational principle remedies this and coin-
cides with the saddle-point computation known from
holographic approaches. (See Sec. II C.) From the higher
dimensional picture, we might expect that the calculations,
at least in some semiclassical limit, are path integrals over
field configurations living in all five dimensions. How to
interpret in the present framework the (quantum) aspects
captured by a path integral beyond the (classical) saddle
point computation, however, must be left for later work.

1. Interactions

So far, we have mostly looked at two-point functions and
kinetic terms. The present formalism also gives a prescrip-
tion for determining interactions. [One occasion where we
encountered an interaction was inside the fully non-Abelian
kinetic term for a vector (12).] Using the above methods, to
the lowest order in the gradients the three-point vertex for
sources with even L, for example, comes out as

L∂0

3 ∝ Wðg••ÞL2Wðg••ÞL2Wðg••ÞL2↺; ð42Þ

where ↺ indicates that the third source is contracted with
the first. For vectors interacting with a rank-L source, on
the other hand, we find

L∂0
VLW ∝ VLðg••ÞLW: ð43Þ

In both cases imposing tracelessness is instrumental. Any
number of terms can be worked out this way. While this is
expected to be possible consistently over an AdS back-
ground [39], there are impediments over others like de
Sitter or Minkowski. Given that our prescription can yield
various dþ 1-dimensional spacetimes (see below) a
thorough study of interactions in our framework is an
important future task.

IV. OTHER GEOMETRIES

As was just discussed, backreacting the effective metric
made up of the original AdS metric together with the
contributions from the rank-two sources can lead to a
modified effective geometry. Sources of any rank may
participate in characterizing the effective spacetime. There
are, however, more possibilities, which we describe here.

A. Analytic continuations

Above, we were concerned with worldline holography
leading from a quantum field theory over four-dimensional
Minkowski space to a field theory for its sources over
five-dimensional anti–de Sitter space, more accurately
AdS4;1. In fact, for the worldline approach we first Wick
rotated to Euclidean space and from there found a link to
five-dimensional hyperbolic space H5, i.e., AdS5;0.
Subsequently, continuing back the time direction leads
to AdS4;1. This corresponds to changing ϵt from −1 to þ1

in the metric

ds2 ¼g ϵT
dT2

4T2
þ ϵtðdtÞ2 þ jd~xj2

cT
; ð44Þ

while ϵT ¼ þ1. By another analytic continuation [40] that
takes ϵT from þ1 to −1, we could also reach five-
dimensional de Sitter space dS5 from H5 and AdS2;3 from
AdS4;1,

These are still holographic pictures of four-dimensional flat
space, but with an analytically continued proper time. (In
[40] this is actually done for a radial coordinate z, where
z2 ∝ T, which is rotated from real to imaginary.
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Accordingly, here this corresponds to a change of the sign
of T and then appears like doing holography on the other
side of the boundary.)

B. Finite temperature

In thermal field theory in the imaginary time formalism
the time direction is compactified with the period given by
the inverse temperature. If we run our present machinery
straightforwardly we find thermal AdS space, i.e., AdS
space with a compactified temporal direction. It is known,
however, that there is a second space with the same
boundary topology, the AdS black hole [42]. In the present
formalism the difference between the two spaces does not
arise by holographically extending some finite difference
present already on the boundary, but on sources of the
stress-energy tensor that vanish on the boundary together
with their first derivatives [43] and that combine with the
“naïve” background to yield the five-dimensional metric.
Taking these sources into account, both geometries, the
thermal AdS with the extra components identically 0, and
the AdS black holes, with finite extra components, are
stationary points of the action. The relative value of the
action then selects the preferred configuration. It turns out
that in the present setting the relative importance of bosonic
and fermionic degrees is decisive for which of the two five-
dimensional spacetimes is preferred [45].

C. Nonrelativistic case

The Schrödinger equation’s conformal Galilean sym-
metry in three spatial dimensions can be constructed
by constraining (17) without the factor e−m

2T in 4þ 1-
dimensional Minkowski space by imposing on the light-
cone momentum pþ ¼ m [19]. Correspondingly, xþ takes
the role of time. This leads to a six-dimensional volume
element (two extra dimensions, not only one) ∝ T−7=2. This
is the volume element for the correct metric [19,20],

d2s¼g −
dT2

4T2
þ 2ðdxþÞ2

T2
þ 2dxþdx− − dx · dx

T
; ð45Þ

where x� ¼ x0�x4ffiffi
2

p and x4 is the coordinate in the direction of

the initially present extra dimension. [The power of T in the
denominator of the ðdxþÞ2 term can be different [20]
without influencing the volume element.] In the relativistic
case, on top of the factor of 1

T from the integral representa-
tion of the logarithm, the volume element was due to the
mismatch in numbers of position and momentum integrals
in the path integral,

1

T

Z
d4pe−Tp

2 ∝ T−3 ∝
ffiffiffiffiffi
jgj

p
: ð46Þ

For the present nonrelativistic case, we have an analogous
mismatch,

1

T

Z
d3pdp−e−Tð2mp−þp2Þ ∝ T−7=2 ∝

ffiffiffiffiffiffi
jgj

p
: ð47Þ

D. General curved spacetime

If we start from a general curved spacetime, we have to
analyze a spacetime dependent metric h ¼ hðxÞ in the
worldline action. We can still split off a translational
coordinate x0, where x ¼ x0 þ y and _x0 ≡ 0, such that

Zh ∝
Z

dT
2T3

N
Z
P
½dx�e−

R
T

0
dτ½1

4
_x·hðxÞ·_xþi_x·hðxÞ·VðxÞ�

¼
Z

dT
2T3

d4x0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhðx0Þj

p
N

×
Z
P
½dy�e−

R
T

0
dτ½1

4
_y·hðx0þyÞ·_yþi_x·hðxÞ·VðxÞ�; ð48Þ

where we also included a rank-one source as an example. x0
are generally not zero modes of the worldline kinetic
operator anymore, as h is not constant. The volume element
of a Fefferman-Graham metric

ds2 ¼H dT2

4T2
þ dx · h · dx

cT
ð49Þ

still emerges consistently, since

ffiffiffiffiffiffiffi
jHj

p
¼

ffiffiffiffiffiffijhjp
2c2T3

: ð50Þ

Using Riemann normal coordinates centered at x0, we get
to leading order

Zð0Þ
h ∝

Z
dT
2T3

N
Z
P
½dy�0e−

R
T

0
dτ½1

4
_x·hðx0Þ·_xþi_x·hðx0Þ·VðxÞ�:

From thereon the computations proceed as above, since
hðx0Þ is a constant from the viewpoint of the path
integration. We get the previous results with all contractions
carried out with the metric (49). (In order to see this, it is
helpful to work in coordinates that all have the dimension
of a length.) At this point, there are no couplings between
the sources and curvature tensors. These are only generated
at higher orders of the expansion. Then, however, one must
take care of some technical details: On the one hand, the
path-integral measure is nontrivial on a curved space,
which can be handled by the introduction of additional
ghost fields [46] or alleviated by adopting unimodular
gauge,

ffiffiffiffiffiffijhjp ¼ const. Moreover, depending on how the
path integral is carried out in practice, there appear
correction terms in the worldline action that depend on
the metric h [47]. In spaces of constant Ricci curvature R,
they give rise to an overall factor of e−RT=16, which thus
resembles a mass term and constitutes part of the source-
curvature interactions. In more general spacetimes already
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at the leading order in an expansion in Riemann normal
coordinates this factor is four-spacetime dependent,
e−Rðx0ÞT=16.

V. SHORT SUMMARY

The purpose of the present paper was to identify such
aspects of holography that can be obtained without input
from string theory [48]. Thus, completely within quantum
field theory we have demonstrated that a quantum gauge
field theory over Mink4 corresponds to a field theory for
its sources over AdS5 to all orders in the elementary
fields, matter and gauge. The fifth coordinate is
Schwinger’s proper time in the worldline formalism
[49,52]. The sources receive an induced dependence on
this variable corresponding to a Wilson flow (gradient
flow). Extremizing the action with respect to this flow—
which is motivated by demanding a locally invariant result
with good infrared behavior—reproduces the holographic
computations.
When starting, for example, from a free scalar theory

over Mink4 sourced with tensors of any spin, we obtain a
field theory for these higher-spin sources over AdS5. The
mass of the elementary matter takes the guise of a tachyon
profile, which breaks conformal symmetry in five dimen-
sions, as the elementary mass already did in four.
Additional contributions arise from charge renormalization.
In an interacting theory, renormalization of the gauge
charge and the elementary mass are further sources of
conformal symmetry breaking.
The programgeneralizes straightforwardly to other pairs of

spacetimes with d and dþ 1 dimensions, respectively. By
various combinations of analytical continuations we can also
link Minkd and Eucld to AdSd;1, AdSdþ1;0, AdS2;d−1, and
dSdþ1. At finite temperature the five-dimensional spacetime
turns out to be either thermalAdS space or theAdSblack hole
[45]. Commencing from a general curved d-dimensional
manifold, to leading order in Riemann normal coordinates the
dþ 1-dimensional metric is the Fefferman-Graham metric
for the given d-dimensional metric. The subsequent orders
lead to source-curvature interactions.
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APPENDIX: WORLDLINE PROPAGATORS

We frequently have to compute expectation values of
products of position operators y and its first proper-time

derivative _y over all closed paths with the weight e−
1
4

R
T

0
dτ _y2 .

It is practical to introduce auxiliary sources c and s in the
path integral and replace y and _y with functional deriva-
tives, y → δc and _y → δs. The sources are put to 0 after all
functional derivatives have been carried out. Then we can
perform the path integral and find

N
Z

½dy�e14
R

T

0
dτðy·∂2τyþ4c·yþ4s·_yÞ ðA1Þ

¼ N
Z

½dy�e14
R

T

0
dτðy·∂2τyþ4c·y−4_s·yÞ ðA2Þ

¼ N
Z

½dy�e14
R

T

0
dτ½yþ2ðc−_sÞ∂−2τ �·∂2τ ½yþ2∂−2τ ðc−_sÞ� ðA3Þ

× e−
R

T

0
dτðc−_sÞ·∂−2τ ðc−_sÞ ðA4Þ

¼ e−
1
2

R
T

0
dτadτbðca−_saÞ·Pabðcb−_sbÞ ðA5Þ

¼ e
1
2

R
T

0
dτadτbð−ca·cbPab−ca·sb _Pabþsa·cb _Pabþsa·sbP̈abÞ: ðA6Þ

Here P12 ¼ Pðτ1; τ2Þ stands for the worldline propagator
and _P12 (P̈12) for the first (second) derivative with respect
to its first argument. We are working in the “center-of-
mass” conventions, where x0 is defined such thatR
T
0 dτy ¼ 0. Then the worldline propagator is translation-
ally invariant in Schwinger’s proper time, Pðτ1; τ2Þ ¼
Pðτ1 − τ2Þ, and obeys the equation of motion

P̈12 ¼ 2δðτ1 − τ2Þ − 2=T: ðA7Þ

The solution and its first derivative read

P12 ¼ jτ1 − τ2j − ðτ1 − τ2Þ2=T; ðA8Þ

_P12 ¼ signðτ1 − τ2Þ − 2ðτ1 − τ2Þ=T: ðA9Þ
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