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String theory contains few known working examples of de Sitter vacua, four-dimensional universes with
a positive cosmological constant. A notorious obstacle is the stabilization of a large number—sometimes
hundreds—of moduli fields that characterize the compact dimensions. We study the stability of a class of
supersymmetric moduli (the complex structure moduli and dilaton in type-IIB flux compactifications) in
the regime where the volume of the compact space is large but not exponentially large. We show that, if the
number of moduli is very large, random matrix theory provides a new stability condition, a lower bound
on the volume. We find a new class of stable vacua where the mass spectrum of these supersymmetric
moduli is gapped, without requiring a large mass hierarchy between moduli sectors or any fine-tuning of
the superpotential. We provide the first explicit example of this class of vacua in the P4

½1;1;1;6;9� model. A

distinguishing feature is that all fermions in the supersymmetric sector are lighter than the gravitino.
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I. INTRODUCTION

It has been known for decades that string theory has low-
energy solutions describing a four-dimensional universe
with negative or zero cosmological constant, with the extra
six dimensions “compactified” (for a review see [1–4]).
From the four-dimensional point of view the compactified
space is described by a set of fields called the moduli which
describe, roughly, the size and shape of the extra dimen-
sions. A much harder question is whether string theory can
describe a four-dimensional universe with broken super-
symmetry and a positive cosmological constant, a so-called
de Sitter vacuum (dS), with a meta-stable compactification.
In type-IIB string theory this question has been answered
positively in a few scenarios, the best studied being the
KKLT [5] constructions, first introduced by Kachru,
Kallosh, Linde and Trivedi, large volume scenarios
(LVS) [6,7] and the so-called Kähler uplifted vacua
[8–14]. The effective low-energy theories describing these
models typically involve hundreds of moduli fields, which
can be divided into two classes: Kähler moduli and complex
structure moduli. In addition we also have the dilaton,
whose expectation value determines the string coupling
constant. The interactions among all these fields are given
by a complicated scalar potential, which makes a detailed
perturbative stability analysis of these vacua unfeasible
except in very simplified scenarios. In type-IIB flux
compactifications, at the classical level, the scalar potential

is induced by the presence of background fluxes (higher
dimensional generalizations of electromagnetic fields) on
the compact space [15]. Due to a Dirac condition these
fluxes need to be quantized, and are therefore characterized
by a set of integers. This leading contribution of the scalar
potential depends only on the dilaton and the complex
structure moduli (for short, the complex structure sector),
and therefore it is necessary to take into account quantum
effects in order to fix the remaining Kähler moduli.
To make the problem more tractable, it is often assumed

that the background fluxes provide an effective stabilization
mechanism for the complex structure sector, and it is not
considered any further. The consistency of this approach
has been checked for KKLT vacua [16–21] and large
volume scenarios [22,23]. Here we discuss this matter for
Kähler uplifted dS vacua.
In the large volume regime of type-IIB flux compacti-

fications, both for LVS and Kähler uplifted dS vacua, the
stabilization of the Kähler moduli is a result of the
competition between the leading nonperturbative and α0
(radiative) quantum corrections.1 For these corrections to
be under control it is necessary that the volume of the
compactification, which belongs to the Kähler sector,
has a large expectation value compared to the string length.
A large compactification volume is also essential for the
consistency of the 4-dimensional supergravity description
of these models, and in particular for the Kaluza-Klein
(KK) scale to be large compared to the supersymmetry
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1See [24–26] for discussions on the effect of string loop (gs)
corrections in these models.
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breaking scale [7,23]. In LVS the vacua obtained in this
way have a negative cosmological constant (anti–de Sitter),
and thus additional interactions are needed to make the
cosmological constant positive. Kähler uplifted vacua are
particularly interesting because the dS vacuum is achieved
without the need for extra ingredients (matter or branes),
just with an appropriate tuning of the parameters. The
downside of the latter models is that the volume is fixed
only at moderately large values, narrowing the regime of
validity of the effective field theory.

II. STABILITY OF THE COMPLEX
STRUCTURE SECTOR

An underlying assumption of many constructions based
on the scenarios above is that, with the right choice of
fluxes, the complex structure sector can be stabilized at a
supersymmetric configuration where the masses of fer-
mions and scalars are much larger than the relevant
cosmological energy scales. In that case, this sector can
be safely integrated out, and then the attention is focused on
the stabilization of the lighter Kähler moduli, which is
much trickier. While this is a reasonable starting point, we
will argue that, at least in Kähler uplifted scenarios, this
assumption becomes untenable as the number of complex
structure moduli increases. We will show that this obser-
vation leads to further constraints on the parameter space of
the model which are more restrictive than those derived
from the consistency of the effective field theory. Moreover,
for a very large number of moduli—typical numbers are
in excess of Oð100Þ—a new class of stable vacua emerges,
in which the fermions of the complex structure sector are all
lighter than the gravitino.
In LVS and Kähler uplifted vacua, the potential that

stabilizes the moduli is a small deformation of the tree-level
potential, with quantum corrections suppressed by the
volume V of the compact Calabi-Yau space [7,10]

V ¼ V tree−level þm2
3=2 ×Oðξ̂=VÞ: ð1Þ

Here the parameter ξ̂=V characterizes the magnitude of the
leading quantum corrections, and we have written explicitly
its dependence on the volume for clarity (see [10,25,26]).
The tree-level potential is positive semidefinite and is of the
“no-scale” type: it is flat for the Kähler moduli leaving
undetermined the expectation values of these fields, and in
particular the overall volume V and gravitino mass m3=2.
The dilaton and complex structure moduli are stabilized at a
supersymmetric configuration that is determined by the
fluxes and by the geometric and topological properties of
the compactified space [15]. This configuration defines a
Minkowski vacuum where, in general, supersymmetry is
broken by the Kähler moduli.
An important point is that, if we ignore quantum

corrections, there is a relation between the masses of the

fermions mλ (with λ running through the complex structure
moduli and dilaton) and the squared masses of the scalars in
the complex structure sector [27–30] μ2�λ:

μ2�λjtree−level ¼ ðm3=2 �mλÞ2: ð2Þ

At tree level, there are no instabilities in the supersym-
metric sector, since the potential is non-negative and the no-
scale vacuum is Minkowski. But note that, for every
fermion in the supersymmetric sector with the same mass
as the gravitino, there is a massless scalar in the tree-level
spectrum. The sign of the m2

3=2 ×Oðξ̂=VÞ quantum cor-
rections is unknown so these massless scalars are not
protected and can become perturbatively unstable2

(tachyonic, μ2 < 0). The same is true for sufficiently light
scalars, to which we turn next, but first we need to
characterize the spectrum of fermion masses.

III. THE MODEL

The tree-level fermion mass spectrum of the complex
structure sector is determined by the geometry of the
internal space and by the configuration of background
fluxes. However, the high complexity of these theories
makes a detailed calculation impractical in generic com-
pactifications, so instead, we will follow a statistical
approach. Intuitively, it is clear that, as the number of
complex structure moduli increases, so does the probability
that there are fermions with tree-level masses close to the
gravitino mass, and with it the expected percentage of very
light scalars that are susceptible of becoming tachyonic by
the effect of ξ̂=V corrections. This intuition can be made
quantitative in the framework of random matrix theory
(RMT) [31–37], and was confirmed in great detail in [29].
The idea is to promote to random variables the entries

of the fermion mass matrix and then to characterize the
spectrum of these matrices using standard techniques from
RMT [33–35]. The universality theorems in RMT ensure
that the result depends only mildly on the (unknown)
distribution of the couplings for sufficiently large matrices
[38,39], and therefore is insensitive to the details of the
compactification.3 Assuming that all complex structure
moduli can be treated on equal footing, i.e., statistical
isotropy in field space, the appropriate ensemble to
represent the fermion mass matrix is the Altland-
Zirnbauer CI matrix ensemble [33–35]. Proceeding in this
way, and using the relation (2), the authors of [29]
constructed a random matrix model to characterize the
tree-level scalar mass spectrum of the complex structure
sector in type-IIB flux compactifications. In the limit

2The form of the tree-level potential prevents these instabilities
from being runaway directions. Thus a different vacuum may be
found nearby, but there is no guarantee that it will be dS.

3See [37] for a recent discussion on the applicability of random
matrix theory to study flux compactifications.
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where the number of (complex) fields is large, N → ∞, the
spectral density ρðμ2Þ for the tree-level scalar masses
converges with order one probability to a particularly
simple form

ρðμ2Þ¼2Nm2
3=2

πm2
hμ

�
Θðm2

h−ðm3=2þμÞ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

h−ðm3=2þμÞ2
q

þΘðm2
h−ðm3=2−μÞ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

h−ðm3=2−μÞ2
q �

; ð3Þ

where ΘðxÞ is the Heaviside theta function. It is important
to stress that the spectral density (3) is just the most likely
scalar mass spectrum predicted by the random matrix
theory model. Thus, it is possible to find vacua with a
different mass spectrum, but they occur with an exponen-
tially suppressed probability [40–42].

IV. A NEW CLASS OF VACUA

The spectral density (3) depends on two free parameters
mh and m3=2, which represent the mass scale of the
fermions in the complex structure sector and the gravitino
mass, respectively. To be precise, the parameter mh is
defined as the expectation value of the largest fermion
mass mh ≡ E½mmax�, and is related to the flux energy scale,
mh ∼Mp=V, where Mp stands for the Planck mass. The
gravitino mass is determined by the volume and the
expectation value of the flux superpotential W0, m3=2 ¼
MpjW0j=V [7]. Figure 1 shows the typical tree-level
spectrum (3) of the complex structure sector. Notice the
accumulation of very light scalars in the case when the
heaviest fermion is heavier than the gravitino, (mh > m3=2).
By contrast, if the heaviest fermion in the complex structure
sector is lighter than the gravitino, (mh < m3=2), the scalar
density develops a mass gap. In the latter regime it is also
possible to find atypical vacua, i.e. deviations from (3),

where the smallest scalar mass is comparable in size to the
quantum corrections, however the fraction of such vacua is
exponentially suppressed [29]

P
�
μ2min <

ξ̂

V

�
∼ e−

4
3
Nx

3
2 ;

x ¼

0
B@1 −

ffiffiffiffî
ξ

V

s 1
CA

2

m2
3=2

m2
h

− 1: ð4Þ

The conclusion is that, for very large numbers of moduli,
N ∼Oð100Þ, requiring the de Sitter vacua to be free from
tachyonic instabilities in the supersymmetric sector favors
vacua with all fermions lighter than the gravitino. We will
denote these stable de Sitter configurations “LSF vacua,”
which stands for “light(er) supersymmetric fermions.” Note
that lighter than the gravitino does not necessarily mean
light; the actual fermion masses can easily be in the grand
unification scale as long as the gravitino is even heavier.4

V. COMPARISON WITH KKLT
AND LVS REGIMES

The KKLT scenario corresponds to fine-tuning the fluxes
so that the complex structure moduli have large masses
compared with the supersymmetry breaking scale, which is
set by the gravitino mass, that is mh ≫ m3=2 (jW0j ≪ 1)
[16,17]. In this regime the stability of this sector is
guaranteed since the tree-level masses are large compared
to the contributions induced by quantum effects. In LVS
and in Kähler uplifted vacua the absence of fine-tuning of
W0 implies that the fermions typically have masses
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FIG. 1. Scalar mass spectrum, (3), of the complex structure sector at tree level with a large number of fields, N → ∞. The spectrum is
always tachyon-free, but when the heaviest fermion is heavier than the gravitino, mh > m3=2 (left), the spectral density diverges as
ρðμ2Þ ∼ 1=μ near μ ¼ 0. By contrast, if the heaviest fermion is lighter than the gravitino, mh < m3=2 (right), the stability of the
configuration is protected by a gap in the mass spectrum of size μ2min ¼ ðm3=2 −mhÞ2.

4If mh ∼Oðm3=2Þ, the smallest fermion mass is of order
m3=2=N [29,35]. In Kähler uplifted vacua m3=2 is typically of
the order of the grand unification (GUT) scale [9], leading to
mmin ∼MGUT × 10−2.
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comparable (but not necessarily close) to the gravitino
mass, so that generically we have μ2�λ ∼Oðm2

3=2Þ [1,22,43].
The corrections to the tree-level spectrum can still be
consistently neglected in this setting as long as the volume
of the compactification is exponentially large, and thus the
corrections are tiny, ξ̂=V ∼ 10−10. For Kähler uplifted vacua
this is no longer true. Since the volume is not exponentially
large, typically we have ξ̂=V ∼ 10−2–10−4 [9,10,12],
implying that the corrections in (1) could in principle
induce tachyonic instabilities if some of the complex
structure moduli are sufficiently light at tree level,

μ2�λjtree−level ≲m2
3=2 ×Oð10−2–10−4Þ: ð5Þ

Figure 2 shows the percentage of scalar moduli estimated
using (3) that are light enough to be destabilized by the
quantum corrections, for a range of values of ξ̂=V. Note
that, for moderately large volumes ξ̂=V ∼ 0.01, this fraction
can rise up to a 6%–7%, with the maximum occurring
at mh ≈

ffiffiffi
2

p
m3=2.

Requiring that the number of light fields, Nlight, is less
than one irrespective of the details of the stabilization of the
complex structure sector, i.e. regardless of the value of the
mass parameter mh, we find a bound for the size of the α0
corrections

maxfNlightg ≈
4N
π

ffiffiffiffî
ξ

V

s
≪ 1 ⇒

ξ̂

V
≪

π2

16N2
: ð6Þ

Note that in a generic compactification with hundreds of
complex structure moduli this bound is much more

restrictive than just requiring the α0 corrections to be small,
ξ̂=V ≪ 1. This remark is particularly relevant for dS
solutions and inflationary models built with the method
of Kähler uplifting that do not satisfy the constraint (6) (see
examples in [9,10,13,14,44,45]), as this signals the possible
presence of tachyonic instabilities. Other models which
could be affected by the same issue are those based on LVS
vacua where the volume is only moderately large [46–49].
In all these constructions one could still search for atypical
vacua where all fields in the complex structure sector are
much heavier than the gravitino, as in KKLT scenarios.
However the probability of such vacua is exponentially
suppressed as, without fine-tuning W0, the parameters
satisfy mh ∼m3=2, and thus [29,35,50]

Pðμ2min ≥ m2
3=2Þ ∼ e

−
8m2

3=2

m2
h

N2

≪ 1: ð7Þ

By contrast, LSF vacua, where all fermions are lighter than
the gravitino, occur with probability of order one when
mh ≲m3=2 (jW0j≳ 1), and thus they are a more natural
configuration to stabilize the complex structure sector in
this regime. In Fig. 2 it can be seen that when LSF vacua
become dominant, the typical spectrum contains no light
fields, a direct consequence of the appearance of the
mass gap. Other scenarios which satisfy constraint (6)
are [11,14,47,51].

VI. DISCUSSION

Having established that LSF vacua are stable, the next
question is how to find them. Reference [52] provides a
systematic way of looking for LSF vacua by looking in the
vicinity of configurations in which all fermions in the
supersymmetric sector are massless. The massless fermion
limit (MFL) is not always realized at a physical vacuum,
because the massless condition may require noninteger
values of the fluxes that are not actually realized. However,
it provides the “lamppost” near which actual stable vacua
may be found. Following this procedure we have found a
fully stabilized Kähler uplifted dS vacuum in the Calabi-
Yau P4

½1;1;1;6;9�, with the complex structure sector fixed at a

LSF vacuum. The details of this example can be found in
the Appendix.
This brings us to another important point. The explicit

examples of Kähler uplifted vacua constructed to date
[9,12,13] have been found in models consistent with the
supersymmetric truncation of a large sector of the moduli
fields [12,53–59]. This can be achieved by considering
special points of the moduli space, for instance fixed points
of global symmetries of the moduli space metric, where the
majority of the fields can be fixed at a supersymmetric
configuration. By this procedure it is possible to obtain a
reduced theory involving, in addition to the Kähler moduli,
a small fraction of the complex structure fields and the
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FIG. 2. Percentage of (real) scalars in the complex structure
sector with tree-level masses smaller than the size of the leading
quantum corrections, μ2 ≤ m2

3=2 · ξ̂=V. The horizontal axis rep-
resents the typical mass scale in this sector, mh. The spectrum of
perturbations of the LSF vacua (mh < m3=2), contains no light
scalar modes at tree level. Stability is also ensured if there is a
large hierarchy between the masses of the supersymmetric
complex structure sector and the supersymmetry breaking scale,
mh ≫ m3=2 (KKLT regime), or an exponentially large volume,

ξ̂=V ∼ 10−10 (LVS).
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dilaton so that a detailed stability analysis is possible. In
particular, in the examples discussed in [9,12] the complex
structure moduli surviving the truncation were fixed at
vacua with large supersymmetric masses, i.e. mλ ≫ m3=2,
that is, imposing a large hierarchy between the masses of
these fields and the supersymmetry breaking scale. This
method ensures the stability of the field configuration in
the reduced theory, however it cannot guarantee that the
truncated fields are fixed at minima of the potential and, for
this reason, neither does it guarantee the consistency of this
reduction. It is therefore crucial to understand under what
conditions it is possible to ensure the stability of the full set
of moduli fields, including the truncated ones.
In paper [52] it is also shown that, when the fraction of

complex structure fields surviving the truncation are
stabilized at the MFL of a critical point, then all the
complex structure fields (including the truncated ones) and
the dilaton have a mass equal to m3=2 at tree level, i.e. the
full sector is also at the MFL of the vacuum.
Given that it is not feasible to check the stability of

hundreds of supersymmetric moduli—-except perhaps in
very special cases—we would like to suggest a compro-
mise: apply the usual analytic and numerical techniques to
check stability of the surviving low-energy sector (typi-
cally, the Kähler moduli and the complex moduli that sit at
points of enhanced symmetry) and supplement these with
the use of random matrix theory techniques to assess the
stability of the truncated moduli that do not appear in
the low-energy description. Here we made use of the
random matrix theory model presented in [29] to character-
ize the mass spectrum of the complex structure sector. Our
conclusion—in line with our previous work in [27–29]—is
that, in compactifications where the number of complex
structure moduli is very large, there is a class of stable flux
configurations, not previously considered, in which all
fermions of the supersymmetric sector—-including trun-
cated ones—are lighter than the gravitino.
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APPENDIX: EXPLICIT EXAMPLE
IN THE P4

½1;1;1;6;9� MODEL

In the present section we provide an explicit example of
the class of vacua presented in the main body of the article.
In particular we present a fully stabilized Kähler uplifted dS
vacuum where the complex structure sector displays a light
fermion spectrum, mλ < m3=2, that is, where all the scalar
fields in the complex structure sector have masses of the
order of the gravitino mass, m3=2. This vacuum was found
using the strategy described in the main text. We consider
the compactification of the weak string coupling regime of
type-IIB string theory in the Calabi-Yau X3 ¼ P4

½1;1;1;6;9� in
the presence of background fluxes and D7-branes [15].
When the supersymmetry breaking scale is much lower
than the KK scale, the corresponding low-energy action
admits a description in terms of N ¼ 1 four-dimensional
supergravity. For simplicity we will only discuss the
dynamics of the h1;1 ¼ 2 Kähler moduli fields Ti, i ¼ 1,
2, and the h1;2 ¼ 272 complex structure moduli za,
a ¼ 1;…; 272, and the axio-dilaton, τ [7,54,60]. Thus,
we ignore further degrees of freedom, such as D-brane
positions or matter fields. In this setting, the effective
four-dimensional action can be characterized in terms
of a Kähler potential K, and a superpotential, W. At
leading order in α0 and nonperturbative corrections, and
neglecting the effect of warping due to the fluxes, they
read5 (see [7])

K ¼ −2 log
�
V þ ξ̂

2

�
− log½−iðτ − τ̄Þ� − log i

Z
X3

Ω∧Ω̄;

W ¼ 1ffiffiffiffiffiffi
4π

p
�
Wflux þ

X
i

Aie−aiTi

�
; ðA1Þ

where we have set the Planck mass to unity. The couplings
of the complex structure sector can be written conveniently
in terms of the period vector ΠT ¼ ðZI; FIÞ, defined as

Π ¼
 R

AI ΩR
BI
Ω

!
; ðA2Þ

where ðAI; BIÞ with I ¼ 0;…; h1;2 denotes an integral and
symplectic homology basis of H3ðX3;ZÞ, satisfying

AI∩BI ¼ δIJ; AI∩AJ ¼ BI∩BJ ¼ 0: ðA3Þ

5As in [7], the volume V of X3 (expressed in units of
ls ¼ 2π

ffiffiffiffi
α0

p
) and the Kähler moduli Ti are measured in the

Einstein frame, and the fields are taken to be dimensionless.
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In particular, in terms of the period vector, the Kähler
potential for the complex structure sector Kc:s:. reads

e−Kcs ¼ i
Z
M
Ω∧Ω̄ ¼ iΠ† · Σ · Π; ðA4Þ

where Σ denotes the symplectic matrix

Σ ¼
�

0 1

−1 0

�
: ðA5Þ

Thus, ZI represent the homogeneous coordinates on
the complex structure moduli space. The corresponding
inhomogeneous coordinates define the complex structure
moduli fields za ¼ Za=Z0 with a ¼ 1;…; h1;2, and Z0 ≠ 0.
Moreover, the periods FI can be expressed as the gradients
of a holomorphic function FðZIÞ, the so-called prepoten-
tial, FI ¼ ∂F=∂ZI . In (A1) the Kähler potential for the
Kähler moduli sector is expressed in terms of V, the volume
of the Calabi-Yau

V ¼ γððT1 þ T̄1Þ3=2 − ðT2 þ T̄2Þ3=2Þ; ðA6Þ

where γ ¼ 1=36, and the dilaton dependent α0 corrections
are given by [61]

ξ̂ðτ; τ̄Þ ¼ −
ζð3Þ

4
ffiffiffi
2

p ð2πÞ3 χð−iðτ − τ̄ÞÞ3=2; ðA7Þ

with χ ¼ 2ðh2;1 − h1;1Þ, and ζð3Þ ≈ 1.202. In the presence
of RR (F3) and NS-NS (H3) fluxes wrapping nontrivial
three cycles of X3, the superpotential receives a contribu-
tion of the form [62]

Wflux ¼ l−2s

Z
X3

ðF3 − τH3Þ∧Ω
¼ ðf − τhÞT · Σ · ΠðzaÞ; ðA8Þ

where ls denotes the string scale and

f ¼
 R

AI F3R
BI
F3

!
; h ¼

 R
AI H3R
BI
H3

!
ðA9Þ

stand for the vectors of integrally quantized fluxes. The
extra contributions to the superpotential in (A1) correspond
to the nonperturbative corrections induced by the gaugino
condensation on the stacks of D7-branes. In [10] it was
shown that when the Calabi-Yau volume has a swiss-cheese
structure similar to (A6) it is possible to derive semi-
analytical formulas for the range of parameters allowing for
the existence of Kähler uplifted de Sitter vacua. Using these
results we have fixed the constants Ai and ai ¼ 2π=Ni to
the values

A1 ¼ 0.272; A2 ¼ 0.250; N1 ¼ 400; N2 ¼ 3;

ðA10Þ

where Ni denote the ranks of the condensing gauge groups.
The large value for the rank of the condensing group, N1, is
a common feature of Kähler uplifted vacua, and it is
necessary for the compactification volume to be sufficiently
large to ensure the consistency of the 4-dimensional
effective theory [10,12]. The rank N1 can be reduced if
the Calabi-Yau volume has only an approximately swiss-
cheese structure, as in [12], or by considering more
complicated models where the N ¼ 1 scalar potential
involves a D-term contribution [46,47].
The complex structure moduli space of the P4

½1;1;1;6;9�
model is symmetric with respect to the group
G ¼ Z6 × Z18, which acts nontrivially on 270 of the
moduli. Provided we restrict to flux configurations invari-
ant under this symmetry, it is possible to fix the non-
invariant fields at a supersymmetric configuration, leaving
a reduced theory involving only two complex structure
moduli [12,56,57]. The prepotential FðZIÞ characterizing
the moduli space geometry in the reduced theory was
calculated in [60]. In the large complex structure limit the
prepotential takes the form

FðZIÞ ¼ ξðZ0Þ2 − 1

4
Z0Z1 −

3

2
Z0Z2 −

9

4
ðZ1Þ2 − 3

2
Z1Z2

þ 1

2Z0
ð3ðZ1Þ3 þ 3ðZ1Þ2Z2 þ Z1ðZ2Þ2Þ þ Finst;

ðA11Þ

where ξ ¼ iζð3Þχ
2ð2πÞ3 ≈ −1.308i. The term Finstðz1; z2Þ is the

contribution from instantons to the prepotential [60] which
is exponentially small in the large complex structure limit,
i.e. when Imðz1Þ, Imðz2Þ ≳ 1, and thus we will neglect it in
our calculations. We turn on fluxes only on the G-invariant
cycles

fA ¼ ð1; 0; 0Þ; fB ¼ ð0; 14; 4Þ;
hA ¼ ð0; 1; 1Þ; hB ¼ ð−1; 4; 1Þ; ðA12Þ

where fT ¼ ðfA; fBÞ, hT ¼ ðhA; hBÞ, and for clarity we
have omitted the components on noninvariant cycles. The
allowed choices of flux configurations are subject to
the tadpole cancellation condition, which requires the
total D3-brane charge, including the contribution from
D3-branesND3, to cancel some negative charge, L, induced
by the D7 and O7 (orientifold) planes,

Nflux þ ND3 ≤ L: ðA13Þ

The D3 charge induced by the fluxes is determined by the
expression

ANA ACHÚCARRO, PABLO ORTIZ, and KEPA SOUSA PHYSICAL REVIEW D 94, 086012 (2016)

086012-6



Nflux ¼
1

l4s

Z
M
Hð3Þ∧Fð3Þ ¼ hT · Σ · f: ðA14Þ

Thus the flux configuration we specified above (A12)
induces a D3 charge Nflux ¼ 19 < Oð100Þ, and thus it can
satisfy the tadpole conditions in this model [12,54].
The scalar potential can be derived from (A1) using the

standard N ¼ 1 supergravity formula

V ¼ eKðKαβ̄DαWDβ̄W̄ − 3jWj2Þ; ðA15Þ

where Kαβ̄ is the inverse of the moduli space metric
Kαβ̄ ¼ ∂α∂ β̄K. We have also denoted by DαW ¼ ∂αW þ
ð∂αKÞW the Kähler covariant derivative of the super-
potential. At tree level, that is, without including the α0
corrections and the nonperturbative contribution to the
superpotential, it is possible to find a supersymmetric
configuration of the complex structure sector (see
Table I) where the tree-level fermion masses are all smaller
than the gravitino mass, and given by

m1

m3=2
¼0.366;

m2

m3=2
¼0.139;

m3

m3=2
¼0.064: ðA16Þ

Note that this vacuum is precisely an example of the
LSF vacua introduced in the main text. Further details
regarding this field configuration at tree level are listed
in Tables II and III, where in particular it can be
checked that the vacuum is consistent with the assump-
tions of weak string coupling gs ¼ 1=Imhτi ≲ 1, and
neglecting the instanton contributions to the prepotential
jFinstj=jFj ≪ 1. Upon including the α0 and nonperturba-
tive corrections the Kähler moduli are stabilized at the
configuration also displayed in Table I, where the expect-
ation value of the overall volume is fixed to hVi ¼ 189.76.
Table I also shows the corrected values for the expectation
values of the complex structure fields, and Table II
contains the full scalar mass spectrum at the final vacuum.
It is worth noting that the expectation value of the scalar
potential can be tuned to be arbitrarily close to zero
choosing conveniently the constants A1 and A2. We have
also computed various quantities relevant to check the
consistency of the construction (see Table III). For
instance, the gravitino mass is shown to be well below
the Kaluza-Klein scale [7] m3=2=mkk < 1, as required for
the four-dimensional supergravity description to be valid.
It can also be checked that the α0 corrections and the
nonperturbative contributions to the superpotential are
actually small.
Our results prove explicitly the perturbative stability of

the Kähler moduli sector, the complex structure moduli
surviving the truncation z1, z2, and the dilaton τ, in the
final vacuum. It is worth noting that the perturbative
stability of the remaining 270 truncated moduli has never
been addressed before in the literature. The arguments
outlined in the main text indicate that stabilizing moduli at
LSF vacua can provide the means to guarantee the
perturbative stability of all the moduli, including the 270
truncated ones. Indeed, as will be proved rigorously in [52],
provided the surviving moduli in the complex structure
sector are stabilized with sufficiently small fermion masses,
i.e. close to the MFL, all the moduli in the complex
structure sector will remain perturbatively stable in the final
de Sitter vacuum.

TABLE I. Vacuum expectation values of the moduli fields
(dimensionless). We also show the expectation value of the
volume V (in Einstein frame) measured in units of ls, and of the
scalar potential V in Planck units.

Tree level Fully stabilized vacuum

hτi −0.142þ 1.033i −0.143þ 1.066i
hz1i 0.036þ 0.929i 0.035þ 0.920i
hz2i 0.160þ 1.663i 0.157þ 1.650i
hT1i � � � 180.13þ 295.97i
hT2i � � � 1.759þ 2.220i
hVi � � � 189.76l6s
hVi 0 4.06 × 10−10M4

p

TABLE II. Masses of the canonically normalized scalar fields
in units of m3=2. In particular μ2�a, a ¼ 1, 2, 3, correspond to the
masses squared in the complex structure and dilaton sector. For
completeness we also display the gravitino mass and the Kaluza-
Klein scale in Planck units.

Tree level Fully stabilized vacuum

μ2�1
(1.866,0.402) (1.547,0.569)

μ2�2
(1.297,0.741) (1.225,0.789)

μ2�3
(1.133,0.876) (1.080,0.9135)

μ2�T1
(0,0) (0.02381,0.00872)

μ2�T2
(0,0) (43.158,38.308)

m2
3=2 � � � 4.12 × 10−5M2

p

m2
kk � � � 2.86 × 10−3M2

p

TABLE III. Consistency checks of the construction: instanton
contributions to the prepotential, size of the α0 corrections, size of
the nonperturbative contributions to the superpotential, and
magnitude of the supersymmetry breaking scale relative to the
KK scale.

Quantity Relative magnitude

jFinstj=jFj 6.3 × 10−3

hξ̂=Vi 7.6 × 10−3

hA1e−a1ReðT1Þ=jWfluxji 1.5 × 10−4

hA2e−a2ReðT2Þ=jWfluxji 3.9 × 10−4

m3=2=mkk 0.12
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