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We construct supersymmetric irregular vertex operators of arbitrary rank, appearing in the colliding limit
of primary fields. We find that the structure of the supersymmetric irregular vertices differs significantly
from the bosonic case: upon supersymmetrization, the irregular operators are no longer the eigenstates of
positive Virasoro andWN generators but block diagonalize them. We relate the block-diagonal structure of
the irregular vertices to contributions of the Ramond sector to the colliding limit.

DOI: 10.1103/PhysRevD.94.086011

I. INTRODUCTION

Primary vertex operators in two-dimensional conformal
field theory are the objects playing an important role in the
Alday-Gaiotto-Tachikawa conjecture [1], connecting regu-
lar Liouville conformal blocks to Nekrasov’s partition
function [2] for N ¼ 2 supersymmetric gauge theories in
four dimensions. These theories, however, admit a special
case with nontrivial IR fixed point, described by Argyres-
Douglas theory [3,4]. This class of theories does not allow
marginal deformations and is described in terms of the
colliding limit of the primary vertex operators. The operator
of rank q, obtained from the colliding limit [5,6], generates
an irregular state of rank q when applied to the vacuum.
The irregular states of rank q are annihilated by positive
Virasoro generators Lk with k > 2q and are simultaneous
eigenstates of Lk with q ≤ k ≤ 2q. These irregular states
are called Gaiotto states [7] or Whittaker states [8]. In the
generalizations of Liouville theory to Toda field theories,
the irregular states also possess WN symmetries, being
simultaneous eigenstates of positive WN generators. For
example, in the simplest case of two fields the irregular
states are eigenvectors of positive W3 generators ðW3Þk
with 2q ≤ k ≤ 3q. For higher numbers of components,
higher WN symmetries are switched on as well, and
the irregular states are the eigenstates of ðWNÞk with
Nðq − 1Þ ≤ k ≤ Nq.
In our previous paper [9] we have performed explicit

construction of the irregular vertex operators describing
these states. In general, the irregular vertex operators
describing the states of rank q for n-component Toda field
~ϕ ¼ ðϕ1;…ϕnÞ are given by

Un;q ¼ e
P

q
k¼0

~αk∂k ~ϕ: ð1:1Þ

The Virasoro eigenvalues of Un;q are bilinear in the
components of ~α, while the WN eigenvalues are polyno-
mials of degree N in α (see also [10–12] related reference).
The objects of the type (1.1) generalize regular vertex

operators in Toda theories and in bosonic string theory and
are in fact of interest far beyond their relevance to gauge
theories in four dimensions. First of all, such objects have to
appear naturally inAdS/CFT correspondence, being theAdS
string duals of composite operators on the CFT side. For
example, the operators of the type Tq ∼ Tm1n1…Tmqnq (with
Tmn being the energy-momentum tensor in super Yang-Mills
theory) have to correspond to the colliding limit of q
gravitons, or the irregular vertex of rank q in AdS string
theory. At the same time, the objects of this type should be
dual to higher spin fields with mixed symmetries in AdS
higher spin gravity. Unlike regular vertex operators, these
objects are not in Becchi-Rouet-Stora-Tyutin cohomology
and are off shell. Nevertheless, they are completely mean-
ingful in the string field theory (SFT) context. On the other
hand, theworld sheet correlators ofUn;q can beunderstood as
generating functions for the higher spin interactions in string
theory since the derivativesHm1…ms ∂

∂m1
αn1

… ∂
∂ms
αns

Un;qj~α1…~αn¼0

describe on-shell higher spin vertex operators with momen-
tum ~α0 and masses m ∼ ðPs

j¼1 njÞ
1
2, making the irregular

vertex operators (1.1) natural candidates for SFT solutions
describing nonperturbative higher spin backgrounds.
Since the irregular states are typically of relevance to

models with supersymmetries, it is naturally of interest to
find the supersymmetric extensions of (1.1). This turns out
to be a major challenge in the conventional matrix model
approach and, so far, very little progress has been made in
describing supersymmetrizing the colliding limit. The
purpose of this work is to elaborate on this problem
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using the superspace extension of the vertex operator
formalism (1.1). The results that we find are somewhat
surprising. It turns out that the states, emerging in the
supersymmetric colliding limit, no longer diagonalize
Virasoro generators. Instead, the positive Virasoro gen-
erators turn out to be block diagonal in their basis, with the
multiplicities related to the ranks of the blocks. Such a
situation is familiar in logarithmic conformal field theo-
ries (LCFT) where the Hamiltonian L0 is also well known
to be a Jordan matrix. The Hamiltonian being a Jordan
block leads to appearance of the logarithmic partners and
modified conformal symmetry constraints on correlation
functions involving these partners. Solving these con-
straints leads to emergence of logarithms in the correla-
tors. The supersymmetric extension of the vertices (1.1)
thus, in a sense, may give the irregular analogues of
logarithmic operators in LCFT in the interacting case,
although we will not elaborate on this question in the
present paper.
The rest of the paper is organized as follows. In the

Sec. II we perform the supersymmetrization of the
operators (1.1) using the superspace approach. Next,
we study the properties of the supersymmetric irregular
vertices under Virasoro transformations. In the Sec. III we
discuss the reasons behind the appearance of the block-
diagonal structure for the irregular vertices, with the
positive super Virasoro generators having the form of
Jordan blocks in their basis. We relate this structure to
contributions of operators from the Ramond sector to the
colliding limit, with the multiplicities of eigenvalues of
the Jordan blocks connected to various possible structures
of these contributions.

II. SUPERCONFORMAL PROPERTIES
OF IRREGULAR VERTICES

The vertex operators (1.1) can be supersymmetrized
in a straightforward and manifest way by replacing
the fields by the superfields and covariantizing the
derivatives:

~ϕðzÞ → ~ϕðz; θÞ ¼ ~ϕðzÞ þ θ ~ψ

∂ ≡ ∂z → D ¼ θ∂z þ ∂θ ð2:1Þ

and expanding in θ. Using

D2k ~ϕðz; θÞ ¼ ∂k ~ϕþ θ∂k ~ψ

D2kþ1 ~ϕðz; θÞ ¼ ∂k ~ψ þ θ∂kþ1~ϕ

k ¼ 0; 1;… ð2:2Þ

one easily finds

Wqþ1
2
¼ e

P
2qþ1

n¼0
~αnDn

θ
~ϕðz;θÞ ¼ e

P
q
n¼0

~α2n∂n ~ϕ

×
Yq
k¼0

ð1þ ~α2kþ1∂k ~ψÞ

×

�
1þθ

�Xq
n¼0

~α2n∂n ~ψ − ~α2nþ1∂nþ1~ϕ

��

Wq ¼ e
P

2q
n¼0

~αnDn
θ
~ϕðz;θÞ ¼ e

P
q
n¼0

~α2n∂n ~ϕYq−1
k¼0

ð1þ ~α2kþ1∂k ~ψÞ

×

�
1þθ

�
α2q∂qψþ

Xq−1
n¼0

~α2n∂n ~ψ − ~α2nþ1∂nþ1 ~ϕ

��

ð2:3Þ

for the odd and even ranks respectively. The ~αk coefficients
are Grassmann even for even k’s and Grassmann odd for
the odd k’s. Clearly, the supersymmetrization reduces the
total rank of the operators by half. In particular, W1

2
is just

a combination of regular vertex operators with different
conformal dimensions:

W1
2
¼ e~α ~ϕð1þ ~β ~ψ þθð~α ~ψ −~β∂ ~ϕÞÞ ð2:4Þ

or simply

U1
2
¼

Z
dθW1 ¼ e~α ~ϕð~α ~ψ −~β∂ ~ϕÞ ð2:5Þ

upon θ-integration. Unlike the irregular bosonic vertices,
the operators (2.4) and (2.5) are not by themselves the
eigenvectors of positive super Virasoro generators. For
example, W1

2
is annihilated by Ln for n ≥ 2, however the

action of L1 on W1
2
gives

L1W1
2
¼ θe~α ~ϕ~β ~ψ ≡θ ~W1

2

L2
1W1

2
¼ 0 ð2:6Þ

implying that L1 acts on ðW1
2
; ~W1

2
Þ as a block-diagonal

Jordan matrix with ðW1
2
; ~W1

2
Þ having eigenvalue zero and

multiplicity 2 (for brevity and simplicity, here and else-
where we set the background charge q to zero; the
generalization to q ≠ 0 is, however, straightforward).
Next, consider the case of W1. In components, one has

W1 ¼ e~α ~ϕþ~γ∂ ~ϕð1þ ~β ~ψÞð1þ θð~α ~ψ −~β∂ ~ϕþ ~γ∂ ~ψÞÞ: ð2:7Þ

This operator block diagonalizes L1 and L2. Acting with
L2, one obtains
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L2W1 ¼ −
1

2
γ2W1 þ

1

2
θ~β ~γ e~α ~ϕþ~γ∂ ~ϕ ≡ −

1

2
γ2W1 þ ~Wð1Þ

1

L2
~

Wð1Þ
1 ¼ −

1

2
γ2

~
Wð1Þ

1 ð2:8Þ

implying the block-diagonal structure of L2 acting on W1

with eigenvalue − 1
2
γ2 and multiplicity 2. Acting with L1,

one obtains

L1W1¼−~α~γW1þð~γ ~ψþθ~α ~βÞe~α ~ϕþ~γ∂ ~ϕ≡−~α~γW1þ ~Wð2Þ
1

L1
~Wð2Þ
1 ¼−~α~γ ~Wð2Þ

1 ð2:9Þ

implying the block-diagonal structure of L1 acting on W1

with eigenvalue −~α ~γ and multiplicity 2. For the W3
2
case,

the structure becomes more diverse.
The operator in components is

W3
2
¼ e~α ~ϕþ~γ∂ ~ϕð1þ ~β ~ψÞð1þ ~λ∂ ~ψÞ
× ð1þ θð~α ~ψ þ~β∂ ~ϕþ ~γ∂ ~ψ þ ~λ∂2 ~ϕÞÞ: ð2:10Þ

It block diagonalizes the Virasoro generators L1, L2 and L3

with multiplicities 4,3 and 2 according to

L1W3
2
¼ −~α ~γW3

2
þ ~W1;1

3
2

L1
~W1;1

3
2

¼ −~α ~γ ~W1;1
3
2

þ ~W1;2
3
2

L1
~W1;2

3
2

¼ −~α ~γ ~W1;2
3
2

þ ~W1;3
3
2

L1
~W1;3

3
2

¼ −~α ~γ ~W1;3
3
2

ð2:11Þ

for L1,

L2W3
2
¼ −

1

2
γ2W3

2
þ ~W2;1

3
2

L2
~W2;1

3
2

¼ −
1

2
γ2 ~W2;1

3
2

þ ~W2;2
3
2

L2
~W2;2

3
2

¼ −
1

2
γ2 ~W2;2

3
2

ð2:12Þ

for L2 and

L3W3
2
¼ ~W3;1

3
2

L3
~W3;1

3
2

¼ 0 ð2:13Þ

for L3 with

~W1;1
3
2

¼ e~α ~ϕþ~γ∂ ~ϕ × fð1þ ~β ~ψÞð1þ ~λ∂ ~ψÞð~α ~β−2~λ∂ ~ϕ − ~γ ~ψÞθ þ ð1þ ð~β þ ~λÞ~ψÞð1þ θð~α ~ψ þ~β∂ ~ϕþ ~γ∂ ~ψ þ ~λ∂2 ~ϕÞÞg
~W1;2

3
2

¼ 2e~α ~ϕþ~γ∂ ~ϕ × fð1þ ~β ~ψÞð1þ ~λ∂ ~ψÞ~α ~λþð1þ ð~β þ ~λÞ~ψÞð~α ~β−~λ∂ ~ϕ − ~γ ~ψÞgθ
~W1;3

3
2

¼ 4e~α ~ϕþ~γ∂ ~ϕð1þ ð~β þ ~λÞ~ψÞ~α ~λ θ

~W2;1
3
2

¼ e~α ~ϕþ~γ∂ ~ϕ ×
�
ð1þ ~β ~ψÞð1þ ~λ∂ ~ψÞð~γ ~βþ2~α ~λÞθ − 1

2
~β ~λð1þ θð~α ~ψ þ~β∂ ~ϕ ~γ ∂ ~ψ ~λ ∂2 ~ϕÞÞ

þ 1

2
ðð1þ ~λ∂ ~ψÞ~β ~γ −ð1þ ~β ~ψÞ~α ~λÞθ

�

~W2;2
3
2

¼ −e~α ~ϕþ~γ∂ ~ϕð~β ~γþ2~α ~λÞ~β ~λ θ
~W3;1

3
2

¼ −2e~α ~ϕþ~γ∂ ~ϕ~γ ~λ θ: ð2:14Þ

Accordingly, the Jordan block constraints for W3
2
are

ðL1 þ ~α ~γÞ4W3
2
¼ 0

�
L2 þ

1

2
γ2
�
3
W3

2
¼ 0

L2
3W3

2
¼ 0: ð2:15Þ

It is straightforward to check that the same pattern holds
for the higher q’s as well. At half integer orders, the
operators Wqþ1

2
block diagonalize Ln with q ≤ n ≤ 2qþ 1

with the eigenvalues given by

λn ¼ −
1

2

X
0≤k1;k2≤q;k1þk2¼n

k1!k2!~αk1 ~αk2 ð2:16Þ

for n ≤ 2q and λ2qþ1 ¼ 0. The Jordan block conditions
are

ðLn − λnÞmðn;qÞWqþ1
2
¼ 0 ð2:17Þ

with the multiplicities ranging from

mð2qþ 1; qÞ ¼ 1þ
�
2

q
þ qþ 1

2

	
ð2:18Þ
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for the highest Virasoro operator L2qþ1 to mðq; qÞ ≥ ½q
4
þ

5
8
þ 13

8q� for the lowest Virasoro generator Lq. Likewise, at
the integer orders the Wq operators block diagonalize the
Virasoro generators from Lq to L2q with the similar
eigenvalues λn (2.16) and with the multiplicities ranging
from

mð2q; qÞ ¼
�
qþ 1

2q

	
þ q ð2:19Þ

for Lq and mðq; qÞ ≥ q
2
þ ½qþ1

4q � for L2q. The analysis of Wq

behavior under the supersymmetry transformations by the
supercurrent modes is performed analogously. The irregu-
lar vertices block diagonalize the supercurrent modes
from Gq−1

2
up to G2q−1

2
for integer ranks and G2qþ1

2
for

half-integer ranks. This concludes the analysis of the CFT
properties of supersymmetric irregular vertex operators.

III. COLLIDING LIMIT AND BLOCK-DIAGONAL
STRUCTURE

In the bosonic case, the irregular vertex operators with

the structure Wq ¼ e
P

n
¼0q~αn∂n ~ϕ appear in the colliding

limit of q regular vertex operators as a result of simulta-
neous normal ordering which structure is rather compli-
cated. Namely, for N colliding operators sitting at points
z1;…; zN one has for N vertices at z1;…zN around z1

WN ¼ lim
z2;…zN→z1

eα1ϕðz1Þ…eαN ðzNÞ

¼
YN
p¼2

ðzk1Þ−αpðα1þ…αp−1Þ

×
X

n1;…;nN−1

X
k1;…kN−2

X
q1…:qN−2

ðz21Þn1ðz31Þn2−k1…

× ðzN1ÞnN−1−kN−2
YN−1

j¼1

λfn;k;qg∶B
ðnj−qjðk1;…kN−1ÞÞ
αjþ1

× eðα1þ���þαNÞϕ∶ðz1Þ ð3:1Þ

with the q-numbers satisfying

XN−2

j¼1

kj ¼
XN−2

j¼1

qj ð3:2Þ

and λfn;k;qg are some constants. Here zij ¼ zi − zj and BðnÞ
α

are the normalized Bell polynomials in the derivatives of ϕ
defined as [13]

BðnÞ
α ¼

Xn
p¼1

αp
X

njk1…kp

∂k1ϕ…∂kpϕ

k1!qk1 !…kp!qkp !
: ð3:3Þ

Here the sum is taken over the ordered length p partitions
of n (1 ≤ p ≤ n): n ¼ k1 þ � � � þ kp; k1 ≤ k2 � � � ≤ kp and
qkj is the multiplicity of an element kj in the partition. The
irregular operators, appearing as a result of the summation,
diagonalize positive Virasoro generators, with the deriva-
tives of fields in the exponents appearing as a result of
summing over all orders of zij, involving the exponents
multiplied by Bell polynomials of various degrees. The
Bell polynomials (times exponents) form a basis which is
somewhat inconvenient to describe the colliding limit,
therefore, the relation between complicated summation
(3.1) and a relatively simple structure of the resulting
irregular vertex operator (1.1) is not straightforward to
obtain. Nevertheless, the colliding limit may be useful to
illustrate the difference between the bosonic case (where
the Virasoro operators are diagonal) and the supersym-
metric case, where they become the Jordan blocks (with the
eigenvalues, inherited from the irregular bosonic vertices,
except for the half-integer case, where an extra block-
diagonal generator L2qþ1 with the zero eigenvalue appears
as well). The important difference between these two cases
is related to the fact that the supersymmetric irregular
vertex operators involve the colliding limit of the regular
vertices from the Ramond sector involving σ�, satisfying

σþðzÞσ−ðwÞ ∼ ðz − wÞ38ψ
σþðzÞσþðwÞ ∼ ðz − wÞ−1

8

σ−ðzÞσ−ðwÞ ∼ ðz − wÞ−1
8: ð3:4Þ

The simplest supersymmetric vertex,W1
2
, appears as a result

of a collision of spin operator multiplied by exponent of
super Liouville field with the spin operator without
exponents:

lim
z→w

∶σ�eαϕðzÞ∶∶σ�∶ðwÞ ð3:5Þ

(or equivalently, OPE expansion and normal ordering
around the midpoint may be considered). In such a
collision, the exponent does not develop irregularity
(appearance of derivatives of ϕ) because all the Bell
polynomials Bα appearing in the collision will multiply
by the exponent with the same α, producing total deriv-
atives of eαϕ that will sum up to the exponent at the location
of the normal ordering. The higher ranks, such as W1 or
W2, admit more possibilities in the colliding limit. For
example, one can either collide eαϕσ� at z1 with eβϕσ� at
z2, or collide the same two exponents with extra insertions
of the spin operators σ�, say, at z3 and z4 with the collision
structure σ�eαϕ − σ�eβϕ − σ� − σ�. In the absence of
supersymmetry, the insertion number of free σ’s can be
arbitrary; in the supersymmetric case the number is limited.
It is precisely this “ambiguity” that stands behind the
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appearance of multiplicities of eigenvalues and, as a result,
the super Virasoro generators become the Jordan blocks.

IV. CONCLUSION

In this paper we have constructed the supersymmetric
extension of irregular vertex operators, which correlation
functions describe irregular supersymmetric conformal
blocks. We found that the superconformal structure of
the irregular vertices differs significantly from the bosonic
case, with the supersymmetric irregular operators block
diagonalizing the positive Virasoro generators. The block-
diagonal form of the positive Virasoro generators in the
supersymmetric case is related to contributions of the
operators from the Ramond sector to the colliding limit.
Although in this paper we only considered the Virasoro
symmetry in details, it is straightforward to check that, in
case of the multiple (Toda) fields, the same block-diagonal
structure emerges when the irregular vertices are trans-
formed by the positive modes of theWN-currents. It will be
important to understand the impact of the structures,

observed in this work, in the language of the matrix model
approach such as in [5,12,14–16] and their relevance to
Seiberg-Witten curves in related supersymmetric gauge
theories in four dimensions. As we also mentioned, the
irregular vertex operators appear to be natural objects in
background-independent string field theory, being natural
blocks for solutions describing both nonperturbative
higher-spin backgrounds, as well as cosmological back-
grounds, such as the noncommutative rolling tachyons. We
hope to be able to address these questions soon in the future
papers.
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