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According to the gauge/gravity duality conjecture, the thermodynamics of gauge theory describing
D-branes corresponds to that of black branes in superstring theory.We test this conjecture directly in the case
of D0-branes by applying Monte Carlo methods to the corresponding gauge theory, which takes the form of
the Banks-Fischler-Shenker-Susskind (BFSS) matrix quantum mechanics. In particular, we take the
continuum limit by extrapolating the UV cutoff to infinity. First we perform simulations at large N so that
string loop corrections can be neglected on the gravity side. Our results for the internal energy exhibit the
temperature dependence consistent with the prediction including the α0 corrections. Next we perform
simulations at smallN but at lower temperature so that the α0 corrections can be neglected on the gravity side.
Our results are consistent with the prediction including the leading string loop correction, which suggests
that the conjecture holds even at finite N.
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I. INTRODUCTION

One of the most important directions in theoretical physics
is to clarify the quantum nature of gravity, which is crucial in
understanding the beginning of our Universe and the final
state of a black hole. Superstring theory is considered themost
promising candidate of a quantumgravity theory due to itsUV
finiteness in striking contrast to the conventional field
theoretical approach to quantum gravity, in which one faces
nonrenormalizableUVdivergences. So far, superstring theory
is defined only perturbatively around simple backgrounds
such as flat spacetime, and it does not seem to be straight-
forwardly applicable to the studies of a strongly gravitating
spacetime such as the black hole geometry. However, this
difficulty has been partly surmounted by the discovery of
D-branes [1]. Some extremal black holes were constructed
by combining different kinds of D-branes, and the origin of
their entropy was understood by counting the microstates of
the D-branes [2]. Also there are several proposals for non-
perturbative formulations of superstring theory basedon super
Yang-Mills theory in low dimensions [3–6].

In fact, it is conjectured that superstring theory on
the anti–de Sitter background is dual to four-dimensional
N ¼ 4 UðNÞ super Yang-Mills theory [7], which is
realized on a stack of N D3-branes. This duality has been
generalized in various ways, and it is commonly referred to
as the gauge/gravity duality conjecture. The conjecture
appears natural considering that D-branes have two
descriptions, one from a gravitational viewpoint, and the
other from a field theoretical viewpoint. If this conjecture is
true even in the presence of quantum effects on the gravity
side, the quantum nature of gravity can be studied on a firm
ground by investigating the dual gauge theory.
Among various gauge/gravity duality conjectures that

have been proposed so far, we are interested in the one that
has been studied most intensively, which claims that type II
superstring theory in the near horizon limit of the black
p-brane geometry is equivalent to a maximally super-
symmetric Yang-Mills theory in (pþ 1) dimensions
[7,8]. The super Yang-Mills theory is realized on N Dp-
branes and it is characterized by the rank of the gauge group
N and the ’t Hooft coupling λ ¼ g2YMN. On the gravity side,
N is the number of black p-branes, and the ’t Hooft
coupling is written as λ ¼ ð2πÞp−2lp−3

s gsN in terms of the
string coupling constant gs and the string length ls ¼ α01=2.
The near horizon limit is taken by α0 → 0 with λ and the
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energy scale U of the super Yang-Mills theory kept finite.
The above gauge/gravity duality has been tested in detail at
N → ∞ and λ → ∞. In this limit, superstring theory is well
approximated by supergravity, whichmakes classical analy-
ses applicable. While the super Yang-Mills theory becomes
strongly coupled in this region, one can nevertheless extract
the information of Bogomol'nyi-Prasad-Sommerfield states,
which are protected by supersymmetry, and confirm the
gauge/gravity duality in various ways.
A natural question to ask then is whether the gauge/gravity

duality conjecture is valid even for finite λ or finiteN, or in a
nonsupersymmetric setup such as finite temperature. The
analyses in these cases are quite difficult, however, because
the supergravity approximation is no longer valid on the
gravity side and we have to include α0 or gs corrections.
Furthermore, the lack of supersymmetry gives rise to all kinds
of nonperturbative corrections to physical quantities on the
gauge theory side, which are too hard to handle analytically.
The main purpose of this paper is to test the gauge/

gravity duality conjecture for finite N and λ at finite
temperature. While it is not possible to calculate finite α0
or gs corrections in superstring theory in general, the
corrections to some physical quantities can be extracted
by taking account of higher derivative corrections to
supergravity perturbatively. For instance, in the case of
D0-branes, the internal energy including the leading gs
corrections has recently been evaluated analytically [9,10].
On the other hand, nonperturbative studies of the super
Yang-Mills theory are possible by performing Monte Carlo
simulation. In the case of D0-branes, the super Yang-Mills
theory takes the form of matrix quantum mechanics for M
theory [3,11], which can be studied with a reasonable
amount of computational effort. In fact, several groups have
studied this model [12–25] and compared the obtained
results with the dual gravity predictions. In particular, finite
λ corrections were investigated by Monte Carlo simulation
in Refs. [16,18] and more recently in Refs. [24,25], which
raised some controversy. In this paper, we first address this
issue based on new calculation, which improves our
previous analysis [16,18] by taking the continuum limit.
Then we investigate the 1=N corrections by simulating

the same system at smallN. This turns out to be much more
difficult than the studies at largeN because of the instability
associated with the flat directions in the potential. The
bound state of D0-branes is stable at largeN, but it becomes
only metastable at sufficiently low temperature for small N.
We extract the internal energy of the metastable bound
states by introducing a cutoff on the extent of the D0-brane
distribution, which is chosen in such a way that the
obtained result does not depend on it within a certain
region. Our results obtained in this way turn out to be
consistent with the analytic result obtained on the gravity
side including the leading gs corrections. This suggests that
the gauge/gravity duality holds even at finite N. In fact, the
instability at finite N can be understood also on the gravity

side. Some of the results are reported briefly in our previous
publication [21].
The rest of this paper is organized as follows. In Sec. II we

give an overview of the black 0-brane thermodynamics, and
discuss how finite λ and finite N corrections appear in the
internal energy of the D0-branes. In Sec. III we explain
how we study the D0-brane quantum mechanics by
Monte Carlo simulation. In Sec. IV we provide numerical
tests of the gauge/gravity duality including finite λ and finite
N corrections. Section V is devoted to a summary and
discussions.

II. BRIEF REVIEW ON THE BLACK 0-BRANE
THERMODYNAMICS

In this section we briefly review the thermodynamics of
the black 0-brane in type IIA superstring theory, which
appears in the gauge/gravity duality we test. In particular,
we derive an expression for the quantity that should be
compared with the internal energy of the dual gauge theory
calculable by Monte Carlo methods. Corresponding to
finite λ and finite N corrections on the gauge theory
side, we need to consider how the black 0-brane thermo-
dynamics is affected by the higher derivative corrections to
the low-energy effective action of type IIA superstring
theory.

A. The effects of higher derivative corrections
on the black 0-brane thermodynamics

In the low-energy limit, the scattering amplitudes of
strings in type II superstring theory can be reproduced
correctly by the type II supergravity action. However, if we
go beyond the low-energy limit, we have to take into
account the effects due to the finite length ls of strings (α0
corrections) and the effects of string loops (gs corrections).
In general, these effects can be extracted by considering the
scattering amplitudes of strings associated with a Riemann
surface with genus n and expanding them with respect to
external momenta [26,27]. The number of external
momenta in the expansion raises the power of α0, whereas
the genus n gives the power of g2s . The corrections to the
type II supergravity action due to these effects are repre-
sented by higher derivative terms, and they are organized in
the form of a double expansion with respect to α0 and gs.
Below, we discuss some qualitative features of the higher
derivative terms in type IIA superstring theory.
Treating the type IIA superstring theory perturbatively

with respect to two parameters α0 ¼ l2
s and the dilaton

coupling gseϕ, one can write its effective action formally as

S¼ 1

2κ210

Z
d10x

ffiffiffiffiffiffi
−g

p
e−2ϕ

�
Oð0Þ þ

X
m;n

l2m
s ðgseϕÞ2nOðm;nÞ

�
;

ð2:1Þ

HANADA, HYAKUTAKE, ISHIKI, and NISHIMURA PHYSICAL REVIEW D 94, 086010 (2016)

086010-2



with an overall coefficient given by 2κ210 ¼ ð2πÞ7l8
sg2s. Here

Oð0Þ represents the terms with mass dimension 2 that
appear in the type IIA supergravity action, and Oðm;nÞ
represents higher derivative corrections with mass dimen-
sion (2mþ 2). All these terms are written in terms of the
massless fields in the type IIA superstring theory such as
the graviton gμν, the dilaton ϕ and the R-R 1-form potential
Cμ. The structure of the higher derivative terms can be
determined by explicit calculations of scattering ampli-
tudes, which show that the l6

s and l6
sg2s terms appear as the

leading corrections, respectively, at the tree level and at the
one-loop level. It is also known that these terms do not
appear from higher loops. Thus we only have terms
in Eq. (2.1) with m ≥ 3 for n ¼ 0, 1 and with m > 3 for
n ≥ 2 [28].
The equations of motion that one obtains from the

effective action (2.1) can also be expanded in a power
series as

E ¼ Eð0Þ þ
X
m;n

l2m
s ðgseϕÞ2nEðm;nÞ ¼ 0; ð2:2Þ

omitting the tensor indices for simplicity. Here Eð0Þ
represents the part obtained from the type IIA supergravity,
and Eðm;nÞ represents the part obtained from the higher
derivative corrections. In order to solve the above
equations of motion for the black 0-brane, we make a
general ansatz for gμν, ϕ and Cμ respecting SO(9) rotational
symmetry as [9]

ds2 ¼ −H−1
1 H

1
2

2F1dt2 þH
1
2

2F
−1
1 dr2 þH

1
2

2r
2dΩ2

8;

eϕ ¼ H
3
4

2; C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α7

p
ðH2H3Þ−1

2dt;

HiðrÞ ¼ 1þ r7−
r7

þ
X
m;n

l2m
s g2ns Hðm;nÞ

i ðrÞ;

F1ðrÞ ¼ 1 −
ðr−αÞ7
r7

þ
X
m;n

l2m
s g2ns Fðm;nÞ

1 ðrÞ; ð2:3Þ

which involves four unknown functions HiðrÞði ¼ 1; 2; 3Þ
and F1ðrÞ. The leading behaviors of Hi and F1 fixed by
using the solution of Eð0Þ ¼ 0 are asymptotically flat, and
they involve two parameters r− and α. As we see below, r−
and α are related to the mass and the charge of the black 0-
brane. The subleading terms described by the functions

Hðm;nÞ
i and Fðm;nÞ

1 can be obtained by solving Eq. (2.2) order
by order. Note that the functions for ðm; nÞ ¼ ð3; 0Þ and
ðm; nÞ ¼ ð3; 1Þ can be obtained independently of the other
unknowns since they are the leading corrections, respec-
tively, at the tree level and at the one-loop level.
The event horizon rH, which is defined by F1ðrHÞ ¼ 0,

can be obtained perturbatively as rH ¼ r−αþ…. Then the
Hawking temperature ~T can be obtained by requiring the

absence of conical singularity in the Euclidean geometry at
the event horizon as1

~T ¼ 1

4π
H

−1
2

1

dF1

dr

����
rH

¼ 7ðr−αÞ52
4πr

7
2−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α7

p
�
1þ

X
m;n

l2m
s g2ns ~Tðm;nÞ

�
; ð2:4Þ

where ~Tðm;nÞ can be determined once the solution is
obtained. Since the metric (2.3) is asymptotically flat,
the mass ~M of the black 0-brane can be evaluated by
using the Arnowitt-Deser-Misner (ADM) mass formula and
the charge ~Q can be calculated by integrating the R-R flux.2

They can be written formally as

~M ¼ VS8

2κ210
ðr−αÞ7

�
7þ 8α7

α7
þ
X
m;n

l2m
s g2ns ~Mðm;nÞ

�
; ð2:5Þ

~Q ¼ VS8

2κ210
ðr−αÞ7

�
7

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α7

p

α7
þ
X
m;n

l2m
s g2ns ~Qðm;nÞ

�
; ð2:6Þ

where VS8 ¼ 2π9=2

Γð9=2Þ ¼ 2ð2πÞ4
7·15 is the volume of S8. The

internal energy of N D0-branes ~E ¼ ~M − ~Q, which is
identified as the difference between the mass and the
charge, can be obtained from (2.5) and (2.6) as

~E ¼ VS8

2κ210
ðr−αÞ7

�
1þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α7

p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α7

p þ
X
m;n

l2m
s g2ns ~Eðm;nÞ

�
;

ð2:7Þ

where ~Eðm;nÞ has mass dimension 2m.

B. Black 0-brane thermodynamics at large N

Let us first consider the supergravity approximation,
which is valid when the curvature radius is large compared
to ls and the effective coupling gseϕ is small. Neglecting
higher derivative corrections in Eqs. (2.4) and (2.7), the
temperature and the internal energy of the black 0-brane are
obtained as

~T ¼ 7ðr−αÞ52
4πr

7
2−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α7

p ;

~E ¼ VS8

2κ210
ðr−αÞ7

1þ 8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α7

p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α7

p ; ð2:8Þ

1Here we reserve the variables such as T, E, and U0 without
tildes for dimensionless quantities to be defined in (2.14).

2The integrands for the ADM mass and the R-R charge have
corrections due to the higher derivative terms, which vanish at
r ¼ ∞ [10].
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where r− and α are the parameters of the classical black 0-
brane. The extremal limit corresponds to α → 0 and
r7− → ð2πÞ215πgsNl7

s , where the latter follows from the
former using ~Q ¼ N=ðlsgsÞ and (2.6). In that limit, the
event horizon rH ¼ r−α, the temperature ~T, and the internal
energy ~E all vanish as long as r− is kept finite.
The gauge/gravity duality holds in the near horizon limit

[7,8], which is given in the present case by

ls → 0 with ~U0 ≡ rH
l2
s

and λ ¼ gsN
ð2πÞ2l3

s
fixed:

ð2:9Þ

Note that the gravitational coupling κ210 goes to 0 when
ls → 0 with the ’t Hooft coupling λ ¼ g2YMN fixed. This
means that the gauge theory on the D0-branes decouples
from the bulk gravity. On the other hand, the parameter ~U0

in (2.9) is proportional to the product of the string tension
1=2πl2

s and the typical length rH, which represents the
gauge boson mass in the gauge theory. Therefore, fixing ~U0

in the limit corresponds to keeping the energy scale of the
dual gauge theory finite. Let us also mention that the limit
(2.9) can be rewritten in terms of α and r−, as

α → 0;
r2−
α5

→ ð2πÞ415πλ ~U−5
0 ;

2κ210
ðr−αÞ7

→
ð2πÞ11λ2 ~U−7

0

N2
: ð2:10Þ

Since α → 0 and r− → 0, the near horizon limit may be
regarded as a special case of the near extremal limit, in
which the temperature ~T and the internal energy ~E are kept
finite.
In the near horizon limit, physical quantities can

be expressed in terms of ~U0 and λ. Introducing a
rescaled coordinate U ¼ r=l2

s , we can rewrite the solution
(2.3) as [8]

ds2 ¼ l2
sð−H−1

2Fdt2 þH
1
2F−1dU2 þH

1
2U2dΩ2

8Þ;
eϕ ¼ l−3

s H
3
4; C ¼ l4

sH−1dt;

H ¼ ð2πÞ415πλ
U7

; F ¼ 1 −
~U7
0

U7
: ð2:11Þ

Taking the near horizon limit in Eq. (2.8), we obtain

T ¼ a1U
5
2

0; a1 ¼
7

16π3
ffiffiffiffiffiffiffiffi
15π

p ; ð2:12Þ

E
N2

¼ 18

73
a21U

7
0 ¼

18

73
a
−4
5

1 T
14
5 ∼ 7.41T2.8; ð2:13Þ

where we have defined the dimensionless quantities

T ¼
~T

λ
1
3

; U0 ¼
~U0

λ
1
3

; E ¼
~E

λ
1
3

: ð2:14Þ

Since the curvature radius ρ and the effective coupling gseϕ

around the event horizon are estimated as

ls

ρ
∼U

3
4

0; gseϕ ∼
1

N
U

−21
4

0 ; ð2:15Þ

the result (2.13) for the internal energy is valid when U0 ≪
1 and U

−21
4

0 ≪ N, which translates to T ≪ 1 and T−21
10 ≪ N

due to (2.12).
When N is large but T ∼Oð1Þ, ls=ρ is no longer small,

and all the higher order terms with n ¼ 0 remain in (2.4)
and (2.7). Therefore, Eq. (2.13) should be replaced by

E
N2

¼ 7.41T2.8

�
1þ

X
m≥3

cm;0T
3m
5

�

¼ 7.41T2.8 þ aT4.6 þ ~aT5.8 þ � � � ; ð2:16Þ

where the second term comes from the leading α0 correction
with ðm; nÞ ¼ ð3; 0Þ and the third term comes from
the next-leading α0 correction with ðm; nÞ ¼ ð5; 0Þ. The
absence of c4;0 follows from some knowledge [28] of
the structure of the effective action (2.1). The explicit
values of the nonzero coefficients cm;0 are not known so far,
however.
In fact, the internal energy of the black 0-brane is

affected by the Hawking radiation, which has not been
taken into account in (2.7). However, the energy loss
through the Hawking radiation can be neglected in the
near horizon limit, as we show in Appendix A. This is
reasonable since the near horizon limit implies the near
extremal limit as well.

C. Black 0-brane thermodynamics at finite N

Let us move on to the case with finite N. Since the
effective coupling gseϕ given by (2.15) can no longer be
neglected, all the higher order terms in Eqs. (2.4) and (2.7)
remain. Using (2.15), each dimensionless term in (2.4) and
(2.7) behaves as

l2m
s g2ns ~Eðm;nÞ ∼

1

N2n U
3m−21n

2

0 ;

l2m
s g2ns ~Tðm;nÞ ∼

1

N2n U
3m−21n

2

0 : ð2:17Þ

Therefore, the internal energy of the black 0-brane in the
near horizon limit is obtained as

E
N2

¼ 7.41T2.8

�
1þ

X
m;n

cm;n

N2n T
3m−21n

5

�
: ð2:18Þ
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The coefficients cm;n can be determined, in principle, by
solving the equations of motion (2.2) that can be derived
from the explicit form of the effective action (2.1). Using
some knowledge [28] of the structure of the effective action
(2.1), we have cm;1 ≠ 0 only for m ¼ 3; 6;… and cm;2 ≠ 0

only for m ¼ 5; 6;…, etc.
In general, it is difficult to obtain the higher derivative

corrections in the effective action (2.1). There exists one
exception, however, which is the leading correction at one
loop corresponding to ðm; nÞ ¼ ð3; 1Þ. In this case, the
correction can be obtained [10] by uplifting the black
0-brane solution to the M-wave solution in eleven dimen-
sions, which is purely geometrical. Since higher curvature
corrections in eleven dimensions are well known [29–33], it
is possible to derive the equations of motion and solve
them. Using this result, the internal energy including the
leading 1=N2 correction can be obtained explicitly as [10]

E
N2

¼ 7.41T
14
5 −

5.77
N2

T
2
5: ð2:19Þ

(See Appendix B for a review on the derivation.)
Thus we find that the internal energy can be expanded

with respect to T and 1=N as

E
N2

¼ ð7.41T2.8þaT4.6þ ~aT5.8þ� � �Þ

þ ð−5.77T0.4þbT2.2þ� � �Þ 1

N2
þO

�
1

N4

�
; ð2:20Þ

where aT4.6 and ~aT5.8 correspond to the l6
s terms and the

l10
s terms, respectively, at the tree level, while bT2.2 comes

from the l12
s g2s terms at the one-loop level.

III. D0-BRANE QUANTUM MECHANICS

According to the gauge/gravity duality conjecture, the
thermodynamics of the black 0-brane corresponds to that of
the gauge theory describing the D0-brane, which takes the
form of the BFSS matrix quantum mechanics. In order to
investigate the thermodynamics, we use the Euclidean time
and compactify it with the periodicity β ¼ 1= ~T. Then the
action of D0-brane quantum mechanics at finite temper-
ature ~T is given by

S ¼ 1

g2YM

Z
β

0

dtTr

�
1

2
ðDtXiÞ2 −

1

4
½Xi; Xj�2

þ 1

2
ψαDtψα −

1

2
ψαγ

αβ
i ½Xi;ψβ�

�
; ð3:1Þ

which can be obtained formally by dimensionally reducing
the action of ð9þ 1Þd N ¼ 1 UðNÞ super Yang-Mills
theory to (0þ 1) dimensions. We have introduced XiðtÞ
(i ¼ 1;…; 9) and ψαðtÞ ðα ¼ 1;…; 16Þ, which are bosonic
and fermionic N × N Hermitian matrices, respectively, and

the covariant derivative Dt ¼ ∂t − i½AðtÞ; ·� is defined
using the UðNÞ gauge field AðtÞ. The bosonic variables
obey periodic boundary conditions Xiðtþ βÞ ¼ XiðtÞ,
Aðtþ βÞ ¼ AðtÞ, whereas the fermionic variables obey
antiperiodic boundary conditions ψαðtþ βÞ ¼ −ψαðtÞ.
The 16 × 16 matrices γi in (3.1) act on spinor indices
and satisfy the Euclidean Clifford algebra fγi; γjg ¼ 2δij.
The ’t Hooft coupling λ ¼ g2YMN corresponds to λ

defined in (2.9) on the dual gravity side. Since the coupling
constant g2YM in the action (3.1) has mass dimension 3, all
dimensionful quantities can be measured in units of λ as we
did in (2.14). Note that the expansion (2.20) is valid when
T ≪ 1 and T−21

10 ≪ N. In particular, the first inequality
implies that λ should be large for fixed temperature ~T.
This implies that we need to study the strong coupling
dynamics of the D0-brane quantum mechanics in order to
test the gauge/gravity duality. For that purpose, we apply
Monte Carlo methods analogous to the ones used in
lattice QCD.

A. Putting the theory on a computer

In order to apply Monte Carlo methods, we have to put
the D0-brane quantum mechanics (3.1) on a computer. It is
not possible to do it, however, respecting all the maximal
supersymmetry generated by 16 supercharges, which the
theory has at zero temperature. For instance, if one
discretizes the time direction, one cannot maintain all
the supersymmetry, since successive supersymmetry trans-
formations induce a translation in the time direction, which
is broken by the discretization. The lack of exact symmetry
in quantum field theories typically necessitates fine-tuning
in taking the continuum limit due to UV divergences. This
does not occur, however, in the present case since the
system is just a quantum mechanics, which is UV finite.
Here, instead of discretizing the time direction, we expand
the functions of t in Fourier modes and introduce a mode
cutoff Λ after fixing the gauge symmetry [34]. Since the
higher Fourier modes omitted in our calculations are
suppressed by the kinetic term, the approach to Λ ¼ ∞
is expected to be fast.
We fix the gauge symmetry by the static diagonal

gauge

AðtÞ ¼ 1

β
diagðα1;…; αNÞ; ð3:2Þ

where αa are chosen to satisfy the constraint3

−π < αa ≤ π: ð3:3Þ

3In actual simulation, we replace the constraint by
maxaðαaÞ −minaðαaÞ ≤ 2π. This is practically equivalent to
(3.3) unless αa is distributed in the whole region (3.3), which
occurs only at very low temperature.
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This constraint is needed to fix the symmetry under large
gauge transformations.4 The Faddeev-Popov term associ-
ated with this gauge fixing condition is given by

SFP ¼ −
X
a<b

2 ln

���� sin αa − αb
2

����; ð3:4Þ

which we add to the action (3.1). The integration measure
for αa is taken to be uniform.
Once we fix the gauge symmetry, we can introduce the

momentum cutoff Λ for the Fourier modes of XiðtÞ and
ψαðtÞ. Since the bosonic matrices XiðtÞ obey periodic
boundary conditions, they are expanded as

Xab
i ðtÞ ¼

XΛ
n¼−Λ

~Xab
in einωt; ð3:5Þ

where ω ¼ 2π=β, and n runs over integers.5 On the other
hand, the fermionic matrices ψαðtÞ, which obey antiperi-
odic boundary conditions, are expanded as

ψab
α ðtÞ ¼

XΛ−1=2
r¼−ðΛ−1=2Þ

~ψab
αr eirωt; ð3:6Þ

where r runs over half-integers. By using a shorthand
notation

ðfð1Þ � � � fðpÞÞn ≡
X

k1þ���þkp¼n

fð1Þk1
� � � fðpÞkp

; ð3:7Þ

the action (3.1) can be expressed as S ¼ Sb þ Sf , where

Sb ¼ Nβ

�
1

2

XΛ
n¼−Λ

�
nω −

αa − αb
β

�
2
~Xba
i;−n ~X

ab
in

−
1

4
Trð½ ~Xi; ~Xj�2Þ0

	
; ð3:8Þ

Sf ¼
1

2
Nβ

� XΛ−1=2
r¼−ðΛ−1=2Þ

i

�
rω −

αa − αb
β

�
~ψba
α;−r ~ψ

ab
αr

− ðγiÞαβTrð ~ψα½ ~Xi; ~ψβ�Þ0
	
: ð3:9Þ

This action is written in terms of a finite number of
variables αa, ~X

ab
in , and ~ψab

αr , and hence it can be dealt with
on a computer. The continuum limit is realized by sending
the cutoff Λ to infinity.
The fermionic degrees of freedom are treated in the

following way. Note that the fermionic action Sf can be
written as Sf ¼ 1

2
MAαr;Bβs ~ψ

A
αr ~ψ

B
βs, where we have

expanded ~ψαr in terms of the generators tA of UðNÞ as
~ψαr ¼

P
N2

A¼1 ~ψA
αrtA. By integrating out the fermionic var-

iables, the partition function can be written as

Z ¼
Z

dXdαdψe−Sb−Sf ¼
Z

dXdαPfMe−Sb ; ð3:10Þ

where PfM represents the Pfaffian of M, which is
complex in general and is denoted as PfM ¼ jPfMjeiΓ.
Since Monte Carlo simulation is applicable only when the
path integral has a positive semidefinite integrand, we omit
the phase factor eiΓ and define the expectation value of
OðX; αÞ for the phase-quenched model as

hOðX;αÞiphase-quenched ≡
R
dXdαOðX; αÞjPfMje−SbR

dXdαjPfMje−Sb :

ð3:11Þ

Then the expectation value with respect to the original
theory (3.10) is given by

hOðX;αÞi ¼ hOðX; αÞeiΓiphase-quenched
heiΓiphase-quenched

: ð3:12Þ

When eiΓ fluctuates rapidly in the simulation of the phase-
quenched model, it is difficult to evaluate (3.12) since both
the denominator and the numerator become very small, and
the number of configurations needed to obtain the ratio
with sufficient accuracy becomes huge. This technical
problem is called the sign problem.
In the present system, however, it has been reported that

the fluctuation of eiΓ is strongly suppressed at both high
temperature and low temperature, and that it can be
neglected throughout the whole temperature region
[23,25]. This can be understood as follows. At high
temperature, the high temperature expansion becomes
applicable [35], which implies that the dynamics of X
and α in the Pfaffian becomes perturbative. Therefore, the
fluctuation of eiΓ becomes less important at high temper-
ature. At low temperature, on the other hand, the dynamics

4The gauge transformation acts on the gauge field as
AðtÞ → ΩðtÞ−1AðtÞΩðtÞ þ iΩðtÞ−1∂tΩðtÞ, where ΩðtÞ is an N ×
N unitary matrix that satisfies the periodic boundary condition
Ωðtþ βÞ ¼ ΩðtÞ. After taking the static diagonal gauge, one still
has to fix the residual symmetry under large gauge transforma-
tions, which correspond to ΩðtÞ ¼ diagðe2πin1t=β;…; e2πinNt=βÞ
with n1;…; nN being integers.

5Note that a large gauge transformation shifts the momentum
of the mode ~Xab

in as n → n − na þ nb. Therefore, one needs to fix
the symmetry under large gauge transformations in order for the
momentum cutoff to make sense.
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is dominated by low momentum modes, for which the
kinetic term (the first term) in (3.9) can be neglected. If we
omit the kinetic term, we can show that the Pfaffian
becomes real. Of course, the existence of high momentum
modes makes the Pfaffian complex, but it is conceivable
that the fluctuation of the phase Γ does not grow linearly
with β. In that case, the correlation function appearing in
the numerator of the right-hand side of (3.12) factorizes at
large β, and the phase-quench approximation is justified.
This argument is given in more detail with some numerical
evidence in Appendix C of Ref. [19], where the effects of
eiΓ on the expectation value of (4.1) are shown to be
negligible for N ¼ 3 and β ¼ 6.67 with periodic boundary
conditions.6 In the present work, we therefore simply
omit the phase factor eiΓ, and use (3.11) to calculate the
vacuum expectation value of observables. See Appendix B
of Ref. [19] for the details of our algorithm for Monte Carlo
simulation.
Let us also comment on how we treat the zero modes.

Note that the constant modes XiðtÞ ¼ xi1N (xi ∈ R) of the
trace part do not appear in the action (3.1). These modes
should be omitted in the path integral (3.10). We can extract
these modes from a general configuration by

xi ¼
1

Nβ

Z
β

0

dtTrðXiðtÞÞ: ð3:13Þ

In what follows, we assume that these zero modes are fixed
by the constraint xi ¼ 0 for i ¼ 1;…; 9. In Monte Carlo
simulation, even if we start from a configuration satisfying
the constraint, xi can become nonzero as the simulation
proceeds due to accumulation of round-off errors. We avoid
this by making a projection XiðtÞ↦X0

iðtÞ ¼ XiðtÞ − xi1N .

B. Calculation of the internal energy

The internal energy E ¼ − ∂
∂β lnZ of the D0-brane

quantum mechanics can be calculated using the formula

E ¼ −3TðhSbi −
9

2
fð2Λþ 1ÞN2 − 1gÞ; ð3:14Þ

which can be obtained by adapting the one used in the
lattice formulation [36] to the present momentum cutoff
formulation. (See Appendix C for the derivation.)
A peculiar aspect of the D0-brane quantum mechanics is

that the action (3.1) has flat directions ½Xi; Xj� ¼ 0. These
are lifted by quantum corrections in the case of the bosonic
model, in which fermionic degrees of freedom are omitted
[37]. However, in the supersymmetric model, the flat
directions are not lifted by quantum corrections due to
supersymmetry. As a result, the supersymmetric model

contains scattering states, which form the continuous
branch of the energy spectrum, in addition to the normal-
izable energy eigenstates, which form the discrete branch of
the spectrum.7 Therefore, the path integral (3.10) is ill
defined as it stands, and we need to consider how to make
sense out of it.
In the large-N limit, the path integral (3.10) becomes

well defined analogously to the well-known example of the
Φ3 model [40]. In this case, we may naturally consider that
the well-defined path integral (3.10) actually represents the
thermodynamics of the normalizable states only.
The situation becomes subtle at finite N. Suppose we

prepare an initial state with Xi ∼ 0 having sufficiently low
energy and let it evolve in time quantum mechanically. It is
expected from the Monte Carlo simulation discussed in
Sec. IV B that the sizeO ¼ 1

N TrðXiÞ2 of the state fluctuates
for a while around some finite value depending on the
initial state, and eventually starts to diverge. These meta-
stable states are linear combinations of normalizable states
and scattering states. However, if they are long lived, we
can still think of their thermodynamics by introducing a
cutoff O ≤ R2

cut, where R2
cut should be chosen to be the

typical size of the metastable states for a given energy. This
can be achieved in the path integral formalism by replacing
the partition function (3.10) with

Z ¼
Z

dXdαdψe−Sb−SfθðR2
cut − R2

maxÞ

¼
Z

dXdαPfMe−SbθðR2
cut − R2

maxÞ; ð3:15Þ

where θðxÞ is the Heaviside step function and we have
defined

R2
max ≡ 1

N
max
0≤t≤β

X9
i¼1

TrðXiðtÞ2Þ: ð3:16Þ

It is expected that the internal energy of the cutoff system
(3.15) becomes independent of R2

cut within some region,
and the internal energy obtained in that region can be
interpreted as the average internal energy of the metastable
states for the T and N corresponding to the partition
function (3.15). The typical size of the metastable states
can be identified with the lower end of the region of R2

cut
within which the internal energy is constant. Note that
the partition function (3.15) does not represent the

6This value of β corresponds to T ¼ 0.15 if antiperiodic
boundary conditions were used. The difference of the boundary
conditions should not matter at this temperature.

7In Ref. [38], the discrete branch of the spectrum is shown to
have a new energy scale proportional to N−5=9 based on the
effective Hamiltonian for the relevant OðNÞ degrees of freedom
in the flat directions. Based on this observation, the particular
power “2.8” of the leading behavior in (2.16) has been under-
stood theoretically on the gauge theory side. See also Ref. [39] for
related work on supersymmetric models with four and eight
supercharges.
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thermodynamics of the normalizable states only unlike the
case with N ¼ ∞. Therefore, there is no guarantee that the
specific heat C ¼ dE

dT corresponding to the internal energy E
defined in this way becomes positive.
Since the N eigenvalues of Xi represent the position of

the D0-branes, the metastable states can be interpreted as
the bound states of D0-branes, which form a black hole.
Therefore, it is expected that the internal energy defined
above corresponds to the internal energy (2.20) of the black
hole. Indeed the black hole is stable in the large-N limit, but
it becomes metastable at finite N due to quantum effects
corresponding to 1=N2 corrections. This can be seen in
(2.19), for instance, where the leading 1=N2 correction
makes the specific heat negative at sufficiently low T. This
instability can be understood physically as caused by the
repulsive force acting on a test particle near the event
horizon due to the quantum gravity effects at small
distances [9].

IV. NUMERICAL TESTS OF THE
GAUGE/GRAVITY DUALITY

In this section we provide numerical tests of the gauge/
gravity duality including finite λ and finite N corrections,
which correspond to the α0 and string loop corrections,
respectively, on the gravity side. These corrections are
discussed separately in Secs. IVA and IV B.

A. Test including α0 corrections

In this section we provide a test of the gauge/gravity
duality in the large-N limit. For that purpose, we perform
Monte Carlo simulation of the D0-brane quantum mechan-
ics (3.1) at large N and compare the results with the
prediction (2.16) obtained on the gravity side. As long as
N > NcðTÞ, where NcðTÞ is some critical value depending
on T, the instability mentioned in the previous section does

not show up practically duringMonte Carlo simulation, and
we can calculate various observables by taking an average
in a straightforward manner. The critical value is found to
behave as NcðTÞ ∼ 6=T at T ≳ 0.5 [16], which makes the
lower T region difficult to study.
In Ref. [18], the results obtained by Monte Carlo sim-

ulation with N ≤ 17 and Λ ≤ 8 were compared with the
prediction including α0 corrections. The numerical data
were fitted by an ansatz E=N2 ¼ 7.41T2.8 þ aTp with p ¼
4.58ð3Þ and a ¼ −5.55ð7Þ, which is consistent with the
prediction p ¼ 4.6 from the gravity side. However, a recent
paper [24] repeated the analysis including data points at
lower T withN ¼ 32 using a lattice formulation.8 The values
obtained from the same fit were a ¼ −0.90ð26Þ × 10 and
p ¼ 4.74ð35Þ. In Ref. [18], a one-parameter fit with the
power p ¼ 4.6 fixed was also performed, and the coefficient
was determined as a ¼ −5.58ð1Þ.
In order to clarify this discrepancy, we improve our

previous analysis in Ref. [18] by making extrapolations to
Λ ¼ ∞. In Fig. 1 (left) we plot our results obtained for
N ¼ 16 against 1=Λ. We tried both a linear extrapolation
E=N2 ¼ aþ b=Λ and a constant fit. The values at each Λ
and the values obtained by the extrapolations are given in
Tables I and II, respectively. In Fig. 1 (right), we plot the
internal energy obtained by the extrapolations. The new
results are consistent with the fit E=N2 ¼ 7.41T2.8 −
5.58T4.6 obtained in Ref. [18].
In Fig. 2 we plot the difference between the obtained

internal energy and the leading prediction (2.13)
from supergravity. The difference is normalized by the
leading prediction as y ¼ ð7.41T2.8 − E=N2Þ=7.41T2.8 and
it is plotted against x ¼ T1.8. The leading α0 corrections
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FIG. 1. (Left) The internal energy E=N2 for N ¼ 16 is plotted against 1=Λ for T ¼ 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 from the bottom to the
top. The solid and dashed lines represent fits to E=N2 ¼ const and E=N2 ¼ aþ b=Λ, respectively. (Right) The internal energy obtained
by extrapolation to Λ ¼ ∞. The solid line represents the prediction of type IIA supergravity E=N2 ¼ 7.41T2.8. The dashed line
represents a fit E=N2 ¼ 7.41T2.8 þ aT4.6 with a ¼ −5.58ð1Þ obtained in Ref. [18]. The dash-dotted line represents a fit E=N2 ¼
7.41T2.8 þ aTp with a ¼ −0.90ð26Þ × 10 and p ¼ 4.74ð35Þ obtained in Ref. [24].

8The lattice size was L ¼ 16, which roughly corresponds to
Λ ¼ 8 from the viewpoint of the number of degrees of freedom.
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correspond to a linear behavior towards the origin. Indeed
we see a linear behavior for T ≤ 0.7 consistent with the
fit obtained in Ref. [18]. On the other hand, the sublead-
ing terms are expected to show up as y ¼ a1xþ
a2x5=3 þ a3x2 þ a4x7=3 þ � � �. The solid line and the
dashed line are fits to y ¼ a1xþ a2x5=3 using the data
points within the range 0.5 ≤ T ≤ 0.7 and 0.5 ≤ T ≤ 0.9,
respectively, obtained by the linear fit. In the latter case, the

leftmost data point obtained by the constant fit is slightly
off the fitting curve. However, this may be due to finite-N
effects, which become more significant at lower temper-
ature as is suggested from the 1=N expansion (2.20). In
order to decide which fit is more appropriate, we clearly
need more data at lower temperature with larger N.

B. Test including string loop corrections

In this section we test the gauge/gravity duality including
string loop corrections. For that purpose, we need to study
the D0-brane quantum mechanics at small N such as
N ¼ 3, 4, 5. As is mentioned at the end of Sec. II B, the
system has instability at small N associated with the flat
directions in the action. In order to probe the instability, we
define

R2 ≡ 1

Nβ

Z
β

0

dt
X9
i¼1

TrðXiðtÞ2Þ; ð4:1Þ

which represents the extent of the eigenvalue distribution of
Xi’s. In Monte Carlo simulation, we prepare the initial
configuration of XiðtÞ with small R2 by giving each
element a small Gaussian random number. At sufficiently
low T, we observe that R2 stabilizes as the simulation
proceeds, and fluctuates around some value for a while and
then starts to diverge. This behavior motivates us to
consider the partition function (3.15), where R2

max is
replaced by R2 for simplicity.9 What we do in practice is
to add the potential term

V ¼
�
cjR2 − R2

cutj for R2 ≥ R2
cut;

0 for R2 < R2
cut;

ð4:2Þ

to the action, where c and R2
cut are some parameters to be

chosen appropriately.
Let us define the distribution of R2 by

ρðxÞ ¼ hδðR2 − xÞi; ð4:3Þ

TABLE I. The results for the internal energy E=N2 obtained with N ¼ 16 at each T and Λ.

T Λ ¼ 2 Λ ¼ 3 Λ ¼ 4 Λ ¼ 5 Λ ¼ 6 Λ ¼ 7 Λ ¼ 8

1.0 3.489(33) 3.350(37) 3.217(41) 3.212(38) 3.172(35) 3.184(41) 3.138(53)
0.9 2.978(14) 2.810(18) 2.722(20) 2.659(33) 2.637(26) 2.651(43) 2.666(26)
0.8 2.498(13) 2.316(16) 2.222(16) 2.146(24) 2.114(24) 2.133(43) 2.132(25)
0.7 2.054(11) 1.868(15) 1.758(12) 1.689(24) 1.647(25) 1.627(27) 1.628(24)
0.6 1.675(11) 1.450(12) 1.342(17) 1.284(24) 1.208(23) 1.171(31) 1.209(21)
0.5 1.368(9) 1.128(12) 1.005(13) 0.948(22) 0.883(19) 0.857(27) 0.872(19)

TABLE II. The results for the internal energy E=N2 in the
continuum limit obtained by extrapolation to Λ ¼ ∞ with the
constant fit and the linear fit. The constant fit is performed using
the data within 6 ≤ Λ ≤ 8, whereas the linear fit is performed by
fitting the data to E=N2 ¼ a=Λþ b with the fitting range 4 ≤
Λ ≤ 8 for T ¼ 1.0, 5 ≤ Λ ≤ 8 for T ¼ 0.9, 0.8 and 6 ≤ Λ ≤ 8 for
T ¼ 0.7, 0.6, 0.5.

T Λ ¼ ∞, const fit Λ ¼ ∞, linear fit

1.0 3.169(24) 3.091(82)
0.9 2.651(17) 2.680(86)
0.8 2.124(16) 2.104(75)
0.7 1.634(14) 1.565(123)
0.6 1.201(14) 1.203(110)
0.5 0.873(12) 0.832(98)
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FIG. 2. The quantity y ¼ ð7.41T2.8 − E=N2Þ=7.41T2.8 repre-
senting the deviation of the internal energy from the leading
prediction from supergravity is plotted against x ¼ T1.8. The
solid line and the dashed line represent fits to y ¼ a1xþ a2x5=3

using the data within the range 0.5 ≤ T ≤ 0.7 and 0.5 ≤ T ≤ 0.9,
respectively, obtained by the linear fit.

9We consider that this does not make much difference because
the fluctuation of

P
9
i¼1 TrðXiðtÞ2Þ as a function of t is typically

small.
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where the expectation value is taken in the system with the
potential (4.2). Figure 3 (top left) shows the distribution
ρðxÞ obtained from Monte Carlo simulation with N ¼ 4,
T ¼ 0.10, Λ ¼ 10, where we have set c ¼ 100 and
R2
cut ¼ 4.2. There is a clear peak around R2 ∼ 3.5, which

indicates the existence of the metastable bound states. The
long tail at R2 ≳ 4 represents the runaway behavior caused
by the instability. In Fig. 3 (top right) we plot the internal
energy EðxÞ=N2 obtained by averaging only over configu-
rations withR2 < x for the same set of parameters. We see a
clear plateau around x ∼ 4, which confirms the argument
given in Sec. III B. Practically, we define the internal
energy of the bound states by the local minimum of
EðxÞ=N2 in the plateau region.
The extent of the bound state can be identified as the

lower end of the plateau region, which we denote as xmin. In
practice, we obtain the value of x, at which EðxÞ=N2

deviates from the local minimum by 5%, and similarly the
value of x allowing 10% deviation. We use the average of
the two values as an estimate of xmin and the difference as
an estimate of the ambiguity (“error”). In Fig. 3 (bottom)
we plot xmin thus obtained as a function of T for N ¼ 4 and
Λ ¼ 16 together with the expectation value hR2i obtained
from configurations with R2 ≤ xmin. We observe that both

xmin and hR2i increase as T is lowered. Note that the
quantity hR2i at large N can be obtained without such a
cutoff procedure, and it is a monotonically increasing
function of T. (See Fig. 2 of Ref. [35], for instance.)
Using the method explained above, we calculate the

internal energy of the bound states for various N, T, and Λ.
We have studied 0.08 ≤ T ≤ 0.12 for N ¼ 3, 0.07 ≤ T ≤
0.12 for N ¼ 4 and 0.08 ≤ T ≤ 0.11 for N ¼ 5. In
Table III, we present our results for the internal energy
obtained at each N, T, and Λ. We make an extrapolation to
Λ ¼ ∞ assuming that finite Λ corrections to the internal
energy are given by E ¼ Egauge þ const=Λ, from which we
extract the value Egauge in the continuum limit. This
extrapolation is performed using 8 ≤ Λ ≤ 16 for T ≥
0.10 and 10 ≤ Λ ≤ 16 for T < 0.10. Figure 4 (Left) shows
the case of N ¼ 4, T ¼ 0.10. In Fig. 4 (Right), we plot our
results for Egauge=N2 obtained in the continuum limit by
extrapolation to Λ ¼ ∞. (The explicit values are given in
the rightmost column of Table III.) The curves in this plot
are explained at the end of this section.
Let us compare our results with the prediction from the

gravity side. Since the α0 corrections are negligible in the
temperature regime investigated here, we can compare our
results with (2.19), which we denote as Egravity=N2 in what
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FIG. 3. (Top left) The distribution of R2 for N ¼ 4, T ¼ 0.10, and Λ ¼ 10 using c ¼ 100 and R2
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follows. Let us also expand the internal energy of the bound
states obtained on the gauge theory side as

Egauge

N2
¼ c0ðTÞ þ

c1ðTÞ
N2

þ c2ðTÞ
N4

þ � � � : ð4:4Þ

If the gauge/gravity duality holds, the first and the second
terms above should coincide with those in (2.19), namely,
c0ðTÞ ¼ 7.41T14=5 and c1ðTÞ ¼ −5.77T2=5. In other
words, the difference of the two quantities Egauge and
Egravity should behave as

1

N2
ðEgauge − EgravityÞ ¼

c2ðTÞ
N4

þO

�
1

N6

�
: ð4:5Þ

In Fig. 5 (left), we plot ðEgauge − EgravityÞ=N2 against 1=N4,
which can be nicely fitted by a straight line passing
through the origin. We also observe a similar behavior
for other values of T. Thus, we confirm the behavior (4.5),
which implies that the gauge/gravity duality holds includ-
ing the leading quantum gravity correction. In Fig. 5 (right),
we plot Egauge=N2 against 1=N2, which can be fitted nicely
by Egauge=N2 ¼ 7.41T2.8 − 5.76T0.4=N2 þ const=N4 as
expected from the gauge/gravity duality. On the other
hand, we also find that the Oð1=N4Þ term is actually
comparable to the Oð1=N2Þ term. This is related to the fact
that the coefficient of the 1=N4 term grows at low T as we
see below.
As an alternative analysis, we fit our results for each T

with
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FIG. 4. (Left) The internal energy of the bound states is plotted against 1=Λ for N ¼ 4, T ¼ 0.10. The straight line represents a fit to
the behavior E ¼ Egauge þ const=Λ, and the value of Egauge obtained by the fit is plotted at Λ ¼ ∞. (Right) The internal energy
Egauge=N2 obtained from our results by extrapolation to Λ ¼ ∞ is plotted against T. The curves represent
Egauge=N2 ¼ Egravity=N2 þ ðcT−2.6 þ ~cTpÞ=N4, where the parameters c, ~c, and p are obtained by fits as described at the end of
Sec. IV B. The solid, dashed, and dash-dotted lines correspond to N ¼ 5, 4, and 3, respectively.

TABLE III. The results for the internal energy at each N, T, and Λ. In the rightmost column, we also present the results in the
continuum limit obtained by extrapolation to Λ ¼ ∞.

N T Λ ¼ 8 Λ ¼ 10 Λ ¼ 12 Λ ¼ 14 Λ ¼ 16 Λ ¼ ∞

5 0.11 0.353(9) 0.273(13) 0.225(17) 0.181(19) 0.160(29) −0.039ð6Þ
5 0.10 0.375(8) 0.290(15) 0.228(15) 0.200(16) 0.178(20) −0.037ð11Þ
5 0.09 0.397(6) 0.323(8) 0.269(10) 0.218(10) 0.193(13) −0.031ð14Þ
5 0.08 0.417(6) 0.349(6) 0.287(11) 0.242(18) 0.205(24) −0.027ð5Þ
4 0.12 0.366(6) 0.297(7) 0.242(11) 0.213(11) 0.153(10) −0.028ð23Þ
4 0.11 0.374(7) 0.279(8) 0.227(10) 0.199(10) 0.165(12) −0.047ð14Þ
4 0.10 0.389(5) 0.300(8) 0.242(10) 0.207(8) 0.163(10) −0.050ð8Þ
4 0.09 0.405(4) 0.332(5) 0.267(7) 0.224(9) 0.195(12) −0.041ð7Þ
4 0.08 0.422(4) 0.365(5) 0.298(7) 0.254(9) 0.223(11) −0.019ð6Þ
4 0.07 0.442(3) 0.375(4) 0.329(4) 0.289(5) 0.245(6) 0.004(30)
3 0.12 0.407(6) 0.327(8) 0.295(9) 0.264(13) 0.243(14) 0.071(16)
3 0.11 0.397(6) 0.332(8) 0.284(8) 0.238(11) 0.220(10) 0.043(10)
3 0.10 0.396(4) 0.323(7) 0.280(7) 0.242(10) 0.201(8) 0.024(12)
3 0.09 0.411(5) 0.344(5) 0.293(8) 0.257(6) 0.240(17) 0.049(8)
3 0.08 0.426(4) 0.355(9) 0.313(7) 0.288(15) 0.263(14) 0.111(5)
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Egauge=N2 ¼ 7.41T2.8 þ c1=N2 þ c2=N4; ð4:6Þ

where c1 and c2 are fitting parameters. In Fig. 6, we plot the
values of c1 obtained by the two-parameter fit as a function
of T, which agree well with the behavior c1 ¼ −5.76T0.4

expected from the gravity side.
Let us also discuss the T dependence of c2. In Fig. 6

(right) we plot the value of c2 obtained by fitting our data to
(4.6) with c1 ¼ −5.76T0.4 fixed. From the prediction from
the gravity side (2.18), we find that c2 ¼ cT−2.6 þ � � �,
where the leading behavior is determined by the ðm; nÞ ¼
ð5; 2Þ term in (2.18). We can actually fit our results to c2 ¼
cT−2.6 þ ~cTp with c ¼ 0.032ð2Þ, ~c ¼ 0.51ð64Þ × 105, and
p ¼ 3.7ð6Þ, where the second term ~cTp is meant to

represent all the subleading terms phenomenologically.10

Therefore, we consider that the T dependence of c2 is
also consistent with the prediction from the gravity side.
The curves in Fig. 4 (right) represent Egauge=N2 ¼
Egravity=N2 þ ðcT−2.6 þ ~cTpÞ=N4 with c, ~c; and p obtained
above.

V. SUMMARY AND DISCUSSIONS

In this paper we have performed numerical tests of the
gauge/gravity duality conjecture including the α0 and string
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the gravity side is plotted against 1=N4, where the straight lines represent fits to a linear behavior. (Right) The internal energy Egauge=N2

obtained by the gauge theory is plotted against 1=N2. The dashed lines represent fits to the behavior Egauge=N2 ¼
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10The value for ~c obtained by the fit looks huge, but it is
actually compensated by the high power of T within the
temperature region investigated here.
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loop corrections by using N D0-branes at finite temper-
ature. On the gravity side, these are described by the black
0-brane geometry. The leading part is obtained by the
supergravity solution, and the α0 and string loop corrections
can be taken into account perturbatively, which leads to the
internal energy of the black 0-brane given by Eq. (2.20). On
the gauge theory side, the D0-branes are described by the
matrix quantum mechanics, which has been studied by
Monte Carlo simulation.
In the large-N limit, the string loop corrections can be

neglected on the gravity side and the internal energy is
given by Eq. (2.16). We have improved our previous
analysis in Ref. [18] by performing extrapolations to the
continuum limit. While our new results are still consistent
with the fit obtained previously, we have also suggested an
alternative fit obtained by taking into account the higher
order α0 corrections. More calculations at low temperature
with larger N are required for a definite conclusion to be
reached.
We have also provided a test of the gauge/gravity duality

including string loop corrections. In order to see the string
loop corrections, we need to study the D0-brane system
with small N such as N ¼ 3, 4, 5. This is difficult because
of the instability associated with the flat directions of the
potential. At low temperature, however, we observe from
Monte Carlo simulations that the bound states of D0-branes
become metastable. We investigate the thermodynamics of
these metastable bound states by introducing a cutoff on the
extent of the D0-branes. Indeed we find that the internal
energy becomes independent of the cutoff within a finite
region. From this behavior, we were able to obtain the
internal energy of the metastable bound states as a function
of the temperature, which turns out to be consistent with the
result (2.19) obtained recently on the gravity side including
the leading string loop corrections. To our knowledge, this
is the first dynamical evidence that suggests that the gauge/
gravity duality holds at finite N. (See Ref. [41] for studies
on kinematical aspects of the duality including 1=N
corrections.)
A particularly interesting future direction would be to

investigate the D0-brane system at even lower temperature
with larger N. On the gravity side, it is expected that the
black 0-brane geometry becomes unstable, and undergoes
a transition to a black hole moving along the eleventh
direction [8] due to the Gregory-Laflamme instability
[42]. This corresponds to a Schwarzschild black hole in
eleven dimensions, where the Hawking radiation becomes
a non-negligible effect unlike the case investigated in
this paper. The transition temperature has been obtained
as Tc ¼ 0.574N−5=9 þ 0.707N−11=9 þ � � � including the
leading quantum correction [43]. If one can see this
transition in the dual gauge theory, one should also be
able to investigate the conjecture that the same matrix
quantum mechanics actually describes M theory non-
perturbatively [3].
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APPENDIX A: HAWKING RADIATION
IN TYPE IIA SUPERGRAVITY

The internal energy of the black 0-brane is affected by
the Hawking radiation. In order to estimate the strength of
this effect, we consider the Stefan-Boltzmann law in ten-
dimensional spacetime,

d ~E
dt

¼ σAH
~T10 ¼ σAHλ

10
3T10; ðA1Þ

where σ is some constant and AH is the area of the event
horizon evaluated in the Einstein frame as

AH ¼ e−2ϕVS8ðlsH
1
2UÞ8j ~U0

¼ 2ð2πÞ6 ffiffiffi
π

p

7
ffiffiffiffiffi
15

p l14
s λ2U

9
2

0

¼ 2ð2πÞ6 ffiffiffi
π

p

7
ffiffiffiffiffi
15

p a
−9
5

1 l14
s λ2T

9
5 ðA2Þ

using the constant a1 given in (2.12). In terms of dimen-
sionless quantities (2.14), the energy loss per unit time is
expressed as

dE

dðλ1=3tÞ ¼ σ0ðlsλ
1
3Þ14T59

5 ; σ0 ¼ 2ð2πÞ6 ffiffiffi
π

p

7
ffiffiffiffiffi
15

p a
−9
5

1 σ: ðA3Þ

Since the coefficient vanishes in the ls → 0 limit, the
energy loss through the Hawking radiation can be neglected
in the present calculation. This conclusion is understand-
able since the near horizon limit corresponds to a particular
case of the near extremal limit as we mentioned
below Eq. (2.10).
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APPENDIX B: LEADING HIGHER DERIVATIVE CORRECTIONS AT ONE LOOP

In this appendix, we briefly review the derivation [10] of the internal energy (2.19) including the leading higher derivative
correction at the one-loop level, which corresponds to the ðm; nÞ ¼ ð3; 1Þ term in the effective action (2.1).
Including the correction, the 0-brane solution is modified and given with an asymptotically flat metric as

ds2 ¼ −H−1
1 H

1
2

2F1dt2 þH
1
2

2F
−1
1 dr2 þH

1
2

2r
2dΩ2

8; eϕ ¼ H
3
4

2; C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α7

p
ðH2H3Þ−1

2dt;

Hi ¼ 1þ r7−
r7

þ γ

r6−α13

�
hi

�
r

r−α

�
þ α7ĥi

�
r

r−α

��
; F1 ¼ 1 −

r7−α7

r7
þ γ

r6−α6
f1

�
r

r−α

�
; ðB1Þ

where γ ¼ π2

21132
l6
sg2s . The four functions hiðxÞ and f1ðxÞ are uniquely determined as11

h1ðxÞ ¼
1302501760

9x34
−
57462496

x27
þ 12051648

13x20
−
4782400

13x13
−
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x7
þ 4099200

x6
−
1639680ðx − 1Þ

ðx7 − 1Þ

þ 117120

�
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�
IðxÞ;

h2ðxÞ ¼
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x34
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13x20
−
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13x13
−
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�
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�
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361110400

9x34
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−
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−
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13x20
þ 956480

x13
þ 3747840

x7
þ 819840

x7
IðxÞ; ðB2Þ

and the three functions ĥiðxÞ are expressed as

ĥ1ðxÞ ¼
1035722240

9x27
þ 1721664

x20
þ 22955520

13x13
þ 1912960

x6
− 1639680

x − 1

x7 − 1
þ 234240IðxÞ;

ĥ2ðxÞ ¼ −ĥ3ðxÞ ¼ −
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þ 2186240
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þ 1873920IðxÞ; ðB3Þ

where

IðxÞ ¼ log
x7ðx − 1Þ
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nπ
7
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Using the black 0-brane solution including the leading quantum correction (B1), we can obtain various quantities
associated with the solution. The Hawking temperature is given by

~T ¼ 7α
5
2

4πr−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α7

p
�
1þ γ

r6−α6

��
8

7
−

1

2ð1þ α7Þ
�
f1ðαÞ þ

1

7
f01ð1Þ −

1

2ð1þ α7Þ h1ð1Þ
�	

ðB5Þ

up to the linear order in γ, while the mass and the charge are evaluated, respectively, as

~M ¼ VS8

2κ210
fr7−ð7þ 8α7Þ − 16865280γr−αg; ~Q ¼ VS8

2κ210
7r7−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α7

p
; ðB6Þ

which shows that the charge is not affected by quantum corrections.

11In fact, the term 3747840
x7 in the function f1ðxÞ was dropped in Ref. [9] by imposing a stronger boundary condition, although

we actually need it to satisfy the asymptotic flatness of the solution. This does not affect the final results for physical quantities
such as entropy since they depend on f1ðxÞ only through the combination 7f1ð1Þ þ f01ð1Þ.
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After taking the near horizon limit, the dimensionless
temperature becomes

T ¼ a1U
5
2

0ð1þ ϵa2U−6
0 Þ;
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9

14
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1

7
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1

2
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ϵ ¼ π6

2732N2
; ðB7Þ

and the dimensionless internal energy becomes

E
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2
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This is consistent with the result derived in Ref. [9] using
the first law of the black hole thermodynamics.

APPENDIX C: DERIVATION OF THE FORMULA
FOR THE INTERNAL ENERGY

In this appendix we derive the formula (3.14), which is
used to calculate the internal energy by Monte Carlo
simulation. Let us first rewrite the internal energy E ¼
− ∂

∂β lnZ as

E ¼ −
1

ZðβÞ lim
Δβ→0

Zðβ0Þ − ZðβÞ
Δβ

; ðC1Þ

where β0 ¼ β þ Δβ, and represent Zðβ0Þ for later conven-
ience as

Zðβ0Þ ¼
Z

½DA0�β0 ½DX0�β0 ½Dψ 0�β0e−S0 ; ðC2Þ

where S0 is obtained from S given in (3.1) by replacing β, t,
AðtÞ, XiðtÞ, ψαðtÞ with β0, t0, A0ðt0Þ, X0

iðt0Þ, ψ 0
aðt0Þ. In order

to relate Zðβ0Þ to ZðβÞ, we consider the transformation

t0 ¼ β0

β
t; A0ðt0Þ ¼ β

β0
AðtÞ;

X0
iðt0Þ ¼

ffiffiffiffi
β0

β

s
XiðtÞ; ψ 0ðt0Þ ¼ ψðtÞ; ðC3Þ

where the constant factors are motivated on dimensional
grounds. As for the path integral measure, we impose
½DX0�β0 ¼ ½DX�β, ½Dψ 0�β0 ¼ ½Dψ �β, and ½DA0�β0 ¼ ½DA�β,
which corresponds to subtracting the internal energy for the

free theory in the definition (C1). Under this transforma-
tion, the kinetic term in S0 reduces to that in S, but the
interaction term transforms nontrivially asZ

β0

0

dt0Trð½X0
iðt0Þ; X0

jðt0Þ�Þ2

¼
�
β0

β

�
3
Z

β

0

dtTrð½XiðtÞ; XjðtÞ�Þ2; ðC4Þ
Z

β0

0

dtTrðψ 0
αðt0Þ½X0

iðt0Þ;ψ 0
βðt0Þ�Þ

¼
�
β0

β

�
3=2

Z
β

0

dtTrðψα½XiðtÞ;ψβðtÞ�Þ: ðC5Þ

This gives us the relation

Zðβ0Þ ¼ ZðβÞ
�
1 −

Δβ
β

ð3hSb;inti þ
3

2
hSf;intiÞ

þ OððΔβÞ2Þ
�
; ðC6Þ

where Sb;int and Sf;int represent the bosonic and fermionic
part of the interaction terms, respectively. Plugging these
into (C1), we get

E ¼ 3

β

�
hSb;inti þ

1

2
hSf;inti

�
: ðC7Þ

Thus we are able to express the internal energy E in terms
of the expectation values, which can be calculated by
Monte Carlo simulation. However, the second term hSf;inti
is computationally demanding since it involves fermionic
matrices. This motivates us to rewrite it in terms of
quantities involving bosonic matrices only.
For that purpose, we consider a change of variables

XiðtÞ↦eϵXiðtÞ in the partition function. The kinetic term
Sb;kin for the bosonic matrices XiðtÞ in (3.1) transforms as
Sb;kin↦e2ϵSb;kin, whereas the interaction terms transform as
Sb;int↦e4ϵSb;int and Sf;int↦eϵSf;int. The path integral mea-
sure for the bosonic matrices XiðtÞ transforms as
dX↦e9ϵfN2ð2Λþ1Þ−1gdX, where the “−1” is due to the fact
that the trace part in the constant mode of XiðtÞ does not
appear in the action and hence should be omitted. Since the
partition function should be invariant under the change of
variables, we obtain the identity

9fN2ð2Λþ 1Þ − 1g ¼ 2hSb;kini þ 4hSb;inti þ hSf;inti:
ðC8Þ

Solving this equation for hSf;inti, and plugging it into (C7),
we obtain the formula (3.14).
When we add the potential (4.2) to the action, the

formula (3.14) is modified by an extra term coming from
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the potential. However, in the parameter region investigated
in this work, the extra term turns out to be negligible as
we briefly discuss below. For this reason, we use the
formula (3.14) with or without the potential (4.2).
For simplicity, we consider introducing the constraint

R2 ≤ R2
cut, which corresponds to inserting an extra factor

θðR2
cut − R2Þ in the integrand of the path integral (3.10).

Under the transformation (C3), R2 defined in (4.1) trans-
forms as

1

β0

Z
β0

0

dt0TrX0
iðt0Þ2 ¼

�
β0

β

�
1

β

Z
β

0

dtTrXiðtÞ2: ðC9Þ

Therefore, the extra factor transforms as

θ

�
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cut −

1

Nβ0

Z
β0

0

dt0TrX0
iðt0Þ2

�

¼ θ

�
R2
cut −

1

Nβ

Z
β

0

dtTrXiðtÞ2
�

−
Δβ
β

R2
cutδ

�
R2
cut −

1

Nβ

Z
β

0

dtTrXiðtÞ2
�
; ðC10Þ

omitting the higher order terms in Δβ. Therefore, the
relation (C6) is modified as

Zðβ0Þ ¼ ZðβÞ
�
1 −

Δβ
β

ð3hSb;inti þ
3

2
hSf;inti

þ R2
cutρðR2

cutÞÞ þ OððΔβÞ2Þ
�
; ðC11Þ

where ρðxÞ is defined by (4.3) in the system with the
constraint R2 ≤ R2

cut. Thus, (C7) is modified as

E ¼ 3

β

�
hSb;inti þ

1

2
hSf;inti

�
þ 1

β
R2
cutρðR2

cutÞ: ðC12Þ

Let us evaluate the extra term in the case shown in Fig. 3
(top left). Here we have N ¼ 4, β ¼ 1=T ¼ 10, R2

cut ¼ 4.2,
and ρðR2

cutÞ ∼ 0.2, and hence the quantity E=N2 receives a
contribution from the extra term of the order of
4.2×0.2
10×42 ∼ 0.005, which may be neglected in the scale of
Fig. 4 (left). In general, the extra term is suppressed by the
factor ρðR2

cutÞ, which is small if the system is stable enough.

[1] J. Polchinski, Dirichlet Branes and Ramond-Ramond
Charges, Phys. Rev. Lett. 75, 4724 (1995).

[2] A. Strominger and C. Vafa, Microscopic origin of the
Bekenstein-Hawking entropy, Phys. Lett. B 379, 99 (1996).

[3] T. Banks, W. Fischler, S. H. Shenker, and L. Susskind, M
theory as a matrix model: a conjecture, Phys. Rev. D 55,
5112 (1997).

[4] N. Ishibashi, H. Kawai, Y. Kitazawa, and A. Tsuchiya, A
large-N reduced model as superstring, Nucl. Phys. B498,
467 (1997).

[5] R. Dijkgraaf, E. P. Verlinde, and H. L. Verlinde, Matrix
string theory, Nucl. Phys. B500, 43 (1997).

[6] H. Itoyama and A. Tokura, USp(2k) matrix model: non-
perturbative approach to orientifolds, Phys. Rev. D 58,
026002 (1998).

[7] J. M. Maldacena, The large-N limit of superconformal field
theories and supergravity, Adv. Theor. Math. Phys. 2, 231
(1998); J. M. Maldacena, The Large N Limit of Super-
conformal Field Theories and Supergravity, Int. J. Theor.
Phys. 38, 1113 (1999).

[8] N. Itzhaki, J. M. Maldacena, J. Sonnenschein, and S.
Yankielowicz, Supergravity and the large-N limit of theories
with sixteen supercharges, Phys. Rev. D 58, 046004 (1998).

[9] Y. Hyakutake, Quantum near-horizon geometry of a black
0-brane, Prog. Theor. Exp. Phys. 2014, 033B04 (2014).

[10] Y. Hyakutake, Quantum M-wave and black 0-brane, J. High
Energy Phys. 09 (2014) 075.

[11] B. de Wit, J. Hoppe, and H. Nicolai, On the quantum
mechanics of supermembranes,Nucl. Phys.B305, 545 (1988).

[12] D. N. Kabat and G. Lifschytz, Approximations for strongly
coupled supersymmetric quantum mechanics, Nucl. Phys.
B571, 419 (2000).

[13] D. N. Kabat, G. Lifschytz, and D. A. Lowe, Black hole
thermodynamics from calculations in strongly coupled
gauge theory, Int. J. Mod. Phys. A A16, 856 (2001);
D. N. Kabat, G. Lifschytz, and D. A. Lowe, Black Hole
Thermodynamics from Calculations in Strongly Coupled
Gauge Theory, Phys. Rev. Lett. 86, 1426 (2001).

[14] D. N. Kabat, G. Lifschytz, and D. A. Lowe, Black hole
entropy from nonperturbative gauge theory, Phys. Rev. D
64, 124015 (2001).

[15] N. Iizuka, D. N. Kabat, G. Lifschytz, and D. A. Lowe,
Probing black holes in nonperturbative gauge theory, Phys.
Rev. D 65, 024012 (2001).

[16] K. N. Anagnostopoulos, M. Hanada, J. Nishimura, and S.
Takeuchi, Monte Carlo Studies of Supersymmetric Matrix
Quantum Mechanics with Sixteen Supercharges at Finite
Temperature, Phys. Rev. Lett. 100, 021601 (2008).

[17] M. Hanada, A. Miwa, J. Nishimura, and S. Takeuchi,
Schwarzschild Radius from Monte Carlo Calculation of
the Wilson Loop in Supersymmetric Matrix Quantum
Mechanics, Phys. Rev. Lett. 102, 181602 (2009).

[18] M. Hanada, Y. Hyakutake, J. Nishimura, and S. Takeuchi,
Higher Derivative Corrections to Black Hole Thermody-
namics from Supersymmetric Matrix Quantum Mechanics,
Phys. Rev. Lett. 102, 191602 (2009).

[19] M. Hanada, J. Nishimura, Y. Sekino, and T. Yoneya,
Direct test of the gauge-gravity correspondence for matrix

HANADA, HYAKUTAKE, ISHIKI, and NISHIMURA PHYSICAL REVIEW D 94, 086010 (2016)

086010-16

http://dx.doi.org/10.1103/PhysRevLett.75.4724
http://dx.doi.org/10.1016/0370-2693(96)00345-0
http://dx.doi.org/10.1103/PhysRevD.55.5112
http://dx.doi.org/10.1103/PhysRevD.55.5112
http://dx.doi.org/10.1016/S0550-3213(97)00290-3
http://dx.doi.org/10.1016/S0550-3213(97)00290-3
http://dx.doi.org/10.1016/S0550-3213(97)00326-X
http://dx.doi.org/10.1103/PhysRevD.58.026002
http://dx.doi.org/10.1103/PhysRevD.58.026002
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1103/PhysRevD.58.046004
http://dx.doi.org/10.1093/ptep/ptu028
http://dx.doi.org/10.1007/JHEP09(2014)075
http://dx.doi.org/10.1007/JHEP09(2014)075
http://dx.doi.org/10.1016/0550-3213(88)90116-2
http://dx.doi.org/10.1016/S0550-3213(99)00818-4
http://dx.doi.org/10.1016/S0550-3213(99)00818-4
http://dx.doi.org/10.1142/S0217751X01003949
http://dx.doi.org/10.1103/PhysRevLett.86.1426
http://dx.doi.org/10.1103/PhysRevD.64.124015
http://dx.doi.org/10.1103/PhysRevD.64.124015
http://dx.doi.org/10.1103/PhysRevD.65.024012
http://dx.doi.org/10.1103/PhysRevD.65.024012
http://dx.doi.org/10.1103/PhysRevLett.100.021601
http://dx.doi.org/10.1103/PhysRevLett.102.181602
http://dx.doi.org/10.1103/PhysRevLett.102.191602


theory correlation functions, J. High Energy Phys. 12 (2011)
020.

[20] M. Hanada, J. Nishimura, Y. Sekino, and T. Yoneya,
Monte Carlo Studies of Matrix Theory Correlation Func-
tions, Phys. Rev. Lett. 104, 151601 (2010).

[21] M. Hanada, Y. Hyakutake, G. Ishiki, and J. Nishimura,
Holographic description of a quantum black hole on a
computer, Science 344, 882 (2014).

[22] S. Catterall and T. Wiseman, Black hole thermodynamics
from simulations of lattice Yang-Mills theory, Phys. Rev. D
78, 041502 (2008).

[23] S. Catterall and T. Wiseman, Extracting black hole physics
from the lattice, J. High Energy Phys. 04 (2010) 077.

[24] D. Kadoh and S. Kamata, Gauge/gravity duality and lattice
simulations of one-dimensional SYM with sixteen super-
charges, arXiv:1503.08499.

[25] V. G. Filev and D. O’Connor, The BFSS model on the
lattice, J. High Energy Phys. 05 (2016) 167.

[26] D. J. Gross and E. Witten, Superstring modifications of
Einstein’s equations, Nucl. Phys. B277, 1 (1986).

[27] D. J. Gross and J. H. Sloan, The quartic effective action for
the heterotic string, Nucl. Phys. B291, 41 (1987).

[28] M. B. Green, J. G. Russo, and P. Vanhove, Nonrenormal-
ization conditions in type II string theory and maximal
supergravity, J. High Energy Phys. 02 (2007) 099.

[29] A. A. Tseytlin, R4-terms in eleven dimensions and con-
formal anomaly of (2,0) theory, Nucl. Phys. B584, 233
(2000).

[30] K. Becker and M. Becker, Supersymmetry breaking, M
theory, and fluxes, J. High Energy Phys. 07 (2001) 038.

[31] K. Peeters, P. Vanhove, and A. Westerberg, Supersymmetric
higher-derivative actions in ten and eleven dimensions, the
associated superalgebras, and their formulation in super-
space, Classical Quantum Gravity 18, 843 (2001).

[32] Y. Hyakutake and S. Ogushi, Higher derivative corrections
to eleven-dimensional supergravity via local supersym-
metry, J. High Energy Phys. 02 (2006) 068.

[33] Y. Hyakutake, Toward the determination of R3F2 terms in
M-theory, Prog. Theor. Phys. 118, 109 (2007).

[34] M. Hanada, J. Nishimura, and S. Takeuchi, Nonlattice
Simulation for Supersymmetric Gauge Theories in One
Dimension, Phys. Rev. Lett. 99, 161602 (2007).

[35] N. Kawahara, J. Nishimura, and S. Takeuchi, High temper-
ature expansion in supersymmetric matrix quantum me-
chanics, J. High Energy Phys. 12 (2007) 103.

[36] S. Catterall and T. Wiseman, Towards lattice simulation of
the gauge theory duals to black holes and hot strings, J. High
Energy Phys. 12 (2007) 104.

[37] N. Kawahara, J. Nishimura, and S. Takeuchi, Phase struc-
ture of matrix quantum mechanics at finite temperature, J.
High Energy Phys. 10 (2007) 097.

[38] A. V. Smilga, Comments on thermodynamics of
supersymmetric matrix models, Nucl. Phys. B818, 101
(2009).

[39] M. Hanada, S. Matsuura, J. Nishimura, and D. Robles-
Llana, Nonperturbative studies of supersymmetric matrix
quantum mechanics with 4 and 8 supercharges at finite
temperature, J. High Energy Phys. 02 (2011) 060.

[40] E. Brezin, C. Itzykson, G. Parisi, and J. B. Zuber, Planar
diagrams, Commun. Math. Phys. 59, 35 (1978).

[41] A. A. Ardehali, J. T. Liu, and P. Szepietowski, The spectrum
of IIB supergravity on AdS5 × S5=Z3 and a 1=N2 test of
AdS/CFT, J. High Energy Phys. 06 (2013) 024.

[42] R. Gregory and R. Laflamme, Black Strings and p-Branes
are Unstable, Phys. Rev. Lett. 70, 2837 (1993).

[43] Y. Hyakutake, Boosted quantum black hole and black string
in M-theory, and quantum correction to Gregory-Laflamme
instability, J. High Energy Phys. 09 (2015) 067.

NUMERICAL TESTS OF THE GAUGE/GRAVITY DUALITY … PHYSICAL REVIEW D 94, 086010 (2016)

086010-17

http://dx.doi.org/10.1007/JHEP12(2011)020
http://dx.doi.org/10.1007/JHEP12(2011)020
http://dx.doi.org/10.1103/PhysRevLett.104.151601
http://dx.doi.org/10.1126/science.1250122
http://dx.doi.org/10.1103/PhysRevD.78.041502
http://dx.doi.org/10.1103/PhysRevD.78.041502
http://dx.doi.org/10.1007/JHEP04(2010)077
http://arXiv.org/abs/1503.08499
http://dx.doi.org/10.1007/JHEP05(2016)167
http://dx.doi.org/10.1016/0550-3213(86)90429-3
http://dx.doi.org/10.1016/0550-3213(87)90465-2
http://dx.doi.org/10.1088/1126-6708/2007/02/099
http://dx.doi.org/10.1016/S0550-3213(00)00380-1
http://dx.doi.org/10.1016/S0550-3213(00)00380-1
http://dx.doi.org/10.1088/1126-6708/2001/07/038
http://dx.doi.org/10.1088/0264-9381/18/5/307
http://dx.doi.org/10.1088/1126-6708/2006/02/068
http://dx.doi.org/10.1143/PTP.118.109
http://dx.doi.org/10.1103/PhysRevLett.99.161602
http://dx.doi.org/10.1088/1126-6708/2007/12/103
http://dx.doi.org/10.1088/1126-6708/2007/12/104
http://dx.doi.org/10.1088/1126-6708/2007/12/104
http://dx.doi.org/10.1088/1126-6708/2007/10/097
http://dx.doi.org/10.1088/1126-6708/2007/10/097
http://dx.doi.org/10.1016/j.nuclphysb.2009.03.023
http://dx.doi.org/10.1016/j.nuclphysb.2009.03.023
http://dx.doi.org/10.1007/JHEP02(2011)060
http://dx.doi.org/10.1007/BF01614153
http://dx.doi.org/10.1007/JHEP06(2013)024
http://dx.doi.org/10.1103/PhysRevLett.70.2837
http://dx.doi.org/10.1007/JHEP09(2015)067

