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We provide a simple derivation of the equivalence between Einstein and conformal gravity (CG) with
Neumann boundary conditions given by Maldacena. As Einstein spacetimes are Bach flat, a generic
solution to CG would contain both Einstein and non-Einstein parts. Using this decomposition of the
spacetime curvature in the Weyl tensor makes manifest the equivalence between the two theories, both at
the level of the action and the variation of it. As a consequence, we show that the on-shell action for critical
gravity in four dimensions is given uniquely in terms of the Bach tensor.
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I. INTRODUCTION

In the last decades, modifications to general relativity
(GR) have been extensively studied in a quest for a
quantum theory of gravity. In this context, GR can be
considered as a low-energy effective theory of gravity that
may acquire higher-order corrections. The presence of
nonlinear terms in curvature exhibits desirable features
one may expect from quantum gravity: unlike GR, which is
a two-loop divergent theory [1], higher-derivative gravity
theories are renormalizable providing a well-defined ultra-
violet behavior [2,3]. Examples of this type of modification
are massive gravity, FðRÞ, etc.
Conformal gravity (CG) in four dimensions is a special

case of the aforementioned class of theories. It is a
quadratic-curvature gravity theory that is renormalizable [4]
but it suffers from ghosts (modes of negative norm),
contrary to Einstein (E) gravity. Its action takes the form

ICG ¼ αCG

Z
M
d4x

ffiffiffiffiffiffi
−g

p
WαβμνWαβμν

¼ αCG
4

Z
M
d4x

ffiffiffiffiffiffi
−g

p
δ½ν1ν2ν3ν4�½μ1μ2μ3μ4�W

μ1μ2
ν1ν2W

μ3μ4
ν3ν4 ; ð1Þ

where

Wαβ
μν ¼ Rαβ

μν − ðSαμδβν − Sβμδαν − Sανδ
β
μ þ SβνδαμÞ ð2Þ

is the Weyl tensor in terms of the Schouten tensor

Sαμ ¼
1

2

�
Rα
μ −

1

6
Rδαμ

�
; ð3Þ

and δ½����½���� is the totally antisymmetric product of Kronecker
deltas.
This theory is invariant under local Weyl rescalings of

the metric gμν → Ω2ðxÞgμν; i.e., a transformation that
preserves the angles but not the distances. The coupling

constant in front of CG action, αCG, is a positive dimen-
sionless parameter. At a more fundamental level, the
Lagrangian for CG can be obtained from twistor string
theory [5].
Furthermore, Maldacena has shown recently an interest-

ing connection between Einstein gravity with cosmological
constant and CG in four dimensions [6]: at the tree level,
four-dimensional CG with Neumann boundary conditions
is equivalent to Einstein gravity with cosmological
constant.
In a sense, this is the converse argument to the one given

in a prior work [7]: the regularized action for anti–de Sitter
(AdS) gravity is on-shell equivalent to the action of CG for
a given coupling constant αCG ¼ l2=64πG, where l is the
AdS radius and G is the Newton constant. This proof relies
on the fact that the boundary counterterms that render the
AdS action and its variation finite, as prescribed in the
context of gauge/gravity duality [8], can be summed up in
the addition of a single topological invariant in the
bulk [7,9].
While the latter argument uses Einstein spaces in AdS

gravity, CG in four dimensions possesses a broader class of
solutions of which Einstein spaces are only a particular
subset. With this in mind, in CG the Weyl tensor splits in
two parts: an Einstein part linked to the Einstein spacetimes
and a non-Einstein (NE) part that is linear on the Bach
tensor.
In this paper, the decomposition mentioned above is

crucial to isolate the Einstein part of the CG action from the
higher-derivative contributions coming from the Bach
tensor. In particular, this leads to a simpler proof of the
equivalence between CG and Einstein gravity given in
Ref. [6].

II. CONFORMAL GRAVITY: FIELD EQUATIONS
AND SURFACE TERMS

Having already defined the CG action in Eq. (1) we turn
to the first variation of it. After some algebraic manipu-
lation, the variation of the action can be written as
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δICG¼ αCG

Z
M
d4x

ffiffiffiffiffiffi
−g

p
Bν
μðg−1δgÞμν

þαCG

Z
∂M

d3x
ffiffiffiffiffiffi
−h

p
δ½ν1ν2ν3ν4�½μ1μ2μ3μ4�
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κν2g
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where nμ is normal to the boundary and the term in the bulk
is the Bach tensor,

Bν
μ ¼ −δ½νν1ν2ν3�½μμ1μ2μ3�

�
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μ2μ3
ν2ν3 þ
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¼ −4
�
∇α∇βW
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2
Rα
βW

βν
αμ

�
; ð5Þ

which is four derivative, traceless, and covariantly con-
served. Therefore, the equations of motion (EOM) of CG
are satisfied by Bach-flat solutions. Einstein spacetimes are
Bach flat and constitute a trivial subset of CG solutions.
When added on top of the Einstein gravity action with

negative cosmological constant Λ ¼ −3=l2,

IðEÞ ¼ 1

16πG

Z
M
d4x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ; ð6Þ

the EOM is Gν
μ − γBν

μ ¼ 0 where Gν
μ is the Einstein tensor

and γ is given in terms of the CG coupling as
γ ¼ 16πGαCG. Taking the trace of this relation, the Ricci
tensor is

Rμν ¼ −
3

l2
gμν þ γBμν; ð7Þ

which is the most general form in Einstein-Weyl gravity.
Considering arbitrary quadratic couplings in the curvature
would have modified the asymptotic behavior such that a
unique AdS vacuum would no longer exist.
The departure from second-order field equations in CG

switches on both massless and massive modes, which
appear to have opposite norms. The massive modes are
also characterized by partial masslessness [10,11], i.e., the
scalar component of the massive mode is absent and the
only remaining parts of the decomposition are the ones
corresponding to spin 2 and the spin 1. The appearance of
ghosts is the price one has to pay in order to render the
theory renormalizable. Recent work [12] has shown that
there is a specific realization of the theory that is unitary
and where, indeed, no ghost modes arise.

III. TOPOLOGICAL REGULARIZATION IN
EINSTEIN ADS GRAVITY

The action for Einstein gravity with negative cosmo-
logical constant is proportional to the volume of asymp-
totically AdS spacetimes, which is infinite. In the context
of gauge/gravity duality, the problem of extracting the

physical information of the field theory residing at the
boundary of the spacetime reduces to the problem of
volume renormalization. Holographic renormalization
provides a prescription that renders the on-shell action
finite by the addition of local counterterms [8].
It was shown in Ref. [7] that the addition to the Einstein

AdS gravity action of the Gauss-Bonnet (GB) term in four
dimensions, i.e.,

IðEÞren ¼ 1

16πG

Z
M
d4x

ffiffiffiffiffiffi
−g

p �
R−2Λþl2

16
δ½ν1ν2ν3ν4�½μ1μ2μ3μ4�R

μ1μ2
ν1ν2R

μ3μ4
ν3ν4

�
;

ð8Þ

and, in general, the addition of the Euler term in higher
even dimensions, is equivalent to the program of holo-
graphic renormalization, as boundary terms are concerned.
Though it may at first sound surprising, from the math-
ematical viewpoint, this result is justified by the fact that
the GB term can be written as a surface term that depends
both on intrinsic and extrinsic curvatures of the boundary
(Ki

j and Rik
jl , respectively) [13],

IðEÞren ¼ 1

16πG

Z
M
d4x

ffiffiffiffiffiffi
−g

p ðR−2ΛÞ

þ l2

16πG

Z
∂M

d3x
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−h
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δ½j1j2j3�½i1i2i3� K
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�
1

2
Ri2i3

j2j3
−
1

3
Ki2

j2
Ki3

j3

�
;

ð9Þ

up to the Euler characteristic of the manifold χðMÞ.
Here, hij is the boundary three-dimensional metric. The
polynomial in Ki

j and Rik
jl acts as a series of extrinsic

counterterms.
The asymptotic resolution of the Einstein equations

allows us to write down an expansion of the extrinsic
curvature in terms of intrinsic quantities of the boundary.
This is the key ingredient to generate the standard
counterterms in Ref. [14] from a topological invariant
[7]. This argument provides a source of certainty that we
can properly refer to IðEÞren as the renormalized action
obtained by holographic techniques in asymptotically
AdS gravity.
Because of the addition of a bulk topological invariant

instead of boundary counterterms, the renormalized action
features a remarkable property, which is

IðEÞren ¼ l2

256πG

Z
M
d4x

ffiffiffiffiffiffi
−g

p
δ½ν1ν2ν3ν4�½μ1μ2μ3μ4�W

μ1μ2
ðEÞν1ν2W

μ3μ4
ðEÞν3ν4 ; ð10Þ

where

Wμ1μ2
ðEÞν1ν2 ¼ Rμ1μ2

ν1ν2 þ
1

l2
δ½μ1μ2�½ν1ν2� ð11Þ

is the Weyl tensor for any Einstein space
(Rμν ¼ −ð3=l2Þgμν) [15].

GIORGOS ANASTASIOU and RODRIGO OLEA PHYSICAL REVIEW D 94, 086008 (2016)

086008-2



Furthermore, taking variations of Eq. (8), one obtains

δIðEÞren ¼ l2

64πG

Z
∂M

d3x
ffiffiffiffiffiffi
−h

p
δ½ν1ν2ν3ν4�½μ1μ2μ3μ4�nν1δΓ

μ1
κν2g

μ2

×

�
Rμ3μ4
ν3ν4 þ

1

l2
δ½μ3μ4�½ν3ν4�

�

¼ l2

64πG

Z
∂M

d3x
ffiffiffiffiffiffi
−h

p
δ½ν1ν2ν3ν4�½μ1μ2μ3μ4�nν1δΓ

μ1
κν2g

μ2κWμ3μ4
ðEÞν3ν4

ð12Þ
when the EOM hold. We have used Eq. (11) and the fact
that the GB term does not contribute to the EOM. The form
adopted by the renormalized action for Einstein AdS
gravity (10) and its corresponding variation (12) plays a
significant role in the analysis in the next section, where we
isolate the Einstein part in the action for CG.

IV. FROM CONFORMAL TO EINSTEIN GRAVITY

Thinking of a general solution to CG as a deviation from
the Einstein branch, our starting point is Eq. (7) in order to
make a connection to the theory in the previous section. In
this formulation, the Bach tensor represents a wider class of
solutions and captures the higher-derivative contributions
in the action in CG, such that we separate the Weyl tensor
W ¼ WðEÞ þWðNEÞ into an E and NE part. For the
Schouten tensor (3), one gets

Sαμ ¼ −
1

2

�
1

l2
δαμ − γBα

μ

�
; ð13Þ

such that the Einstein part of the Weyl tensor matches
Eq. (11). In turn, the non-Einstein part is a skew-symmetric
product of the Bach tensor and the metric

Wαβ
ðNEÞμν ¼ −

γ

2
ðBα

μδ
β
ν − Bβ

μδαν − Bα
νδ

β
μ þ Bβ

νδαμÞ: ð14Þ

Hence, the CG action can be rewritten as

ICG ¼ αCG
4

Z
M
d4x

ffiffiffiffiffiffi
−g

p
δ½ν1ν2ν3ν4�½μ1μ2μ3μ4�ðW

μ1μ2
ðEÞν1ν2W

μ3μ4
ðEÞν3ν4

þ 2Wμ1μ2
ðEÞν1ν2W

μ3μ4
ðNEÞν3ν4 þWμ1μ2

ðNEÞν1ν2W
μ3μ4
ðNEÞν3ν4Þ: ð15Þ

Note that the renormalized AdS action for Einstein gravity
arises as the first term in the above relation if the coupling is
chosen as αCG ¼ l2=64πG. Thus, the equivalent form for
the CG action is

ICG ¼ IðEÞren −
l2

16πG
γ

Z
M
d4x

ffiffiffiffiffiffi
−g

p
δ½ν1ν2�½μ1μ2�

�
Gμ1

ν1 −
γ

2
Bμ1
ν1

�
Bμ2
ν2 ;

ð16Þ

where the Einstein tensor is written asGν
μ ¼ −4δ½ναβ�½μγδ�W

γδ
ðEÞαβ

and γ ¼ l2=4.

This formulation for the CG action makes manifest an
interesting property: when the Bach tensor vanishes,
Eq. (16) reduces to the action of Einstein AdS theory.
This equivalence is valid not only for Einstein spacetimes
but also for conformally Einstein ones, as Bach flatness is a
sufficient condition.
The emergence of Einstein gravity can be seen at the

level of the first variation of the action, as well. When EOM
for CG hold, the surface term in Eq. (4) becomes

δICG ¼ l2

64πG

Z
∂M

d3x
ffiffiffiffiffiffi
−h

p
δ½ν1ν2ν3ν4�½μ1μ2μ3μ4�

× ½nν1δΓμ1
λν2
gμ2λðWμ3μ4

ðEÞν3ν4 þWμ3μ4
ðNEÞν3ν4Þ

þ nμ1∇ν1W
μ2μ3
ðNEÞν2ν3ðg−1δgÞ

μ4
ν4 � ð17Þ

for the decomposition of the Weyl tensor mentioned above.
Here, the Bianchi identity has been used to get rid of the
WðEÞ part under the covariant derivative. It is easy to cast
the whole surface term in the form

δICG ¼ l2

64πG

Z
∂M

d3x
ffiffiffiffiffiffi
−h

p
δ½ν1ν2ν3ν4�½μ1μ2μ3μ4�nν1δΓ

μ1
λν2
gμ2λWμ3μ4

ðEÞν3ν4

−
l2

32πG
γ

Z
∂M

d3x
ffiffiffiffiffiffi
−h

p
δ½ν1ν2ν3�½μ1μ2μ3�½nν1δΓ

μ1
λν2
gμ2λBμ3

ν3

þ nμ1∇ν1B
μ2
ν2 ðg−1δgÞμ3ν3 �: ð18Þ

Notice that δΓ in the first term may contain non-Einstein
contributions from the metric, such that we cannot properly
say that this term matches Eq. (12). However, without loss
of generality, switching off non-Einstein modes in the
metric, what implies a vanishing Bach tensor leads to an
equivalence between general relativity with cosmological
constant and CG, at the level of the variation of the action.

V. CRITICAL GRAVITY

In Ref. [16], a new higher-derivative gravity theory was
introduced, defined by a specific point in the space of
parameters, which are the couplings of the quadratic-
curvature terms added on top of Einstein gravity. Indeed,
critical gravity action

Icritical¼
1

16πG

Z
M
d4x

ffiffiffiffiffiffi
−g

p �
R−2Λþ 3

2Λ

�
RμνRμν−

1

3
R2

��

ð19Þ

is singled out by the requirement that the massive graviton
modes turn massless and the massive scalar fields are
absent.
This precise combination of quadratic terms in the

curvature appears at the boundary of AdS5 spacetimes,
as it is proportional to the conformal anomaly of the dual
conformal field theory (CFT) living there [14].

FROM CONFORMAL TO EINSTEIN GRAVITY PHYSICAL REVIEW D 94, 086008 (2016)

086008-3



It was shown in Ref. [9] that an equivalent form for
critical gravity action is

Icritical ¼ IðEÞren −
l2

256πG

Z
M
d4x

ffiffiffiffiffiffi
−g

p
δ½ν1ν2ν3ν4�½μ1μ2μ3μ4�W

μ1μ2
ν1ν2W

μ3μ4
ν3ν4 :

ð20Þ
This casts the critical gravity action (16) into the form

Icritical ¼ −
l4

64πG

Z
M
d4x

ffiffiffiffiffiffi
−g

p
δ½ν1ν2�½μ1μ2�

�
l2

8
Bμ1
ν1 −Gμ1

ν1

�
Bμ2
ν2 :

ð21Þ
It is then straightforward to show that the on-shell action
can be written down as a quadratic contribution in the Bach
tensor

Icritical ¼
l6

512πG

Z
M
d4x

ffiffiffiffiffiffi
−g

p
δ½ν1ν2�½μ1μ2�B

μ1
ν1B

μ2
ν2 : ð22Þ

The non-Einstein part of the curvature (Bach tensor) is the
only one to survive around the critical point in critical
gravity. This provides a further explanation of the fact that
the action for critical gravity is 0 for any Einstein space (so
does the black hole mass and the entropy as stated in the
original reference, Ref. [16]).

VI. CONCLUSIONS

In this paper, we have provided a generic argument on
the equivalence between Einstein gravity with a cosmo-
logical constant and conformal gravity for Bach-flat

spacetimes, for a fixed value of the CG coupling constant.
Upon switching on the trace-free part of the Ricci tensor,
we assume a splitting of the Weyl tensor that is suitable for
a broader class of spaces, beyond Einstein gravity, which
plays a crucial role in the derivation presented.
The transition from CG to Einstein gravity is also useful

to identify the non-Einstein modes in the critical gravity
action as proportional to the square of the Bach tensor. This
result is consistent with a vanishing mass for both black
holes and graviton excitations in the Einstein branch of the
theory around the critical point.
The formulation presented here is expected to provide a

shortcut in the computation of holographic correlation
functions in critical gravity [17,18]. Indeed, using an
asymptotic expansion of the metric that takes into account
new boundary sources associated to higher-derivative field
equations allows us to identify the appropriate counterterms
that render the action finite for logarithmic modes, and to
extract the physical information on the boundary CFT [19].
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