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We show that the braneworld rotating Kerr-Newman black hole and naked singularity spacetimes with
both positive and negative braneworld tidal charge parameters can be separated into 14 classes according to
the properties of circular geodesics governing the Keplerian accretion. We determine the efficiency of the
Keplerian accretion disks for all braneworld Kerr-Newman spacetimes. We demonstrate the occurrence of
an infinitely deep gravitational potential in Kerr-Newman naked singularity spacetimes having the

braneworld dimensionless tidal charge b ∈ ð1=4; 1Þ and the dimensionless spin a ∈ ð2 ffiffiffi
b

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð4b − 1Þp

,

2
ffiffiffi
b

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð4b − 1Þp Þ, implying unbound efficiency of the Keplerian accretion and the possibility of

extracting the whole naked singularity mass. Therefore, we call them braneworld “mining-unstable” Kerr-
Newman naked singularity spacetimes. Fundamental restriction on the relevance of the extraordinary—but
fully classical—phenomenon of the mining instability is given by validity of the assumption of geodesic
motion of the accreting matter.
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I. INTRODUCTION

In recent years, one of the most interesting and prom-
ising approaches to force-unification theory is represented
by the higher-dimensional string theory and, in particular,
M-theory [1,2]. In string theory and M-theory, gravity is
described as a truly higher-dimensional interaction becom-
ing effectively 4D at low enough energies. These theories
inspired the so-called braneworld models, in which the
observable Universe is a 3D-brane to which the standard
particle-model fields are confined, while gravity enters the
extra spatial dimensions [3]. The braneworld models
provide an elegant solution to the hierarchy problem of
the electroweak and quantum gravity scales, as these scales
could become of the same order (in TeV) due to the large
scale extra dimensions [3]. In fact, gravity can be localized
near the D3-brane in the bulk space with a noncompact,
infinite size extra dimension, with the warped spacetime
satisfying the 5D Einstein equations [4]—the noncompact
dimension can be related to M-theory. Future collider
experiments can test the braneworld models quite well,
including even the hypothetical mini–black hole produc-
tion [5].
The 5D Einstein equations at the bulk space can be

constrained to the 3D-brane, thus implying modified 4D
Einstein equations [6]. Solution of these constrained 4D
Einstein equations is quite complex in the presence of the
matter stress-energy tensor, e.g., in the case of models of
neutron stars [7–9]. However, it can be relatively simple in

the case of vacuum solutions related to braneworld black
holes. For both the spherically symmetric and static black
holes that can be described by the Reissner-Nordström
geometry [10] and the axially symmetric and stationary
rotating black holes that can be described by the Kerr-
Newman geometry [11], the influence due to the tidal
effects from the bulk is simply represented by a single
parameter. This parameter is called tidal charge because of
the similarity of the effective stress-energy tensor of the
tidal effects of the bulk space and the stress-energy tensor
of the electromagnetic field [10].
The rotating braneworld black hole spacetimes and the

related naked singularity spacetimes are thus represented
by the Kerr-Newman geometry, but without the associated
electromagnetic field occurring in standard general rela-
tivity [12]. The tidal charge parameter can be either positive
or negative [10,11], while, in standard general relativity,
only a positive parameter corresponding to the square of the
electric charge occurs.
The standard studies of the Reissner-Nordström or Kerr-

Newman black hole and naked singularity geodesic motion
[13–17] can thus be directly applied for the braneworld
black holes and naked singularities with positive tidal
charge. The astrophysically relevant implications of the
geodesic motion were extensively studied for the brane-
world black holes (with both positive and negative tidal
charges) in a number of papers related to the optical effects
[18–25], or the test particle motion [26–33].
Here, we study the circular motion of test particles and

photons in the braneworld Kerr-Newman spacetimes and
give classification of the braneworld black hole and naked
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singularity spacetimes according to the properties of the
radial profiles of specific angular momentum and specific
energy of sequences of corotating and retrograde circular
orbits. We give the classification for both the positive and
negative values of the dimensionless tidal charge parameter.
We also determine the efficiency of the Keplerian accretion
disks that is related to the astrophysically relevant accretion
from infinity (large distance) downwards to the first limit
on existence of stable circular geodesics.
A very detailed analysis of the circular motion of electri-

cally neutral test particles in the standard Kerr-Newman
spacetimes was presented in [17], where both black hole and
naked singularity spacetimes were discussed. The results of
this study are relevant in the braneworld spacetimes with
positive tidal charges; we do not repeat them, focusing our
study on the phenomena related to the Keplerian accretion,
its efficiency, and the phenomenon of a new special
instability of the naked singularity spacetimes that were
not considered in [17]. Along with the standard classical
instability due to the Keplerian accretion occurring in the
Kerr naked singularity spacetimes, leading to their conver-
sion to a Kerr black hole [34–37], we have found a special
class of classical instability, called here “mining” instability,
as this instability is related to an unlimitedly deep gravita-
tional potential well, occurring in the class of the Kerr-
Newman naked singularity spacetimes with appropriately
restricted values of their dimensionless spin a and dimen-
sionless tidal charge b. We briefly discuss the limits on the
applicability of the Keplerian accretion in relation to the
mining instability.

II. BRANEWORLD KERR-NEWMAN GEOMETRY

Using the standard Boyer-Lindquist coordinates
ðt; r; θ;φÞ and the geometric units (c ¼ G ¼ 1), we can
write the line element of a rotating (Kerr-Newman) black
hole or naked singularity, representing a solution of the
Einstein equations constrained to the 3D-brane, in the form
[10,11]

ds2 ¼ −
�
1 −

2Mr − b
Σ

�
dt2 −

2að2Mr − bÞ
Σ

sin2θdtdφ

þ Σ
Δ
dr2 þ Σdθ2

þ
�
r2 þ a2 þ 2Mr − b

Σ
a2sin2θ

�
sin2θdφ2; ð1Þ

where

Δ ¼ r2 − 2Mrþ a2 þ b; ð2Þ

Σ ¼ r2 þ a2cos2θ: ð3Þ

M is the mass parameter of the spacetime, a ¼ J=M is the
specific angular momentum of the spacetime with internal

angular momentum J, and the braneworld parameter b,
called the “tidal charge,” represents an imprint of the
nonlocal (tidal) gravitational effects of the bulk space [11].
The form of the metric (1) is the same as that of the

standard Kerr-Newman solution of the 4D Einstein-
Maxwell equations, with the squared electric charge Q2

being replaced by the tidal charge b [12]. We can separate
out three cases:
(a) b ¼ 0, in which we are dealing with the standard Kerr

metric.
(b) b > 0, in which we are dealing with the standard Kerr-

Newman metric.
(c) b < 0, in which we are dealing with the nonstandard

Kerr-Newman metric.
Notice that, in the braneworld Kerr-Newman spacetimes,
the geodesic structure is relevant also for the motion of
electrically charged particles, as there is no electric charge
related to these spacetimes. On the other hand, case (b) can
be equally considered for the analysis of the uncharged
particle motion in the standard electrically charged Kerr-
Newman spacetime.
For simplicity, we put in the following considerations

M ¼ 1. Then the spacetime parameters a and b and the
time t and radial r coordinates become dimensionless. This
is equivalent to the redefinition when we express all the
quantities in units of M: a=M → a, b=M2 → b, t=M → t,
and r=M → r.
Separation between the black hole and naked singularity

spacetimes is given by the relation of the spin and tidal
charge parameters in the form

a2 þ b ¼ 1; ð4Þ

determining the so-called extreme black hole with coincid-
ing horizons. The condition 0 < a2 þ b < 1 governs black
hole spacetimes with two distinct event horizons, while the
condition a2 þ b < 0 governs black hole spacetimes with
only one distinct event horizon at r > 0. For a2 þ b > 1,
the spacetime describes a naked singularity.
For positive tidal charges the black hole spin has to be

a2 < 1, as in the standard Kerr-Newman spacetimes, but,
for negative tidal charges, there can exist black holes
violating the well-known Kerr limit, having a2 > 1 [28].
Using the substitutions

dt ¼ dx0 þ
�
r2 þ a2

Δ
− 1

�
dr; ð5Þ

dφ ¼ d ~φþ a
Δ
dr; ð6Þ

x ¼ ðr cosð ~φÞ þ a sinð ~φÞÞ sin θ; ð7Þ

y ¼ ðr sinð ~φÞ − a cosð ~φÞÞ sin θ; ð8Þ
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z ¼ r cos θ; ð9Þ

the braneworld Kerr-Newman geometry can be transformed
into the so-called Kerr-Schild form using the Cartesian
coordinates:

ds2 ¼ −ðdx0Þ2 þ ðdxÞ2 þ ðdyÞ2 þ ðdzÞ2

þ ð2Mr − bÞr2
r4 þ a2z2

�
dx0 −

1

r2 þ a2

�
rðxdxþ ydyÞ

þ aðxdy − ydxÞ − 1

r
zdz

��
2

; ð10Þ

where r is defined, implicitly, by

r4 − r2ðx2 þ y2 þ z2 − a2Þ − a2z2 ¼ 0:

A. Singularity

The metric (10) is analytical everywhere except at points
satisfying the condition

x2 þ y2 þ z2 ¼ a2 and z ¼ 0: ð11Þ

This condition is the same as in the case of the Kerr black
holes or naked singularities, so we clearly see that the
braneworld parameter b has no influence on the position of
the physical singularity of the spacetime. The physical
“ring” singularity of the braneworld rotating black holes
(and naked singularities) is located at r ¼ 0 and θ ¼ π=2,
as in the Kerr spacetimes.
We describe the influence of the braneworld tidal charge

parameter b on the Kerr-like ring singularity at r ¼ 0, θ ¼
π=2 using the Kretschmann scalar K ¼ RαβγδRαβγδ, repre-
senting an appropriate tool to probe the structure of
spacetime singularities. Using (1) we obtain

K ¼ 8

ðr2 þ a2y2Þ6 ðr
4A − 2a2r2By2 þ a4Cy4 − 6a6M2y6Þ;

ð12Þ

where

y ¼ cos θ; ð13Þ

A ¼ ð7b2 − 12bMrþ 6M2r2Þ; ð14Þ

B ¼ ð17b2 − 60bMrþ 45M2r2Þ; ð15Þ

C ¼ ð7b2 − 60bMrþ 90M2r2Þ: ð16Þ
The Kretschmann scalar is formally the same as in the

case of the Kerr-Newman metric with Q2 → b [38].
Naturally, the negative values of the brane parameter would
have some effect on K, but, as we can see from the

denominator of (12), it does not influence the location of
the singularity. As an example we demonstrate the behavior
of the scalar K for a ¼ 0.8 and b ¼ −0.8 near the ring
singularity in Fig. 1.
For completeness we also give the Ricci tensor whose

components take the form

Rtt ¼ 4b
a2 þ 2Δ − a2 cosð2θÞ

ða2 þ 2r2 þ a2 cosð2θÞÞ3 ; ð17Þ

Rtφ ¼ −8ab
ða2 þ ΔÞsin2θ

ða2 þ 2r2 þ a2 cosð2θÞÞ3 ; ð18Þ

Rφt ¼ Rtφ; Rrr ¼ −
Rθθ

Δ
; ð19Þ

Rθθ ¼
2b

a2 þ 2r2 þ a2 cosð2θÞ ; ð20Þ

Rφφ ¼ 4bsin2ðθÞ 3a
4 þ 2r4 þ a2ðb − 2Mrþ 5r2Þ
ða2 þ 2r2 þ a2 cosð2θÞÞ3 ð21Þ

−
a2Δ cosð2θÞ

ða2 þ 2r2 þ a2 cosð2θÞÞ3 : ð22Þ

Ricci scalar is automatically zero by construction of the
braneworld Kerr-Newman solution [10].

B. Ergosphere

Here, we demonstrate the influence of the braneworld
tidal charge parameter b on the ergosphere whose boundary
is defined by the condition

gtt ¼ r2 − 2Mrþ a2cos2θ þ b ¼ 0: ð23Þ
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FIG. 1. Example of the behavior of the Kretschmann scalar K
for a ¼ 0.8 and b ¼ −0.8 to illustrate its similarity to the Kerr-
Newman case.
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Extension of the ergosphere in the latitudinal coordinate θ
is determined by the maximal latitude given by the relation

cos2θmax ¼
1 − b
a2

: ð24Þ

We can see that the existence of the ergosphere is limited by
the condition

b < 1: ð25Þ

We can infer that the ergosphere extension increases as the
tidal charge parameter b decreases.
It is convenient to represent location of the ergosphere in

the Kerr-Schild coordinates (10). Using the spacetime
symmetry, we can focus only on the polar slices with
y ¼ 0. In this case the condition for the static limit surface
governing the border of the ergosphere is simply given
by [39]

x2 ¼ ða2 þ r2ÞΔ
a2

;

z2 ¼ ð2r − bÞr2 − r4

a2
: ð26Þ

In Fig. 2 we illustrate the influence of the braneworld tidal
charge b on the ergosphere extension.
The ergosphere does not always completely surround the

ring singularity. To illustrate this phenomenon, we also give
the dependence of the maximal allowed latitudinal angle of
the ergosphere on the dimensionless spin and dimension-
less tidal charge.
For b < 1, the ergosphere exists for each dimensionless

spin a > 0, covering all values of the latitudinal angle
for the Kerr-Newman black holes. However, as the spin
a increases for the Kerr-Newman naked singularities,
the ergosphere extension shrinks—the maximal angle α
decreases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.5  1  1.5  2  2.5

z

x

a=1

b=0

b=0.3

b=0.7

b=0.95singularity

M
ax

 an
gl

e

 0

 0.2

 0.4

 0.6

 1

 1.2

 1.4

 1.6

 0  1  1.5  2  2.5

x

a=1

b=0

b=0.3

b=0.7

b=0.95singularity

M
ax

 an
gl

e

 0

 0.2

 0.4

 0.6

 1

 1.2

 1.4

 1.6

 0  1  1.5  2  2.5

x

a=1

b=0

b=0.3

b=0.7

b=0.95singularity
 0

 0.2

 0.4

 0.6

 1

 1.2

 1.4

 1.6

 0  1  1.5  2  2.5

x

a=1

b=0

b=0.3

b=0.7

b=0.95singularity
 0

 0.2

 0.4

 0.6

 1

 1.2

 1.4

 1.6

 0  1  1.5  2  2.5

x

a=1

b=0

b=0.3

b=0.7

b=0.95singularity
 0

 0.2

 0.4

 0.6

 1

 1.2

 1.4

 0  1  1.5  2  2.5

x

a=1

b=0

b=0.3

b=0.7

b=0.95

 0

 0.2

 0.4

 0.6

 1.4

 1.

 0  1  1.5  2  2.5

x

a=1

b=0

b=0.3

b=0.7

b=0.95

 0

 0.2

 0.4

 0.6

 0  1  1.5  2  2.5

x

a=1

b=0

b=0.3

b=0.7

b=0.95

 0

 0.2

 0.4

 0.6

 0  1  1.5  2  2.5

x

a=1

b=0

b=0.3

b=0.7

b=0.95

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

z

x

singularity at x = a

b=0.9

a=0.32

a=0.6

a=1.2
a=2.5

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

z

x

a=1

b=4

1 0.4

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  0.5  1  1.5

x

a=0.5, b=0.98

ergosphere
causality violation region

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  0.5  1  1.5

x

a=0.5, b=0.98

ergosphere
causality violation region

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  0.5  1  1.5

x

a=0.5, b=0.98

ergosphere
causality violation region

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  0.5  1  1.5

x

a=0.5, b=0.98

ergosphere
causality violation region

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  0.5  1  1.5

x

a=0.5, b=0.98

ergosphere
causality violation region

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  0.5  1  1.5

x

a=0.5, b=0.98

ergosphere
causality violation region

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  0.5  1  1.5

x

a=0.5, b=0.98

ergosphere
causality violation region

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  0.5  1  1.5

x

a=0.5, b=0.98

ergosphere
causality violation region

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  0.5  1  1.5

z

x

a=0.5, b=0.98

ergosphere
causality violation region

FIG. 2. (Upper left panel) Polar slice through the braneworld Kerr-Newman spacetime in the Cartesian Kerr-Schild coordinates. The
dimensionless spin parameter a is fixed at 1 and the braneworld parameter b is appropriately chosen to demonstrate its influence on the
ergosphere. (Upper right panel) Polar slice through the braneworld Kerr-Newman spacetime in the Cartesian Kerr-Schild coordinates.
The braneworld parameter b is fixed at 0.9 and the spin parameter a is appropriately chosen to demonstrate its influence on the
ergosphere. (Lower left panel) Causality violation region. (Lower right panel) Ergosphere and causality violation region.
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C. Causality violation region

In the “causality violation region” (sometimes called the
time-machine region), the axial coordinate φ takes timelike
character, implying the possible existence of closed time-
like curves. The causality violation region is defined by the
condition

gφφ < 0: ð27Þ

In the equatorial plane, the boundary of the causality
violation region is determined by the condition

r4 þ a2ðr2 þ 2r − bÞ ¼ 0: ð28Þ

The boundary of the causality violation region can be
expressed by the relation

b ¼ bCV ≡ rð2a2 þ a2rþ r3Þ
a2

: ð29Þ

In Fig. 3 we give some examples of the extension of the
causality violation region. We see that, for this region to
exist above the ring singularity, the tidal charge has to be
positive. With increasing values of the parameters b > 0
and a, the causality violation region expands.
Equation (28) gives us maximal possible extension of the

causal violation region located at

rMax ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p
− 1: ð30Þ

For a positive b, the value of rMax is less than b and
therefore, as we shall see later, the causality violation
region cannot reach the region where the circular geo-
desics exist.
In the Kerr-Schild coordinates, the boundary of the

causality violation region is given by the relations

x2 ¼ ða2 þ r2Þ3
a2Δ

; ð31Þ

z2 ¼ r2ða2ðb − 2r − r2Þ − r4Þ
a2Δ

: ð32Þ

It can be proved that the causality violation region never
overlaps with the ergosphere, and its extension is influ-
enced by the braneworld parameter b in the opposite way.
While causality violation region increases with an increas-
ing b, the ergosphere extension gets smaller. This phe-
nomenon is illustrated in Fig. 2, where the Kerr-Schild
coordinates are used.
In the following, we consider geodesic motion only in

the regions above the causality violation region. For
astrophysical phenomena occurring in the naked singularity
spacetimes, it is usually assumed that, above the boundary
of the causality violation region, the Kerr or Kerr-Newman
spacetime is removed and substituted for a different
solution that could be inspired by string theory—such
objects are called superspinars [40–42]. Therefore, it is
quite natural to assume that, in the braneworld model
framework, the inner boundary of the superspinars is
located at radii larger than those related to the boundary
of the causality violation region.

D. Locally nonrotating frames

In the rotating Kerr-Newman spacetimes, physical proc-
esses can be most conveniently expressed in the family of
locally nonrotating frames (LNRFs), corresponding to zero
angular momentum observers, with tetrad vectors given by
the relations [43]

eðtÞ ¼ ðω2gφφ − gttÞ12dt; ð33Þ

eðφÞ ¼ ðgφφÞ12ðdφ − ωdtÞ; ð34Þ

eðrÞ ¼
�
Σ
Δ

�1
2

dr; ð35Þ

eðθÞ ¼ Σ1
2dθ; ð36Þ

where ω is the angular velocity of the LNRFs relative to
distant observers and reads

ω ¼ −
gtφ
gφφ

¼ að2r − bÞ
Σðr2 þ a2Þ þ ð2r − bÞa2sin2θ : ð37Þ

Convenience of the LNRFs can be demonstrated, e.g.,
in the case of the free fall of particles from infinity, which
is purely radial only if related to the family of the
LNRFs [44].

black holesblack holes
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FIG. 3. Contour plot for radii of the boundary of the causality
violation region in the equatorial plane.
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E. Geodesic motion and Carter’s equations

Using the Hamilton-Jacobi method, Carter found sepa-
rated first order differential equations of the geodesic
motion [39,45], which in the case of the braneworld
Kerr spacetimes take the form

Σ
dr
dw

¼ �
ffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ð38Þ

Σ
dθ
dw

¼ �
ffiffiffiffiffiffiffiffiffiffiffi
WðθÞ

p
; ð39Þ

Σ
dφ
dw

¼ −
PW

sin2θ
þ aPR

Δ
; ð40Þ

Σ
dt
dw

¼ −aPW þ ðr2 þ a2ÞPR

Δ
; ð41Þ

where

RðrÞ ¼ P2
R − Δðm2r2 þ ~KÞ; ð42Þ

WðθÞ ¼ ð ~K − a2m2cos2θÞ −
�

Pw

sin θ

�
2

; ð43Þ

PRðrÞ ¼ ~Eðr2 þ a2Þ − a ~Φ; ð44Þ

PWðθÞ ¼ a ~Esin2θ − ~Φ: ð45Þ

Along with the conservative rest energy m, three constants
of motion related to the spacetime symmetries have been
introduced: ~E is the energy (related to the time Killing
vector field), ~Φ is the axial angular momentum (related to
the axial Killing vector field), and ~K is the constant of
motion related to the total angular momentum (related to
the Killing tensor field) that is usually replaced by the

constant ~Q ¼ ~K − ða ~E − ~ΦÞ2 since, for the motion in the
equatorial plane (θ ¼ π=2), we have ~Q ¼ 0.
Note that the separable Eqs. (38)–(41) are quaranteed in

the Petrov type D spacetimes, particularly when the metric
in the Boyer-Lindquist coordinates can be expressed in the
Kerr-like form by replacing the mass parameter M by a
function MðrÞ independent of latitude θ. In the braneworld
rotating black hole spacetimes, we have MðrÞ ¼ M − b

2r.
Generally, these equations can be integrated and expressed
in terms of the hyperelliptic integrals [12,46,47]. The Carter
equations can also be generalized to the motion in the Kerr-
Newman–de Sitter spacetimes [39,46,48–50].
For the geodesic motion of photons, we putm ¼ 0 in the

Carter equations. Analysis of the photon motion in the
standard Kerr-Newman spacetimes [17,51,52] can be
directly applied to the case of photon motion in the
braneworld Kerr-Newman spacetimes. This has been done

in [19]; we use the results of these works in the following
discussions.
We have to construct classification of the braneworld

Kerr-Newman spacetimes according to the properties of
circular geodesics governing the Keplerian accretion,
which can be related not only to the standard accretion
disks but also to the quasicircular motion of gravitationally
radiating particles. We give classifications according to the
properties of the circular null geodesics and the stability of
the circular geodesics that become the critical attribute of
the Keplerian accretion. Finally, we combine the effects
given by these two classifications. Of course, we have to
also include in the classification as relevant criteria the
existence of the event horizons and the existence of the
ergosphere.

III. CIRCULAR GEODESIC MOTION

In general stationary and axially symmetric spacetime
with the Boyer-Lindquist coordinate system ðt; r; θ;φÞ and
the ð−þþþÞ signature of the metric tensor, the line
element is given by

ds2 ¼ gttdt2 þ 2gtφdtdφþ grrdr2 þ gθθdθ2 þ gφφdφ2:

ð46Þ

The metric (46) is adapted to the symmetries of the
spacetime, endowed with the Killing vectors (∂=∂t) and
(∂=∂φ) for time translations and spatial rotations, respec-
tively. For geodesic motion in the equatorial plane
(θ ¼ π=2), the metric functions gtt, gtφ, grr, gθθ, and gφφ
in Eq. (46) depend only on the radial coordinate r. Thus,
omitting the rest energy m, two integrals of the motion are
relevant when ~Q ¼ 0:

Ut ¼ −E; Uφ ¼ L; ð47Þ

where the 4-velocity Uα ¼ gανdxν=dτ, with τ being the
affine parameter. In the case with an asymptotically flat
spacetime, we can identify at infinity the motion constant
E ¼ ~E=m as the specific energy, i.e., energy related to the
rest energy, and the motion constant L ¼ ~Φ=m as the
specific angular momentum.
The geodesic equations of the equatorial motion take the

form (see, e.g., [53])

dt
dτ

¼ Egφφ þ Lgtφ
g2tφ − gttgφφ

;
dφ
dτ

¼ −
Egtφ þ Lgtt
g2tφ − gttgφφ

; ð48Þ

and

grr

�
dr
dτ

�
2

¼ RðrÞ; ð49Þ

where the radial function RðrÞ is defined by
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RðrÞ≡ −1þ E2gφφ þ 2ELgtφ þ L2gtt
g2tφ − gttgφφ

: ð50Þ

A. Energy, angular momentum, and angular
velocity of circular geodesics

For circular geodesics in the equatorial plane, the
conditions

RðrÞ ¼ 0 and ∂rRðrÞ ¼ 0 ð51Þ

must be satisfied simultaneously. These conditions deter-
mine the specific energy E, the specific angular momentum
L and the angular velocity Ω ¼ dφ=dt related to distant
observers, for test particles following the circular geo-
desics, as functions of the radius and the spacetime
parameters in the form

E ¼ � gtt þ gtφΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðgtt þ 2gtφΩþ gφφΩ2Þ

q ; ð52Þ

L ¼∓ gtφ þ gφφΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðgtt þ 2gtφΩþ gφφΩ2Þ

q ; ð53Þ

Ω ¼
−gtφ;r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgtφ;rÞ2 − gtt;rgφφ;r

q
gφφ;r

; ð54Þ

where the upper and lower signs refer to two families of
solutions. To avoid any misunderstanding, we will refer to
these two families as the upper sign family and the lower
sign family. At large distances in the asymptotically flat
spacetimes, the upper family orbits are corotating, while the
lower family orbits are counterrotating with respect to
the rotation of the spacetime. This separation holds in the
whole region above the event horizon of the Kerr-Newman
black hole spacetimes, but this is not necessarily so in all of
the Kerr-Newman naked singularity spacetimes—in some
of them the upper family orbits become counterrotating
close to the naked singularity, as demonstrated in [35].
Using the spacetime line element of the braneworld

rotating spacetimes given by (1) [11,54] and assuming that
M ¼ 1, we obtain the radial profiles of the specific energy,
the specific axial angular momentum, and the angular
velocity related to infinity of the circular geodesics in the
form

E ¼ r2 − 2rþ b� a
ffiffiffiffiffiffiffiffiffiffiffi
r − b

p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 3rþ 2b� 2a

ffiffiffiffiffiffiffiffiffiffiffi
r − b

pp ; ð55Þ

L ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
r − b

p ðr2 þ a2 ∓ 2a
ffiffiffiffiffiffiffiffiffiffiffi
r − b

p Þ ∓ ab

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 3rþ 2b� 2a

ffiffiffiffiffiffiffiffiffiffiffi
r − b

pp ; ð56Þ

Ω ¼ � 1
r2ffiffiffiffiffiffi
r−b

p � a
: ð57Þ

From Eqs. (55)–(57) we immediately see that two
restrictions on the existence of circular geodesics have to
be satisfied:

r2 − 3rþ 2b� 2a
ffiffiffiffiffiffiffiffiffiffiffi
r − b

p
≥ 0; ð58Þ

r ≥ b: ð59Þ

The equality in the first condition determines the photon
circular geodesics—this demonstrates that positions of
circular orbits of test particles are limited by the circular
geodesics of massless particles. The second reality con-
dition is relevant in the Kerr-Newman spacetimes with the
positive tidal charge b only if we restrict our attention to the
region of positive radii.

B. Effective potential

Instead of the radial function Rðr; a; b; E; LÞ, the equa-
torial motion of test particles can be conveniently treated by
using the so-called effective potential VEffðr; a; b; LÞ,
which is related to the particle specific energy and depends
on the specific angular momentum of the motion and the
spacetime parameters. The equation E ¼ VEff determines
the turning points of the radial motion of the test particle.
The notion of the effective potential is useful in treating

the Keplerian (quasigeodesic) accretion onto the central
object that is directly related to the circular geodesic motion
[55,56]. The circular geodesics are governed by the local
extrema of the effective potential; the accretion process is
possible in the regions of stable circular geodesics corre-
sponding to the local minima of the effective potential.
The effective potential can be easily derived using the

normalization condition for the test particle motion

UαUα ¼ −1; ð60Þ

which implies, for the equatorial motion relation,

grr

�
dr
dτ

�
2

¼ ðE − VEffþÞðE − VEff−Þ; ð61Þ

and, in the general stationary and axisymmetric spacetimes,
the effective potential can be expressed in the form

VEff�ðr; a; b; LÞ ¼
β �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − αγ

p
α

; ð62Þ

where

α ¼ gφφ
g2φt − gφφgtt

; β ¼ −Lgtφ
g2φt − gφφgtt

; ð63Þ
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γ ¼ L2gtt
g2φt − gφφgtt

− 1: ð64Þ

This form can be simplified to

VEff� ¼
−Lgtφ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2 þ gφφÞðg2tφ − gφφgttÞ

q
gφφ

: ð65Þ

We have to choose the upper (plus) sign of the general
expression of the effective potential, as this case represents
the boundary of the motion of particles in the so-called
positive-root states having a positive locally measured
energy and a future-oriented time component of the 4-
velocity. The lower (minus) sign expression of the effective
potential is irrelevant here, as it determines in the regions of
interest particles in the so-called negative-root states having
a negative locally measured energy and a past-oriented time
component of the 4-velocity, thus being related to the Dirac
particles—for details, see [12,57].
The physically relevant condition of the test particle

motion reads

E ≥ VEffþ: ð66Þ
For particles with the nonzero rest mass,m > 0, the explicit
form of the effective potential in the braneworld Kerr-
Newman spacetimes reads

VEffðr; a; b; LÞ

¼ aLð2r − bÞ þ r
ffiffiffiffi
Δ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2r2 þ r4 þ a2ðr2 þ 2r − bÞ

p
r4 þ a2ðr2 þ 2r − bÞ :

ð67Þ
For massless particles, m ¼ 0, we formally obtain

VEffpðr; a; bÞ
L

¼ að2r − bÞ � r2
ffiffiffiffi
Δ

p

r4 þ a2ðr2 þ 2r − bÞ : ð68Þ

Here, the plus sign is valid if L > 0 and the minus sign is
valid if L < 0. Of course, we know that the photon
geodesic motion is independent of the photon energy,
being dependent on the impact parameter l ¼ L=E for
the equatorial motion [41,58].
The effective potential is symmetric under the trans-

formation a → −a, L → −L; therefore, we will only study
the Kerr-Newman braneworld spacetimes with non-
negative values of the spin parameter a.
The effective potential has a discontinuity (divergence)

at radii determined by the conditions

g2φt − gφφgtt ¼ 0; ð69Þ
r4 þ a2ðr2 þ 2r − bÞ ¼ 0: ð70Þ

At the equatorial plane, the quantity g2φt − gφφgtt ≡ Δ, and
the condition (69) implies that the effective potential

diverges at the event horizons. The second condition
(70) for a possible divergence of the effective potential
can be transformed to the relation

b ¼ bs ≡ rð2a2 þ a2rþ r3Þ
a2

: ð71Þ

Notice that the functions bsðr; aÞ and bCVðr; aÞ are
equivalent—therefore, the divergence could occur just at
the boundary of the causality violation region. In the limit
of b → bS, the numerator of (67) reads

−
r
a
ðL − jLjÞða2 þ r3Þ: ð72Þ

Thus, if L ≥ 0, both the numerator and the denominator of
(67) are zero and we have to use the L’Hôpital rule to obtain

limb→bSVEff ¼
� r4þa4þ2a2ðL2þr2ÞþL2r2

2aLða2þr2Þ L ≥ 0

∞ L < 0
: ð73Þ

Therefore, for the specific angular momentum L < 0, the
effective potential approaches at the discontinuity positive
infinity, thus creating an impenetrable barrier for the test
particles with L < 0. On the other hand, for particles with
L ≥ 0, the effective potential takes, at the boundary of the
causality violation region, a finite value that depends on the
specific angular momentum.
The last square root in Eq. (67) is negative for

b >
rð2a2 þ a2rþ L2rþ r3Þ

a2
: ð74Þ

Therefore, the effective potential can be undefined for small
values of r. However, this could happen only in the
causality violation region, where the effective potential
looses its relevance because of the modified meaning of the
axial coordinate that has a timelike character in this region.

C. Energy measured in LNRFs

It is useful to determine, for particles on the circular
geodesics, the locally measured energy related to some
properly defined family of observers. The specific energy
related to the LNRF (ELNRF) is given by the projection of
the 4-velocity on the timelike vector of the frame:

ELNRF ¼ UðtÞ ¼ UμeðtÞμ ¼
�
dt
dτ

�
eðtÞt

¼ r2 � a
ffiffiffiffiffiffiffiffiffiffiffi
r − b

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ a2ðr2 þ 2r − bÞ

p

×

ffiffiffiffi
Δ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 3rþ 2b� 2a

ffiffiffiffiffiffiffiffiffiffiffi
r − b

pp : ð75Þ

The locally measured particle energy must always be
positive for the particles in the positive-root states assumed
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here, while it is negative for the negative-root states that are
physically irrelevant in the context of our study [57].
The LNRF energy of the particle following the circular

geodesics diverges on the photon circular orbit as well as
the covariant energy E. It also diverges for circular orbits
approaching the boundary of the causality violation region
given by Eq. (70).

D. Future-oriented particle motion

For the positive-root states, the time evolution vector has
to be oriented to the future, i.e., dt=dτ > 0. On the other
hand, the negative-root states have past-oriented time
vectors, dt=dτ < 0, and thus are physically irrelevant for
our study. To be sure that we are using the solutions related
to the proper effective potential Veff with the correct upper
sign, we have to ensure that the considered geodesics have
the proper orientation, dt=dτ > 0.
Using the metric (1) and relations for the specific energy

(55) and specific angular momentum (56) in Eq. (48), we
obtain the time component of the 4-velocity for both the
upper and lower family circular geodesics in the form

dt
dτ

¼ r2 � a
ffiffiffiffiffiffiffiffiffiffiffi
r − b

p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 3Mrþ 2b� 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mr − b

pp : ð76Þ

We see from this equation that the time component is
always positive for the orbits of both the upper and the
lower family, so we always have the positive-root states,
and no mixing with the negative-root states occurs.

IV. CIRCULAR GEODESICS OF PHOTONS

We first study motion of photons, as the photon circular
orbits represent a natural boundary for the existence of
circular geodesic motion [52,58].
The general photon motion in the braneworld Kerr-

Newman black hole spacetimes was studied in [19]. Here,
we concentrate on the equatorial photon motion and,
especially, on the existence of the photon circular orbits.
In the case of the equatorial photon orbits, the radial
function RðrÞ is determined by Eq. (50) with the removed
term −1 (with the rest energy m ¼ 0), which can be
transformed into the form [19]

R
E2

¼ ½r2 − aðλ − aÞ�2 − Δðλ − aÞ2
r2Δ

; ð77Þ

where the impact parameter λ is defined by the relation

λ ¼ L
E
: ð78Þ

Notice that the photon orbits depend only on the impact
parameter λ.

Applying conditions for the circular motion (51), we find
that the equatorial photon circular orbits are given by the
equations

½r2 − aðλ − aÞ�2 − Δðλ − aÞ2 ¼ 0; ð79Þ
2rðr2 þ a2 − aλÞ − ðr − 1Þðλ − aÞ2 ¼ 0: ð80Þ

These two conditions imply that the radii of the circular
photon orbits are determined by the equation

r2 − 3rþ 2a2 þ 2b� 2a
ffiffiffiffi
Δ

p
¼ 0; ð81Þ

and the impact parameter λ is given by the equation

λ ¼ −a
r2 þ 3r − 2b
r2 − 3rþ 2b

: ð82Þ

Furthermore, Eq. (81) can by transformed into the form

r2 − 3rþ 2b� 2a
ffiffiffiffiffiffiffiffiffiffiffi
r − b

p
¼ 0; ð83Þ

which implies the same reality condition on the radius of the
photon orbit rph as the one that follows from Eqs. (55)–(57):

rph ≥ b: ð84Þ
Because of the reality condition, the numerator in

Eq. (82) is positive, while the (�) in the denominator is
determined by the sign in Eq. (83). Thus, we obtain
corotating orbits (λ > 0) for the upper sign in (83), and
counterrotating orbits (λ < 0) in the other case.
The solution of Eq. (83) can be expressed in the form

a ¼ aphðr; bÞ≡�ð3r − r2 − 2bÞ
2

ffiffiffiffiffiffiffiffiffiffiffi
r − b

p : ð85Þ

For a given a and b, the points of a line a ¼ const crossing
the function aphðr; bÞ determine the radius, rph, of the
photon circular orbits. We restrict our discussion to the
solutions corresponding to a > 0, giving both corotating
and counterrotating orbits. The zeros of the function
aphðr; bÞ are located at

rph� ¼ 1

2
ð3�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8b

p
Þ: ð86Þ

Note that these solutions represent radii of photon circular
orbits in the Reissner-Nordström spacetimes [15,16]. Since

∂aph
∂r ¼ �ðr − 1Þð3r − 4bÞ

4ðr − bÞ3=2 ; ð87Þ

the extrema of the curves aphðr; bÞ are located at r ¼ 1 and
at r ¼ 4b=3. The value of the function aphðr; bÞ at the point
r ¼ 1 reads (recall that we consider the positive values of
the spin)

aph-exðr ¼ 1; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − b

p
; ð88Þ
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corresponding to the extreme Kerr-Newman black holes,
while, at r ¼ 4b=3, it reads

aph-exðr ¼ 4b=3; bÞ ¼ �
ffiffiffi
b

p

3
ffiffiffi
3

p ð8b − 9Þ: ð89Þ

The position, value, and kind of the extrema of the
function aphðr; bÞ are listed in Table I. The results are
summarized in Fig. 4. We see that all curves drawn there—
the curve aph-exðr ¼ 4b=3; bÞ, the line a2 þ b ¼ 1 (corre-
sponding to the extremal black holes), the line a2 þ b ¼ 0,
and the line b ¼ 1 (separating the braneworld Kerr-
Newman naked singularities with the ergosphere from
those without it)—divide the b-a plane into ten regions.
In this sense, the braneworld Kerr-Newman spacetimes can
be divided into ten different classes, characterized by
(1) existence of the horizon,
(2) existence of the ergosphere, and
(3) the number of stable and unstable circular photon

orbits.
The situation is summarized in Table II and is also depicted
in Fig. 4, in accord with the analysis of circular photon
orbits in the standard Kerr-Newman spacetimes [52]. In the
case of the braneworld Kerr-Newman black holes, the new
regions VIII, IX, and X corresponding to the negative

values of the tidal charge, (b < 0), occur in addition to the
standard Kerr-Newman spacetimes.

V. STABLE CIRCULAR GEODESICS

It is well known that the character of the test particle
(geodesic) circular motion governs the structure of the
Keplerian (geometrically thin) accretion disks orbiting a
black hole [55,56] or a naked singularity (superspinar)
[36,37]; similarly, it can also govern the motion of a
satellite orbiting the black hole or the naked singularity
(superspinar) along a quasicircular orbit slowly descending
due to the gravitational radiation of the orbiting satellite
[59]. The Keplerian accretion, starting at large distances
from the attractor, is possible in the regions of the black
hole or naked singularity spacetimes where local minima of
the effective potential exist, and the energy corresponding
to these minima decreases with decreasing angular momen-
tum [12]. In other words, in terms of the radial profiles of
the quantities characterizing circular geodesics, the
Keplerian accretion is possible where both specific angular
momentum and the specific energy of the circular geo-
desics decrease with a decreasing radius. In the standard
model of the black hole accretion disks, the inner edge of
the accretion disk is located in the so-called marginally
stable circular geodesic where the effective potential has an
inflection point [55], but the situation can be more complex
in the naked singularity spacetimes [15,60].
We study the stability of the circular geodesic motion of

the test particles relative to the radial perturbations in the
braneworld Kerr-Newman spacetimes. Note that the

TABLE I. All kinds of extrema of the function aphðr; bÞ. We
show the plus sign part only because of the symmetry corre-
sponding to the interchangeability between signs (�) and the
nature of the local minima (max/min). The function aphMin is the
value of the function aphðr; bÞ at the lowest possible r, which is
r ¼ 0 for nonpositive values of b and r ¼ b otherwise.

r b
ð−∞; 0Þ ð0; 3

4
Þ ð3

4
; 1Þ 1 ð1; 9

8
Þ ð9

8
;∞Þ aphðr; bÞ

1 max max min � � � � � � � � � ffiffiffiffiffiffiffiffiffiffiffi
1 − b

p
r1, r2 min min min min min � � � 0
4
3
b � � � min max max max min

ffiffi
b

p
3
ffiffi
3

p ð8b − 9Þ
aphMin −b ∞ ∞ 0 ∞ ∞ � � �

TABLE II. Ten possible divisions of braneworld Kerr-Newman
spacetimes with respect to the existence of the horizon, the
existence of the ergosphere, and the number of stable and
unstable circular photon orbits. The first number in the column
orbits corresponds to the amount of stable circular photon orbits,
while the second corresponds to the amount of unstable circular
photon orbits.

Class Horiz. Ergo. Orbits Class Horiz. Ergo. Orbits

I yes yes 0, 2 VI no yes 2, 2
II yes yes 1, 3 VII no no 2, 2
III no yes 1, 1 VIII yes yes 0, 2
IV no no 1, 1 IX yes yes 0, 3
V no no 0, 0 X no yes 0, 1

I(0,2)

II(1,3)

III(1,1)

IV(1,1)

V(0,0)

VI(2,2)

VII(2,2)

VIII(0,2)
IX(0,3)

X(0,1)

black holes

naked singularities

I(0,2)

II(1,3)

VI(2,2)

VIII(0,2)
IX(0,3)

black holes

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5

b

a

FIG. 4. Braneworld Kerr-Newman black holes and naked
singularities can be divided into ten distinguish classes according
to the properties of the circular photon geodesics. Curve
aphð4b=3; bÞ (the solid line), given by (88), plays the main role
in the classification. The corresponding regions of the b-a plane
are denoted by I–X; the numbers in brackets denote the number of
circular photon orbits in the respective classes. The first number
determines the number of stable circular photon geodesics, while
the second number determines the number of unstable circular
photon geodesics.
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equatorial circular motion is then always stable relative to
the latitudinal perturbations perpendicular to the equatorial
plane [61]. We show that the most interesting and, in fact,
an unexpected result occurs for test particles orbiting the
special class of the braneworld mining-unstable Kerr-
Newman naked singularities, demonstrating an infinitely
deep gravitational well enabling (formally) unlimited
energy mining from the naked singularity spacetime. Of
course, such a mining must be limited by a violation of the
assumption of the test particle motion.

A. Marginally stable circular geodesics

The loci of the stable circular orbits are given by the
condition related to the radial motion RðrÞ function

∂2Rðr; a; b; E; LÞ
∂r2 ≤ 0; ð90Þ

or the relation

∂2VEffðr; a; b; LÞ
∂r2 ≤ 0; ð91Þ

related to the effective potential VEffðrÞ, where the case of
equality corresponds to the marginally stable circular orbits
at rms with L ¼ Lms, corresponding to the inflection point
of the effective potential—for lower values of the specific
angular momentum L, the particle cannot follow a circular
orbit. Such a marginally stable circular orbit represents the
innermost stable circular orbit and the inner edge of the
Keplerian disks in the Kerr black hole and in naked
singularity spacetimes.
Using the relations (55) and (56), we obtain for the

braneworld Kerr-Newman spacetimes [28,62]

rð6r − r2 − 9bþ 3a2Þ þ 4bðb − a2Þ ∓ 8aðr − bÞ3=2 ¼ 0:

ð92Þ

In the previous studies, only the braneworld black hole
spacetimes were typically considered [27,28]. Standard
Kerr-Newman naked singularity spacetimes were discussed
in [17,57]. Here, we consider the whole family of the
braneworld Kerr-Newman spacetimes, with both positive
and negative tidal charges. The solution of Eq. (92) can be
expressed in the form

ams ¼∓ 4ðr − bÞ3=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3br2 − ð2þ 4bÞr3 þ 3r4

p
4b − 3r

;

ð93Þ

where ∓ corresponds to the upper and the lower family of
the circular geodetics. � corresponds to the two possible
solutions of Eq. (92). The local extrema of the function
amsðr; bÞ are given by the relation

amsðextrÞ≡ ∓ ð2
ffiffiffi
b

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð4b − 1Þ

p
Þ: ð94Þ

Thus, it can be shown that there is no solution for Eq. (92)
related to the lower family of circular geodesics when

b >
5

4
∧ a < −2

ffiffiffi
b

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð4b − 1Þ

p
; ð95Þ

and there is no solution for the upper sign family of circular
geodesics when 1 > b > 1=4 and

2
ffiffiffi
b

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð4b − 1Þ

p
< a < 2

ffiffiffi
b

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð4b − 1Þ

p
: ð96Þ

The existence of the marginally stable circular geodesics
dependent on the dimensionless parameters of the brane-
world Kerr-Newman spacetimes is represented in Fig. 5.
This figure will be crucial for construction of the classi-
fication of the Kerr-Newman spacetimes according to the
Keplerian accretion, but it is not sufficient, as the classi-
fication of the photon circular geodesics plays a crucial
role, too.
The function amsðr; bÞ determines, in a given Kerr-

Newman spacetime, the location of the marginally stable
circular geodesics that are usually considered to be the
boundaries of the Keplerian accretion disks determined by
the quasigeodesic motion.

B. Innermost stable circular geodesics

The standard treatment when the inner edge of the
Keplerian accretion disks is located at the marginally stable
orbits defined by the inflection point of the effective
potential [this point is also the innermost stable circular
orbit (ISCO) [55]] works perfectly in the braneworld Kerr-
Newman black hole spacetimes, but the situation is more
complex in the braneworld naked singularity spacetimes, as
the ISCOs do not always correspond to the marginally

black holes

ms. is not defined for upper family 

ms. is not defined 

-1.0

0.0

1.0

2.0

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

b

a

FIG. 5. Mapping of existence of the marginally stable circular
geodesics in the parameter space of the braneworld Kerr-Newman
spacetimes.
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stable orbit defined by Eq. (92) [64]. The ISCOs that are not
coinciding with a marginally stable circular geodesic,
related to an inflection point of the effective potential,
correspond to the orbits with the lowest radius in the
sequence of stable circular geodesics. Contrary to the case
of the marginally stable circular orbits from which the
particles can move inwards, in the case of ISCOs repre-
senting the inner limit of stable circular geodesics, the
particle remains captured at this orbit or in its vicinity. Such
ISCO orbits were found for the first time in the Reissner-
Nordstrom(–de Sitter) naked singularity spacetimes when
they corresponded to orbits with vanishing angular momen-
tum (particles at static positions) [15,16]. Here, we dem-
onstrate the existence of a new class of this kind of ISCO
representing the limit of stable circular geodesics located at
the stable photon circular geodesic. In order to allow for the
standard accretion with decreasing E’s and L’s with a
decreasing radius of the stable orbits, we consider the stable
circular geodesics with E → −∞ and L → −∞.
The ISCO can be formally determined if we consider the

function of the radius of the circular geodesic rcðLc; a; bÞ,
given implicitly by Eq. (56), or rcðEc; a; bÞ, given implic-
itly by Eq. (55). Then the rISCO can be defined in a given
spacetime, with fixed parameters a, b, by the relations
drc=dLc ¼ 0, drc=dEc ¼ 0, which can be expressed as
dLc=drc → −∞ and dEc=drc → −∞, related to the
standard accretion with decreasing energy and angular
momentum of accreting matter. Note that the conditions
dLc=drc → ∞ and dEc=drc → ∞ can determine the outer-
most stable circular geodesics from which the accretion
could start, but such a situation is not related to a plausible
astrophysical situation, as discussed in detail in [60].
There are two relevant cases where the conditions

dLc=drc → �∞ and dEc=drc → �∞ can be satisfied:

ðaÞ 0 ¼ r2 − 3rþ 2b� 2a
ffiffiffiffiffiffiffiffiffiffiffi
r − b

p
; ð97Þ

ðbÞ r ¼ b: ð98Þ

Case (a) tells us that the innermost circular geodesics
correspond to the photon circular geodesics that can also be
stable with respect to radial perturbations, so this condition
is also applicable as a limit on the stable circular orbits of
the test particles, as demonstrated in [15]. Then the specific
energy and the specific angular momentum tend asymp-
totically to E → �∞ and L → �∞, but the impact param-
eter λ ¼ L=E remains finite. The condition r > b could
restrict the condition implied by the photon circular geo-
desics. Here, we consider the case where dLc=drc → −∞
and dEc=drc → −∞.
Case (b) can be relevant to the braneworld spacetimes

with the positive braneworld parameter b, as demonstrated
in [15], where the effective potential VEffðr; b; LÞ for the
Reissner-Nordström naked singularity spacetimes clearly
demonstrates that the inner edge of the Keplerian disk is

located at r ¼ b, having L ¼ 0, while no marginally stable
circular orbits corresponding to an inflection point of the
effective potential exist. Note that, in some spacetimes,
the sequence of the stable circular geodesics can start at the
outermost stable circular geodesic with dLc=drc → þ∞
and dEc=drc → þ∞ corresponding to the stable circular
geodesic.

C. Effective potential dependence on specific angular
momentum and analytical proof that the Keplerian

accretion with infinite efficiency can exist in
approximation to geodesic motion

The Keplerian accretion works if a continuous sequence
of local minima of the effective potential with decreasing
values of angular momentum L exists. In terms of the
effective potential (67), conditions for the existence of the
Keplerian accretion disks can be expressed in the form

∂VEffðr; a; b; LÞ
∂r ¼ 0;

∂2VEffðr; a; b; LÞ
∂r2 ≤ 0;

∂VEffðr; a; b; LÞ
∂L < 0: ð99Þ

Along with the possibility of stopping this procedure by the
inflection point of the effective potential, there is another
possible way to negate the validity of these conditions:

∂VEffðr; a; b; LÞ
∂L ¼ 0; ð100Þ

which will be satisfied at a turning point where

L ¼ LT ≡ �að2r − bÞ
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2rþ b

p : ð101Þ

At this turning point, the minimum of the effective
potential, given by ∂Veffðr; a; b; LTÞ=∂r ¼ 0, is located
where

r − b

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2rþ b

p ¼ 0 ⇒ r ¼ b: ð102Þ

In such situations, the inner edge of the Keplerian accretion
disk is located at r ¼ b. Putting this result into the
definition of the function LT, we find

LTðr ¼ bÞ ¼ �ab

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðb − 1Þp ⇒ b > 1: ð103Þ

We see that the effect of the existence of the lowest possible
value of angular momentum L associated with local
minima of effective potential occurs only for values of
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the tidal charge b > 1 when Eq. (102) is well defined
at r > b.
The second possible way the conditions (99) are not well

matched is related to the situation when the local minima of
the effective potential turn into an inflection point at r
defined by (92).
Therefore, the inflection point of the effective potential is

not always defined, if the tidal parameter b > 5=4, for the
lower family solution of Eq. (92). In this case the Keplerian
accretion stops at the point r ¼ b, where the minimum of
the effective potential starts to increase in energy level with
a decreasing L.
On the other hand, for the upper family solution of

Eq. (92), the situation becomes extraordinary and much
more interesting for the tidal charge in the interval 1 >
b > 1=4 and the appropriately tuned spin a; then the
inflection point of the effective potential does not exist.
For this reason, the Keplerian accretion starting at large
values of the angular momentum of accreting matter cannot
be stopped, and it continues with no limit to unlimitedly
large negative values of the angular momentum and
unlimitedly large negative values of the energy.
Therefore, in this case, unrestricted mining of the energy

due to the Keplerian accretion could occur. Of course, this
mining has to be stopped—at least when the energy of the
accreting matter starts to be comparable to the mass
parameter of the Kerr-Newman naked singularity and the
approximation of the test particle motion of matter in the
disk is no longer valid.

VI. CLASSIFICATION OF BRANEWORLD
KERR-NEWMAN SPACETIMES ACCORDING

TO RADIAL PROFILES OF CIRCULAR
GEODESICS

In order to create classifications of the braneworld Kerr-
Newman black hole and naked singularity spacetimes
according to possible regimes of the Keplerian accretion,
we consider the existence of event horizons and the
existence of the ergosphere, and we use the characteristics
of the circular geodesics: existence of the circular photon
geodesics and their stability, existence of the marginally
stable circular geodesics related to inflection points of the
effective potential, and relevance of the limiting radius
r ¼ b. We use the classification of the braneworld Kerr-
Newman spacetimes introduced for the characterization of
the photon circular geodesics, and we generate a subdivi-
sion of the introduced classes according to the criteria
related to the marginally stable orbits.
The individual classes of the Kerr-Newman spacetimes

will be represented by typical radial profiles of the specific
angular momentum L, specific energy E, and effective
potential VEff that enable understanding of the Keplerian
accretion and calculation of its efficiency. We first
briefly summarize the results of two special cases—Kerr
and Reissner-Nordström spacetimes. In the following

classification of the braneworld Kerr-Newman spacetimes,
the characteristic types of behavior of the circular geodesics
in the special Kerr and Reissner-Nordström spacetimes
occur, but some quite new and extraordinary situations also
arise. The results of the circular geodesic analysis in the
braneworld Kerr-Newman spacetimes can also be directly
applied to the circular geodesics in the standard Kerr-
Newman spacetimes if we make the transformation
b → Q2, where Q2 represents the squared electric charge
parameter of the Kerr-Newman background.

A. Case b= 0: Kerr black hole and naked
singularity spacetimes

The limiting case of the well-known results of the test
particle circular orbits in the Kerr spacetimes that were
studied in detail in [35,43] demonstrates clearly the
necessity of very carefully treating the families of circular
orbits in the naked singularity spacetimes, where the simple
decomposition of the circular orbits to corotating and
counterrotating (retrograde) is not always possible.
Namely, in the spacetimes with 1 < a < ac ¼ 1.3, the
circular orbits that are corotating at large distances from
the ring singularity become retrograde near the ring
singularity, at the ergosphere; moreover, in the spacetimes
with 1 < a < a0 ¼ 1.089, the covariant energy of such
orbits can be negative. The specific energy and the specific
angular momentum of the circular geodesics of the Kerr
black hole and naked singularity spacetimes are illustrated
in Fig. 8. Notice that the unstable circular geodesics
approach the radius r ¼ 0 with unlimitedly increasing
covariant energy and axial angular momentum; however,
the photon circular geodesic cannot exist at the ring
singularity. The Kerr naked singularities are classically
unstable, as the Keplerian accretion from both the corotat-
ing and counterrotating disks inverts the naked singularity
into an extreme Kerr black hole—the transition is discon-
tinuous (continuous) for corotating (counterrotating)
Keplerian disks [34–36,65]. We shall see later that the
Keplerian accretion cannot be generally treated simply in
the Kerr-Newman naked singularity spacetimes due to the
complexities that are discussed in detail in [60]. We expect
to address this issue in future work.

B. Case a= 0: Reissner-Nordström black hole
and naked singularity spacetimes

The other limiting case of the Reissner-Nordström (RN)
and Reissner-Nordtröm–(anti–)de Sitter black hole and
naked singularity spacetimes was treated in [15,16]. It
has been demonstrated that in the Reissner-Nordström
naked singularity spacetimes that even two separated
regions of circular geodesics could exist. The doubled
regions of stable circular motion could occur in the RN
naked singularity spacetimes with the charge parameter
1 < Q2 < 5=4—or, even, only stable circular geodesics
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could exist—if the charge parameter Q2 > 5=4. In the RN
naked singularity spacetimes doubled photon circular geo-
desics can also occur, with the inner one being stable
relative to radial perturbations, if the charge parameter is in
the interval 1 < Q2 < 9=8 [15,17]. The same phenomena
occur in the naked singularity Kehagias-Sfetsos spacetimes
of the Hořava quantum gravity [60,66] or in the no-horizon
regular Bardeen or Ayon-Beato-Garcia spacetimes [67,68].
We shall see that, in the braneworld Kerr-Newman naked

singularity spacetimes, the special naked singularity effects
of the Kerr and Reissner-Nordström case are mixed in an
extraordinary way, leading to the existence of an infinitely
deep gravitational well and implying the new effect we call
mining instability.

C. Characteristic points of the
Kerr-Newman spacetime classification

The classification of the braneworld Kerr-Newman
spacetimes according to the character of the circular geo-
desics and the related effective potential are determined by
the functions governing the local extrema of the functions
giving the photon circular geodesics and the marginally
stable circular geodesics corresponding to the inflection
points of the effective potential. In the space of the
spacetime parameters b-a, 14 regions then exist corre-
sponding to classes of the braneworld Kerr-Newman
spacetimes, demonstrating the different behaviors of the
circular geodesics and the Keplerian accretion, as demon-
strated in Figs. 6 and 7, giving details of the regions of low
values of the dimensionless parameters a and b. These

regions are governed by intersection points of the curves
(88) and (94), which give 13 characteristic points in the
parameter space that are summarized in the following way:
the pairs ða; bÞ are ordered gradually from top to the bottom
and from left to the right,

ð1Þ → ð0; 1.25Þ;
ð2Þ → ð0; 1.125Þ;

ð3Þ →
�
A−ð12þ A−Þ

16
ffiffiffi
2

p ;
3

32
ð12þ A−Þ

�

¼ ð0.0831; 1.1748Þ;
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�

1

3
ffiffiffi
3

p ; 1

�
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ffiffiffi
3

p
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p
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3

p
; 1Þ ¼ ð3.732; 1Þ;

ð10Þ →
�
Aþð12þ AþÞ

16
ffiffiffi
2

p ;
3

32
ð12þ AþÞ

�

¼ ð15.0992; 5.361Þ;

where

IVb

X

Vc

Va Vb

IVa

IIIb

VIII

IX

II

(10)

(9)

X

Va Vb

VIII

IX

II

X
IX

II

X
IX

II

X
IX

II

X
IX

II

X
IX

II

IX

II

(8)

-1

 0

 1

 2

 3

 4

 5

 6

 0  5  10  15  20

b

a

FIG. 6. Classification of the braneworld Kerr-Newman spacetimes according to the properties of circular geodesics relevant to the
Keplerian accretion. The parameter space b-a is separated by curves governing the extrema of the functions determining the photon
circular orbits (the solid lines) and the marginally stable orbits (the dashed lines). Point (
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and the curve separating black holes from naked singularities (b ¼ 1 − a2). These two curves are tangent at the common point.

MARTIN BLASCHKE and ZDENĚK STUCHLÍK PHYSICAL REVIEW D 94, 086006 (2016)

086006-14



b

I

IIIa

IIIb

IVa

Vb
Va

VI

VII

IVb

Vc

(1)

(2)

(3)

(4) (5)

(6)

(7)

II

I

IIIa

IIIbVI

VII

(1)

(2)

(3)

(4) (5)

(6)

(7)

II

I

IIIa

IIIbVI

(1)

(2)

(3)

(7)

II

I

IIIa

IIIbVI

(1)

(2)

(3)

(7)

II

I

IIIa

IIIbVI

(1)

(7)

II

I

IIIa

IIIbVI

(7)

II

I

IIIa

VI

(7)

II

(6)

bbbbbbbbbbbbbbbbbbbbbbbbbbbb

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

I

IIIa

VI

(7)

II

I

IIIIIIII

 1.125

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

a

II

FIG. 7. Classification of the braneworld Kerr-Newman spacetimes according to the properties of circular geodesics relevant to the
Keplerian accretion. The parameter space b-a is separated by curves governing the extrema of the functions determining the photon
circular orbits (the solid lines) and the marginally stable orbits (the dashed lines). Detailed structure for small values of spin a and b ∼ 1.

-2

-1

 0

 1

 2

 3

 4

 5

 6

 1  2  3  4  5  6  7  8  9  10

E

r

b=0upper family

a=0
a=0.9

a=1
a=1.1

-10

-5

 0

 5

 10

 1  2  3  4  5  6  7  8  9  10

L

r

b=0upper family

a=0
a=0.9

a=1
a=1.1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1  2  3  4  5  6  7  8  9  10

E

r

b=0lower family

a=0
a=0.9

a=1
a=1.1

-10

-8

-6

-4

-2

 0

 1  2  3  4  5  6  7  8  9  10

L

r

b=0lower family

a=0
a=0.9

a=1
a=1.1

FIG. 8. E and L for Kerr black holes and naked singularities.

EFFICIENCY OF THE KEPLERIAN ACCRETION IN … PHYSICAL REVIEW D 94, 086006 (2016)

086006-15



A� ¼ ð9þ 8
ffiffiffi
3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð83þ 48

ffiffiffi
3

p
Þ

q
Þ: ð104Þ

Point (6) is the crossing point of the function of the extrema
of the photon circular orbit function aph-ex, and the curve
separating the black hole and naked singularity spacetimes,
b ¼ 1 − a2. Point (7) is the common point of the dotted
curve, given by the function amsðextrÞ and limiting the
spacetimes, allowing for the existence of marginally stable
orbits, and the curve separating the black holes from naked
singularities (b ¼ 1 − a2). These two curves are tangent at
the common point.

D. Character of circular geodesics in the
Kerr-Newman spacetimes

The parameter space of the braneworld Kerr-Newman
spacetimes b-a is divided into 14 regions due to the criteria
reflecting basic properties of the spacetimes and properties
of their circular geodesics:

(i) Existence of event horizons and an ergosphere.
(ii) Existence of unstable and stable circular photon

geodesics.
(iii) Existence of the marginally stable geodesics or

the ISCO.
The classification is summarized in Table III. Basically, we
combine Figs. 5 and 4 to obtain Figs. 6 and 7, where
properties of the photon circular geodesics and properties
of the marginally stable geodesics or ISCOs are reflected.
We will show that the most surprising properties of the
Keplerian accretion arise in the spacetimes of class IIIa.

Now we give properties of the circular geodesics in all 14
classes of the braneworld Kerr-Newman spacetimes, pre-
senting and discussing the typical radial profiles of their
specific energy and specific angular momentum, comple-
mented by sequences of the effective potential.
Classification of the standard Kerr-Newman spacetimes
according to properties of the circular geodesics contains
all of the classes except those related to b < 0; therefore,
classes VIII, IX, and X are excluded.

1. Class I

This class (Fig. 9) of black hole spacetimes has two
horizons, two unstable photon circular orbits, and an
ergosphere. The class border is given by the line
b ¼ aph-exðr ¼ 4b=3; bÞ, b ¼ 1 − a2, with the intersection
at point (0.5; 3=4) [point (6) in Fig. 6] and line a ¼ 0.
Marginally stable orbits for test massive particles are

given by the inflection point of the effective potential are
defined by Eq. (92) and coincide with the ISCOs (this is the
standard scenario of the Keplerian accretion: for short,
classic).

2. Class II

This class (Fig. 10) of black hole spacetimes has two
horizons, one stable and three unstable photon circular
orbits, and an ergosphere. Notice that the stable and
unstable photon circular geodesics are located under the
inner horizon and thus are irrelevant for the Keplerian
accretion. The border is given by the line b ¼ aph-exðr ¼
4b=3; bÞ and b ¼ 1 − a2, with the intersection being at
point (0.5; 3=4) [point (6) in Fig. 6] and line b ¼ 0.
Marginally stable orbits for test massive particles are

given by the inflection point of the effective potential,
coinciding with the ISCOs (classic).

3. Class IIIa

This class (Fig. 11) of naked singularity spacetimes has
one stable and one unstable photon circular geodesic and an
ergosphere. The border of the class IIIa region is given by
the lines b ¼ amsðextrÞ and b ¼ 1, with intersection points at

ð2 − ffiffiffi
3

p
; 1Þ ¼ ð0.268; 1Þ [point (5)] and ð2þ ffiffiffi

3
p

; 1Þ ¼
ð3.732; 1Þ [point (9)]. We have also marked point (7) with
coordinates ð ffiffiffiffiffiffiffi

0.5
p

; 0.5Þ, where the lines b ¼ amsðextrÞ and
b ¼ 1 − a2 touch and are tangent to each other. This
theoretically means that an effect of mining instability
can be achieved for extremal Kerr-Newman black holes
with spin parameter a ¼ ffiffiffiffiffiffiffi

0.5
p

and the charge or brane-
world tidal charge parameter b ¼ 0.5. However, it occurs
under the event horizon. We have also marked point (8)
with coordinates (1, 0.25), giving information on the
minimal amount of the electric charge or braneworld tidal
charge parameter b.

TABLE III. Classification of parameter space b-a with respect
to ISCO—radius of the innermost stable circular orbit; MSO(u)
—radius of the marginally stable orbit for the upper sign family;
MSO(l)—radius of the marginally stable orbit for the lower sign
family; SP—number of stable photon circular orbits; UP—
number of unstable photon circular orbits. ISCO has only two
possible outcomes. It can either be identical to the MSO or lie at
r ¼ b. The word “classic” in this context means that MSO is
defined by Eq. (92).

Class ISCO MSO(u) MSO(l) Hor./Erg. SP UP

I ¼ MSO classic classic yes/yes 0 2
II ¼ MSO classic classic yes/yes 1 3
IIIa ¼ Photon � � � classic no/yes 1 1
IIIb ¼ MSO classic classic no/yes 1 1
IVa at r ¼ b � � � classic no/no 1 1
IVb at r ¼ b classic classic no/no 1 1
Va at r ¼ b � � � � � � no/no 0 0
Vb at r ¼ b � � � classic no/no 0 0
Vc at r ¼ b classic classic no/no 0 0
VI ¼ MSO classic classic no/yes 2 2
VII at r ¼ b classic classic no/no 2 2
VIII ¼ MSO classic classic yes/yes 0 2
IX ¼ MSO classic classic yes/yes 0 3
X ¼ MSO classic classic no/yes 0 1
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The marginally stable orbit of the massive test particles is
in the case of the lower family circular geodesics given by
the inflection point of the effective potential, and it
coincides with the ISCO (classic).
In the case of the upper family circular geodesics, the

inflection point of the effective potential is not defined and
the sequence of minima of the effective potential continues
with decreasing specific energy and specific angular
momentum of the accreting matter down to the stable
photon orbit. This orbit can therefore be considered an
ISCO of the massive test particles. We have thus found an
infinitely deep gravitational well enabling, theoretically,
an unlimited mining of energy from the naked singularity.
In fact, such a mining instability could work only up to the
energy contained in the naked singularity spacetime. We
can expect that the energy mining could also work in more
realistic situations where the naked singularity is removed
and an astrophysically more plausible superspinar is
created by joining a regular (e.g., stringy) solution to the
Kerr-Newman spacetime at a radius overcoming the outer
radius of the causality violation region [37,40]. The mining
could work if the matching radius of the internal stringy
spacetime and the outer Kerr-Newman spacetime is smaller
than the radius of the stable photon orbit related to the
mining instability of the class IIIa spacetimes.
For completeness, we also give in this case the locally

measured (LNRF) specific energy of the upper family
circular geodesics. As shown in Fig. 12, the specific energy
ELNRF diverges, along with the covariant specific energy E
as the orbit approaches the limiting photon circular orbit.
On the other hand, Fig. 13 clearly demonstrates that the
ratio jEj=ELNRF remains finite while the orbits approach the
location corresponding to the stable photon circular orbit.
Of course, the mining instability could work only if the

assumption of the test particle motion of the accreting
matter is satisfied. Therefore, the assumption requires
validity of the relation

j ~Ej ≪ M; ð105Þ
and the covariant energy of the particle (accreting matter)
has to be much smaller than the naked singularity mass
parameter M. Of course, the issue of the mining instability

and the related interaction of the mining-unstable Kerr-
Newman naked singularity (the Kerr-Newman superspinar)
and the accreting mass is much more complex and deserves
a more detailed study.

4. Class IIIb

This class (Fig. 14) of naked singularity spacetimes has
one stable and one unstable photon circular orbit and an
ergosphere. In the parameter space b-a, the area related to
this class is not compact and disintegrates into two
separated areas. The first area is infinitely large: its border
is given by lines b ¼ amsðextrÞ, b ¼ 1 − a2, b ¼ 1, and

b ¼ 0, with intersections at the point ð ffiffiffiffiffiffiffi
0.5

p
; 0.5Þ [point (7)]

and ð2þ ffiffiffi
3

p
; 1Þ [point (9)]. The second area is compact

and finite. Its border is given by lines b ¼ amsðextrÞ,
b ¼ aph-exðr ¼ 4b=3; bÞ, b ¼ 1 − a2, and b ¼ 1, with
intersection points (4), (5), and (7). It is not obvious from
the figures, but b ¼ amsðextrÞ and b ¼ aph-exðr ¼ 4b=3; bÞ
do not intersect.
Marginally stable orbits of both the lower and the upper

family of circular geodesics are given by the inflection
point of the effective potential and coincide with the ISCOs
(classic). Notice that in this case the sequence of the upper
family orbits with descending specific energy E and
specific angular momentum L is interrupted by a sequence
where both E and L increase with a decreasing radius, thus
corresponding to the unstable geodesics. In this case, the
infinitely deep gravitational well still exists, but the
Keplerian accretion sequence is interrupted and this gravi-
tational well cannot be applied in an astrophysically natural
accretion process. Nevertheless, it is still possible to use
this gravitational well, if matter with appropriate initial
conditions (values of the motion constants), enabling the
start of the mining instability, could appear close to the
naked singularity.

5. Class IVa

This class (Fig. 15) of naked singularity spacetimes has
one stable and one unstable photon circular orbit. The
class is without an ergosphere. The border of this class in
the spacetime parameter space is given by the lines
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b ¼ aph-exðr ¼ 4b=3; bÞ and b ¼ amsðextrÞ, with intersection
points (3), (5), (9), and (10).
For the lower family circular geodesics, the marginally

stable orbits defined by the inflection point of the effective
potential occur (classic). For the upper family, the circular
geodesics’ marginally stable orbit is not defined, and the
ISCO is located at r ¼ b, as it is for all classes with b > 1.
A sequence of stable circular geodesics with sharply
increasing specific energy occurs near (slightly above)
the radius r ¼ b, approaching the stable photon circular
orbit. (Such sequences of stable circular orbits are dis-
cussed in [60].)

Note that the probability that we are actually living in a
spacetime with the braneworld tidal charge parameter
greater than one is very small [26,27].

6. Class IVb

This class (Fig. 16) of naked singularity spacetimes has
one stable and one unstable photon circular orbit. These
spacetimes are without an ergosphere. In the parameter
space b-a, this class is not compact and disintegrates into
two separated areas. The first area is infinitely large: the
border is given by the lines b ¼ aphð4b=3; bÞ, b ¼ amsðextrÞ,
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and b ¼ 1, with intersection points (9) and (10). The
second area is finite and its border is given by the same
lines and intersection points (2), (3), (4), and (5).
For both the upper and lower families of the circular

geodesics, the marginally stable orbits of the test massive
particles are given by the inflection point of the effective
potential, governing the sequence of geodesics related to
the standard Keplerian accretion (classic). There is an
additional internal sequence for a stable circular geodesic,
with the ISCO located at r ¼ b, as it is for all classes with
b > 1. This sequence approaches the stable photon circular
geodesic at the outer edge.

7. Class Va

This class (Fig. 17) of naked singularity spacetimes has
no stable or unstable photon circular orbits. These space-
times are also without an ergosphere. The border of the
class Va region in the parameter space is given by the lines
b ¼ amsðextrÞ and a ¼ 0, with intersection point (1).
For both the lower and upper family circular geodesics,

the marginally stable orbits are not defined. The circular
geodesics are only stable and the ISCOs are located at
r ¼ b, as they are for all spacetime classes with b > 1.

8. Class Vb

This class (Fig. 18) of naked singularity spacetimes has
no stable or unstable photon circular orbits. These space-
times are also without an ergosphere. The border of the
class Vb region in the parameter space is given by the lines
b ¼ amsðextrÞ and b ¼ aphð4b=3; bÞ, with intersection points
(1), (3), and (10). The class is infinitely extended in the
parameter space.
The upper family circular geodesics are stable only,

finishing at the ISCO located at r ¼ b. The marginally
stable orbit exists for the lower family orbits, giving the
limit of the standard Keplerian accretion. The lower family
orbits continue downwards by a sequence of unstable orbits
and, finally, stable orbits finishing at r ¼ b.

9. Class Vc

This class (Fig. 19) of naked singularity spacetimes has
no stable or unstable photon circular orbits. These are again
spacetimes without an ergosphere. In the parameter space
b-a, this class disintegrates into two separated areas. The
first one is infinitely extended: its border is given by the
lines b ¼ aph-exðr ¼ 4b=3; bÞ and b ¼ amsðextrÞ, with
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intersection point (10). The second area is finite and its
border is given by lines b ¼ aph-exðr ¼ 4b=3; bÞ,
b ¼ amsðextrÞ, and a ¼ 0, with intersection points (1), (2),
and (3).
The marginally stable orbit exists for both the lower and

upper family circular geodesics, thus giving the standard
limit of the Keplerian accretion (classic). Both the lower
and upper family orbits continue downwards by a sequence
of unstable orbits and, finally, stable orbits finishing at
r ¼ b.

10. Class VI

This class (Fig. 20) of naked singularity spacetimes has
two stable and two unstable photon circular orbits and an
ergosphere. In the parameter space, the area of the class VI
spacetimes has the boundary given by the lines
b ¼ aph-exðr ¼ 4b=3; bÞ, b ¼ 1 − a2, and b ¼ 1, with
intersection points (4) and (6).
For both the lower and the upper family of circular

geodesics, the marginally stable orbit exists, thus giving the
inner edge of the standard Keplerian accretion. The upper
family orbits have also a very narrow region of stable
circular orbits near the radius r ¼ b, starting with the stable
circular photon orbit.

11. Class VII

This class (Fig. 21) of naked singularity spacetimes has
two stable and two unstable photon circular orbits, with no
ergosphere. In the parameter space, the area of the class VII

spacetimes has the boundary given by the lines
b ¼ aph-exðr ¼ 4b=3; bÞ, a ¼ 0, and b ¼ 1, with intersec-
tion points (2) and (4).
For both the lower and upper family circular geodesics,

the marginally stable orbit exists, thus giving the edge of
the standard Keplerian accretion. Furthermore, both the
lower and upper family orbits have the ISCO at r ¼ b,
where the sequence of stable orbits finishes, starting for
each family at the related photon circular geodesic.

12. Class VIII

This class (Fig. 22) of black hole spacetimes has a
negative braneworld tidal charge parameter b—which has
only one horizon, located at r > 0—two unstable photon
circular orbits, and an ergosphere. In the parameter space
b-a, the boundary of the region related to this class is given
by the lines b ¼ −a2 and a ¼ 0.
For both the lower and upper family circular geodesics,

the marginally stable orbit exists, determining the inner
edge of the standard Keplerian disk. Thus, we obtained the
standard situation typical for Kerr black holes, but no
geodesic structure occurs at r > 0 under the event horizon.

13. Class IX

This class (Fig. 23) of black hole spacetimes has a
negative braneworld parameter b with two horizons, three
unstable photon circular orbits, and an ergosphere. The
border of the related region of the spacetime parameter
space is given by the lines b ¼ 1 − a2, b ¼ −a2, and b ¼ 0.
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For both the lower and upper circular orbits, the margin-
ally stable orbit exists, giving in a standard way the inner
edge of the Keplerian accretion. Unstable orbits exist under
the inner horizon.

14. Class X

This class (Fig. 24) of naked singularity spacetimes has a
negative brane parameter b with one unstable photon
circular orbit and an ergosphere. The border of the related
region of the parameter space is given by the lines b ¼
1 − a2 and b ¼ 0.
In these naked singularity spacetimes, the marginally

stable orbit exists for both the lower and the upper family of
circular geodesics, thus representing in both cases the inner
edge of the Keplerian accretion disks. Under the marginally
stable orbits, only unstable orbits exist for both families.
From the point of view of the geodesic structure, the naked
singularity spacetimes of class X resemble the standard
Kerr naked singularity spacetimes.

VII. EFFICIENCY OF THE KEPLERIAN
ACCRETION

Now we are able to determine the energetic efficiency of
the Keplerian accretion. From the astrophysical point of
view, the standard Keplerian accretion is relevant in the
regions enabling the start of accretion at large distance
(infinity) and its completion at the first inner edge that can
be approached by a continuous accretion process. We
determine the efficiency of the Keplerian accretion for
all classes of the braneworld Kerr-Newman spacetimes for
the standard Keplerian accretion. In some of these space-
times, an inner region also exists where the Keplerian
accretion could work due to the decline of both energy and
angular momentum with a decreasing radius. However,
these regions are not related to the standard notion of
Keplerian accretion and will not be considered here for
calculations of the accretion efficiency. Moreover, com-
plexities of the Keplerian accretion process related to the
behavior of the angular velocity could also exist. These
complexities are described in detail in [60]—we shall not
discuss these subtleties in this paper.
We concentrate our attention on determining the effi-

ciency for the Keplerian accretion following the upper
family circular geodesics, where the efficiency can be very
high, being in some cases even unlimitedly high (formally).
In the case of the upper family Keplerian accretion, the
efficiency is discontinuous when the transition between the
naked singularity with sufficiently high dimensionless spin
and the related extreme black hole state is considered. The
critical values of the spin and the related critical tidal charge
read

acr ¼
1ffiffiffi
2

p ; bcr ¼
1

2
: ð106Þ

Wemust stress that the efficiency of the Keplerian accretion
in the near-extreme naked singularity spacetimes exceeds
significantly the efficiency in the extreme black hole
spacetimes. On the other hand, the efficiency of the
Keplerian accretion in the upper family regime is fully
continuous in the case of the transition of the naked
singularity to an extreme black hole spacetime with
sufficiently low spin, a < acr, and for all the braneworld
Kerr-Newman (KN) spacetimes in the case of the Keplerian
accretion in the lower family accretion regime. Generally,
the efficiency of the Keplerian accretion is substantially
smaller in comparison to the upper family regime in a given
Kerr-Newman spacetime.
The efficiency of the accretion for the geometrically thin

Keplerian disks governed by the circular geodesics is
defined by the relation

ηða; bÞ ¼ 1 − Eðredge; a; bÞ; ð107Þ

where redge denotes the location of the inner edge of the
standard Keplerian accretion disks. For the Keplerian disks
following the lower family circular geodesics, the inner
edge of the disk is always located at the marginally stable
geodesic, thus giving always the scenario of the Keplerian
accretion in the Kerr spacetimes. On the other hand, for the
upper family Keplerian disks, the situation is more com-
plex, as follows from the classification of the braneworld
Kerr-Newman spacetimes. Three qualitatively different
cases can occur that depend on combinations of the
dimensionless spacetime parameters a and b.
In the first family of classes of the Kerr-Newman

spacetimes, the redge is simply located at the marginally
stable geodesic, thus giving the scenario of the Keplerian
accretion onto Kerr black holes—this case includes all of
the braneworld Kerr-Newman black hole spacetimes.
In the second family of the Kerr-Newman classes, the

inner edge of the Keplerian disk is located at the radius
r ¼ b, thus giving the special case first discovered for the
Reissner-Nordström naked singularity spacetimes [15,16].
In all classes with b > 1 (IV, V), the efficiency of the
Keplerian accretion along the upper family of circular
geodesics is independent of the spin parameter a being
defined by the simple relation [69]

ηðbÞ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffi
1 −

1

b

r
: ð108Þ

The efficiency goes slowly to 0% for b → ∞; see Fig. 25.
In the third and most interesting family of the Kerr-

Newman spacetime classes, redge corresponds to the radius
of the stable photon orbit approached by particles with the
specific energy E → −∞ and the specific angular momen-
tum L → −∞. Notice that the limiting photon circular
geodesic is a corotating one, as the impact parameter
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λ ¼ L=E > 0. In the third case, the Keplerian accretion
efficiency (theoretically) approaches infinity. This effect
occurs explicitly in the class IIIa Kerr-Newman spacetimes,
as clearly demonstrated in Fig. 11. For this class, we have
the tidal charge parameter b ∈ ð1=4; 1Þ and the dimension-
less spin a ∈ ð2 ffiffiffi

b
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð4b − 1Þp

, 2
ffiffiffi
b

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð4b − 1Þp Þ.

The Keplerian accretion efficiency is given for the upper
family of circular geodesics in Fig. 25, and for the lower
family circular orbits in Fig. 26. Because of its complexity,
we represent the case of the upper family accretion regime
by a 3D figure, with the addition of a figure representing the

relevant sections a ¼ const. In the case of the lower family
accretion regime, the representative a ¼ const sections are
sufficient to clearly demonstrate the character of the
efficiency of the Keplerian accretion.
For the Keplerian accretion along the lower family

circular geodesics, the situation is quite simple and the
efficiency is always continuously matched between the
naked singularity and the extreme black hole states.
The efficiency of the lower family regime accretion for
fixed dimensionless spin a of the braneworld Kerr-
Newman spacetimes always decreases with a decreasing
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tidal charge parameter b. Moreover, for a fixed tidal charge
b, the efficiency decreases with an increasing spin a.
For understanding the upper family Keplerian accretion

regime and its efficiency, the dependences ηðb; a ¼ constÞ
are most instructive. They are governed by two crucial
families of curves. First, the efficiency of the Keplerian
accretion in the extreme braneworld KN black hole space-
times and the related near-extreme braneworld KN naked
singularity spacetimes are given by the relation

ηjumpðbÞ ¼ 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 1

1−b

q ; ð109Þ

where the plus sign corresponds to the efficiency in the
near-extreme naked singularity spacetimes, while the
minus sign corresponds to the related extreme black
holes. Naturally, this formula is relevant in the interval
of the tidal charge b ∈ ð−∞; 0.5Þ, i.e., up to the
critical value of the tidal charge. Second, a crucial curve
is given by the efficiency of the accretion in the limiting
spacetimes governed by the boundary of class IIIa space-
times, ηminingðb; amining�ðbÞÞ, where b ∈ ð1=4; 1Þ, and

aminingðbÞ ¼ 2
ffiffiffi
b

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð4b − 1Þp

.
The results can be summarized in the following way. For

all of the braneworld spacetimes with the negative tidal
charge parameter b < 0, and for those with positive charge
parameter 0 ≤ b ≤ 1=2, the large jump in efficiency in the
transition between the naked singularity and the related
extreme black hole state occurs. Such a jump was observed
for the first time in the case of the transition between theKerr
naked singularity and the extreme Kerr black hole (b ¼ 0),
where η ∼ 1.57 goes down to η ∼ 0.43 [35]. For the brane-
world KN extreme black holes (the related near-extreme
naked singularities), the efficiency slightly increases

(decreases) with negatively valued tidal charge increasing
in its magnitude, so the efficiency jump slightly decreases
from its maximal Kerr value. On the other hand, for
b ∈ ð0; 1=2Þ, the efficiency for the extreme black holes
(the near-extreme naked singularities) decreases (increases),
and the jump quickly increases—for b ¼ 1=2, the efficiency
jumps from η ∼ 1.707 down to η ∼ 0.293.
For the naked singularities with the tidal charge in the

interval 1=4 < b < 1 and the dimensionless spin in the
interval a ∈ ð2 ffiffiffi

b
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð4b − 1Þp

, 2
ffiffiffi
b

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð4b − 1Þp Þ,

the formally defined efficiency of the Keplerian accretion
is unlimited. At the boundary of this region, the efficiency
is given by the limit governed by the regular Keplerian
accretion finished at the marginally stable orbit.
For the naked singularities with b < 1=2, the efficiency

of the Keplerian accretion, starting at the near-extreme state
and keeping spin a ¼ const, decreases with an increasing
tidal charge down to the curve ηminingðb; amining�ðbÞÞ. A
further increase of b causes an entrance to the region of
unlimited efficiency. The curve ηðb; a ¼ 1Þ starts at b ¼ 0
and finishes at b ¼ 1=4, giving the related efficiency η ¼ 1.
For a spin in the interval 1 > a > 1=

ffiffiffi
2

p
, the curves

ηðb; a ¼ 1Þ start at the extreme state and finish at the state
with 0 < b < 1=2 and efficiency η > 1. For a spin appro-
aching a ¼ 1=

ffiffiffi
2

p
, the curve ηðb; a ¼ constÞ degenerates at

the point with b ¼ 1=2, and efficiency approaches
η ∼ 1.707. For higher values of spin, a ∈ ð1; 2þ ffiffiffi

3
p Þ,

the efficiency curves ηðb; a ¼ constÞ decrease to the curve
ηminingðb; amining�ðbÞÞ, with b increasing in the interval b ∈
ð1=4; 1Þ and the efficiency decreasing down to the limiting
value of ηðb ¼ 1; a ¼ 2þ ffiffiffi

3
p Þ ∼ 0.134.

For the tidal charge b ∈ ð1=2; 1Þ, the efficiency of the
Keplerian accretion at the transition between the extreme
black hole and the related near-extreme naked singularity is
continuously matched. The efficiency of η ∼ 0.134 is
reached for the Kerr-Newman spacetime with b ¼ 1 and
a ¼ 2 −

ffiffiffi
3

p
. For values of the spin in the interval of

a ∈ ð2 − ffiffiffi
3

p
; 1=

ffiffiffi
2

p Þ, the transition of the function
ηðb; a ¼ constÞ between the black hole and naked singu-
larity states, obtained due to the increasing tidal charge b, is
still continuous, and the curve ηminingðb; amining�ðbÞÞ is
reached where η < 0.293.
With an increasing spin a, the efficiency of the Keplerian

accretion decreases. It is interesting that, for naked singu-
larities having a spin a higher than ∼4.97 and an appro-
priately valued tidal charge b, the efficiency reaches values
smaller than those corresponding to the Schwarzschild
black holes (η ∼ 0.057).
Note that the results of the Keplerian accretion analysis

for the braneworld Kerr-Newman spacetimes can also be
directly applied to the Keplerian accretion in the standard
Kerr-Newman spacetimes, if we make the transformation
b → Q2, where Q2 represents the electric charge parameter
of the Kerr-Newman background.
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spacetime dimensionless tidal charge parameter b for character-
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VIII. CONCLUSIONS

In this paper the circular geodesics of the braneworld
Kerr-Newman black hole and naked singularity spacetimes
have been studied, and classification of these spacetimes
according to the character of the circular geodesic structure
has been presented. The circular geodesics have been
separated into two families—the lower family containing
only the counterrotating circular geodesics and the upper
family with corotating geodesics at a large distance, but a
possible transformation to counterrotating geodesics in the
vicinity of the naked singularity. It has been demonstrated
that 14 different classes of the Kerr-Newman spacetimes
can exist, mainly due to the properties of the upper family
of circular geodesics. Implications of the geodesic structure
to the Keplerian accretion have been given, and efficiency
of the Keplerian accretion has been determined. The
accretion efficiency is continuously matched between the
naked singularity and extreme black hole spacetimes for
the Keplerian accretion along the lower family circular
geodesics. On the other hand, there is a strong discontinuity
occurring in the transition between the naked singularities
and the extreme black holes for the Keplerian accretion
along the upper family circular geodesic, if the dimension-
less spin of the Kerr-Newman spacetime is sufficiently high
(a > 1=

ffiffiffi
2

p
)—the energy efficiency of the Keplerian accre-

tion is then substantially higher for the naked singularity
spacetimes. The accretion efficiency could then go up to the
value of η ∼ 1.707 for Kerr-Newman near-extreme naked
singularity spacetimes with b ∼ 1=2 and a ∼ 1=

ffiffiffi
2

p
.

For the Keplerian accretion along the lower family
circular geodesics, the inner edge of the disk always has
to be located at the marginally stable circular geodesic
corresponding to an inflection point of the effective
potential of the motion, in accord with the scenario of
the Keplerian accretion onto Kerr black holes and naked
singularities.
It has been shown that the Keplerian accretion along the

upper family geodesics can give three different scenarios. It
can finish at the inner edge located at the marginally stable
circular geodesic—this is the standard accretion scenario
present in the black hole spacetimes. However, two other
scenarios could occur in the naked singularity spacetimes.
The inner edge of the Keplerian accretion could occur at
r ¼ b, which is the special limit on the existence of the
circular geodesics. For b > 1 the efficiency of the upper
family Keplerian accretion is independent of the naked

singularity spin. The most interesting is the third scenario,
related to the Kerr-Newman naked singularity spacetimes
of class IIIa having an infinitely deep gravitational potential
of the upper family Keplerian accretion. Then the inner
edge of the Keplerian accretion could occur even at the
stable photon circular geodesic, and the accretion efficiency
could be formally unlimited, making such naked singu-
larity spacetimes unstable relative to accretion mining.
The mining instability of the Kerr-Newman naked

singularity spacetimes (or related superspinars) is a
classical instability that could imply interesting conse-
quences, which we plan to study in the future.
Nevertheless, it is clear that the mining instability has to
at least be restricted by the validity of the test particle
approximation used in this paper for the Keplerian
accretion.
The other classical instability, related to the conversion

of Kerr naked singularities to extreme black holes due to
the Keplerian accretion [36], has to be treated in future
work, but this instability necessarily has a much more
complex character in the Kerr-Newman naked singularity
spacetimes in comparison to the relatively simple Kerr case,
due to the complexities related to the mining instability and
the influence of the tidal charge.
Interesting phenomena could be expected in the mining-

unstable Kerr-Newman spacetimes (class IIIa) even if it will
represent an astrophysically more acceptable concept of the
Kerr-Newman superspinar, with the inner boundary of the
Kerr-Newman spacetime located at least at the outer
boundary of the causality violation region [37,40,41].
We can expect observations of extremely high energy
coming out of collisions in the vicinity of such a super-
spinar, enabled by the nonexistence of the event horizon
and the fast rotation of the superspinar or, inversely, the
strong magnification of the incoming radiation [42,66]. We
could expect a hot doughnut-shaped configuration of
accreting matter surrounding the superspinar, as discussed
in [60].
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