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In order to imitate the anisotropic medium of a condensed matter system, we take into account an
Einstein-Maxwell-dilaton-axion model as a dual gravity theory where the anisotropy is caused by different
momentum relaxations. This gravity model allows an anisotropic charged black hole solution. On this
background, we investigate how the linear responses of vector modes like electric, thermoelectric,
and thermal conductivities rely on the anisotropy. We find that the electric conductivity in the low
frequency limit shows a Drude peak and that, in the intermediate frequency regime, it reveals the power law
behavior. Specifically, when the anisotropy increases, the exponent of the power law becomes smaller. In
addition, we find that a critical value for the anisotropy exists at which the dc conductivity reaches to its
maximum value.
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I. INTRODUCTION

Recently, considerable attention has been paid to the
AdS=CFT correspondence (or holography) for understand-
ing strongly interacting systems of nuclear and condensed
matter physics. In the strong coupling regime, the tradi-
tional, well-established perturbation method does not work,
so new physical concepts and/or mathematical techniques
are required to figure out strongly interacting systems. In
this situation, the AdS=CFT correspondence provides a
new way to investigate it nonperturbatively. The AdS=CFT
correspondence says that nonperturbative properties of a
strongly interacting system can be described by a classical
gravity theory defined on an asymptotic AdS geometry
[1–4], which has already passed many nontrivial tests. In
condensed matter physics describing a strongly interacting
many-body system, there are many nontrivial, important
properties, like a high Tc superconductivity and scaling
behaviors of transport coefficients, depending on the phase
of matter [5–8]. Understanding such properties theoreti-
cally, though it is not easy, is one of the long-standing
problems in physics. After the AdS=CFT correspondence
conjecture, there have been numerous attempts to resolve
these issues via holographic techniques. In this work, we
will study holographically various conductivities of a
strongly interacting anisotropic medium and investigate
how the anisotropy affects them.
When studying transport coefficients by using the holo-

graphic method, it is well known that if a translation
symmetry exists, the electric conductivity shows a delta

function behavior in the zero frequency limit. This fact
means that the dc conductivity is not well defined in a
system with a translational symmetry. To resolve this
problem, many ideas for breaking the translational invari-
ance of the dual gravity have been invented. The first is to
encode the lattice structure to the anti–de Sitter (AdS)
geometry, which is done by introducing a periodic potential
along spatial directions [9–11]. Though this construction
can describe the lattice structure of the dual theory,
studying its transport coefficients is not easy because of
the complexity of the model. Another way to consider the
lattice structure is to impose the periodic boundary con-
dition on the chemical potential, which is dual to a local
gauge field of a dual gravity [12–15]. One can also take into
account a massive gravity theory to break a diffeomorphism
invariance [16–19]. Another way to break the translational
symmetry is by introducing additional fields depending on
spatial coordinates [20,21]. If we introduce scalar fields
depending on spatial coordinates linearly, it can mimic the
local point of the previous lattice structure. However, since
the last method provides a relatively simple calculation, it
would be a good toy model to understand the transport
coefficients of the dual condensed matter system. From
now on, we will focus on the last model.
In condensed matter and particle accelerator experi-

ments, anisotropy is one of the important ingredients for
understanding their physics. There were plenty of works
related to the temporal and spatial anisotropies [20–31].
The spatial anisotropy naturally appears by breaking the
rotational symmetry of the system. In the last model, this
can be easily accomplished by taking different momentum
relaxation parameters in the x and y directions. On the
gravity side, this corresponds to introducing anisotropic
axion fields. The gravity we will consider has a local gauge
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field, a dilaton, and axions. In the AdS=CFT contexts, the
local bulk gauge field can be identified with the matter with
the corresponding global symmetry, while the dilaton field
is mapped to the coupling constant of the dual field theory.
From these facts, one can expect that the dual field theory
of the above gravity describes a medium composed of
strongly interacting matter. Adding anisotropic axions to
this system, the dual system is modified to an anisotropic
medium with different momentum relaxations. In order to
clarify properties of the anisotropic medium, we study
various conductivities by turning on vector fluctuations
in this background geometry. We investigate how the
anisotropy affects the transport coefficient, such as through
various conductivities.
The rest of the paper is organized as follows. In Sec. II,

we construct a dual charged black hole geometry of an
anisotropic medium with different momentum relaxations.
After turning on vector fluctuations in this background, we
investigate the linear responses of the anisotropic medium
in Sec. III. We finish this work with some concluding
remarks in Sec. IV.

II. EINSTEIN-MAXWELL-DILATON-AXION
MODEL

In order to study holographic linear response theory with
an anisotropy, let us consider the following action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðRþ 6

L2
− 2ð∇ϕÞ2

−
1

2
e4ϕ
X2
i¼1

ð∇ ~aiÞ2 − e−2ϕF2Þ; ð1Þ

where ϕ and ~ai represent a dynamical dilaton and two axion
fields and L is the AdS radius. Following the AdS=CFT
correspondence, the profile of the dilaton field can be
reinterpreted as a nontrivial running scaling [32–37], while
the bulk gauge field describes a certain fermionic matter,
like a quark [38]. This means that the gravity theory we
consider mimics a nonconformal medium composed of
fermions and gauge bosons [39,40]. If we introduce the
momentum relaxation with an anisotropy by turning on
the axion fields, the dual field theory can further represent
the anisotropic medium we are interested in. In order to
describe a momentum relaxation, let us focus on the linear
axion fields

~a1 ¼ α1x ~a2 ¼ α2y; ð2Þ

where α1 and α2 are free parameters denoting the momen-
tum relaxation. It is well known that, if there are no such
axion fields, a dc conductivity generally diverges due to the
translational symmetry. On the other hand, a momentum
relaxation breaks the translational symmetry and leads to a
finite dc conductivity. Thus, the existence of an axion field

plays an important role in studying a transport coefficient
like a dc conductivity. Above, we introduced two axion
fields to break the translation symmetries in the x and y
directions. For α1 ≠ α2, the rotational symmetry is broken,
while it is restored only when α1 ¼ α2. For the isotropic
case, various transport coefficients have been widely
investigated (see [5–7,41–43] and the references therein).
However, many samples in condensed matter experiments
show an anisotropy. Therefore, it would be interesting to
realize such an anisotropy (Δα≡ jα1 − α2j) in a holo-
graphic model and to investigate its properties.
Equations of motion governing the bulk fields are

given by

Rμν ¼ −
3

L2
gμν þ 2∇μϕ∇νϕþ 1

2
e4ϕ∇μ ~a∇ν ~a

þ 2e−2ϕFμρFν
ρ −

1

2
gμνe−2ϕF2; ð3Þ

□ϕ −
1

2
e4ϕ
X2
i¼1

ð∇ ~aiÞ2 þ
1

2
e−2ϕF2 ¼ 0; ð4Þ

□ ~ai þ 4∇μϕ∇μ ~ai ¼ 0; ð5Þ

∇μðe−2ϕFμνÞ ¼ 0: ð6Þ

When a rotational symmetry is broken, a general
metric ansatz for a black hole has the following form
[25,42]:

ds2 ¼ L2

z2
ð−gðzÞdt2 þ gðzÞ−1dz2

þ eAðzÞþBðzÞdx2 þ eAðzÞ−BðzÞdy2Þ: ð7Þ

Assuming that the dilaton and the time component
of the gauge field are functions of the radial coordinate
only,

ϕ ¼ ϕðzÞ; and Aμdxμ ¼ AtðzÞdt; ð8Þ

Eq. (6) yields

Fzt ¼ A0
t ¼ ρzLe−Aþ2ϕ; ð9Þ

where ρz indicates a conserved charge density. Substituting
this solution into the other equations, the remaining
variables, AðzÞ, BðzÞ, and ϕðzÞ, are governed by
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2A00 þ ðA0Þ2 þ ðB0Þ2 þ 4ðϕ0Þ2 ¼ 0;

gzB00 þ ðgðzA0 − 2Þ þ zg0ÞB0 þ 1

2
ze−A−Bþ4ϕðα21 − α22e

2BÞ ¼ 0;

ð4z − 2z2A0Þg0 þ ð−z2ðA0Þ2 þ 8zA0 þ z2ðB0Þ2 þ 4z2ðϕ0Þ2 − 12Þg
−α21z2e−A−Bþ4ϕ − α22z

2e−AþBþ4ϕ − 4ρ2zz4e2ϕ−2A þ 12 ¼ 0;

eAgϕ00 þ
�
eAgA0 þ eAg0 −

2eAg
z

�
ϕ0 − ρ2zz2e2ϕ−A −

1

2
α21e

4ϕ−B −
1

2
α22e

Bþ4ϕ ¼ 0: ð10Þ

Note that the equation governing the dynamics of gðzÞ is
not independent.
Before solving these equations, it is worth noting that the

action we considered is invariant under the following field
redefinition:

ϕ → ϕ − ϕ0; ~a1 → e2ϕ0 ~a1;

~a2 → e2ϕ0 ~a2; and At → e−ϕ0At; ð11Þ

where ϕ0 implies a constant shift of the dilaton field.
Additionally, the metric we have chosen is invariant under
the following global scaling:

AðzÞ→AðzÞþAð0Þ; BðzÞ→BðzÞþBð0Þ;
x→ e−ðAð0ÞþBð0ÞÞ=2x; and y→ e−ðAð0Þ−Bð0ÞÞ=2y; ð12Þ

where Að0Þ and Bð0Þ indicate the boundary values of AðzÞ
and BðzÞ, respectively. These three constant shifts imply
that one can take arbitrary values of A, B, and ϕ at a given z
position, at either the horizon or the asymptotic boundary.
In order to see that, let us first introduce a dimensionless
coordinate scaled by the black hole horizon, ~z ¼ z=zh.
Then the black hole horizon appears at ~z ¼ 1. From now
on, we will always use the ~z coordinate, so we drop the tilde
out for simplicity. Because of constant shifts of variables,
we can set, without loss of generality,

Að1Þ ¼ Bð1Þ ¼ ϕð1Þ ¼ 0: ð13Þ

Note that the black hole factor should vanish at the horizon

gð1Þ ¼ 0: ð14Þ

Substituting these values into equations of motion, the first
derivatives of variables at the horizon must satisfy the
following relations:

A0ð1Þ¼−
12−4ρ2z −α21−α22−4κ

2κ
; B0ð1Þ¼ α21−α22

2κ
;

ϕ0ð1Þ¼−2ρ2z −α21−α22
2κ

; ð15Þ

where we used g0ð1Þ ¼ −κ and κ is associated with the
Hawking temperature, κ ¼ 4πT. Note that, since the
derivatives in (15) are independent of the above constant
shifts, they hold even when taking different values
from (13). This fact plays a crucial role in finding an
asymptotic AdS geometry numerically.
In order to obtain an asymptotic AdS geometry, we

should take, at the asymptotic boundary,

Að0Þ ¼ Bð0Þ ¼ 0 and gð0Þ ¼ 1: ð16Þ

In general, this condition is not consistent with the previous
condition in (13) defined at the horizon. This is because
there is no numerical solution interpolating these two kinds
of boundary conditions. This fact implies that we have to
modify one of the boundary conditions—for instance, (13).
Because of the global shift symmetry explained previously,
it is also possible to take arbitrary constant values instead of
(13), which does not have any effect on (15). By solving
equations of motion in (10) together with (15) and (16), it is
possible to find consistent values at the horizon which
allow for continuous interpolation. When αi and ρz are
given, the numerical results are as depicted in Figs. 1 and 2,
where we set L ¼ 1 for convenience. When the parameters
are given, we plot profiles of the variables in Fig. 1. As
expected, the boundary values, Að0Þ ¼ Bð0Þ ¼ 0 and
gð0Þ ¼ 1, indicate that the asymptotic geometry is an
AdS space.
If turning off all of the scalar fields, the gravity theory we

considered reduces to a Reissner-Nordström AdS black
hole which has no scalar hair or anisotropy. If turning off
the dilaton field only, this theory for α1 ¼ α2 ¼ α allows
the following analytic solution [44–46]:

ds2 ¼ L2

z2
ð−fðzÞdt2 þ fðzÞ−1dz2 þ dx2 þ dy2Þ; ð17Þ

with

fðzÞ ¼ 1 −
α2

2
z2 −

�
1 −

α2

2
þ μ2

4L2

�
z3 þ μ2

4L2
z4: ð18Þ

In Fig. 2, we depict the horizon values relying on the
parameters. The magnitudes of Að1Þ and ϕð1Þ decrease as
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α2 increases, while they increase as the temperature
increases. Especially for α1 ¼ α2 ¼ 2, Bð1Þ vanishes
because the isotropy is restored at this point. Another
interesting point we should note is that, when the temper-
ature increases, Bð1Þ increases for α2 < α1, whereas it
decreases for α2 > α1. In our work, αi and κ are chosen as

independent parameters, so ρz depends on these parame-
ters. Following the AdS=CFT correspondence, the geom-
etry we found numerically can be reinterpreted as an
anisotropic medium on the dual field theory side. In this
case, the anisotropy is caused by the different momentum
relaxation in the x and y directions.
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FIG. 2. The field values at the horizon for α1 ¼ 2. (i) Near α2 ¼ 0, Að1Þ, Bð1Þ and ϕð1Þ are depicted for κ ¼ 0.5 [lower (red) curves], 1
[middle (blue) curves], and 2 [upper (green) curves]. (ii) We also draw ρz for κ ¼ 0.5 [upper (red) curve], 1 [middle (blue) curve], and 2
[lower (green) curve] near α2 ¼ 0.
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blue dashed line indicates fðzÞ in (17).

KHIMPHUN, LEE, and PARK PHYSICAL REVIEW D 94, 086005 (2016)

086005-4



Before closing this section, let us discuss the perturbative solution near the boundary. Denoting bulk fields as Π
collectively, they can be expanded into the following form near the boundary:

Π ¼ lim
z→0

X∞
n¼0

ΠðnÞzn: ð19Þ

The perturbative solution satisfying the equations of motion in (10) are given by

Að0Þ ¼ Bð0Þ ¼ ϕð0Þ ¼ 0; gð0Þ ¼ 1; Bð1Þ ¼ ϕð1Þ ¼ Að1Þ ¼ gð1Þ ¼ 0;

Að2Þ ¼ Að3Þ ¼ 0; ϕð2Þ ¼ gð2Þ ¼ −
1

4
ðα21 þ α22Þ; Bð2Þ ¼ 1

4
ðα21 − α22Þ;

Að4Þ ¼ −
1

96
ð5α41 þ 6α21α

2
2 þ 5α42Þ; ϕð4Þ ¼ −

1

16
ð3α41 þ 4α21α

2
2 þ 3α42 − 4ρ2zÞ;

gð4Þ ¼ 1

24
ð24ρ2z − 5α41 − 6α21α

2
2 − 5α42Þ;

Bð4Þ ¼ 3

16
ðα21 − α22Þ;

� � � : ð20Þ

Above, gð3Þ, Bð3Þ, and ϕð3Þ are undetermined integral
constants which can be fixed by imposing additional
boundary conditions at the horizon. This perturbative
solution plays an important role in calculating the on-shell
gravity action and in evaluating conductivities of the dual
anisotropic medium.

III. CONDUCTIVITIES IN AN ANISOTROPIC
MEDIUM

In order to investigate various conductivities of the
anisotropic medium considered in the previous section,
we perturb the gauge field

Aμdxμ → AtðzÞdtþ ½ ~Axðt; zÞdxþ ~Ayðt; zÞdy�

with the metric fluctuation ~gti ði; j ¼ x; yÞ,

gμνdxμdxν→ ḡμνdxμdxνþ
2L2

z2
½~gtxðt;zÞdtdxþ ~gtyðt;zÞdtdy�;

where ḡμν is the background metric that we found in the
previous section. The other metric fluctuations, like gij, are
not considered here because they are usually decoupled in
the linear response theory [46–48]. Note that, since
fluctuations of the axion field can be coupled to the above
gauge field and metric fluctuations, one should also take
into account the axion’s fluctuation.
Now let us consider the following Fourier mode decom-

positions:

~Aiðt;zÞ¼
Z

∞

−∞

dΩ
2π

e−iΩtAiðzÞ; ~gtiðt;zÞ¼
Z

∞

−∞

dΩ
2π

e−iΩtgtiðzÞ;

and

~ai → αixi þ i
Z

∞

−∞

dΩ
2π

Ωe−iΩtχiðzÞ; ð21Þ

where Ω is a dimensionless frequency defined as Ω ¼ L2

rh
ω

[20]. The fluctuations are then governed by the following
equations of motion:

A00
i þ

�
B̄0
i þ

g0

g
− 2ϕ0

�
A0
i þ
�
Ω2

g2
−
4z2e2ϕ−2Aρ2z

g

�
Ai − αiLe6ϕ−Aρzχ0i ¼ 0; ð22Þ

χ00i þ
�
A0 þ g0

g
−
2

z
þ 4ϕ0

�
χ0i þ

Ω2

g2
χi −

αieB̄i−A

g2
gti ¼ 0; ð23Þ

g0ti þ ðB̄0
i − A0Þgti −

4e−Az2ρz
L

Ai − αige4ϕχ0i ¼ 0; ð24Þ
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where B̄i ¼ f−B;Bg for i ¼ fx; yg. In the above equation,
the fluctuations in the x and y directions seem to be
decoupled. If this is true, we can consider only the
fluctuation in the x direction because the fluctuation in
the y direction follows the same equation of motion, just
one with a different momentum relaxation parameter.
However, this is not true in this work. Since the background
fields, A, B, g, and ϕ are functions of both relaxation
parameters, αx and αy, the fluctuations in the x and y
directions are implicitly coupled. Therefore, the momen-
tum relaxation parameter in the x-direction can affect the
conductivities in the y direction as well as the x direction.

This implies that the anisotropic medium we considered
depends nontrivially on the momentum relaxations.
In order to solve the above equations, let us first focus on

the near horizon behavior of the solutions. The above
equations (22)–(24) have a singularity at the horizon due to
gð1Þ ¼ 0. For a well-defined solution at the horizon,
fluctuations must show appropriate singular behaviors at
the horizon. Introducing new variables,

ÂiðzÞ≡ gðzÞA0
iðzÞ; χ̂iðzÞ≡ gðzÞχ0iðzÞ; ð25Þ

and

AiðzÞ ¼ ð1 − zÞλaiðzÞ; ÂiðzÞ ¼ ð1 − zÞλâiðzÞ; gtiðzÞ ¼ ð1 − zÞλζtiðzÞ;
χiðzÞ ¼ ð1 − zÞληiðzÞ; χ̂iðzÞ ¼ ð1 − zÞλη̂iðzÞ;

with an appropriate exponent λ, the above equations in terms of new variables can be rewritten as five first-order linear
differential equations in each direction:

â0i þ
�
B̄i

0 −
λ

1 − z
− 2ϕ0

�
âi þ

�
Ω2

g
− 4z2e2ϕ−2Aρ2z

�
ai − θiρzLe6ϕ−Aη̂i ¼ 0; ð26Þ

a0i −
λ

1 − z
ai −

âi
g
¼ 0; ð27Þ

η̂0i þ
�
A0 −

λ

1 − z
−
2

z
þ 4ϕ0

�
η̂i þ

Ω2

g
ηi −

θie−AþB̄iζti
g

¼ 0;

ð28Þ

η0i −
λ

1 − z
ηi −

η̂i
g
¼ 0; ð29Þ

ζ0ti þ
�
−A0 þ B̄i

0 −
λ

1 − z

�
ζti − θie4ϕη̂i −

4ρze−Az2ai
L

¼ 0:

ð30Þ

At the horizon, these equations lead to the following
eigenvalue equation:

0
BBBBBBBBB@

0 − Ω2

g0ð1Þ 0 0 0

1
g0ð1Þ 0 0 0 0

0 0 0 − Ω2

g0ð1Þ
αie−Að1Þ−B̄ið1Þ

g0ð1Þ
0 0 1

g0ð1Þ 0 0

0 0 0 0 0

1
CCCCCCCCCA

0
BBBBBB@

âi
ai
η̂i

ηi

ζti

1
CCCCCCA

¼ λ

0
BBBBBB@

âi
ai
η̂i

ηi

ζti

1
CCCCCCA
;

ð31Þ

In each direction, this eigenvalue equation allows three
degenerate eigenvalues, λ ¼ 0 and λ ¼ � iΩ

g0ð1Þ, whose
eigenvectors are given by

ψ0¼

0
BBBBBB@

0

0

0
θie−Að1ÞþB̄ið1Þ

Ω2

1

1
CCCCCCA
; ψ1�¼

0
BBBBBB@

0

0

�iΩ
1

0

1
CCCCCCA
; ψ2�¼

0
BBBBBB@

�iΩ
1

0

0

0

1
CCCCCCA
:

ð32Þ

Here, the case with iλ > 0 satisfies an incoming boundary
condition, while the solution satisfying the outgoing
boundary condition appears for iλ < 0. Note that gðzÞ,
on the outside of the horizon, must be positive and becomes
zero at the horizon. This fact implies that g0ð1Þ is always
negative, as shown in Fig. 1. Assuming that Ω > 0, ψ1þ
and ψ2þ correspond to eigenvectors satisfying the incom-
ing boundary condition whose eigenvalue is given by
λ ¼ iΩ

g0ð1Þ. Removing outgoing modes at the horizon, χi,

gti, and Ai are determined as the linear combination of
incoming modes and a zero mode with three coefficients,
c0ψ0 þ c1ψ1þ þ c2ψ2þ. As a consequence, solutions can
be uniquely determined by fixing these three coefficients.
In order to fix them, we have to impose additional boundary
conditions. Imposing Dirichlet boundary conditions on χi,
gti, and Ai at the asymptotic boundary clarifies their

KHIMPHUN, LEE, and PARK PHYSICAL REVIEW D 94, 086005 (2016)

086005-6



boundary values and, at the same time, the fix above the
coefficients.

A. Conductivities of an anisotropic medium

In the previous section, we discussed how we can obtain
a numerical fluctuation solution satisfying the equations of
motion and the consistent boundary conditions. In order to
extract some physical information following the AdS=CFT
correspondence, we need to understand further its structure
near the boundary. Since z ≪ 1 near the boundary, the
numerical solution obtained in the previous section allows
the following perturbative expansion:

Φ ¼ lim
z→0

X∞
n¼0

ΦðnÞzn; ð33Þ

where Φ indicates all of the fluctuations like χi, gti, and Ai
collectively. Since three fluctuations we considered satisfy
the second-order differential equations, they usually have

six integral constants, χð0Þi , χð3Þi , gð0Þti , gð3Þti , A
ð0Þ
i , and Að1Þ

i .

Following the holographic prescription, χð0Þi , gð0Þti , and Að0Þ
i

are mapped to sources, while χð3Þi , gð3Þti , and Að1Þ
i are

interpreted as vacuum expectation values of the dual

operators on the dual field theory side. Specifically, Að1Þ
i

and gð3Þti are duals of the electric current, Ji, and the
momentum operator, Tti, respectively. Note that, because
of the one constraint equation in the Einstein equation, one
of them can be rewritten in terms of the others. As a
consequence, only five coefficients are independent, and
the remaining are usually determined by these five integral

constants. More precisely, we can fix gð3Þti in terms of the
other five coefficients by solving the constraint equation

gð3Þti ¼ 4Að0Þ
i ρz þ 3αiLχ

ð3Þ
i

3L
: ð34Þ

The other coefficients in (33) can be also fixed by five
independent integral constants. Here, we present several
lower order coefficients,

χð1Þi ¼ gð1Þti ¼ 0;

χð2Þi ¼ 1

2
ðχð0Þi Ω2 − αig

ð0Þ
ti Þ;

gð2Þti ¼ 1

4
ð2αiχð0Þi Ω2 − α21g

ð0Þ
ti − α22g

ð0Þ
ti Þ;

Að2Þ
i ¼ −Ω

2
Að0Þ
i ;

Að3Þ
i ¼ 1

6
ð−α2jAð1Þ

i −Ω2Að1Þ
i − α2i Lρzg

ð0Þ
ti þ αiLΩ2ρzχ

ð0Þ
i Þ;

Að4Þ
i ¼ 1

24
ðð−1Þiðα21 − α22ÞAð0Þ

i Ω2 þ 8Að0Þ
i ρ2z

− 6Að1Þ
i gð3Þ þ Að0Þ

i Ω4 þ 6αiρzLχ
ð3Þ
i Þ; ð35Þ

where i ≠ j and gð3Þ corresponds to the third-order term of
the background black hole metric factor, gðzÞ, in (7).
Comparing these perturbative solutions with the previous
numerical solution, it is possible to know the exact
numerical values of all of the coefficients.
Knowing these coefficients exactly is important for

understanding the physical properties of the dual field
theory because the on-shell gravity action determined by
them plays the role of a generating functional in the dual
theory. Since the variation of a gravity action is not well
defined, we need to add an additional boundary term called
the Gibbons-Hawking term for a well-defined variation.
The on-shell gravity action and the Gibbons-Hawking term
are given by

Son¼
Z

d3x
2π

�
gti

�
−4ρzLe−AþB̄iAiþ

2eB̄iL2g0ti
z2

−
αigL2e4ϕþB̄iχ0i

2z2

�
þg2ti

�
−
eB̄iL2A0

z2
þeB̄iL2B̄0

i

z2
−
eB̄

0
iL2g0

2gz2
−
eB̄iL2

z3

��
; ð36Þ

SGH ¼ −2
Z

d3x
2π

ffiffiffiffiffiffi
−γ

p
K; ð37Þ

where γ denotes an induced metric at the boundary (z → 0).
In general, these actions have divergent terms correspond-
ing to UV divergences of the dual field theory. Similar to
the usual quantum field theory, this should be renormalized
by adding the appropriate counterterms, which is called
a holographic renormalization [36,37,49–52]. Proper

counterterms removing the UV divergences are
given by

Sct ¼
Z

d3x
2π

ffiffiffiffiffiffi
−γ

p �
−
4

L
þ L

2

X2
i¼1

γmn∂m ~ai∂n ~ai

�
: ð38Þ

Substituting perturbative solutions for the fluctuation’s
action yields the renormalized on-shell gravity action cor-
responding to a generating functional of the dual field theory,
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Sð2Þre ¼ Son þ SGH þ Sct

¼ 2

Z
d2x

Z
dΩ
2π

�
Að0Þ
i Að1Þ

i þ 1

2
L2ðpiBð3Þ þ gð3ÞÞgð0Þti gð0Þti − 2LρzA

ð0Þ
i gð0Þti þ

3

4
L2Ω2χð0Þi χð3Þi −

3

4
L2αig

ð0Þ
ti χ

ð3Þ
i

�
; ð39Þ

wherepi is either 1 for i ¼ x or−1 for i ¼ y. From this finite
renormalized action, one can easily extract a retarded Green
function following the holographic prescription [53,54].
Near the boundary, fluctuations usually allow two

independent solutions,

Φa
i ¼ Sa

i z
3−Δa þ � � � þOa

i z
Δa þ…; ð40Þ

where different fields, Ai, gti, and χi, are distinguished by
an index a. Here Δa is a positive value and corresponds to
the conformal dimension of the dual operator. Then the on-
shell gravity action can be written in the following form:

Sre ¼ 2V
Z

dΩ
2π

½S̄a
iA

ij
abðΩÞSb

j þ S̄a
iB

ij
abðΩÞOb

j �; ð41Þ

where

Si ≡

0
BB@

S1
i

S2
i

S3
i

1
CCA ¼

0
BB@

Að0Þ
i

gð0Þti

χð0Þi

1
CCA; Oi ≡

0
BB@

O1
i

O2
i

O3
i

1
CCA ¼

0
BB@

Að1Þ
i

gð3Þti

χð3Þi

1
CCA;

ð42Þ

and V is the regularized spatial volume. Comparing this
with the previous renormalized on-shell gravity action, we
obtain

Aij ¼

0
B@

0 −Lρz 0

−Lρz 1
4
L2ðgð3Þ þ piBð3ÞÞ 0

0 0 0

1
CAδij;

Bij ¼

0
B@

1 0 0

0 0 − 3L2αi
4

0 0 3L2Ω2

4

1
CAδij; ð43Þ

and the retarded Green function is given by

Gij
ab ≡Aij

ab þ Bik
acOc

kðS−1Þjb; ð44Þ

where ðS−1Þjb represents 1=ðSÞjb. If we focus on the gauge
and metric fluctuations, the linear response to the variation
of the source is given by

�
Jj

Ttj

�
¼
�
Gij

11 Gij
12

Gij
21 Gij

22

��
Að0Þ
i

gð0Þti

�
; ð45Þ

where we have used Jj ¼ Ajð1Þ and Ttj ¼ gtjð3Þ.
Now let us compare this result with a known form of the

linear response theory [5–7,41,42],�
Ji

Qi

�
¼
�

σ ~αT

ᾱT κ̄T

��
Ei

−ð∇iTÞ=T

�
; ð46Þ

where Qi indicates a heat current, Qi ¼ Tti − μJi, with a
chemical potential μ defined by the boundary value of the
background gauge field At. Note that the source terms of
the fluctuations can be identified with the electric field and
thermal gradient due to the diffeomorphism invariance
[21,42,55]

Ei ¼ iΩðAð0Þ
i þ μgð0Þti Þ and gð0Þti ¼ −

∇iT
iΩT

: ð47Þ
As a consequence, the transport coefficients can be rewrit-
ten in terms of the retarded Green functions [21]:�

σii ~αiiT

ᾱiiT κ̄iiT

�
¼
 

− iGii
11

Ω
iðμGii

11
−Gii

12
Þ

Ω

iðμGii
11
−Gii

21
Þ

Ω − i½Gii
22
− ~Gii

22−μðGii
12
þGii

21
−μGii

11
Þ�

Ω

!
:

ð48Þ
Usually, Gii

22 does not vanish when Ω → 0. If we denote
this nonzero value as ~Gii

22, it yields a divergence corre-
sponding to a contact term. Above, we subtract such a
divergence for a well-defined thermal conductivity [47,56].

B. Numerical result

For simplicity, let us fix L ¼ 1 and α1 ¼ 2, where α2
measures the anisotropy. After the numerical calculation
following the previous procedure, we obtain electric,
thermoelectric, and thermal conductivities depending on
the frequencies in Figs. 3, 4, and 5, respectively. In spite of
the fact that there is no explicit coupling between fluctua-
tions in the x and y directions, these plots show a nontrivial
anisotropy dependence. In other words, even when the
x-direction momentum relaxation is fixed, the change of the
y-direction momentum relaxation alters all of the conduc-
tivities in the x and y directions. This is because informa-
tion about momentum relaxations in the x and y directions
are encoded into the background geometry. For this reason,
conductivities of this model are sensitive to the anisotropy
(see Figs. 3, 4, and 5). Intriguingly, the electric conductivity
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in the high frequency limit seems to converge rapidly
to the same value. This implies that the anisotropic

effect on the electric conductivity becomes less
important in the high frequency regime.

In the low frequency regime, Figs. 3, 4,
and 5 show a Drude-like peak, so it would
be interesting to compare it with the Drude
formula
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FIG. 4. The thermoelectric conductivities for κ ¼ 1 and α1 ¼ 2. Re½ᾱxx� at ω̄ ¼ 1.2 and Re½ᾱyy� at ω̄ ¼ 1.5 are represented for α2 ¼ 0
[lower middle (blue) curves], 2 [upper middle (black) curves], 4 [upper (red) curves], and 6 [lowest (green) curves]. The finiteness of the
imaginary parts indicates that the thermoelectric conductivities are finite in the dc limit with ω̄ ¼ 0.
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conductivity at ω̄ ¼ 0.

CONDUCTIVITIES IN AN ANISOTROPIC MEDIUM PHYSICAL REVIEW D 94, 086005 (2016)

086005-9



Γ ¼ kτ
1 − iωτ

; ð49Þ

where Γ represents different kinds of conductivity. In
general, the relaxation time τ and the coefficient k depend
on the momentum relaxation. When α1 is fixed, we can
investigate their anisotropy dependence by varying α2.
We depict the electric conductivity, Γ ¼ σxx, together
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TABLE I. Parameters of the Drude formula that fit the electric
conductivity well.

σxx γ b c k τ

α2 ¼ 0 2=3 2.88 −5.65 0.785 82.7
α2 ¼ 2 0.89 1.3 −0.8 0.9 120
α2 ¼ 4 0.626 6.87 −24.5 1.13 180
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FIG. 7. The magnitude of the electric conductivity for α1 ¼ 2
and κ ¼ 1 with α2 ¼ 0 [lower (blue) curve], 2 [middle (black)
curve], and 4 [upper (red) curve]. The slope of the straight line
denotes the power law of the electric conductivity.
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with the result of the Drude formula in Fig. 6. This result
shows that our numerical results are perfectly matched
to the Drude formula when we take the parameter values
in Table I. When the momentum relaxation in the y
direction increases, the relaxation time and the coeffi-
cient k in the x direction also increase. In addition, the
Drude peak becomes narrow as α2 increases within the
range, 0 ≤ α2 ≤ 4, similar to [20].
Now let us investigate the magnitude of the electric

conductivity in an intermediate frequency regime [12].
Using the previous numerical result, the magnitude is
plotted in Fig. 7, which shows a specific scaling behavior
in an intermediate frequency regime. To clarify the scaling
behavior, we consider the following power law behavior:

jσj ¼ b
ωγ þ c; ð50Þ

where the exponent γ determines the scaling behavior. In
order to fit the numerical data, we found the best parameter
values in Table I. In the isotropic case, the scaling exponent
is given by γ ¼ 0.89. When the anisotropy becomes large,
our result shows that the scaling exponent decreases.
Finally, let us study how the anisotropy affects the dc

conductivity. As shown in Fig. 3, the low frequency
behavior of the electric conductivity is sensitive to the
anisotropy. We plot the dc conductivity depending on the
anisotropy in Fig. 8 and its real part in Fig. 9. In Fig. 8,
one can see that maximum values for x- and y-direction dc
conductivities exist at certain critical frequencies. Below
these critical frequencies, the x- and y-direction dc
conductivities increase, whereas they decrease above the
critical frequencies. In Fig. 9, one can see that the
x-direction dc conductivity is the exact same as that of

the y direction for α2 ¼ 2. This is consistent with the
previous isotropic result in that the dc conductivities in
the x and y direction are finite and degenerate [14–
16,43,45,46,56]. Before closing this section, it should be
noticed that there seems to be an upper bound for α2. When
we solved equations for the background geometry with
α1 ¼ 2, we failed to find a numerical solution above
α2 ≈ 6.1393. If there is no such upper bound, the extrapo-
lation in Fig. 9 says that the conductivity can change its
sign at a certain value of α2. However, the upper bound we
found does not allow for the regime of a negative
conductivity. Intriguingly, a similar behavior was recently
reported in a different model with an isotropic momentum
relaxation [57]. In this model, the conductivity becomes
negative for a sufficiently large relaxation momentum,
which leads to instability of the dual field theory. It would
be interesting to investigate the instability of the present
model following the method used in [57]. We leave this for
future work.
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IV. CONCLUSION

In condensed matter experiments, anisotropy is one of
the important ingredients. However, it is not generally easy
to understand the anisotropic effect in a strongly interacting
system. In this work, we tried to figure out qualitative
features of the anisotropy by using the AdS=CFT corre-
spondence. In order to mimic such an anisotropy, we
considered an Einstein-Maxwell-dilaton-axion model as
a dual gravity theory. In this model, the gauge and dilaton
fields describe matter and a nontrivial coupling of the dual
field theory. On the other hand, the momentum relaxations
denoted by α1 and α2 were introduced to represent breaking
of the translational symmetry in the x and y directions.
Taking different values for α1 and α2 further breaks the
rotational symmetry which is the origin of the anisotropy.
By solving the Einstein equations, we constructed an
anisotropic charged black hole solution numerically.
Furthermore, we took into account the dynamics of vector
fluctuations on this charged black hole, which allowed us to
investigate the effect of the anisotropy on the transport
coefficients, which included electric, thermoelectric, and
thermal conductivities. There are several remarkable points
for the linear responses in an anisotropic medium.

(i) When a momentum relaxation was turned on, we
numerically showed that conductivities in the x and
y directions became finite, as expected.

(ii) Although equations for vector fluctuations in the x
and y directions were not coupled, we found that the
y-direction momentum relaxation could affect both
the x- and y-direction linear responses. On the
gravity side, this is because the background geom-
etry involves information about x- and y-direction
momentum relaxations.

(iii) There exists a critical momentum relaxation at
which the dc conductivity has a maximum value.

(iv) There seems to be an upper bound of the anisotropy
above which the dual geometry does not exist. This
upper bound does not allow a sign change of the dc
conductivity.

(v) In the low frequency regime, the electric conduc-
tivity shows a Drude peak. When the x-direction
momentum relaxation is fixed to be α1 ¼ 2, the
Drude peak becomes broader as the y-direction
momentum relaxation increases.

(vi) In the intermediate frequency regime, the magnitude
of the electric conductivity shows a specific scaling
behavior. In comparison to the power law behavior,
our results show that the critical exponent becomes
smaller as the anisotropy increases.
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