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We construct a set of nonrational conformal field theories that consist of deformations of Toda field
theory for slðnÞ. In addition to preserving conformal invariance, the theories may still exhibit a remnant
infinite-dimensional affine symmetry. The case n ¼ 3 is used to illustrate this phenomenon, together with
further deformations that yield enhanced Kac-Moody symmetry algebras. For generic n we compute
N-point correlation functions on the Riemann sphere and show that these can be expressed in terms
of slðnÞ Toda field theory ððN − 2Þnþ 2Þ-point correlation functions.
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I. INTRODUCTION

In the last years, the interest in two-dimensional con-
formal field theories (CFTs) with Wn symmetry has been
renewed, mainly because of two reasons: On the one hand,
Wn algebra has been identified as the charge algebra
associated with the asymptotic symmetries of spin-n theo-
ries in three-dimensional anti–de Sitter spacetime [1,2]
generalizing the spin-2 result of Brown and Henneaux
[3]. On the other hand, it has been observed in [4] that
conformal blocks of slðnÞ Toda conformal field theory, the
archetypical example of a theory withWn symmetry, codify
the information of the partition function of N ¼ 2 four-
dimensional superconformal quiver theories for the gauge
group SUðnÞ, generalizing the Alday-Gaiotto-Tachikawa
(AGT) correspondence [5] for the case n ≥ 2. Here, we will
study the slðnÞ Toda field theory (TFT) from a different
perspective:Wewill consider TFTas a generating functional
of N-point correlation functions of a plethora of new
nonrational conformal field theories that are defined ipso
facto. This is in the line of the so-called Hþ

3 Wess-Zumino-
Witten—Liouville correspondence [6] or, more precisely, of
the extension of it proposed in Ref. [7], where correlation
functions of a new family of nonrational CFTs were
constructed in terms of Liouville field theory [namely, in
terms of the slð2Þ Toda field theory]. Here, we provide a
generalization of these results for the case slðnÞ.
The Hþ

3 Wess-Zumino-Witten—Liouville correspon-
dence has been proposed in Ref. [6]. It is based on a
remarkable relation existing between the slð2Þ Knizhnik-
Zamolodchikov (KZ) equation and the Belavin-Polyakov-
Zamolodchikov (BPZ) equation [8]. The latter is the
differential equation obeyed by Liouville correlation func-
tions that involve degenerate fields, usually denoted by

V−1=ð2bÞ. Using that solutions of the BPZ equation can be
related to solutions of the KZ equation for slð2Þ,
it was shown in [6] that N-point correlators in Hþ

3 ¼
SLð2;CÞ=SUð2Þ Wess-Zumino-Witten (WZW) on the
sphere can be written in terms of (2N − 2)-point correlators
in Liouville field theory formulated also on the sphere,
where the latter correlators include N − 2 degenerate fields
V−1=ð2bÞ. This correspondence has been later generalized
to genus g [9], to surfaces with boundaries [10–13], to
spectrally flowed representations of ŝlð2;RÞ [14], to the
irregular vertex representations of the Virasoro algebra
[15], and to supersymmetric theories [16]. In Ref. [7], a
generalization of the Hþ

3 WZW–Liouville correspondence
was proposed for the case in which the Liouville correlators
include N − 2 degenerate fields of higher level, V−m=ð2bÞ
with m ∈ Z>0. In the case m ¼ 1, these correlators yield
correlators of Hþ

3 WZW [6,8]; however, in the case m > 1

the (2N − 2)-point Liouville correlators including N − 2
fields V−m=ð2bÞ were argued to generate the n-point
correlation functions of a new family of nonrational
conformal field theories [7]. This family of CFTs is
parametrized by m, which enters in the central charge
as c ¼ 3þ 6ðbþ ð1 −mÞ=bÞ2, with the Liouville central
charge being cL ¼ 1þ 6ðbþ 1=bÞ2. The consistency
of these theories was later studied in Refs. [17–19],
where correlation functions on different surfaces were
computed. It is possible to speculate that such CFTs
actually exist even for other real noninteger values m,
where the Liouville correlators do not necessarily involve
degenerate representations.
Another natural question that has been addressed in

the literature is whether an extension of the Hþ
3 WZW–

Liouville correspondence is possible for higher rank

PHYSICAL REVIEW D 94, 086001 (2016)

2470-0010=2016=94(8)=086001(13) 086001-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.086001
http://dx.doi.org/10.1103/PhysRevD.94.086001
http://dx.doi.org/10.1103/PhysRevD.94.086001
http://dx.doi.org/10.1103/PhysRevD.94.086001


algebras. That is, whether a relation of this sort also exists
between, say, the SLðn;RÞ WZW theory and the slðnÞ
Toda theory, which would extend the results of [6,14] to the
case n ≥ 2. This problem has been explored in Ref. [20] for
the case n ¼ 3, where such a correspondence has been
observed to emerge in the highly quantum limit k → 3,
where the WZW level equals the Coxeter number of the
slð3Þ algebra. In the recent paper [21], a more general
correspondence for cases n ≥ 3 was achieved by consid-
ering particular slð2Þ embeddings in (super)algebras.
Here, aimed at investigating whether a generalization

of the construction of [7] to higher rank is possible,
we will propose a larger family of nonrational CFTs whose
N-point correlation functions are given by a subset of
ðN þ ðN − 2ÞrÞ-point correlation functions of slðnÞ Toda
field theories, with r ¼ n − 1 being the rank of slðnÞ. These
new CFTs are parametrized by a collection of n − 1 real
numbers fm1; m2;…mn−1g. They correspond to deforma-
tions of Toda field theories that, while preserving con-
formal invariance, seem to break theWn symmetry. We will
see, however, that the CFTs constructed through this
procedure may also preserve a larger symmetry generated
by an affine extension of a proper subalgebra of the Borel
subalgebra of the affine Kac-Moody ŝlðnÞk. The case n ¼ 3
is analyzed explicitly to illustrate such remnant infinite-
dimensional symmetry in relation to the symmetries of the
slð3Þ WZW model. We will present a Lagrangian repre-
sentation of these new nonrational CFTs, which is the
natural generalization of the Lagrangian proposed in [7]
for n ¼ 2, here involving interaction operators between the
n − 1 scalar fields associated with the simple roots of slðnÞ
and n − 1 copies of the β-γ ghost system. In the case n ¼ 2
the theories coincide with those defined in Ref. [7]; that is,
for n ¼ 2 and m1 ¼ 1 it corresponds to the Hþ

3 WZW
model,1 while for n ¼ 2 and m1 ¼ 0 it reduces to Liouville
theory. In general, the undeformed case mi ¼ 0 with
i ¼ 1; 2;…n − 1 for arbitrary n corresponds to slðnÞ TFT.
The paper is organized as follows: In Sec. II, we briefly

review the theory of Toda for the Lie algebra slðnÞ. In
Sec. III, we propose the Lagrangian representation of a
family of CFTs which consist of deformations of the TFT
Lagrangian. This is a generalization of the theories pro-
posed in [7] for the case n > 2. We compute the correlation
functions for these theories in the path integral approach,
following the techniques developed in [9] adapted to this
case. We show that these correlation functions are deter-
mined in terms of those of TFT. We also derive an integral

representation for the N-point functions in the Coulomb
gas formalism. In Sec. IV, we study the remnant affine
symmetry that the deformed TFTs exhibit. We consider the
case of slð3Þ to illustrate the details of such symmetry. We
discuss the relation between the deformation of the slð3Þ
TFT and the slð3Þ WZW model, which leads us to suggest
other deformations of the former. Section V contains our
conclusions.

II. TODA CONFORMAL FIELD THEORY

The slðnÞ TFT is a conformal field theory whose degrees
of freedom are represented by n − 1 bosons living in the
(n − 1)-dimensional root space of slðnÞ Lie algebra; see for
instance Refs. [22–26]. There are n − 1 simple roots
e1; e2; ...; en−1 in this Lie algebra and its Cartan matrix is
given by

Kij ¼

0
BBBBBBBB@

2 −1 0 � � � � � � 0

−1 2 −1 � � � � � � � � �
0 −1 2 � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � 2 −1
0 � � � � � � � � � −1 2

1
CCCCCCCCA
: ð1Þ

This defines the inner product ð:; :Þ. That is to say,
this defines the bilinear form Ki j ¼ ðei; ejÞ with
Ki iþ1 ¼ Kiþ1 i ¼ −1, Ki i ¼ 2, and 0 otherwise in the basis
above. The n − 1 fundamental weights ωi are defined in
such a way they span dual roots, i.e. ðωi; ejÞ ¼ δij.
The Lagrangian of the slðnÞ Toda CFT is

ST ¼ 1

2π

Z
d2z

�
ð∂φ; ∂̄φÞ þ ðQT;φÞ

4
Rþ

Xn−1
k¼1

e
ffiffi
2

p
bðek;φÞ

�

ð2Þ
where b is an arbitrary (real) parameter, and the background
charge is

QT ¼
ffiffiffi
2

p �
bþ 1

b

�
ρ; ð3Þ

where ρ is the Weyl vector; that is, ρ is the half-sum of all
positive roots. Normalization of the action is such that the
free field propagator of the fields is

hφkðzÞφlðwÞi ¼ −
1

2
δkl logðz − wÞ; ð4Þ

with k;l ¼ 1; 2;…n − 1.
For every integer value n, action (2) defines a different

theory. The case n ¼ 2 corresponds to Liouville field
theory; in such case there is just one simple root e1¼

ffiffiffi
2

p
and just one highest weight ω1 ¼ 1=

ffiffiffi
2

p
. Liouville field

theory is a conformal field theory with central charge

1One may wonder whether the nonrational CFTs defined in
this way are unitary. Being c > 1 theories defined as deformation
of Toda field theories, it is probable that, at least in some
particular cases, the theory can be rendered unitary provided one
considers some restriction of the Hilbert space. This is the case,
for instance, of the SLð2;RÞ WZW model, which represents a
unitary theory when one restricts the isospin j of the discrete
representations.

BABARO, GIRIBET, and RANJBAR PHYSICAL REVIEW D 94, 086001 (2016)

086001-2



c ¼ 1þ 6Q2
L and background chargeQL ¼ ðbþ b−1Þ. For

n > 2 the theory contains n − 1 fields of the Liouville type
interacting with each other by specific couplings that are
given by the slðnÞ structure. The resulting theory, the slðnÞ
TFT, is also conformal invariant and its central charge is
given by

cT ¼ n − 1þ 6Q2
T ¼ ðn − 1Þð1þ nðnþ 1Þðbþ b−1Þ2Þ;

ð5Þ

where Q2
T ¼ ðQT;QTÞ.

These theories present spin-n symmetry represented by
n − 1 holomorphic and n − 1 antiholomorphic conserved
currents. These generate the Wn ⊕ W̄n algebra, which
contains Virasoro as a subalgebra [see (7)–(9) below].
Let us denote such currents by WsðzÞ and W̄sðz̄Þ with
s ¼ 1; 2; 3;…n. The index s labels the spin of the current.
These admit a representation in terms of Miura trans-
formation [24]

Yn−1
r¼0

ððqþ q−1Þ∂ þ
ffiffiffi
2

p
ðϱn−r; ∂φÞÞ

¼
Xn
r¼0

Wn−rðzÞððqþ q−1Þ∂Þr ð6Þ

where the vectors ϱk are the weights of the first fundamental
representation of the Lie algebra slðnÞ with the highest
weight ω1, namely ϱk ¼ ω1 − e1 − e2 − � � � ek−1.
The first and second currents are taken to beW0 ¼ 1 and

W1 ¼ 0; the third one is the first nontrivial one and
corresponds to the energy-momentum tensor

W2ðzÞ ¼ −ð∂φ; ∂φÞ þ ðQT; ∂2φÞ; ð7Þ

whileW3ðzÞ is the generator of the Zamolodchikov algebra
[27]. It is customary to write these algebras (and their n > 3
generalization) in terms of the modes of the currents, which
are defined by the expansion

WsðzÞ ¼
X
r∈Z

Ws
rz−r−s: ð8Þ

In terms of the modes, and in the case n ¼ 3, in addition
to the Virasoro algebra

½W2
n;W2

m� ¼ ðn −mÞW2
nþm þ c

12
nðn2 − 1Þδnþm;0 ð9Þ

the algebra includes the Lie products

½W2
n;W3

m� ¼ ð2n −mÞW3
nþm ð10Þ

and

½W3
n;W3

m� ¼
1

15
ðn −mÞ

�
n2 þm2 −

1

2
nm − 4

�
W2

nþm

þ 16

22þ 5c
ðn −mÞΛnþm

þ c
360

nðn2 − 1Þðn2 − 4Þδnþm;0; ð11Þ

where the quadratic piece in (11) is given by the normal
ordered product

Λn ¼
X
m∈Z

∶W2
mW2

n−m∶ −
1

4
tnW2

n; ð12Þ

with tn ¼ n2 − 4 for n even, and tn ¼ n2 þ 2n − 15 for n
odd. As usual, the normal order is defined as W2

nW2
m∶≡

W2
nW2

mθðn−mÞþW2
mW2

nθðm−nÞ, with θðxÞ¼ R
R<x

dyδðyÞ
being the Heaviside step function with θð0Þ ¼ 1=2. The
operator product expansion (OPE) that realizes the W3

algebra (9)–(11) takes the form

W2ðzÞW2ðwÞ¼ c=2
ðz−wÞ4þ

2W2ðwÞ
ðz−wÞ2þ

∂W2ðwÞ
ðz−wÞ þ �� � ;

W2ðzÞW3ðwÞ¼ 3W3ðwÞ
ðz−wÞ2þ

∂W3ðwÞ
ðz−wÞ þ �� � ;

W3ðzÞW3ðwÞ¼ c=3
ðz−wÞ6þ

2W2ðwÞ
ðz−wÞ4þ

∂W2ðwÞ
ðz−wÞ3

þ 1

ðz−wÞ2
�

32

22þ5c
ΛðwÞþ 3

10
∂2W2ðwÞ

�

þ 1

ðz−wÞ
�

16

22þ5c
∂ΛðwÞþ 1

15
∂3W2ðwÞ

�

þ�� � ð13Þ

with ΛðzÞ ¼ ∶ðW2ðzÞÞ2∶ − ð3=10Þ∂2W2ðzÞ.
The basic objects in the construction of conformal

TFT are exponential fields parametrized by an (n − 1)-
component vector parameter α ¼ ðα1; α2;…αn−1Þ, namely

VT
αðzÞ ¼ e2ðα;φðzÞÞ; ð14Þ

which is in correspondence with the primary states of the
theory jαi ¼ limz→0VT

αðzÞj0i. The OPE between the cur-
rents and these primary fields reads

WkðzÞVT
αðwÞ ¼

hkαVT
αðwÞ

ðz − wÞk ð1þ � � �Þ ð15Þ

where the ellipses stand for terms that vanish when w → z.
In particular, it yields

W2ðzÞVT
αðwÞ ¼

h2αVT
αðwÞ

ðz − wÞ2 þW2
−1V

T
αðwÞ

ðz − wÞ þ � � � ð16Þ

with W2
−1V

T
αðwÞ ¼ ∂VT

αðwÞ. From this, we obtain the
conformal dimension

CONFORMAL FIELD THEORIES FROM DEFORMATIONS OF … PHYSICAL REVIEW D 94, 086001 (2016)

086001-3



h2α ¼ ðα; QT − αÞ: ð17Þ

The OPE with the W3ðzÞ current reads

W3ðzÞVT
αðwÞ ¼

h3αVT
αðwÞ

ðz−wÞ3 þW3
−1V

T
αðwÞ

ðz−wÞ2 þW3
−2V

T
αðwÞ

ðz−wÞ þ � � �

ð18Þ

where h3α is an expression cubic in α and quadratic b, and
symmetric under b ↔ b−1.
The N-point correlation functions in TFT on the

Riemann sphere are defined by

�YN
i¼1

VT
αiðziÞ

�
TFT

≡
Z Yn−1

a¼1

Dφae−ST
YN
i¼1

e2ðαi;φðziÞÞ ð19Þ

where the fields in the functional integral are defined on
CP1nfz1; z2;…zNg. In the next section, we will propose a
definition of a set of two-dimensional CFTs whose corre-
lation functions can be expressed in terms of TFT corre-
lation functions (19). Proving such correspondence
between observables in the case of slð2Þ can be assisted
by the modular differential equations that correlators that
involve degenerate representations obey. In the case of TFT
for slðn > 2Þ, the structure of degenerate and semidegen-
erate is less restrictive [20,22–25]. Because of that, and
because we are interested in defining the theories for
generic values of the parameters mi, in this paper we will
resort to the path integral approach, following the tech-
niques of Ref. [9]. We will also derive an integral
representation for the N-point functions resorting to the
free field approach.

III. DEFORMATIONS OF TODA FIELD THEORY

A. Lagrangian representation

Generalizing slðnÞ conformal Toda theories, and gen-
eralizing at the same time the family of theories presented
in [7], here we will consider the theories defined by the
following actions

Sfmkg ¼
1

2π

Z
d2z

�
ð∂ϕ; ∂̄ϕÞ þXn−1

k¼1

ðβk∂̄γk þ β̄k∂ γ̄kÞ

þ ðQfmkg;ϕÞ
4

Rþ
Xn−1
k¼1

ð−βkβ̄kÞmke
ffiffi
2

p
bðek;ϕÞ

�
ð20Þ

which, apart from the (n − 1)-component boson field
ϕ ¼ ðϕ1;ϕ2;…ϕn−1Þmultiplied with the slðnÞ-based inner
product, includes n − 1 copies of the commutative β-γ
ghost system of conformal weight (1,0). The definition of
the theory also requires the specification of n − 1 (real)
parameters mk, k ¼ 1; 2;…n − 1, and the parameter b. For
each collection fmkg ¼ fm1; m2;…mn−1g one obtains a

different2 CFT, which is a deformation of TFT. The
background charge depends on these parameters mk; it is
given by

Qfmkg ¼ QT þ δQ; with δQ ¼ −
Xn−1
k¼1

ffiffiffi
2

p
mk

b
ωk; ð21Þ

where QT is the Toda background charge (3). The specific
value (21) is such that the interaction terms in (20) are
marginal. This value for the background charge yields
the central charge cfmkg ¼ 3ðn − 1Þ þ 6Q2

fmkg. This can be

obtained from the OPE

W2ðzÞW2ðwÞ ¼ cfmkg=2
ðz − wÞ4 þ

2W2ðwÞ
ðz − wÞ2 þ

∂W2ðwÞ
ðz − wÞ þ � � �

ð22Þ

with the stress tensor being

W2ðzÞ ¼
Xn−1
l¼1

βl∂γl − ð∂ϕ; ∂ϕÞ þ ðQfmkg; ∂2ϕÞ: ð23Þ

From this one can also verify that the operators

βml
l β̄ml

l e
ffiffi
2

p
bðel;ϕÞ in (20) have actually conformal weight 1.

This follows from ðek; δQÞ ¼ −
ffiffiffi
2

p
mk=b.

We will refer to the CFTs defined by action (20) as
m-deformed CFTs. As said in the Introduction, these
theories are the natural generalization of the Lagrangian
proposed by Ribault in Ref. [7]. In fact, in the case
n ¼ 2 with m1 ¼ 1 the theory corresponds to the level
k ¼ b−2 þ 2 SLð2;RÞ WZW model, while for n ¼ 2
and m1 ¼ 0 it reduces to Liouville theory. In general,
the undeformed case mk ¼ 0 for all k ¼ 1; 2;…n − 1 for
arbitrary n corresponds to slðnÞ TFT.
We consider primary states defined by vertex operators

that are exponential functions of the fields; namely

ΦαðfpkgjzÞ ¼ N e½p;γðzÞ�e2ðα;ϕðzÞÞ ð24Þ

where we define ½p; γ�≡P
n−1
k¼1ðpkγk − p̄kγ̄kÞ with

fp1; p2;…pn−1g being complex variables, and where N
is a normalization factor, that, in principle, can depend on
the momenta fp1; p2;…pn−1g and α, and on the param-
eters of the theory fm1; m2;…mn−1g and b.

B. Correlation functions: Path integral

The quantities we are interested in computing are the
N-point correlation functions

2It is, however, possible that a given CFT is represented by
more than one set fm1; m2;…mn−1g; see [19].

BABARO, GIRIBET, and RANJBAR PHYSICAL REVIEW D 94, 086001 (2016)

086001-4



Ωðfpν
kg; fανgjfzνgÞ

¼
�YN

ν¼1

ΦανðfpkgνjzνÞ
�

fmkg

≡
Z Yn−1

k¼1

DϕkD2βkD2γke
−Sfmkg

YN
ν¼1

ΦανðfpkgνjzνÞ; ð25Þ

where our notation is such that the symbol fpν
kg in the

argument of a function represents the collection ofNðn−1Þ
elements fp1

1;p
1
2;…p1

n−1;p
2
1;p

2
2;…p2

n−1;…pN
1 ;p

N
2 ;…pN

n−1g
on which the function depends, while the symbol
fpkgν represents the collection of (n − 1) variables
fpν

1; p
ν
2;…pν

n−1g with ν fixed. Indices μ, ν will be used
to run over f1; 2;…Ng, while indices k;l run over
f1; 2;…n − 1g, and indices a, b run over f1; 2;…N − 2g.
The first step in computing (25) is dealing with the ghost

system: The integration over the fields γk and γ̄k produces a
product of n − 1 double δ functions

δ2
�
∂̄βkðwÞ − 2π

XN
ν¼1

pν
kδ

2ðw − zνÞ
�
; ð26Þ

which set the conditions

∂̄βkðzÞ − 2π
XN
ν¼1

pν
kδ

2ðz − zνÞ ¼ 0;

∂β̄kðz̄Þ þ 2π
XN
ν¼1

p̄ν
kδ

2ðz − zνÞ ¼ 0; ð27Þ

for each k.
These 2ðn − 1Þ equations have solution only if the sum

of the momenta fpkgν vanishes. More precisely, being
meromorphic on the Riemann sphere, the sum of the
residues of βkðzÞ vanishes, and therefore

XN
ν¼1

pν
k ¼ 0: ð28Þ

In order to write the βkðzÞ in terms of its residues
fp1

k; p
2
k;…pN

k g, one may resort to the representation
∂̄ð1=zÞ ¼ ∂ð1=z̄Þ ¼ 2πδ2ðzÞ and integrate. Since βkðzÞ
are 1-differentials, the general solution can be written as
a rational function; namely

βkðzÞ ¼
XN
ν¼1

pν
k

z − zν
≡ Pkðz; fyagkÞ

Qðz; fzνgÞ
; ð29Þ

withPkðz; fyagkÞ being n − 1 polynomials of degreeN − 2
in z, andQðz; fzgμÞ being a polynomial of degreeN in z. In
fact, for a meromorphic 1-differential βkðzÞ on the Riemann
sphere, the difference between the amount of its poles
fyagk (a ¼ 1; 2;…) and the amount of its zeroes fzμg
(μ ¼ 1; 2;…) is 2. Therefore, these polynomials have
the form

Pkðz;fyagkÞ¼ κk
YN−2

a¼1

ðz−ykaÞ; Qðz;fzνgÞ¼
YN
ν¼1

ðz−zνÞ:

ð30Þ

From this, using (28) it is easy to show that
κk ¼

P
N
ν¼1 p

k
νzν. This follows from multiplying (28) by

Qðz; fzνgÞ to obtain an identity between polynomials and
then matching the coefficients of powers of z. More
precisely, one finds

Pkðz; fyagkÞ ¼
XN
ν¼1

YN
μ≠ν

pν
kðz − zμÞ≡

XN−1

n¼1

cnzN−n; ð31Þ

which yields

0¼ c1¼
XN
μ¼1

pμ
k; κk ¼ c2 ¼−

XN
μ≠ν

pν
kzμ ¼

XN
μ¼1

zμp
μ
k: ð32Þ

It is easy to keep track of the dependence on κk. This is
gathered by an overall factor

Q
n−1
k¼1 jκkj2λk in the final

result. This can be seen by shifting the fields as ϕ →
ϕ −

P
n−1
k¼1

ffiffiffi
2

p
b−1mkωk log κk to absorb other dependence

of κk. Then, we can omit the explicit dependence on κk and
restore it in the final result (50).
By evaluating the residues, one finds

pν
k ¼ κk

Q
N−2
a¼1 ðzν − ykaÞQ
N
μ≠νðzν − zμÞ

: ð33Þ

Taking all this into account, the δ function (26) can be
replaced by

δ2
�XN

ν¼1

pν
k

�Yn−1
k¼1

δ2
�
βk −

Pkðz; fyagkÞ
Qðz; fzμgÞ

�
; ð34Þ

provided the determinant factor det1−n□ is trivial on the
sphere (with□ ¼ ∂∂̄). Then, one can integrate over βk and
β̄k to obtain

Ωðfpν
kg; fανgjfzνgÞ ¼

Z Yn−1
k¼1

Dϕke−Seff
YN
ν¼1

N νe2ðα
ν;ϕðzνÞÞ;

ð35Þ
with the effective action

Seff ¼ −
1

2π

Z
d2z

�
ð∂ϕ; ∂̄ϕÞ þ ðQfmkg;ϕÞ

4
R

þ b2
Xn−1
k¼1

jPkðz; fyagkÞ=Qðz; fzgμÞj2mke
ffiffi
2

p
bðek;ϕÞ

�
;

ð36Þ
which depends on the N inserting points fzμg and the
ðn − 1ÞðN − 2Þ variables fykag, although the latter are
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determined by the ðn − 1ÞN algebraic equations (33) with
the n − 1 constraints (28).
For further purpose, in order to achieve a regularization

of divergence coming from coincident points in the path
integral, it is convenient to write the action in the conformal
frame ds2 ¼ e2σdzdz̄ which yields ð1=4Þ ffiffiffi

g
p

R ¼ −2□σ.
This will enable us to regularize the propagator hϕðzÞϕðwÞi
in the limit z → w.
As previously said, the normalization of the vertices N

in (24) can in principle depend on the momenta
fp1; p2;…pn−1g and α. For instance, the natural generali-
zation of the normalization considered in [7] to the
slðn ≥ 2Þ case would be

N ν ¼
Yn−1
k¼1

jpν
kj

2mk
b ðαν;ωkÞ; ð37Þ

which, after δ-function evaluation and considering (33),
would produce in (35) a factor

YN
ν¼1

Yn−1
k¼1

����Pkðzν; fyagkÞ
Qðzν; fzμgÞ

����
2mk
b ðαν;ωkÞ ð38Þ

accompanying the N vertices. On the other hand, a
convenient normalization also seems to be demanding
N ν not to depend on the momenta at all. In order to
consider a more general case that, in particular, includes

(37), we might consider N ν ¼
Q

n−1
k¼1 jpν

kj
2mk
b ðαν;ωkÞð1−tÞ with

0 ≤ t ≤ 1. This would affect the final result only in the
exponent of the factor that we call Θ in (47) below.
In order to absorb the factors jPkðz; fyagkÞ=

Qðz; fzgμÞj2mk in the terms in the effective action (36), it
is convenient to shift the scalar field ϕ—which actually is a
vector in the space generated by the simple roots felg
(l ¼ 1; 2;…n − 1)—by defining the new field φ,

φðzÞ≡ϕðzÞ

þ
Xn−1
k¼1

ωk

ffiffiffi
2

p
mk

b
ðlog jPkðz;fyagkÞ=Qðz;fzνgÞj− σÞ:

ð39Þ

That is

ϕðzÞ ¼ φðzÞ −
Xn−1
k¼1

ωk

ffiffiffi
2

p
mk

b

�XN−2

a¼1

log jz − ykaj2

−
XN
ν¼1

log jz − zνj2 − σ

�
: ð40Þ

Indeed, this produces the rescaling in the exponential
potential terms, yielding

e
ffiffi
2

p
bðek;ϕðzÞÞ ¼ e

ffiffi
2

p
bðek;φðzÞÞ

���� Qðz; fzνgÞ
Pkðz; fyagkÞ

����
2mk

e2mkσ; ð41Þ

which cancels the factors jPkðz; fyagkÞ=Qðz; fzgμÞj2mk . It
also produces the rescaling

N νe
ffiffi
2

p ðαν;ϕðzνÞÞ ¼ e
ffiffi
2

p ðαν;φðzνÞÞ
Yn−1
k¼1

����Qðz;fzμ ≠ zνgÞ
Pkðz;fyagkÞ

����
2tmk
b ðαν;ωkÞ

;

ð42Þ

where the divergences coming from coincident points
are regularized by defining the finite part of
limzμ→zν log jzμ − zνj2 absorbing the divergence in the
exponent of the conformal factor −2σ [28]. Let us consider
the normalization (37), corresponding to t ¼ 0.
Definition (40) also produces a shifting in the kinetic

term; namely

ðϕ;□ϕÞ ¼ ðφ;□φÞ −
Xn−1
k¼1

mkffiffiffi
2

p
b
ðωk; akÞ

þ
Xn−1
j¼1

Xn−1
k¼1

mjmk

2b2
ðωj; bjkÞ ð43Þ

with

akðz; fzμg; fyagkÞ

¼ φðzÞ
�
2π

XN−2

a¼1

δ2ðz − ykaÞ − 2π
XN
ν¼1

δ2ðz − zνÞ − 2□σ

�

þ ∂∂̄φðzÞ
�XN−2

a¼1

log jz − ykaj2 −
XN
ν¼1

log jz − zνj2 − 2σ

�

ð44Þ
and

bjkðz; fzμg;fyagk; fyagjÞ

¼ 2πωk

�XN−2

a¼1

log jz− ykaj2 −
XN
μ¼1

log jz− zμj2 − 2σ

�

×

�XN−2

b¼1

δ2ðz− yjbÞ −
XN
ν¼1

δ2ðz− zνÞ
�

− 2ωk

�XN−2

a¼1

log jz− ykaj2 −
XN
ν¼1

log jz− zνj2 − 2σ

�
□σ:

ð45Þ

Considering again the regularization of coincident
points, and replacing the last equation into the effective
action (36), one obtains the following contributions in the
correlation function: From the first two terms (44), one
obtains

Yn−1
k¼1

YN−2

i¼1

e−
ffiffi
2

p
mk
b ðωk;φðyki ÞÞ ×

YN
ν¼1

e
ffiffi
2

p
b

P
n−1
k¼1

mkðωk;φðzνÞÞ: ð46Þ
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From the third term, and taking into account ð1=4Þ ffiffiffi
g

p
R ¼ −2□σ, one observes that the background charge term in the

action gets shifted as Qfmkg → Qfmkg − δQ ¼ QT . The terms (45), after a proper regularization of coincident insertions,
yield the factor

jΘðfmkgjfzμg; fykagÞj ¼
YN−2

a¼1

YN−1

b¼1

Yn−1
k¼1

Yn−1
l¼1

jyka − ylbj
2mkml
b2

ðωk;ωlÞYN
μ<ν

jzμ − zνj
2

b2

P
n−1
k¼1

P
n−1
l¼1

mkmlðωk;ωlÞ

×
YN−2

a¼1

Yn−1
k¼1

YN
μ¼1

jyka − zμj−
2mk
b2

P
n−1
l¼1

mlðωk;ωlÞ: ð47Þ

Notice that this contribution corresponds exactly to the correlator of exponential vertices of a free boson χ with a
background charge [29]; namely

Θðfmkgjfzμg; fykagÞ ¼
�YN

μ¼1

V−
P

n−1
k¼1

qk
ðzμÞ

YN−2

a¼1

Yn−1
l¼1

VqlðylaÞ
�

χ

ð48Þ

where

VPðzÞ ¼ e2iPχðzÞ; ð49Þ

and where ql ¼ mlωl=ð
ffiffiffi
2

p
bÞ, Wick contracted the free field propagator hχðzÞχðwÞi ¼ −ð1=2Þ logðz − wÞ. The value of

the background charge Qχ associated with the field χðzÞ can be read from the conservation law that would follow from the
integration over the zero mode hχi. This yields the result Qχ ¼ δQ.
Therefore, we finally arrive at the conclusion that the N-point correlation functions (25) take the form

�YN
ν¼1

ΦανðμνjzνÞ
�

fmkg
¼

Yn−1
k¼1

jκkj2λk
Yn−1
k¼1

δ

�XN
ν¼1

pν
k

��YN
μ¼1

V−
P

n−1
k¼1

qk
ðzμÞ

YN−2

a¼1

Yn−1
l¼1

VqlðylaÞ
�

χ

×

�YN
ν¼1

VT
ανþ

P
n−1
k¼1

qk
ðzνÞ

Yn−1
l¼1

YN−2

a¼1

VT
−qlðylaÞ

�
TFT

ð50Þ

where λk ¼ mkð1þ b−2 −
P

n−1
j¼1 mjb−2ðωk;ωjÞÞ; notice that here we have reintroduced the dependence on κk. In other

words,N-point correlation functionsΩðfpμ
kg; fαμgjfzμgÞ of the theories defined by the Lagrangian representation (20) turn

out to be given by ððN − 2Þnþ 2Þ-point correlation functions of the CFT given by the product of slðnÞ TFT times a free
Uð1Þ boson. Having the expression (50) for the correlation functions Ωðfpν

kg; fανgjfzνgÞ, the m-deformed CFTs (20) are
defined ipso facto. In the next section, we will analyze the symmetries of the new theories.

C. Correlation functions: Coulomb gas

Lagrangian representation (20) enables us to compute correlation functions in the so-called Coulomb gas approach and
thus provide an integral representation of N-point correlation functions. This amounts to considering the expectation values
(25) and first integrate over the zero modes of the fields ϕk. This yields

Ωðfpν
kg; fανgjfzνgÞ ¼

Yn−1
l¼1

ð−1ÞmlslΓð−slÞ
Z Yn−1

k¼1

Ysk
r¼1

d2wk
r

�YN
ν¼1

ΦανðfpkgνjzνÞ
Yn−1
k¼1

Ysk
r¼1

Skðwk
rÞ
�

free

where fwk
rg ¼ fw1

1; w
1
2;…w1

s1 ;w
2
1; w

2
2;…w2

s2 ;…;wn−1
1 ; wn−1

2 ;…wn−1
sn−1g are complex variables, where the screening oper-

ators SkðwÞ are given by

SkðwÞ≡ βmkðwÞβ̄mkðw̄Þe
ffiffi
2

p
bðek;ϕðwÞÞ; ð51Þ

and where the expectation value h…ifree is defined in terms of the free action
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Sfree ¼
1

2π

Z
d2z

�
ð∂ϕ; ∂̄ϕÞ þXn−1

k¼1

ðβk∂̄γk þ β̄k∂ γ̄kÞ

þ ðQfmkg;ϕÞ
4

R
�
: ð52Þ

The dependence on fmkg is through the number of
integrals to be performed, and it is given by

sk ¼
ffiffiffi
2

p
b−1ðΔ;ωkÞ;

Δ ¼
ffiffiffi
2

p
ðbþ b−1Þρ −

ffiffiffi
2

p
b−1

Xn−1
l¼1

mlωl −
XN
i¼1

αi: ð53Þ

This equation, as well as the Γð−slÞ factors above, comes
from the δ functions arising in the integration over the zero
modes hϕki, what selects in the path integral the terms
satisfying the vector equation

ffiffiffi
2

p XN
i¼1

αi þ
Xn−1
k¼1

ðskekbþ 2b−1mkωkÞ − 2ðbþ b−1Þρ ¼ 0:

ð54Þ

The integrals are over the complex hyperplane

C
P

n−1
l¼1

sl , where wk
r represent s1 þ s2 þ � � � sn−1 complex

integration variables, with k ¼ 1; 2;…n − 1 and
r ¼ 1; 2;…sk.
The fact that the expectation value is now defined in

terms of action (52) enables one to use the free field
propagators. In particular, one has the Coulomb propagator
hϕlðziÞϕkðzjÞi ¼ −ðδl;k=2Þ logðzi − ziÞ. For the set of
correlators whose vertices obey the kinematic condition
pμ
k ¼ p̄μ

k ¼ 0 for all k such that mk ≠ 0 and for all
μ ¼ 1; 2;…N, one eventually finds

Ωðfpν
kg; fανgjfzνgÞ ¼

YN
μ¼1

N μ

Yn−1
l¼1

ð−1ÞslmlΓð−slÞ
YN
μ<ν

jzμ − zνj−4ðαμ;ανÞINðfαμg; fmkgjfzμgÞ

with

INðfαμg; fmkgjfzμgÞ ¼
Z Yn−1

k¼1

Ysk
r¼1

d2wk
r

Yn−1
k¼1

Ysk
t¼1

Yskþ1

l¼1

jwk
t − wkþ1

l j2b2
Yn−1
k¼1

Ysk
r<t

jwk
r − wk

t j−4b2

×
YN
μ¼1

Yn−1
k¼1

Ysk
r¼1

jwk
r − zμj−2

ffiffi
2

p
bðek;αμÞ ð55Þ

where Kij ¼ ðei; ejÞ has been used. In the cases in which
for some value of k it happens that pk ≠ 0 ≠ mk, then a
similar representation exists, although the combinatorics
when performing the Wick contraction is more involved
because of the β-γ systems, which in particular yield
βiðwÞe½p;γðzÞ� ≃ pie½p;γðwÞ�=ðw − zÞ þ � � � This is similar to
the contraction between string theory tachyon and graviton
vertices. The Wick contraction for these operators in the
case n ¼ 2 is discussed in [9]. The same can be applied
here. For instance, in the case of the two-point function the
Wick contraction of the holomorphic piece of the β-γ
system yields a factor

Yn−1
k¼1

�Y2
i¼1

Ysk
r¼1

ðzi − wk
rÞ−1

�Ysk
l¼1

ð−wk
l Þðp1 þ p2Þsk þ � � �

��

ð56Þ
where the ellipses represent contributions with fewer w
factors. Using (28), one observes that, eventually, only a
contribution proportional to

∝
Yn−1
k¼1

Y2
i¼1

Ysk
r¼1

jzi − wk
r j−2 ð57Þ

survives. This produces an additional shift in the exponent
in the last factor of (55).

Integral representation (55), which is similar to the one
that originally appears in the context of minimal models
[30], can be solved in some very special cases using the
techniques of Refs. [22,23]. This yields closed expressions
for reflection coefficients, structure constants, and the
spherical partition function in several CFTs, including
nonrational ones [31]. Especially in the latter case, an
analytic continuation is required as the expression (55) only
makes sense for sk ∈ Z≥0. Such extension for values
sk ∈ C has been successfully carried out in diverse exam-
ples, including noncompact timelike CFTs [32].
Notice that even when the integral representation (55)

looks very similar to the one that would appear in the
analogous computation for TFT, the integrals appearing in
both cases are not exactly the same, one of the differences
being the amount of integrations to be performed: While for
the m-deformed theory one finds (53), the analogous
quantity in an M-point TFT correlation function requires
not sk but

sTk ¼ sk þ 2b−2
Xn−1
l¼1

mlðωl;ωkÞ

¼ −
ffiffiffi
2

p XM
i¼1

ðαTi ;ωkÞ þ 2ðbþ b−1Þðρ;ωkÞ ð58Þ
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integrals. This is consistent with the shifting in the
momenta fαig and the presence of additional M − N ¼
ðN − 2Þðn − 1Þ vertices in the TFT correlator on the right-
hand side of Eq. (50), as well as with the shifting δQ in the
background charge. To see this in a concise example, let us
compute the two-point functions in the theory (20) using
the integral representation above. That is, let us compute

hΦαðfpkg1jz1ÞΦαðfpkg2jz2Þifmkg ¼
RðαÞ

jz1 − z2j4~h2α
; ð59Þ

where ~h2α ¼ ðα; Qþ δQ − αÞ is the conformal dimension.
The relevant information here is given by the reflection
coefficient RðαÞ. Conformal invariance permits us to fix
three vertex insertions on the Riemann sphere; as usual,
let us fix the inserting points of the vertex operators
ΦαðfpkgijziÞ at z1 ¼ 0 and z2 ¼ 1, together with one
screening operator at ∞. Taking into account (57), one
observes that (58) maps into (53) if one identifies the TFT
momenta αTi as follows

αTi ¼ αi þ
Xn−1
l¼1

ql; ð60Þ

which turns out to be in perfect agreement with (50) for
N ¼ 2. On the one hand, this shows that the Coulomb gas
realization above is consistent with the relation between
correlators given in (50). On the other hand, this gives the
expression for the reflection coefficients of the CFTs
defined by (20), which turns out to be given by the TFT
analogous quantity [33] evaluated in the shifted momentum
(60). This explicit form of the TFT reflection coefficient is
such that making the replacing (60) results in the shifting
QT → Q, as expected. This is because the TFT reflection
coefficient depends on the momentum3 through the combi-
nation 2αT −QT .

IV. REMNANT AFFINE SYMMETRY

A. Remnant symmetry

Let us consider the case n ¼ 3 with deformation param-
eters m1 and m2. It turns out that, remarkably, in that case
the theory (20) turns out to be invariant under the symmetry
generated by the currents

Jþ1 ðzÞ ¼ m1
−1β1;

J01ðzÞ ¼
ffiffiffi
2

p
m1b−1ðe1; ∂ϕÞ − 2γ1β1 þm1m2

−1γ2β2;

Jþ2 ðzÞ ¼ m2
−1β2;

J02ðzÞ ¼
ffiffiffi
2

p
m2b−1ðe2; ∂ϕÞ þm2m1

−1γ1β1 − 2γ2β2 ð61Þ

and their antiholomorphic counterparts J̄Ai (A ¼ 0;�,
i ¼ 1, 2), with the free field correlators

hϕiðzÞϕjðwÞi¼−
1

2
δij logðz−wÞ; hβiðzÞγjðwÞi¼

δij
ðz−wÞ
ð62Þ

with i, j ¼ 1, 2. It is possible to verify that the OPE
between the interaction term of the action (20) and the
currents (61) has no singular term up to a total derivatives.
The symmetry algebra is encoded in the singular terms

of the OPE between the currents (61). The nonregular
OPEs read

Jþi ðzÞJ0jðwÞ ∼
ð3δij − 1Þ
ðz − wÞ Jþi ðwÞ þ � � � ;

J0i ðzÞJ0jðwÞ ∼ −
cij

ðz − wÞ2 þ � � � ;

and regular otherwise. The coefficients of the central terms
of the algebra are given by

cij ¼ mimjb−2ðei; ejÞ þ 4δij − 2ðm2
i þm2

jÞm−1
i m−1

j jεijj
þmimj

X
k

m−2
k jεikεjkj ð63Þ

where ε12 ¼ −ε21 ¼ 1, ε11 ¼ ε22 ¼ 0, and i, j, k ¼ 1, 2.
Some of these coefficients, however, can be changed by
changing the normalization of the currents. In terms of the
modes Jai;n, which are defined by Jai ðzÞ ¼

P
n∈ZJ

a
i;nz

−n−1

(with i ¼ 1, 2 and a ¼ 0;þ), the symmetry algebra
reads ½J0i;n; J0j;m� ¼ ðn=2Þcijδnþm;0, ½Jþi;n; J0i;m� ¼ 2Jþi;nþm,
½Jþi;n; J0i≠j;m� ¼ −Jþi;nþm, ½Jþi;n; Jþj;m� ¼ 0.
This can be extended to the slðnÞ case, which one can

actually verify to be symmetric under the 2n − 2 currents

Jþk ðzÞ ¼ mk
−1βk;

J0kðzÞ ¼
ffiffiffi
2

p
mkb−1ðek; ∂ϕÞ − 3γkβk þmk

Xkþ1

l¼k−1
ml

−1γlβl

ð64Þ
with k; l ¼ 1; 2;…n − 1 and where m−1

0 ¼ m−1
n ¼ 0.

Let us denote by Ân ⊕ Ân the algebra generated by (64)
and by its antiholomorphic counterparts. Some properties
of this algebra are the following: Algebra Ân is the affine
extension of the semidirect sum of two Abelian Lie
algebras Aþ

n and A0
n; that is, Ân ¼ Âþ

n ⊕s Â
0
n with

Jþk ðzÞ and J0kðzÞ generating each of the two pieces
respectively. Algebras Aþ

n and A0
n are Abelian and of

dimension n − 1. A0
n is the Cartan subalgebra of slðnÞ.

While Âþ
n is the loop algebra associated with Aþ

n , algebra

Â0
n is the affine Kac-Moody extension of A0

n with

3See Eqs. (1.14)–(1.17) of Ref. [33]. Our convention relates
to the one there by performing the changes ϕ → ϕ=

ffiffiffi
2

p
,

αT → α=
ffiffiffi
2

p
, and QT →

ffiffiffi
2

p
Q.
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nonvanishing central extensions. Algebra Âþ
n is an ideal of

the semidirect sum Âþ
n ⊕s Â

0
n; the latter is not semisimple.

The semidirect sum Aþ
n ⊕s A0

n is included in the Borel
subalgebra of slðnÞ, coinciding with the latter in the case
n ¼ 2. This means that the m-deformed CFTs defined by
(20) may exhibit an infinite-dimensional symmetry apart
from local conformal invariance.
One could still raise the question as to whether the full

Wn symmetry is actually broken. That is, as it happens with
conformal symmetry, which is preserved after the intro-
duction of the β-γ system and the shifting δQ in the
background charge, one may wonder whether the Wn>2ðzÞ
currents do not suffer from similar modifications and still
represent a symmetry of the theory. A naive attempt to
construct such modified currents would be shifting the
background charge contribution in theW3ðzÞ current of the
slð3Þ TFT and adding to it a piece

W3
βγðwÞ ¼

1ffiffiffi
6

p ð∂β1∂γ1 − β1∂2γ1 þ ∂β2∂γ2 − β2∂2γ2Þ;

ð65Þ
which indeed yields

W3
βγðzÞW3

βγðwÞ ¼
4=3

ðz − wÞ6 þ
2W2

βγðwÞ
ðz − wÞ4 þ

∂W2
βγðwÞ

ðz − wÞ3 þ � � �

ð66Þ
where the ellipses stand for quadratic and simple poles, and
where

W2
βγðzÞ ¼ β1∂γ1 þ β2∂γ2 ð67Þ

is the correct contribution of the ghost system to the stress
tensor. However, this direct sum proposal can be seen not
to work, the reason being the nonlinear nature of the W3

algebra. To the best of our knowledge, there is no evident
systematic manner to deform the Wn>2 currents and find
W symmetry in the m-deformed CFT. At least in the case
of W3 the question about whether such enhanced W
symmetry exists is motivated by the fact that the theory
seems to have too many fields for a current algebra such as
Â3 ⊕ Â3. One would expect the CFT to be well defined—
at least in the sense of the conformal bootstrap—if it has
enough symmetry generators,4 and therefore it is certainly
an interesting question whether the model (20) exhibits
larger symmetry.
A related question is the following: Since the m-

deformed CFT seems to break the original Wn symmetry
to Virasoro symmetry, it would be fully defined only after
a complete list of Virasoro primaries together with an
algorithm to compute their three-point point functions are

provided. The question arises as to whether the Virasoro
primaries considered here form a complete basis or, at
least, a sector closed. While Eq. (24) provides a collection
of such primaries whose correlation functions are defined
in terms of the TFT observables (50), the spectrum of
Virasoro primary operators could be a priori larger, since
in the undeformed theory the Wn module can be decom-
posed in multiple W2 modules. The situation would be
somehow more problematic if the theory happens to
exhibit full W symmetry, as in that case it is not sufficient
to consider only Wn > 2 primaries to fully solve the CFT
[34]. This is precisely why providing techniques alter-
native to the bootstrap, such as the path integral tech-
niques of [9] is important, especially in the case of
nonrational CFTs.

B. Hidden Kac-Moody symmetry

As suggested in [35], the existence of this hidden
symmetry generated by Ân ⊕ Ân, which is a subalgebra
of ŝlð3Þ ⊕ ŝlð3Þ, invites us to look for a generalization of
the deformation (20) that, if supplemented with the addi-
tional fields in order to realize the additional generators,
happens to exhibit full ŝlð3Þ ⊕ ŝlð3Þ affine Kac-Moody
symmetry. In order to look for such a theory, let us consider
the action

Sfmk;δg ¼
1

2π

Z
d2w

�
ð∂ϕ; ∂̄ϕÞ þX2

k¼1

ðβk∂̄γk þ β̄k∂ γ̄kÞ

þ ðQT þ δQ;ϕÞ
4

R

þ ð−1Þm1ðβ1 − δÞm1ðβ̄1 − δ̄Þm1e
ffiffi
2

p
bðe1;ϕÞ

þ ð−β2β̄2Þm2e
ffiffi
2

p
bðe2;ϕÞ

�
; ð68Þ

which is a deformation similar to the one considered before
for the case n ¼ 3 that, apart from the kind of deformation
of the type (20), also includes a shifting in the ghost
field β1.
The theory defined by action (68) may represent a

conformal field theory exhibiting a larger algebra than
the one generated by the current (64) above, provided an
adequate relation between δ and the fields of the theory is
prescribed. For instance, if one introduces a third copy of
the β-γ system by adding to (68) a piece

Sβ3γ3 ¼
1

2π

Z
d2zðβ3∂̄γ3 þ β̄3∂ γ̄3Þ; ð69Þ

and considers the deformation δ ¼ −γ2β3, making the
fields (69) interact, and chooses m1 ¼ m2 ¼ 1, for which
QT þ δQ ¼ bρ, then one finds that the action (68) exhibits
a hidden full ŝlð3Þk ⊕ ŝlð3Þk affine symmetry with
Kac-Moody level k ¼ b−2 þ 3 [36,37]. To see this explic-
itly, one writes down the ŝlð3Þ currents

4G. G. thanks Sylvain Ribault for conversations about this
point.
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Jþ1 ðzÞ ¼ β1; J01ðzÞ ¼
ffiffiffi
2

p
b−1ðe1; ∂ϕÞ − 2γ1β1 þ γ2β2 − γ3β3;

Jþ2 ðzÞ ¼ β2 þ γ1β3; J02ðzÞ ¼
ffiffiffi
2

p
b−1ðe2; ∂ϕÞ þ γ1β1 − 2γ2β2 − γ3β3

together with Jþ3 ðzÞ ¼ β3 and

J−1 ðzÞ ¼
ffiffiffi
2

p
b−1ðe1; ∂ϕÞγ1 − k∂γ1 − γ3β2 − γ1γ1β1 þ γ1γ2β2 − γ1γ3β3;

J−2 ðzÞ ¼
ffiffiffi
2

p
b−1ðe2; ∂ϕÞγ2 − ðk − 1Þ∂γ2 þ γ3β1 − γ2γ2β2;

J−3 ðzÞ ¼
ffiffiffi
2

p
b−1ðe1; ∂ϕÞγ3 þ

ffiffiffi
2

p
b−1ðe3; ∂ϕÞγ3 −

ffiffiffi
2

p
b−1ðe2; ∂ϕÞγ1γ2 − k∂γ3

þ ðk − 1Þγ1∂γ2 − γ1γ3β1 − γ2γ3β2 − γ3γ3β3 − γ1γ2γ2β2; ð70Þ

with b−2 ¼ k − 3, and with the free field correlators
hϕkðzÞϕlðwÞi ∼ −ð1=2Þδk;l logðz − wÞ and hβiðzÞγjðwÞi∼
δi;j=ðz − wÞ, now with k;l ¼ 1, 2 and i, j ¼ 1, 2, 3. It is
possible to verify that the OPE between these eight currents
and the interaction operators

~S1 ¼ ðβ1 þ γ2β3Þðβ̄1 þ γ̄2β̄3Þe
ffiffi
2

p
bðe1;ϕÞ;

S2 ¼ β2β̄2e
ffiffi
2

p
bðe2;ϕÞ ð71Þ

is regular, up to total derivatives. Notice that, excluding the
contribution of the third ghost system (69), the currents J01,
J02, J

þ
1 , and Jþ2 above coincide with the currents (61) in the

case m1 ¼ m2 ¼ 1.
Other deformations of this type, such as m1 ¼ m2 ¼ b2,

also enjoy full ŝlð3Þk̂ ⊕ ŝlð3Þk̂ symmetry, in such case with
k̂ ¼ ð3k − 8Þ=ðk − 3Þ. However, the case m1 ¼ m2 ¼ 1 is
special: In this case, action (68) augmented with the system
(69) actually corresponds to the SLð3;RÞ WZW model at
level k ¼ b−2 þ 3 written in Wakimoto variables. In other
words, SWZW¼ Sfm1;2¼1;δ¼−γ2β3g þSβ3γ3 . The central charge
in this case is given by cWZW ¼ 8þ 24b2 ¼ 8k=ðk − 3Þ.
The relation between the level k and the parameter b of the
undeformed TFT is the same as in the Drinfeld-Sokolov
Hamiltonian reduction [36–38]. To see this explicitly,
consider the WZW action

SWZW½g� ¼
k
2π

Z
S
d2zTrðg−1∂gg−1∂̄gÞ

þ k
12π

Z
B
d3xϵνσκTrðĝ−1∂νĝĝ−1∂σ ĝĝ−1∂κ ĝÞ ð72Þ

where k is the WZW level, gðzÞ is a group valued field on S,
g ∈ SLð3;RÞ, S is a two-dimensional surface that coincides
with the boundary of B, i.e. S ¼ ∂B. ĝðxÞ is the extension
of gðzÞ in the three-dimensional ambient B. To parametrize
the group element, consider the Jordan-Chevalley
decomposition

g¼e−γ1T
−
1
−γ2T−

2
−ðγ3−1

2
γ1γ2ÞT−

3 eϕ1
~T0
1þϕ2

~T0
2e−γ̄1T

þ
1
−γ̄2Tþ

2
−ðγ̄3−1

2
γ̄1 γ̄2ÞTþ

3 ;

ð73Þ

with TA
i being the generators of slð3Þ given by the upper

triangular matrices

Tþ
1 ¼

0
B@
0 1 0

0 0 0

0 0 0

1
CA; Tþ

2 ¼

0
B@
0 0 0

0 0 1

0 0 0

1
CA; Tþ

3 ¼

0
B@
0 0 1

0 0 0

0 0 0

1
CA;

together with the lower triangular

T−
1 ¼

0
B@
0 0 0

1 0 0

0 0 0

1
CA; T−

2 ¼

0
B@
0 0 0

0 0 0

0 1 0

1
CA; T−

3 ¼

0
B@
0 0 0

0 0 0

1 0 0

1
CA;

and the two Cartan elements

T0
1 ¼

0
B@

1 0 0

0 −1 0

0 0 0

1
CA; T0

2 ¼

0
B@

0 0 0

0 1 0

0 0 −1

1
CA;

it is convenient to define the basis ~T0
1 ¼ ðT0

1 þ T0
2Þ=

ffiffiffi
2

p
,

~T0
2 ¼ ðT0

1 − T0
2Þ=

ffiffiffi
6

p
. The holomorphic conserved currents

that generate the ŝlð3Þ affine algebra are

JAi ðzÞ ¼ TrðJðzÞTA
i Þ; JðzÞ ¼ k∂gg−1 ð74Þ

with i ¼ 1, 2, 3 for A ¼ � and i ¼ 1, 2 for A ¼ 0. The
antiholomorphic currents can be written in a similar
manner, with J̄ðzÞ ¼ −kg−1∂̄g. The simple roots of slð3Þ
are

e1 ¼
1ffiffiffi
2

p ð1;
ffiffiffi
3

p
Þ; e2 ¼

1ffiffiffi
2

p ð1;−
ffiffiffi
3

p
Þ; ð75Þ

with fundamental weights

ω1 ¼
1ffiffiffi
2

p
�
1;

1ffiffiffi
3

p
�
; ω2 ¼

1ffiffiffi
2

p
�
1;−

1ffiffiffi
3

p
�
; ð76Þ

from which one easily verifies ðωi; ejÞ ¼ δij and
ðe1; e1Þ ¼ ðe2; e2Þ ¼ 2, ðe1; e2Þ ¼ ðe2; e1Þ ¼ −1; the
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Weyl vector reads ρ ¼ ω1 þ ω2 ¼ ð ffiffiffi
2

p
; 0Þ. Plugging this

representation in (74), defining the fields βi,

β1 ¼ −ke
ffiffi
2

p
bðe1;ϕÞ∂ γ̄1 − γ2β3;

β2 ¼ −ke
ffiffi
2

p
bðe2;ϕÞ∂ γ̄2;

β3 ¼ −ke
ffiffi
2

p
bðρ;ϕÞð∂ γ̄3 − γ̄2∂ γ̄1Þ ð77Þ

(similarly for β̄i), and taking into account quantum cor-
rections that amount to renormalizing ϕ →

ffiffiffi
2

p
bϕ, one

eventually verifies that the SLð3;RÞ WZW action (72)
takes the form5

SWZW ¼ 1

2π

Z
d2z

�
ð∂ϕ; ∂̄ϕÞ þX3

i¼1

ðβi∂̄γi þ β̄i∂ γ̄iÞ

þ bðρ;ϕÞ
4

R − ðβ1 þ β3γ2Þðβ̄1 þ β̄3γ̄2Þe
ffiffi
2

p
bðe1;ϕÞ

− β2β̄2e
ffiffi
2

p
bðe2;ϕÞ þ c:t:

�
; ð78Þ

where c.t. stands for a contact term, more precisely, for a
term

c:t: ¼ −
1

2π

Z
d2zβ3β̄3e

ffiffi
2

p
bðρ;ϕÞ: ð79Þ

In Ref. [21], a different parametrization of the SLð3;RÞ
elements is considered. Such parametrization leads to a
more symmetric form of the action (78), introducing a shift
δ also in the last term is what makes the two screening
operators look similar. The parametrization we considered
here has some advantage for the Coulomb gas computation.
The contact term in [21] takes, however, exactly the same
form as the one here, namely (79). The same interpretation
for such term as the one given in [21] holds here. Then, we
observe that, up to contact terms, action (78) actually agrees
with Sfm1;2¼1;δ¼−γ2β3g þ Sβ3γ3 .

V. DISCUSSION

In this paper, we have constructed an infinite-
dimensional family of two-dimensional conformal field
theories that admit Lagrangian representation. These the-
ories consist of particular deformations of slðnÞ Toda field
theories. Such deformations preserve conformal invariance
and deform the full Wn symmetry. As recognition for
having being indulgent with the conformal symmetry, we
have been left with a remnant infinite-dimensional sym-
metry Ân ⊕ Ân which, in the particular case n ¼ 3, can be
enhanced to full ŝlð3Þ ⊕ ŝlð3Þ affine symmetry if other
deformation operators are allowed. We have explored

here the simplest cases of deformation of TFT, which
basically consist in the most direct extension of the results
of [7] to the slðnÞ case with n ≥ 2. It would be interesting to
explore other types of deformations and their possible
physical applications. Some open questions regarding this
are the following: First, whether a systematic way of
deforming slðnÞ TFT is possible such that one obtains a
full ŝlðnÞ ⊕ ŝlðnÞ affine symmetry for n > 3. This would
extend the WZW–Liouville correspondence to higher rank
and for more general slð2Þ embeddings. Second, it would
be interesting to have a full understanding of the relation
between the Hamiltonian reduction at quantum level and
the correspondence between correlators of theories withWn

symmetry and of theories with ŝlðnÞ affine symmetry.
Interesting results in this direction have been obtained
recently in [21]. A third question that remains open is the
aforementioned problem of proving whether or not the
deformed theory exhibits hidden Wn symmetry. It appears
to us that there is no obvious, systematic way of showing
this. This could be seen as an obstruction, since the theory
seems not to have a symmetry algebra as large as needed
to be solved by bootstrap methods. This is precisely why
alternative techniques such as the path integral approach of
[9] are important, in particular when dealing with nonra-
tional CFTs.
Lastly, it would be interesting to see whether there exists

a concrete application of the deformed TFT to study gauge
theories via AGT and its generalization. It turns out that the
m-deformed theories do offer a potential application within
this context, which is the description of defects in the
N ¼ 2 superconformal SUðnÞ quiver theories: According
to the Wyllard’s generalization of AGT conjecture, the
Nekrasov partition function of such SUðnÞ theories is in
correspondence with slðnÞ TFT correlation functions. In
the case n ¼ 2, it is known how to generalize the corre-
spondence in order to describe not only the partition
function but also expectation values of a whole set of
surface and loop operators in the gauge theory side [39,40].
Such observables are also given by Liouville correlation
functions, but including degenerate fields, namely fields
that contain null Virasoro descendants. The vacua of
surface operators in the gauge theory are labeled by integer
numbers that are in correspondence with the level of the
null vectors in the two-dimensional CFT. Nonfundamental
surface operators of this type are believed to exist in generic
SUðnÞN ¼ 2 gauge theories too, and the expectation value
of such operators would also admit a two-dimensional
CFT description in terms of TFTobservables. TFT contains
degenerate and semidegenerate representations, and the
possibility of the correlators of the theory (20) for the
appropriate values of fm1; m2;…; mn−1g describing
expectation values of nonfundamental operators in SUðnÞ
gauge theories is certainly interesting. This idea has been
discussed in [18] for the case n ¼ 2, where it was argued
that defects in the N ¼ 2� SUð2Þ gauge theory could be

5Where we also shifted the zero modes of the fields ϕ1 and ϕ2

in order to absorb an overall factor b−2 in the interaction terms.
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associated with a theory with affine symmetry. The affine
CFT description of surface operators in N ¼ 2 theories
was suggested in [41]. Another possibly related result is
that of Ref. [42], where, based on previous results [43] for
the TFT correlation functions, it was argued how the
inclusion of a semidegenerate primary operator in the
TFT three-point function corresponds in the gauge theory
side to a particular Higgsing of the non-Lagrangian theory
on S4. It would be interesting to make these ideas precise
and study the potential applications of these deformed
theories within the context of the 2D/4D correspondence.
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