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I analyze the quantum mechanical scattering off a topological defect (such as a Dirac monopole) as well
as a Yukawa-like potential(s) representing the typical effects of strong interactions. This system, due to the
presence of a short-range potential, can be analyzed using the powerful technique of the complex angular
momenta which, so far, has not been employed in the presence of monopoles (nor of other topological
solitons). Due to the fact that spatial spherical symmetry is achieved only up to internal rotations, the
partial wave expansion becomes very similar to the Jacob-Wick helicity amplitudes for particles with spin.
However, since the angular-momentum operator has an extra “internal” contribution, fixed cuts in the
complex angular momentum plane appear. Correspondingly, the background integral in the Regge formula
does not decrease for large values of j cos θj (namely, large values of the Mandelstam variable s). Hence, the
experimental observation of this kind of behavior could be a direct signal of nontrivial topological
structures in strong interactions. The possible relations of these results with the soft Pomeron are shortly
analyzed.
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I. INTRODUCTION

One of the most important nonperturbative effects in
field theory is the appearance of topological solitons [1–4].
Such classical configurations are topologically stable and,
for this reason, are believed to play a crucial role at a
quantum level as well (the most important arena being, of
course, the problem of color confinement: for a pedagogi-
cal review on the role of topological configurations in the
problem of confinement see [5]). Such objects possess a
conserved topological charge which prevents them from
being deformed to the trivial vacuum. A key characteristic
of such nontrivial topological structures is that, due to the
nonvanishing topological charge, spatial spherical sym-
metry must be realized in a rather subtle way. As it was first
realized in modern terms by Skyrme when introducing his
famous model [6] (but the same argument also applies
when dealing with local internal symmetries), the most
obvious way to describe a spherical object would be to take
all the fields of the Lagrangian to depend only on the radial
coordinate. However, in this case the topological charge
would vanish (as an easy computation shows immediately).
Thus, the most one can get is to have the fields depending
on the angular coordinates as well but in such a way that
energy density is spherically symmetric. This, actually, is
the definition of hedgehog ansatz: the hedgehog is sym-
metric under spatial rotations but only up to an internal
symmetry transformation (namely, the spatial rotation
needs to be compensated by an internal symmetry trans-
formation in order to achieve the sought invariance).
This quite simple characteristic is behind the remarkable

intuition of Skyrme that his hedgehog (called Skyrmion),
despite being constructed in a purely bosonic theory,
should be actually quantized as a fermion. The reason is
that the generators of the angular momentum acquire extra
contributions from the internal symmetry transformation so
that the eigenvalues are not required to be integers anymore
and can be also half-integers.
The simplest and most famous example in gauge field

theory which gives rise to similar phenomena is the Dirac
monopole [7]. In the case of the Dirac monopole too one
gets spherical symmetry up to an internal (gauge) sym-
metry transformation. This fact has highly nontrivial
consequences when one analyzes the Schrodinger (as well
as the Klein-Gordon and Dirac) equation(s) in the electro-
magnetic field1 of a Dirac monopole. It was soon realized
that the angular momentum operator in the case of the
Schrodinger equation in the field of a Dirac monopole
(which was studied for the first time in [8] and [9]) receives
an extra contribution and that such modified angular
momentum operator is responsible for the fact that a scalar
charged particle in the field of a Dirac monopole can
behave as a fermion (for a very clear analysis see [10]).
Such nontrivial feature of the total angular momentum of a
monopole is responsible for remarkable effects not only in
quantum field theory (QFT henceforth) as already empha-
sized but also in general relativity (see, in particular, [11]).

*canfora@cecs.cl

1Here and in the following sections the sentence “the Schro-
dinger (Dirac, Klein-Gordon) equation(s) in the electromagnetic
field of a Dirac monopole” will always mean the Schrodinger
(Dirac, Klein-Gordon) equation(s) with the minimal coupling
∂μ → ∇μ ¼ ∂μ − ieAμ to the gauge potential Aμ of a Dirac
monopole.
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A very far-reaching generalization of the Dirac monop-
ole has been constructed in non-Abelian gauge theory
coupled to a Higgs field in the adjoint representation of the
gauge group by ‘t Hooft and Polyakov [12,13]. Such
configurations are in a sense a regularized version of the
Dirac monopole as, far from the monopole core, they look
like Dirac monopoles while having, at the same time,
regular cores (for a detailed review, see [1–3]). Also non-
Abelian monopoles are hedgehog in the sense that the
corresponding gauge fields depend both on the radial
coordinate and on the angles but in such a way that the
topological charge (which in this case represents the non-
Abelian magnetic charge) is nonvanishing and, at the same
time, the energy-density is spherically symmetric. For this
reason, the generators of the angular momentum acquire
extra contributions from the generator of the gauge sym-
metry. Hence, once again, the eigenvalues are not required
to be integers anymore and can be also half-integers. This
fact is at the basis of the well-known ‘t Hooft-Hasenfratz-
Jackiw-Rebbi-Goldhaber phenomenon [14–16] which
states that a scalar field charged under the gauge group
is transformed into a Fermion in the field of a ‘t Hooft-
Polyakov monopole. Moreover, this effect persists even if
the effects of general relativity are turned on [17]. The ‘t
Hooft-Polyakov monopole is not known analytically in the
realistic case2 in which the Higgs potential is nonvanishing.
In this case, far from the core, one expects Yukawa-like
behavior of the Higgs fields together with the massless
behavior of the gauge field associated with the unbroken
Uð1Þ gauge symmetry (which, asymptotically, looks
exactly like a Dirac monopole). Consequently, a very
interesting analysis is the study of scattering from both
Dirac monopole and Yukawa’s potentials.
The above considerations show how crucial are the

modified generator of the angular momentum operator in
the analysis of the physical properties of topologically
nontrivial configurations.
The most obvious and natural way to probe (both

theoretically and experimentally) this kind of objects is
of course through scattering [20–22]. Due to the interest in
these nontrivial configurations, the scattering of charged
particles on monopoles and dyons has been deeply ana-
lyzed: very important references in this respect (after the
pioneering works [8] and [9]) are [23–26]. One of the most
important technical results (which will be very useful in the
following) achieved in these references has been the proper
definition of the partial wave expansion in the presence of a
monopole. However, what was not considered in these
references is the inclusion of a (superposition of) Yukawa’s
potential(s): as it is clear from the above considerations,
such an inclusion is very natural and welcome from the

point of view of non-Abelian monopoles. Moreover, from a
QFT perspective (see, for instance, [27]) when dealing with
strong interactions, it is very natural to expect the presence
of (superpositions of) Yukawa’s potentials. Thus, a very
natural problem to consider (which, to the best of author’s
knowledge, has not been analyzed before) is the quantum
mechanical scattering both from a monopole and (a super-
position of) Yukawa’s potential(s) which, at the very least,
describes the scattering processes far from the core of a ‘t
Hooft-Polyakov monopole.
At a first glance, one could think that such a problem is

technically much more complex than the original analysis of
[23–26] as one cannot get either the wave function or the
spectrum in closed forms.However, a huge benefit (which, in
the opinion of the present author, vastly exceeds the above
mentioned technical disadvantages) of the presence of
Yukawa potentials is that very powerful tools become
available: the Sommerfeld-Watson transform and the
Regge theory of complex angular momenta [28,29] (which
cannot be applied directly to the scattering from monopoles
or dyons alone mainly because of the long-range effects of
the monopoles). The applications of such techniques (which
have been extended to quantum field theory in [30–35];
detailed reviews are [36] and [37]) in the context of strong
interactions together with the Mandelstam representation
[38] have been extremely successful. Moreover, due to the
fundamental role of the angularmomentumwithin theRegge
approach, it is clear that such an approach is very suitable
when dealing with scattering from topologically nontrivial
objects which are characterized (as it has been discussed
above) by modified angular momentum operators. For
instance, a very interesting by-product of the present analysis
is that it discloses in a very clear way the similarities (which
should be expected, from the intuitive point of view, on the
basis of [10]) between the helicity amplitudes for particles
with spin introduced by Jacob and Wick in their pioneering
paper [39] and the partial-wave expansion in the presence of
both monopoles and short range potential. However, there is
also a crucial difference between the two partial wave
amplitudes which could be interpreted as a fingerprint of
the presence of nontrivial topological structures in gauge
theories as it will be discussed in the next sections.
Besides the intrinsic theoretical interest of this analysis,

the application of the theory of complex angular momenta
when topological solitons are present could be relevant for
a very well-known open problem in the field of strong
interactions: the Pomeron [40] (detailed reviews are
[41,42]). The key issue is that at low transferred momentum
t observations show that the scattering amplitude does not
decrease with s as one would expect on the basis of the
Froissart-Martin bound [35–37,39–43] (a modern and
interesting analysis can be found in [44]). It is worth
emphasizing that the Froissart-Martin bound can be derived
from a very general hypothesis such as unitarity, analyticity
as well as from the short range nature of strong

2Exact solutions for the non-Abelian monopoles can be found
in the BPS approximation [18,19] in which the Higgs potential
vanishes but one keeps the nontrivial boundary conditions.
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interactions. The present analysis shows that the hypothesis
of short range interactions is rather subtle when topological
defects are present. Indeed, one of the typical contributions
in the Schrodinger (as well as Klein-Gordon) equation(s)
when a monopole is present is that the centrifugal barrier
increases. This implies, in particular, that the effects of the
monopole are not short-range as one can feel them even
from very far. There are many approach to the Pomeron
based on QCD, the most powerful being the Balitsky-
Fadin-Kuraev-Lipatov (BFKL) equation [45–47] (detailed
review are [48,49]). However, the issue related to the low t
behavior is still open. As it will be explained in the next
sections, the present analysis suggests that the inclusion of
the nontrivial topological structures of the Yang-Mills
vacuum within the BFKL formalism could be an important
step to solve this issue.
As far as the increase of the centrifugal barrier induced

by topological solitons is concerned, it is worth emphasiz-
ing3 that, in 2þ 1 dimensions, a similar effect does occur as
well. In particular, the Chern-Simons term describing the
interaction of a charge with the (2þ 1)-dimensional mag-
netic monopole (see, for instance, the detailed review [50])
manifests itself by changing the plane geometry felt by a
free particle into a (2þ 1)-dimensional geometry with a
conical defect. Not surprisingly, at classical level a charged
particle moving into the electromagnetic field generated by
a Dirac monopole in (3þ 1) dimensions also moves along
conical surfaces (see [51] and, for a detailed review, the first
two chapters of [3]).
The paper is organized as follows: in the second section,

there is a short review of the usual Watson-Sommerfeld-
Regge transform. In the third section, the Schrodinger
equation in the presence of both a monopole and a short
range together with the corresponding scattering ampli-
tude are discussed. In the fourth section, the Watson-
Sommerfeld-Regge transformation in the presence of
monopoles and short range potential is analyzed. In the
fifth section, the limitations of the present approach are
presented. In the sixth section, the relativistic generalization
of the results are introduced and the relations with the
BFKL equation are shortly emphasized. Finally, in the last
section some conclusions and perspectives are included.

II. REVIEW OF WATSON-SOMMERFELD-REGGE
TRANSFORM

Here all the necessary ingredients needed to perform
the Watson-Sommerfeld-Regge transform in quantum
mechanical scattering are shortly reviewed with particular
emphasis on the technical steps which are going to change
in the presence of topological solitons. Let us begin with
the usual expression for the partial wave expansion of the
scattering amplitude:

fðθ; kÞ ¼ 1

2ki

Xþ∞

l¼0

ð2lþ 1ÞPlðcos θÞ½exp ð2iδlðkÞÞ − 1�;

E ¼ k2

2M
; ð1Þ

k2ψ ¼
�
−

d2

dr2
þ λ2 − 1

4

r2
þ V

�
ψ ; ð2Þ

λ ¼ lþ 1

2
; ð3Þ

VðrÞ ¼
Z

∞

M0

σðρÞ exp ½−ρr�
r

dρ;

M0 > 0 ⇒ V ≤ c0
exp ð−M0rÞ

r
; c0 ≠ 0: ð4Þ

The above setting corresponds to the partial wave expan-
sion for the Schrodinger equation with a central potential of
a scalar particle. As usual, δlðkÞ is the phase shift which can
be defined in terms of the Jost functions of the radial
Schrodinger equation comparing the asymptotic behaviors
(both at r → 0 and r → ∞) of the solution of Eq. (2) with
and without potential. The angular equation gives rise,
obviously, to the spherical harmonics (and to the Legendre
polynomials) which also appear in the partial-wave
expansion.
The above defined partial-wave expansion satisfies the

optical theorem (which is an important consequence of
unitarity):

Imfðθ ¼ 0Þ ¼ k
4π

σTotal; ð5Þ

where σTotal is the total cross section. In order to derive this
result the only necessary ingredients are the completeness
of the Legendre functions and the fact that δlðkÞ is real for
real values of l and k.
The important link between the radial and the angular

equations (which plays a fundamental role in the Regge
transform) is the (seemingly innocuous) relation in Eq. (3).
In fact, as it will be shown in the next section, it is precisely
this relation which is modified in the presence of monop-
oles (due to the nontrivial extra contributions which appear
in the angular momentum operator).
One can also get a partial-wave expansion without

introducing the Schrodinger equation but just exploiting
the invariance of the S-matrix under spatial rotation (see,
for a clear and pedagogical analysis, chapter 6 of [21]) and
then expanding over the corresponding eigenvectors. The
choice of the potential in Eq. (4), based on [27], is the one
appearing in the pioneering papers [28] and [29]. However,
the hypothesis on the potential can be somehow relaxed
(see for instance [20,21]) keeping, of course, the short-
range nature of the potential.3I thank the anonymous referee for this interesting remark.
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Using standard arguments [20–22] of scattering theory
from (superposition of) Yukawa’s potential together with
the complex angular momentum technique introduced in
[28,29,52] one can prove that there exists a unique
interpolating function which is meromorphic in λ in the
half-plane Reλ > 0 which reduces to the usual phase shift
for integer l. Moreover, the analyticity (meromorphy)
domain of the phase shift has been also extended to the
full complex λ-plane in [53–55].
An important corollary of the results derived in [53,54]

which will be useful in the present framework is that when
λ is real δðλ; kÞ is always real (namely, not only when
Reλ > 0):

λ ∈ R ⇒ δðλ; kÞ ∈ R: ð6Þ

Such a conclusion only depends on the radial Schrodinger
equation (see, for instance, the first two sections of [53]).
The arguments which lead to the conclusion that, for

short-range potentials, there exist a unique interpolating
function δðλ; kÞ which reduces to the physical value for
integers l and which is meromorphic in λ in the full
complex λ plane depend exclusively on the radial
Schrodinger equation (2). The angular part (as well as
the appearance of the Legendre polynomials) only enters
into the game after one plugs the phase shift into the partial-
wave expansion in Eq. (1). It is in this last step that the link
between the radial and angular part [expressed as a relation
between λ and l which, in the usual case, is the one in
Eq. (3)] becomes very important. In particular, this implies
that whenever there is scattering process in which the radial
Schrodinger equation has the form in Eq. (2) with a
potential of the form in Eq. (4), it is possible to define
(following exactly the same arguments of [28,29,52,53]
and [54]) a meromorphic phase-shift δðλ; kÞ which satisfies
all the properties and the bounds described in the above
mentioned references and which represents the scattering
effects of the potential in Eq. (4) with respect to the free-
waves (which are, of course, the solutions corresponding
to V ¼ 0).
Particular examples of the many results which only

depend on the radial Schrodinger equation are the two very
important inequalities (see [28,29] and [52])

j½exp ðiδðλ; kÞÞ − 1�j ≤ σðkÞ exp ð−αλÞ
λ1=2

; ð7Þ

lim
jImλj→∞;Reλ→const

½exp ðiδðλ; kÞÞ − 1� ¼ 0; ð8Þ

wherecoshα ¼ 1þM2
0=2k

2. Such inequalities are very
relevant both for the Regge analytic continuation of the
Watson-Sommerfeld transform and for the physical inter-
pretation of the phase-shift. An elegant proof of Eq. (8) can
be found in [56]. Both inequalities are relevant to derive the
Regge formula for the scattering amplitude.

Since Eq. (3) relates λ (which is the variable entering in
the analytic continuation of the phase shift) with l [which is
the discrete label which enters into the definition of the
partial wave expansion in Eq. (1)] through a simple linear
(in particular, analytic) expression, the (analytically con-
tinued) phase shift is meromorphic in the same variable
which defines the (analytic continuation of the) partial
wave expansion.
In particular, all the factors [namely, (2lþ 1), Plðcos θÞ

and fλðkÞ] which appear in each term of the partial wave
expansion in Eq. (1) can be suitably extended to analytic
functions of the same variable λ. Consequently, one can go
(see [20–22]) from the expression in Eq. (1) into the
Sommerfeld-Watson expression

fðθ; kÞ ¼ 1

2πk

Z
C

λdλ
cos πλ

Pλ−1=2ð− cos θÞ½Sðλ; kÞ − 1�;

λ ¼ lþ 1

2
; ð9Þ

and, then, to the Regge expression (thanks to the bounds for
the phase-shift found in [28,29], and [52])

fðθ; kÞ ¼ 1

2πk

Zþ∞

−∞

λdλ
cosðiπλÞPiλ−1=2ð− cos θÞ½Sðiλ; kÞ − 1�

−
i
k

XN
j¼1

RjPαjð− cos θÞ: ð10Þ

In Eq. (9) the circuit C rounds counterclockwise the zeros
of cos πl.
The representation in Eq. (10) is called Regge formula

for the scattering amplitude. The circuit of the first term on
the right-hand side of Eq. (10) corresponds to the line
Reλ ¼ 0 [together with a semi-circle at infinity which,
however, does not contribute due to the inequality (7)].
The first term on the right-hand side of Eq. (10) is called

background integral and it gives small contribution for
large cos θ as it decreases as j cos θj−1=2 [due to the fact that
the Legendre polynomial within the integral in Eq. (10) has
index iλ − 1=2 with λ real]. As it has been already
emphasized, in the usual case, it is possible to push further
to the left the integration path of the background integral
[53–55]. This allows us to make the contribution from the
background integral even smaller (as the label iλ − 1=2 of
the Legendre polynomial would go into iλ − K with
K > 1=2). However, as it will be shown in the next
sections, the presence of monopoles represents an obstruc-
tion in pushing the background integral to the left.
The second term on the right-hand side of Eq. (10)

corresponds to the contributions arising from the Regge
poles (all the factors—but the Legendre polynomial evalu-
ated at the Regge poles—have been packed into Rj).
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At last, three important asymptotic properties of the
Legendre functions which are needed to prove the above
well-known results are

Plðcos θÞ ∼
l→∞

σðEÞ
l1=2

exp ½jImθjl�; ð11Þ

����Plð− cos θÞ
sin πl

���� ≤
Iml→�∞

bðθÞ
l1=2

exp ½−jReθImlj�; ð12Þ

PlðzÞ ∼
jzj→∞

aðlÞzl; ð13Þ

where the precise forms of the bounded functions σðEÞ,
bðθÞ, and aðlÞ are not relevant.

III. SCATTERING FROM MONOPOLES
AND YUKAWA POTENTIALS

In the presence of a Dirac monopole the angular
momentum operator is the following (see for a detailed
review [3]):

~J ¼ ~l − μ
r̂þ ẑ

1þ cos θ
¼ Jθêθ þ Jφêφ þ Jrêr; μ ¼ eg

cℏ
;

ð14Þ

where ~l is the standard orbital angular momentum, e and g
are the electric and magnetic charges, r̂ and ẑ are the unit
vectors in the radial and z directions respectively, μ is the
quantized strength of the monopoles

jμj ¼ 1

2
; 1;…;

while the êk are the spherical unit vectors. Without loss of
generality, we can assume that μ > 0 as the analysis with
μ < 0 is similar. The components of the total angular

momentum operator ~J read

Jθ ¼
1

sinθ
ði∂φþμð1− cosθÞÞ; Jφ ¼−i∂θ; Jr¼−μ:

ð15Þ

Consequently, the centrifugal barrier in the Schrodinger

equation is determined by ~J2. The eigenvectors and

eigenvalues of ~J are the so-called rotation matrices or
generalized spherical harmonics (the conventions and
normalizations coincide with [24] and [26]):

~J2dðlÞμm ¼ sdðlÞμm; x ¼ cos θ; s ¼ lðlþ 1Þ;
l ¼ n − μ; n ∈ N; l ≥ μ;−l ≤ m ≤ l; ð16Þ

dðlÞμmðθ;φÞ ¼ Nμlm exp ½iðμþmÞφ�
× ð1 − xÞðμþmÞ

2 ð1þ xÞðμ−mÞ
2 Pðμ−m;μþmÞ

l−m ðxÞ ð17Þ

Pðα;βÞ
n ðxÞ ¼ ð−1Þn

2nn!
ð1 − xÞ−αð1þ xÞ−β dn

dxn

× ½ð1 − xÞαþnð1þ xÞβþn�;
l ¼ μ; μþ 1; μþ 2;…; ð18Þ

Nμlm ¼
�ðl −mÞ!ðlþmÞ!
ðl − μÞ!ðlþ μÞ!

�
−1=2

; ð19Þ

where the Pðα;βÞ
n are the Jacobi polynomials, the dðlÞμm are the

generalized spherical harmonics or d-rotation matrices
(obviously, when μ ¼ 0 the above expressions reduce to
the usual Legendre polynomials and spherical harmonics).
An important property of the Jacobi polynomials is that
they are entire functions of the three indices α, β, and n. The

Pðα;βÞ
n form a complete set for any fixed α and β. As it has

been already emphasized (the cleanest discussion is prob-
ably the one in [10]) the extra term in the above defined

angular momentum operator ~J (which obviously is directly
related to the gauge field of the Dirac monopole) is
responsible for the fact that (depending on the strength
of the Dirac monopole) one scalar particles in the field of a
monopole can behave as fermions. This consideration
together with the fundamental role of the angular momen-
tum in the Regge formalism [28,29] strongly suggest that it
may be a good idea to try to apply Regge theory in the
presence of topological solitons. It is also interesting to note
that in the cases of Skyrmions and of a ‘t Hooft-Polyakov
monopoles, the corresponding angular momentum oper-
ators get similar extra terms related to the topological
charges (see [6] and [14–16]). Moreover, far from the core
of a ‘t Hooft-Polyakov monopole (see Sec. VI of [25]) the
scattering problem of a scalar field charged under the
SUð2Þ gauge group in the field of the non-Abelian
monopole itself reduces precisely to the scattering problem
off a Dirac monopole. This observation (together with the
essential question about the role of the short-range inter-
actions related to the Higgs field in the realistic case in
which the potential is nonvanishing) has been one of the
main motivations of the present work.
Three crucial properties of the Jacobi polynomials (see

[57] as well as the appendix of [58]) which allow the
Watson-Sommerfeld-Regge transform in the monopole
case (as it will be described in the next sections) are the
analogue of Eqs. (11), (12), and (13) for the Legendre
polynomials:

Pðα;βÞ
l ∼

l→∞

σαβðEÞ
l1=2

exp ½jImθjl�; ð20Þ
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����P
ðα;βÞ
l

sin πl

���� ≤
Iml→�∞

bαβðθÞ
l1=2

exp ½−jReθImlj�; ð21Þ

Pðα;βÞ
l ∼

jzj→∞
aαβðlÞzl; ð22Þ

where the precise forms of the bounded functions σαβðEÞ,
bαβðθÞ, and aαβðlÞ are not relevant. Thus, for fixed values of
the quantized monopoles strength μ, the Jacobi polyno-
mials satisfy exactly the same asymptotic bounds as the
usual Legendre ones. Not so surprisingly, the above
asymptotic behavior of the deformed spherical harmonics
are some of the key mathematical properties which allow
the extension of the Regge formalism of complex angular
momenta to helicity amplitudes [39] for particles with spin
(see [59–62]; a nice and elegant group-theoretical formu-
lation of the Regge formalism for helicity amplitude is
[63–65]. What is more interesting is that the above
asymptotic properties of the generalized spherical harmon-
ics will be also crucial for the extension of the Regge
formalism to the scattering problem in the presence of both
monopoles and short range potentials. This, perhaps, could
have been guessed on the basis of [10]. However, a crucial
difference between the usual helicity amplitudes and the
scattering amplitudes in the presence of monopoles and
short range potential (a sort of fingerprint of topologically
nontrivial configurations) will be apparent when discussing
the analytic continuation a la Regge of the scattering
amplitude.

A. The Schrodinger equation with monopoles
and short range potentials

Thus, the Schrodinger equation in the electromagnetic
field of a Dirac monopole A of the form

A ¼ g
r
1 − cos θ
sin θ

êφ ð23Þ

(g being the magnetic charge) and a central potential reads

−
1

2M
½ð ~∇Þ2 − VðrÞ�Ψð~rÞ ¼ EΨð~rÞ; E ¼ k2

2M
; ð24Þ

where, according to the minimal coupling rule, one has

~∇ ¼ ~∂ − ie~A:

In the above formula, ~∂ is the flat spatial gradient and ~A is
the gauge potential of the Dirac monopole in Eq. (23). It is
worthwhile to note that the most elegant and mathemati-
cally sound procedure to define the gauge potential of a
Dirac monopole is the one based on the theory of fiber-
bundle introduced by Wu and Yang in [66,67]. One of
the main advantages of such formulation is that it avoids
the use of singular gauge potentials [such as the one in

Eq. (23)]. On the other hand, as far as the Schrodinger
equation is concerned, the local and the Wu-Yang
approaches produce the same result [as it can be seen by
comparing Eq. (53), Sec. 11 of [67] with Eqs. (25) and (27)
here below].
After standard manipulations (see the original papers [8]

and [9] as well as the nice review [3]), it is possible to bring
Eq. (24) into the following form

−
1

2M

�
1

r2
∂rðr2∂rÞ −

ð~JÞ2 − μ2

r2
− VðrÞ

�
Ψð~rÞ ¼ EΨð~rÞ;

E ¼ k2

2M
ð25Þ

where the total angular momentum operator ~J is defined in
Eq. (14) while the potential is a superposition of Yukawa
potentials as in the original analysis of [28,29] and [52]:

VðrÞ ¼
Z

∞

M0

σðρÞ exp ½−ρr�
r

dρ;

M0 > 0 ⇒ V ≤ c0
exp ð−M0rÞ

r
; c0 ≠ 0:

The above equation is separable and, with standard
methods (see, for instance, [3]), one gets the following
radial and angular equations by separation of variables

Ψð~rÞ ¼ ψkλðrÞ
r

dðlÞμmðθ;φÞ ð26Þ

:

k2ψkλ ¼
�
−

d2

dr2
þ λ2 − 1

4

r2
þ V

�
ψkλ; ð27Þ

λ ¼ λðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
lþ 1

2

�
2

− μ2

s
; l ≥ μ ⇒ λ > μ; ð28Þ

sdðlÞμm ¼ ~J2dðlÞμm; ð29Þ

where the generalized spherical harmonics dðlÞμm have been
discussed in Eqs. (16), (17), and (18). It is worth emphasiz-
ing that, due to the inequalities in Eqs. (16) and (28),
the centrifugal barrier in the monopole case never
vanishes. This is one of the consequences of the fact that
the generators of the angular momentum operator get an
extra contribution from the topologically nontrivial
configurations.
The Regge formalism discloses a crucial difference

between the usual cases and the present case of a scattering
problem off a topologically nontrivial scatterer. Such a
difference is related to the functional relation which links
the parameter λ which appears in the radial Schrodinger
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equation with the parameter l which determines both the
eigenvalues of the angular part and the discrete label of the
partial-wave series. As it has been already emphasized, in
the usual case such link between the radial and angular part
[namely, Eq. (3)] is expressed by an analytic relation
between λ and l. In the present case, the link between
the radial and angular equations is instead represented by
Eq. (28) which is not anymore an analytic relation between
λ and l. The origin of such a “mismatch” between λ and l is
the fact that the topological defect is spatially spherically
symmetric only up to internal transformation and, con-
sequently, the centrifugal barrier is modified in such a way
to generate a fixed cut in the complex angular momentum
plane. This simple observation allows us to determine a
peculiar fingerprint of a scattering process off a topologi-
cally nontrivial object as it will be discussed in the next
subsections.

B. Partial-wave expansion for scattering
off monopoles and short range potentials

Here, the analysis of chapter 6 of [21] will be followed
taking into account that, in the presence of a topological
soliton such as a monopole, the angular momentum gets an
extra contribution from internal symmetries. In the present
case, the scattering matrix S is invariant under the following
rotation operator RðαÞ:

R ¼ RðαÞ ¼ exp ð−iα~JÞ;
R†SR ¼ S;

where J is the total angular momentum defined in Eq. (14)
(which receives contributions from the monopole as well).
The next step in order to define the partial-wave expansion
is to define the free waves or asymptotic states. The best
choice is, obviously, to define as free waves the eigen-
functions of H0, J2 and Jz. However, it is worth emphasiz-
ing that this choice implies that one has to choose as free
Hamiltonian H0 the Hamiltonian without the potential
[namely, V ¼ 0 in Eqs. (25) and (27)] but with the effects
of the monopole (which are encoded in the modified
centrifugal barrier and in the replacement of the
Legendre polynomials with the Jacobi polynomials)
included.
The reason why this choice is very convenient4 is that if

one would include the effects of the monopole into the
interaction, then the angular symmetry generators of
the free Hamiltonian (which, in such a case, would be

just the free Laplacian) would be different from the angular
symmetry generators of the full Hamiltonian. A more
concrete way to see this is to notice that the effects of
the monopole are not small as they are described by a
parameter (μ in our case) which is quantized, thus it cannot
be reduced continuously to zero. Even from the perspective
of the Bethe-Salpeter equation with singular potentials (see
[68,69]), the present choice is mandatory. Namely, in order
to construct well-defined solutions for the Bethe-Salpeter
equation with potentials which at the origin behave as 1=r2

(which is basically the present case; on the other hand the
authors of that references also dealt with more singular
potential at the origin), one must include the singular
potential into the free Hamiltonian (see, in particular,
Sec. III of [68]). Thus [68,69] tell that, in the case of a
monopole and a short range potential, the free Hamiltonian is
the one without the short range potential but with the effects
of the monopole included5.
Moreover, the standard procedure (for a pedagogical

review see [70]) to compute any observable in the path
integral formalism is to consider the perturbative expansion
within the given topological sector. This means, in par-
ticular, that the definition of free wave functions depends on
the topological sector which one is considering. There is an
undeniable physical reason for this already in the case of a
Dirac monopole. One can feel the effects of the monopole
even from arbitrary far (for a pedagogical review see the
first two chapters of [3]) both classically (as a classical
particle in the field of a monopole is constrained to move on
a cone) and quantum mechanically (for instance, there is no
s−wave in the field of the monopole as the centrifugal
barrier never vanishes). This is why the definition of “free
wave function” should depend on the topological sector
one is considering.
Therefore, in the cases in which there is both a monopole

and a short range potential, it only makes sense to consider
as “free waves” the wave functions in the presence of the
monopole but without the potential. In other words, in the
present case, the free waves correspond to the scattering
monopole wave functions constructed in the foundational
references [8,9,23–25].
For the above reasons, the spherical basis which will be

used to diagonalize the S matrix will be

h~xjE; l; mi ¼ ij
�
2m
πp

�
1=2 ĵλðkrÞ

r
dðlÞμm; ð30Þ

hE‘; l‘; m‘jE; l; mi ¼ δðE‘ − EÞδll‘δmm‘; ð31Þ
4This is actually mandatory if one wants to apply Regge theory

when there is both a topological soliton and a short range
potential: the effects of topological solitons are not short-range
as one needs in Regge theory. However, as they can be encoded
into the angular momentum, such effects can be included in the
free Hamiltonian. Thus, the interaction term is now short range
and the Regge theory can be applied.

5It is worthwhile to emphasize that to take as free Hamiltonian
the one with the effects of the monopole included is a math-
ematically well-defined procedure as the chosen free Hamiltonian
has no bound states. In the cases in which bound states are
present, some extra care is needed.
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where ĵλðkrÞ are the Riccati-Bessel function while the dðlÞμm
are the rotation matrices in Eq. (29). Hence, the phase shift
and the scattering amplitude constructed in the present
paper describe the effects of the short range potential on top
of the monopole scattering wave functions of [8,9,23–25].
In this basis, the S−matrix is diagonal as it commutes with

H0 and ~J:

hE‘; l‘; m‘jSjE; l;mi ¼ δðE‘ − EÞδll‘δmm‘SlðEÞ; ð32Þ

SlðEÞ ¼ exp ½2iδðl; EÞ�; ð33Þ

where in Eq. (33) it has been explicitly taken into account
the unitarity of the S−matrix. From this definition, one can
immediately derive a partial wave expansion expressing the
scattering amplitude in the momentum basis (which is
directly related to the observable cross section: see [21] for
a pedagogical exposition). The only technical detail which
must be taken into account is that, as for the usual spherical
harmonics, also the deformed spherical harmonics form a
complete set. Thus, the partial wave reads in this case

fμðk; xÞ ¼
exp ð−iπμÞ

k

�
1 − x
2

�
μX
l¼0

½2ðlþ μÞ þ 1�

× exp ½iδðl; kÞ� sin δðl; kÞP2μ;0
l ðxÞ: ð34Þ

The optical theorem (which discloses one of the most
relevant differences between the usual case and the Regge
theory in presence of topological solitons) will be discussed
in the next sections separately for the μ ¼ 1=2 case and the
higher values of μ.
In the “Reggeization” of helicity amplitudes (see in

particular [60] [61,62]) it is customary to define the
scattering amplitude without the “kinematical factors”
ð1−x

2
Þμ of the rotation matrices which may lead to extra

singularities in the scattering amplitude like branch cuts.
On the other hand, if one only keeps the Jacobi polynomial
in the definition of the scattering amplitude then only
dynamical singularities appear. In the following only
dynamical singularities will be discussed.

C. Phase shift and Schrodinger equation

The only missing piece of information that one needs to
discuss the scattering amplitude using the Regge transform
is the phase shift defining the S-matrix elements which
enters in the scattering amplitude in Eqs. (33) and (34).
The radial Schrodinger equation (27) is the same as in

the usual case in Eq. (2). Thus, using the same arguments of
[52] [based on the analysis of the Jost functions associated
to Eq. (27)] one can define a unique interpolating phase
shift δðλ; kÞ which is meromorphic in the full complex λ-
plane (following the same arguments in [53,54]) and which
fulfills all the bounds derived in [28,29,52]. One can also

prove that the number of Regge poles is finite (in the case of
Yukawa’s potential) and that the inequalities in Eqs. (7) and
(8) are satisfied. Consequently [taking into account the
well-known properties of the Jacobi polynomials in
Eqs. (20), (21), and (22) which are completely analogous
to the properties of the usual Legendre polynomials needed
for the Regge transform] all the mathematical ingredients
necessary in order to perform the Watson-Sommerfeld-
Regge transform of the scattering amplitude in Eq. (34) are
available.
However, the big difference with respect to the usual case

is that the variable λ is related to the label l of the angular
functions by a nonanalytic relation: Eq. (28). Hence, the
phase-shift δðl; kÞ ¼ δðλðlÞ; kÞ as function of the angular
label l is meromorphic in the complex l-plane with a
branch cut on the real l axis from −jμj − 1=2 to jμj − 1=2.
Therefore, unlike what happens in [53,54], it will not be
possible to push further to the left the integration path of the
background integral in the Regge formula with monopoles.
It is also worth emphasizing the difference of the present

situation with respect to previous analysis of the Regge
formalism with singular potentials at the origin (see, in
particular, [71–75]) in which the usual Regge formalism
(namely, without any topological soliton and keeping both
the standard generators of the angular momentum and the
Legendre polynomial in the partial wave expansion) was
extended to include potentials of the form

VS ¼
A
r2

: ð35Þ

The physical results and their interpretations within that
references (see, in particular [71–73]) are basically opposite
to the present results (which strongly depend on the role of
the monopole and of the corresponding modified angular
momentum generator and Jacobi polynomials). In particu-
lar, in the usual case with singular potential considered in
[71–73] one has to interpret the singular potential as
attractive when A > 0 and as repulsive when A < 0.
Consequently, in that reference, the fixed cut in the angular
momentum plane6 which is generated by the singular
potential is interpreted as a sign of the attractive nature
of the singular potential itself. A further consequence of the
results in that reference is that one should not consider the
case A > 1=4 as “the system collapse into the center and
the very concept of scattering is no longer clear” (this
quotation is from [73] but similar results are contained in
[71,72,75]).

6In Regge theory applied to QFT, the appearance of cuts in the
complex λ plane is a well known phenomenon (see, in particular,
the discussion in [76–78]). The usual situation is that such branch
points are moving (in the sense that they depend on the
Mandelstam variables). On the other hand, the cuts considered
here are fixed due to their topological origin.
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On the other hand, the present situation is practically the
opposite. At a first glance, if one look at the Schrodinger
equation in the presence of both a monopole and a short
range potential in Eq. (25) one could naively think that the
effect of the monopole is to decrease the centrifugal barrier
due to the extra potential

VM ¼ μ2

r2
ð36Þ

which has always the opposite sign with respect to the usual
centrifugal barrier. In fact, as it is well known, this
interpretation is completely wrong since the effect of the
monopole (as well as of all the relevant topological solitons
in 3þ 1 dimensions) is actually to increase the centrifugal
barrier. The information about the increase of the centrifu-
gal barrier lies in the link between the radial and angular
equations. Unlike the setting considered in [71–75], the
effects of the monopole do not reduce just to the extra term
in Eq. (36). The angular equation and the corresponding
eigenvalues are affected by the presence of the monopole as
well. This fact has important consequences: first of all, in
the present case there are not extra bound states so that the
scattering problem is well defined for any physical value of
μ. Second, as far as the cut is concerned, due the fact that
μ ≥ 1=2 we are precisely in the range which was not
considered in [71–75] (namely, A > 1=4 in the notation of
[73]) and yet, of course, there will be no “collapse of the
wave function on the center” (as guaranteed by the angular
part of the monopole-short range potential problem).
The physical consequences of these facts will be dis-

cussed in the next section.

IV. MONOPOLE REGGE FORMULA
AND THE FIXED CUT

In the previous section it has been shown that one can
define the phase shift for a scattering problem off a
monopole and a short range potential and that the phase
shift satisfies, in the natural variable λ, all the bounds
derived in the classic papers [28,29,52–54]. Such results
together with the well known bounds on the Jacobi
polynomial (see Eqs. (20), (21) and (22): useful references
are [57] as well as the appendix of [58]) do allow a Watson-
Sommerfeld-Regge transform. However, in the present
case, there is an extra ingredient (which is a characteristic
fingerprint of the presence of topological solitons in a
scattering problem) which is absent in the usual helicity
amplitudes analyzed in [59–62].
Due to the fact that the relation between λ and l has the

form in Eq. (28), in the monopole case there is a fixed cut in
the complex l plane along the real l axis from −jμj − 1=2 to
jμj − 1=2. Thus, such a fixed cut opens up due to the
presence of a monopole and its size is 2jμj. Consequently,
as 2jμj is at least 1, the cut will touch at least one of the
poles of the factor 1= cos πλ which appears in the

Sommerfeld-Watson transform [see Eq. (9)]. This fact
prevents one from pushing the integration path of the
background integral in the Regge transform further to the
left. Thus, the procedure of [62] (which is common for
helicity amplitudes) cannot be used in this case. In a sense,
the presence of monopoles can be seen as an obstruction to
the maximal analyticity principle in the complex l plane
advocated by Chew and Frautschi [79,80].
It is worth emphasizing that the results of [26] (in which

the authors only analyzed the scattering off a monopole
without any short-range interaction and, consequently,
without using the Regge approach) are closely related to
the present ones. The reason is that the origin of the branch
cut singularities of the scattering amplitude in cos θ found
in [26] is the same as the origin of the fixed branch cut in
the complex l plane found in the present work: both of them
are related to the mismatch in Eq. (28) between λ and l in
the presence of a nontrivial topological structure. It seems
that the Regge theory is a more suitable tool to disclose the
physical implication of such a result (as, for instance, it
sheds considerable light on the asymptotic behavior of the
scattering amplitude).

A. The case μ= 1=2

Let us first consider the case in which μ ¼ 1=2 (which is
the lowest possible nontrivial value of the monopole
strength). Besides the intrinsic interest of this case, from
the point of view of non-Abelian theories, it describes the
asymptotic behavior of a scattering off a ’t Hooft-Polyakov
monopole of unit charge (namely, the stable non-Abelian
magnetic monopole) far from its core [25].
The first consequence of the presence of the fixed cut

along the real l axis is that, in order to perform the
Sommerfeld-Watson transform the analogue of the circuit
C in Eq. (9) (which in the usual case rounds all the integers
including 0) now must exclude 0 [namely, the first term in
the partial wave expansion in Eq. (34)] as the cut begins at
l ¼ −1 and ends at l ¼ 0.
Nevertheless, it is important to emphasize (as one can

check directly) that due to both the unitarity of the
S−matrix elements [namely δðλ; kÞ is real for k and λ
real7; in particular, for k real, δðλðlÞ; kÞ is real for l ¼ 0, 1,
2,... so that in each term of the partial wave expansion in
Eq. (34) the phase shift is real, see Eq. (6)] and to the
completeness relations satisfied by the Jacobi polynomial
the above scattering amplitude satisfies the optical
theorem:

7It is useful to remind the reader that the validity of such a
result only depends on the radial Schrodinger equation (see, for
instance, the first two sections of [53]). Consequently, it also
holds in the present case.
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Imfðk; θ ¼ 0Þ ¼ k
4π

σTotal:

Thus, the Sommerfeld-Watson transform of Eq. (34) (in
this section the extra kinematical factors of the rotation
matrices will not be considered) reads

fμðk; xÞjμ¼1=2 ¼ 2 exp ½iδð0; kÞ� sin δð0; kÞP1;0
0 ðxÞ

þ
Z
C1=2

½2ðlþ μÞ þ 1�dl
sin πl

P1;0
l ð− cos θÞ

× ½SðλðlÞ; kÞ − 1�; ð37Þ

where it has been taken into account that λðl ¼ 0; μ ¼ 1
2
Þ ¼ 0

and it has been explicitly emphasized that the phase shift
depends on l through λ. Thus, the first termof the partialwave
expansion cannot be encoded in the Sommerfeld-Watson
integral. On the other hand, such a term iswell behaved as the
phase shift δð0; kÞ is well behaved (and approaches to 0) for
large k (see, for instance, [20]).
The Sommerfeld-Watson integral in Eq. (37) can be

written in the Regge form ([28,29,52]):

fðk;xÞjμ¼1=2¼2exp½iδð0;kÞ�sinδð0;kÞP1;0
0 ðxÞ

þ 1

2πk

Z
Cε

½2ðlþμÞþ1�dl
sinπl

P1;0
l ð−xÞ½SðλðlÞ;kÞ−1�

−
i
k

XN
j¼1

RjP
2μ;0
αj ð−xÞ; ε∈Rþ: ð38Þ

In the above equations, the analogue of the Reλ ¼ 0 line for
the background integral in the usual case [see Eq. (10)] is
the line Cε defined by the equation

Rel ¼ ε;

where ε is a positive arbitrarily small but nonvanishing
number (one cannot take ε ¼ 0 otherwise one would touch
the cut which begins at l ¼ 0). Moreover, it is easy to check
that when Iml → �∞ with Rel ¼ ε, one gets

lim ðImλÞ → �∞; lim ðReλÞ → 1

2
; ð39Þ

so that the well known bounds (see [20,56]) for δðλ; kÞ
when jImλj → ∞ with Reλ fixed (which ensure the con-
vergence of the background integral) can be applied
Thus, the remarkable effect is that, unlike what happens

in the usual cases [28,29], the background integral does not
decrease anymore for large values of j cos θj. The obvious
reason is that the Jacobi polynomial in the background
integral in Eq. (38) is P1;0

εþiyð−xÞ (with ε arbitrarily small,
real and positive and y real varying from −∞ to þ∞).
Hence, one does not get the usual decreasing behavior for

large values of j cos θj. Rather, an oscillating non-decreas-
ing behavior for large values of j cos θj appears. Thus, at
low transferred momentum the behavior of the scattering
amplitude is not dominated by the leading Regge trajectory
and the background integral also plays a key role (com-
pared with the standard case). It is only when the leading
Regge trajectory αPðtÞ (which, in a relativistic context,
would correspond to the Pomeron) becomes positive
enough that the Regge pole behavior dominates the back-
ground integral.

B. Monopoles of higher charges

Here the case of higher values of μ are analyzed. From
the point of view of non-Abelian theories, this would
correspond to (the large r behavior of) non-Abelian
monopoles which are spherically symmetric and, at the
same time, have higher topological charges. In fact, such
spherically symmetric hedgehog configurations do not
exist8. An easy way to argue that this is the case is to
observe that such configurations would be highly unstable
(the same is true even if one gives up spherical symmetry
requiring just axial symmetry: see [3,4]).
As from the point of view of non-Abelian theories the case

of μ > 1=2 is completely different from the case μ ¼ 1=2, it
is natural to wonder whether the present approach is able to
detect in a direct way such a difference. Interestingly enough,
within the present approach, the difference between these
two cases emerges in a very natural and intuitive way. When
μ ¼ 1; 3=2;… it is trivial to see that the first terms (corre-
sponding to the lowest l) in the partial wave expansion in
Eq. (34) would have a complex λðlÞ and, consequently, a
complex phase shift δðλðlÞ; kÞwhich signals instabilities (see
the nice discussion in [81]). In particular, the optical theorem
does not hold in such cases. Thus, one can derive a well-
defined partial wave expansion and Regge continuation to
complex angular momenta only in the presence of stable
topological defects.

V. ON THE RANGE OF VALIDITY
OF THE APPROACH

As discussed in detail in [25], the scattering from a Dirac
monopole provides an accurate description of the scattering
form non-Abelian monopole far from the core of the latter.
In terms of energy bounds, this means that the present
results can be a valid description of scattering process in
non-Abelian theories when

s < Mmon; ð40Þ

8Stable multimonopoles solutions with higher topological
charges do indeed exist. However, such solutions are not spheri-
cally symmetric (see [3]). Consequently, when stable non-
Abelian multimonopole configurations are involved, the partial
wave expansion should be modified in order to take into account
the lack of spherical symmetry.
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where s is the center-of-mass Mandelstam variable and
Mmon is the mass scale which characterizes the nontrivial
topological structure of the non-Abelian theory.
The second limitation on the range of applicability of the

present results in non-Abelian theories arises from the
requirement that loops effects should be small. A necessary
condition in order for this to happen in two-body scattering
is that

���� ts
���� ≪ 1; ð41Þ

where t is the transferred momentum Mandelstam variable.
It is worthwhile to emphasize that the above condition is
nothing but the definition of the Regge region.
It is interesting to note that one of the most interesting

and still open issues in the application of Regge theory in
QCD lies well within the range defined by Eqs. (40)
and (41). Such an issue has to do with the soft Pomeron
[40] (detailed reviews are [41,42]). Consequently, the
present results on the effects of topological solitons in
Regge theory [which can be applied in QFT only when the
condition (40) holds and t is small enough to make
negligible all loops corrections] can be relevant from the
soft Pomeron perspective.
It is by now quite clear that the actual behavior of the

scattering amplitude at t ¼ 0 is much more complicated
than the one in [82] (see, for instance, [83,84]). Even if it is
well known (see [44] and references therein) that, at the
scale of the soft Pomeron, the total cross section is actually
very far from saturating the unitarity bound [35,43] there is
still a puzzle related to the fact that while other trajectories
lead to falling cross sections, the Pomeron can lead to rising

cross sections. In particular, it is difficult to justify this kind
of behavior in terms of a simple Regge pole. Moreover, the
BFKL equation [45–47] is able to describe very well the
“hard Pomeron” (namely, the Pomeron in the region in
which the Mandelstam variables s and t are large enough to
allow to neglect nonperturbative effects. However, even this
approach (which should be considered as the first principle
approach derived from QCD) fails when s and t are low
enough (but still within the Regge region js=tj ≫ 1).
In the presence of a monopole, the background integral

in the Regge formula9 in Eq. (38) will not decrease with s.
Therefore, a clear-cut Regge pole behavior can only emerge
when the leading trajectory begins to dominate the back-
ground integral in Eq. (38). Consequently, the present
results strongly suggest a proposal which will be discussed
in the next section.

VI. RELATIVISTIC GENERALIZATIONS

It is natural towonder whether the present results are just a
curiosity of the quantum mechanical setting considered in
this paper or if they resist in a QFT context as well. One can
argue as follows that the second possibility is likely to
happen. When one considers the Froissart-Gribov extension
of the Regge formula in theQFT scattering of scalar particles
in the presence of a monopole (or any other relevant
topological defect such as instantons, dyons and so on) very
similar changes appear due to the fact that the monopole
modifies thegenerators of the angularmomentumoperator in
the QFT case too (see, for instance, [10,25]). Indeed,
according to the Gribov-Froissart procedure [30,31] in the
scalar case when the presence of a monopole is taken into
account, it is natural to guess the following expression
(following chapter 1 of [48]):

Aμðs; tÞjμ¼1=2¼ 2P1;0
l¼0

�
1þ2

s
t

�
aðλð0Þ; tÞþ 1

4i

Z
C

½2ðlþμÞþ1�dl
sinπl

X
η¼�1

ðηþ expð−iπlÞÞP1;0

�
l;1þ2

s
t

�
aηðλðlÞ; tÞ ð42Þ

where P1;0ðl; xÞ is the analytical continuation in the complex l-plane of the Jacobi polynomial P1;0
l ðxÞ of indices (1, 0) and

angular label l while a�1ðλðlÞ; tÞ are the analytic continuation of the even and odd partial waves amplitudes and η is the
signature10As in the nonrelativistic case, the first term cannot be included into the Sommerfeld-Watson contourC due to the cut
related to the fact that the partial scattering amplitude aðλðlÞ; tÞ depends on l through λðlÞ in Eq. (28). Thus, the Regge formula
in this case reads

Aμðs; tÞjμ¼1=2 ¼ 2P1;0
l¼0

�
1þ 2

s
t

�
aðλð0Þ; tÞ þ

X
η¼�1

X
nη

cnηP
1;0

�
αnηðtÞ; 1þ 2

s
t

�

þ 1

4i

Zεþi∞

ε−i∞

½2ðlþ μÞ þ 1�dl
sin πl

X
η¼�1

ðηþ exp ð−iπlÞÞP1;0

�
l; 1þ 2

s
t

�
aηðλðlÞ; tÞ; ð43Þ

9As it is explained in the next section, this result together with the cut induced by the monopole on the real axis of the complex l-plane
hold in the relativistic case as well.

10It is worthwhile to note that, thanks to Eq. (39), the analysis of the behavior of the partial wave amplitudes along the imaginary
l-axis when jlj → ∞ is the same as in the usual case (see chapter 1 of [48]).
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where αnηðtÞ is the position of the nηth Regge pole of parity η
and all the coefficients multiplying the Jacobi polynomials
evaluated at the Regge poles (compare, for instance, with
Eq. (1.15) of [48]) have been denoted as cnη (which depend
on η and on the transferred momentum t). Also in the
relativistic case the background integral in theRegge formula
is very similar to the one in Eq. (38). Since the real part of l in
the last term (namely, the background integral) in Eq. (43) is
positive and arbitrarily small while the imaginary part can
vary from− toþ∞, it does not decreasewhen s → þ∞ and a
clear-cut Regge pole behavior only emerges for large enough
t (assuming rising trajectories).
As from the theoretical point of view the main challenge

is to explain the observed behavior of the Pomeron for very
low/vanishing t and not too high s (namely, s of the order of
GeVor less), the concrete proposal arising from the present
results [and, in particular, Eq. (43)] is that instead of
parametrizing the soft Pomeron in terms of a single Regge
pole (as it is done in the majority of the phenomenological
papers on this topic), one should use a parametrization of
the form in Eq. (43) (keeping only the leading Regge pole
and the background integrals) to try to fit the proton-proton
scattering data in [83]. The only missing piece of informa-
tion11 is the (re)construction of (a good phenomenological
expression for) the partial scattering amplitude aðλðlÞ; tÞ for
vanishing t. Once this is achieved, it could be possible to
reconcile the observed nondecreasing scattering amplitude
at t ¼ 0 (thanks to the nondecreasing background integral)
with a Pomeron trajectory with intercept less than 1 in
agreement with unitarity (as, at least in the Schrodinger
case, the optical theorem with a monopole holds). This very
interesting topic is actually under investigation. It is
worthwhile to emphasize that any clear deviation from
the single-pole behavior at t ¼ 0 would make this proposal
more attractive.
From a fundamental QCD perspective, the BFKL equa-

tion (introduced in [45–47]) is the best attempt to describe
the Pomeron from first principle (detailed review are
[48,49]). It describes the (Reggeized version of) the
exchange of two gluons contracted in such a way to have
the vacuum quantum number as the observed Pomeron.
One of the basic building blocks of the BFKL equation is
the gluon propagator. Since, in the usual gluon propagator
adopted in the BFKL formalism, the internal and space-
time indices are not linked in hedgehog-like style, it is
impossible to incorporate into the BFKL formalism this
phenomenon of spherical symmetry up to internal rotations
(which is one of the characteristic fingerprints of topologi-
cally nontrivial solitons).

The most obvious way to overcome this problem is to
use in the BFKL equation the gluon propagator obtained
acting on the usual propagator with the singular gauge
transformations12 introduced in [85] in order to make the
non-Abelian theory as “Abelian as possible” (the regular-
ized version of this gauge choice is now known as maximal
Abelian gauge). Such propagator (which would have the
necessary hedgehog-like structure) would include into the
BFKL analysis relevant topological information. Another
possibility would be to use in the BFKL equation the gluon
propagator in the background of an instanton or a non-
Abelian monopole: the gluon propagator in these cases
would have the required hedgehog structure.
I hope to come back to these interesting issues in a future

publication.

VII. DISCUSSION AND FUTURE DEVELOPMENTS

In this paper the quantum mechanical scattering from a
monopole has been discussed using the Regge theory of
complex angular momenta. In order to apply the Regge
theory in the presence of monopoles, a short range potential
(chosen as a superposition of Yukawa potentials) has to be
included. Such an inclusion is very welcome as it describes
the typical effects of strong interactions. Moreover, it is also
useful as a description of the far field behavior of the Higgs
field of a ’t Hooft-Polyakov monopole.
The results of the analysis is that the scattering ampli-

tudes in the presence of both a monopole and a short range
potential are very similar to Jacob-Wick helicity amplitude.
From the intuitive point of view, this formal result is quite
satisfactory due to the well known fact [10] that scalars
within a monopole field can behave as fermions. However,
the application of Regge analytic continuation in the
complex angular momentum plane discloses a crucial
difference between this case and the usual Reggeization
of helicity amplitude. Namely, a fixed branch cut on the real
l axis of width 2jμj (where μ is the strength of the
monopole) opens up. Such a cut is related to the modified
generators of the angular momentum operator in the
presence of a topological soliton (and a monopole in
particular). The most relevant consequence of this fact is
that the background integral in the Regge formula cannot
be pushed to the left. Therefore, unlike what happens in the
usual case, the background integral in the Regge formula
does not decrease anymore for large values of j cos θj.
Hence, a clear-cut Regge pole behavior only emerges when
the transferred momentum is large enough so that the
leading pole dominates on the background integral.
Consequently, at low transferred momentum, the back-
ground integral plays a key role.

11It seems that there are not enough available data to fully
reconstruct aðλðlÞ; 0Þ yet. However, the task to build a good
phenomenological expression for aðλðlÞ; 0Þ does not appear to be
out of reach.

12The price to pay of course is that such gauge transformations
are singular and the corresponding singularities describe mag-
netic monopoles degrees of freedom.
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These results open the possibility to reconcile the
observed nondecreasing scattering amplitude at t ¼ 0
(thanks to the nondecreasing background integral) with a
Pomeron trajectory satisfying the unitarity constraint since,
at least in the Schrodinger case, the optical theorem with a
monopole holds. This very relevant topic is worth further
investigation.
A further interesting issue is the analysis of the BFKL

equation in the presence of nontrivial topological structures
such as monopoles. The present results strongly suggest
that the physical consequences of such topological solitons
are especially relevant at low transferred momentum, well
within the range of energies characterizing the soft
Pomeron. A concrete way to include such effects into
the BFKL equation has been suggested.
At last, as it has been already remarked in the intro-

duction, topological defects in 2þ 1 dimensions give rise
to similar effects as far as the centrifugal barrier is
concerned (a typical case being the interaction of a
charge with the (2þ 1)-dimensional magnetic monopole

described by a Chern-Simons term: see, for instance, the
detailed review [50]). Correspondingly, it is a very inter-
esting and (to the best of author’s knowledge) open
question to extend the Regge formalism of complex angular
momenta to scattering problems by defects and short-range
potential in (2þ 1) dimensions. In particular, it would be
very interesting to apply the Regge formalism to the
framework of [51] in the presence of short range
potentials.
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