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We explicitly show perturbative gauge fixing independence of the tunneling rate to a stable radiatively
induced vacuum in the Abelian Higgs model. We work with a class of Rξ gauges in the presence of
both dimensionless and dimensionful gauge fixing parameters. We show that Nielsen identities survive
the inclusion of higher order operators and compute the tunnelling rate to the vacua modified by the
nonrenormalizable operators in a gauge invariant manner. We also discuss implications of this method for
the complete Standard Model.
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I. INTRODUCTION

The discovery of the 125 GeV Standard Model Higgs
boson, and lack of confirmation of any new physical state
in the LHC experiments makes it important to search for
possible hints of a possible extension, based on the SM
itself. One such possibility is the investigation of the
Standard Model effective potential, which has already been
the subject of considerable activity [1–8].
Inclusion of renormalization group improvement in the

Standard Model effective potential reveals an interesting
structure at very large field strengths. Namely a maximum
near 1011 GeV and a new minimum at super-Planckian
field strength. The implications depend critically on the
value of the measured SM parameters, most importantly the
Higgs quartic coupling and the top quark Yukawa coupling.
Building on the formalism developed in [9,10], it was
obtained that for the central value of top and Higgs masses
the physical electroweak symmetry breaking minimum is
metastable with respect to the tunneling to the deeper
minimum at super-Planckian value of the Higgs field. This
means that the computed lifetime of the SM vacuum is
larger than the estimated age of the Universe, and no
modification is required to avoid conflict with observations.
However the instability border in the parameter space of
Mtop −Mhiggs masses lays uncomfortably close, which
means that this result is rather sensitive to modifications
brought in by any extension of the SM.
It is crucial to note that the whole effect of instability

comes from the radiative corrections to the effective action.
This means that in the first derivative of the potential with
respect to the field, contributions from various radiative
corrections cancel against each other and against the tree-
level contributions to create additional critical points, not

present at tree level. This makes the whole effect particu-
larly interesting and particularly sensitive to new physics,
which may appear in the effective action through radiative
corrections. A question which becomes relevant in the
context of large radiative corrections is the question about
gauge independence of observable quantities such as the
lifetime of the electroweak vacuum.
Another important question concerns stability of the SM

vacuum after inclusion of ultraviolet completions at or
below the Planck scale. This problem can be studied in the
spirit of the effective field theory. In [11] the neutral Higgs
field potential was extended with higher order operators
suppressed by suitable powers of the Planck mass. It was
shown that for sensible values of the coupling, electroweak
vacuum can be destabilized. In [12] we studied this issue
further showing allowed values of the new operators and
justifying many approximations used in computation of the
lifetime.
Here we study these issues further, from the point of

view of the requirement of gauge and scale independence
of physical results such as the decay rate. The complete
discussion within the SM is rather prohibitive at this point;
however, one can learn a lot by studying in detail a simple
yet nontrivial example of the Abelian Higgs model.
Towards the end of this paper we will draw conclusions
which can be extended to more general, SM-like models
with additional nonrenormalizable operators.
Gauge fixing independence of the observables, i.e.

S-matrix elements and physical masses, is in principle a
mathematical fact and must hold in any consistent gauge
theory. This should also be the case for the life time of a
metastable vacuumlike state. Given Nielsen identities [13]
one can prove that the full effective action Γ½Φ� for a
configuration of the mean fieldΦwhich solves the equation
of motion δΓ

δΦ ¼ 0 stays invariant with respect to the
variation of gauge fixing parameters in covariant gauges;
see for instance [14,15]. This is a crucial step and one can
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accept that this shows that at the formal level the vacuum
lifetime is gauge invariant. However, in practice one needs
to resort to a perturbative calculation of the effective action
and to a quasiclassical determination of the decay rate
following classic formulas by Callan and Coleman, and it is
a challenge to perform the calculation in such a way that the
result stays gauge fixing independent to a given order in the
perturbative expansion. In particular, the silent assumption
is that to calculate the decay rate one should use the
renormalized effective action, which is finite. At the same
time the formal proofs are usually performed at the level of
unrenormalized, formal, expressions; see [16]. In this note
we shall try to be as explicit as possible in performing
the gauge independent calculation at the level of the
renormalized Abelian Higgs model. We shall consider
the renormalized 1-loop effective action to the order g6

in the gauge coupling and check explicitly various asser-
tions and expectations. As usual, we shall be concerned
with the exponential dependence of the lifetime on the
effective action for the relevant solution of the equations of
motion (EOMs). In fact, the gauge dependence of the
quasiclassical determinant is rather complicated and the
proof that it is gauge fixing independent, as it should be,
poses a nontrivial challenge; see [15]. In the proof of gauge
fixing invariance the central role is played by Nielsen
identities, which read

α
∂ΓðαÞ½ϕ�

∂α ¼
Z

d4x
δΓ

δϕjðxÞ
Hα

j ðϕ; xÞ; ð1Þ

where α is a gauge fixing parameter. The nonlocal
expression Hα

j may be expanded in derivatives, see [16],

Hα
j ¼ Cα

j ðϕÞ þDα
j ðϕÞð∂ϕÞ2 þ � � � : ð2Þ

The coefficients in the expansion of the functional Hj can
be computed perturbatively. One possible expansion is in
the powers of ℏ—the usual loop expansion. However, in the
case of our prime interest, that is in the case of the Standard
Model, the nontrivial vacua at large field strength are
generated radiatively and their existence results from a
delicate balance between the tree-level quartic term and
higher order corrections. This relies on the approximate
relation λ ∼ g4, where g is a gauge coupling or a top
Yukawa coupling. This relation should be taken into
account when performing the perturbative expansion,
since, for instance, there exist contributions of the order
g6 at the level of 1 loop and also at the level of 2 loops.
Hence, numerically the 2-loop diagrams at the order g6, or
higher-loop effects at higher orders, could be in principle
as important as the lower-loop ones. Of course, this
phenomenon depends on the model in question. First, each
additional loop is suppressed by an additional numerical
factor of 1=16π2. Second, the couplings run with energy
and the basic relation λ ∼ g4 could be modified.

Despite the presence of two gauge fixing parameters,
at the level of 1-loop and without any additional matter
fields, our calculation of the corrections is still relatively
simple and we do not display its intermediate steps.
However, many-loop calculations without completely fix-
ing the gauge are also manageable and we refer the
interested reader to [17,18] discussing the displacement-
operator formalism (D-formalism), which allows one to
systematically and efficiently trace the gauge fixing
dependence at subsequent orders of his calculation.
Whilewe simply assume thenonperturbativevalidity of the

Nielsen identities, it is important to note that they follow as
Slavnov-Taylor identities associated with the Becchi, Rouet,
Stora and Tyutin (BRST) invariance present to all orders in
any renormalizable gauge theory [19]. The authors of [17]
consider an extension of the BRST transformation (defining
an on-shell symmetry), where gauge fixing parameters are
promoted to fields and included in the transformation algebra.
This allows them to utilize the D-formalism in systematically
examining gauge fixing dependence of the Hα

j functional to
all orders. Thus, our explicit results regarding the Abelian
Higgs model should be viewed as a simple and illustrative
example which may readily be generalized.

II. ABELIAN HIGGS MODEL

Consider a renormalizable Uð1Þ gauge theory of a single
scalar matter field. We write the Lagrangian, L, for one
gauge field Aμ and two real components of a complex scalar
field φi, i ¼ 1, 2.
A two-parameter (quasi-)t’Hooft gauge fixing is

employed in Lgf . Specifically the dimensionful parameter
v is nonzero and its presence breaks the global gauge
symmetry. The v is coupled in Lgf to the scalar field along
the φ2 direction, perpendicular to the φ1 direction along
which we wish to study the quantum corrections. This is
no accident and it constitutes a major simplification. The
complete Lagrangian takes the form

L ¼ L0 þ Lint þ Lgf þ Lψ ; ð3Þ

L0 ¼
1

2
∂μφi∂μφi −

1

2
m2φiφi −

1

4
FμνFμν; ð4Þ

Lint ¼ −Zφg½ϵijð∂μφiÞφj�Aμ þ Zφ
g2

2
φiφiAμAμ

− Zλ
λ

4!
ðφiφiÞ2 þ Lct; ð5Þ

Lct ¼
1

2
ðZφ − 1Þ∂μφi∂μφi −

1

2
ðZm2 − 1Þm2φiφi

−
1

4
ðZA − 1ÞFμνFμν; ð6Þ

Lgf ¼ −
1

2ξ
ð∂μAμ þ gvφ2Þ2; ð7Þ
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Lψ ¼ ∂μψ
�∂μψ þ g2vφ1ψ

�ψ : ð8Þ

The expression L0 þ Lint þ Lct is invariant with respect to
the gauge transformation

δAμ ¼ ∂μθ; ð9Þ

δφi ¼ gθϵijφj: ð10Þ

Consequently, the form of the ghost Lagrangian Lψ

follows from the chosen gauge fixing term:

Lψ ¼ −ψ�
�
δð∂μAμ þ gvφ2Þ

δθ

�
ψ

¼ −ψ�½∂μ∂μ − g2vφ1�ψ : ð11Þ

Notice the coupling of ghost fields to φ1. Normalization
of the θ parameter along with the form of Lgf are chosen
such that the kinetic term of ψ is canonical but the gauge
coupling g in second power appears in front of the φ1ψ

�ψ
term. One could opt to use a more complicated (but also
desirable from the point of view of preserving Higgs-boson
low-energy theorems) gauge fixing, one where the v
parameter in Lgf is substituted with φ1. An extensive study
of gauge dependence of the effective potential with such a
choice was performed in [18].
The ξ and v are gauge parameters only and as such their

values are in principle irrelevant for physical predictions.
The fact that one is usually confined to perturbative
calculations puts practical limitations on that arbitrariness.
Some intermediate results, which, although nonphysical,
are rather desirable (for instance Green functions) may not
exist in a finite form in a particular renormalization scheme
and for a particular choice of values for 1=ξ and v. Second,
since 1=ξ and v appear in Feynman rules, one is forced to
assign to them an order in the coupling constant which
governs the perturbative expansion. For example, in these

notes we assume both ξ and v to be formally of order zero
in g, which is different from λ and m2 that we assume to be
of order g4. We will yet comment on these issues, as we
encounter them later.
Lastly, in case one wishes to shift the field,

φ1 → hφi þ φ1, it is not an uncommon practice to choose
the value of v in such a way that the bilinear terms mixing
the Aμ and φ2 fields cancel at the tree level (up to a full
derivative). This would correspond to assigning v¼−ξhφi.
The constant hφi could in turn be, say, a minimum of a tree-
level potential expressed in terms of scalar couplings. We
do not follow that rationale in these notes, since we wish to
study the v independence and possibly use it as a correct-
ness check.
And yet we do need to shift the field, φ1 → wþ φ1. The

reason behind it is that the w, aside from being a free,
nonphysical parameter, has to get renormalized to counter
the loop divergences. The Lint above contains all but one
counterterm. What is missing is a divergent δw that we have
to add to w after the shift.

III. QUANTUM CORRECTIONS

We proceed to write down Feynman rules, compute
renormalization group equations and finally the effective
action. All of that is done using the background field
method: instead of including infinitely many insertions
of momentumless legs, one splits the field variable
φ1 ¼ φ∘ þ φ0, such that φ∘ carries the momentumless part
of φ1. The φ0 plays the role of a propagating quantum field
but ultimately vanishes if not hit by a spacetime derivative.
The φ∘ on the other hand is treated like a parameter.
Firstly, let us write down the second derivative of the

Lagrangian with respect to all fields. That will give us the
inverse of a propagator D. (A spacetime derivative hitting a
field in the Lagrangian translates into momentum in the
Feynman rule according to ∂μ → −ikμ, where k is momen-
tum flowing into the vertex.)

iD−1ðkÞ ¼ diag

0B@k2 −m2 −
λ

2
φ∘2;−ðk2 − g2φ∘2Þ

�
gμν −

kμkν

k2

�
;

×

264−
�
k2
ξ − g2φ∘2

�
kμkν

k2 ; −ikνg
�
φ∘ þ v

ξ

�
ikμg

�
φ∘ þ v

ξ

�
; k2 −m2 − λ

6
φ∘2 − g2v2

ξ

375; k2 þ gvφ∘

1CA: ð12Þ

The diagonal elements correspond to subsequent field subspaces: φ1, transverse component of the vector field

AT
μ ¼ ðgμν − kμkν

k2 ÞAν, longitudinal component AL
μ ¼ kμkν

k2 Aν mixed with φ2 and lastly the ghosts ψ . The inverse gives us the
propagators
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−iDðkÞ ¼ diag

0B@ 1

k2 −m2 − λ
2
φ∘2 ;−

1

k2 − g2φ∘2

�
gμν −

kμkν

k2

�
;

×
1

DN

264
h
−ξ

�
k2 −m2 − λ

6
φ∘2

�
þ g2v2

i
kμkν

k2 ; −ikνgðξφ∘ þ vÞ
ikμgðξφ∘ þ vÞ; k2 − ξg2φ∘2

375; 1

k2 þ gvφ∘

1CA; ð13Þ

DN ¼ k4 − k2
�
m2 þ λ

6
φ∘2 − 2g2φ∘v

�
þ g2φ∘2

h
ξ
�
m2 þ λ

6
φ∘2

�
þ g2v2

i
≕ ðk2 −m2þÞðk2 −m2

−Þ

m2þðφ∘2Þ ¼ 1

2

�
m2 þ λ

6
φ∘2

�
− g2vφ∘ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2 þ λ

6
φ∘2

��
1

4

�
m2 þ λ

6
φ∘2

�
− g2vφ∘ − ξg2φ∘2

�s

m2
−ðφ∘2Þ ¼ 1

2

�
m2 þ λ

6
φ∘2

�
− g2vφ∘ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2 þ λ

6
φ∘2

��
1

4

�
m2 þ λ

6
φ∘2

�
− g2vφ∘ − ξg2φ∘2

�s
ð14Þ

Vertices are straightforwardly read off from the Lagran-
gian. Resulting Feynman rules are summarized in the
Appendix.

A. Counterterms

The counterterms which are both necessary and suffi-
cient to cancel all the 1-loop divergencies are

ZA ¼ 1 −
g2

24π2
1

ϵ
; Zφ ¼ 1þ g2

8π2
ð3 − ξÞ 1

ϵ
;

Zw ¼ 1 −
g2

8π2
v
w
1

ϵ
; Zλ ¼ 1þ 1

4π2

�
9
g4

λ
− g2ξ

�
1

ϵ
;

Zm2 ¼ 1 −
g2ξ
8π2

1

ϵ
: ð15Þ

In particular we do not need additional counterterms
in the form of interactions present in the gauge fixing
Lagrangian. There is no δLgf

. That does not mean that the
gauge fixing parameters do not get renormalized. On the
contrary, since the renormalization of the kinetic terms
already forced us to define bare gauge coupling and fields,
gB ¼ μϵ=2Z−1=2

A g, ðφiÞB ¼ Z1=2
φ φi and ðAμÞB ¼ Z1=2

A Aμ, we
would like to have those in the Lgf as well.

Lgf ¼ −
1

2ξ
ð∂μAμ þ gvφ2Þ2

¼ −
1

2Z1=2
A ξ

h
Z1=2
A ∂μAμ þ ðμϵ=2Z−1=2

A gÞ

× ðμ−ϵ=2ZAZ
−1=2
φ vÞZ1=2

φ φ2�2

¼ −
1

2ξB
ð∂μA

μ
B þ gBvBφ2BÞ2 ð16Þ

We see that tree-level ξ and v are not the bare,
renormalization scale invariant quantities. We have rather

ξB ¼ Z1=2
A ξ; vB ¼ μ−ϵ=2ZAZ

−1=2
φ v: ð17Þ

B. Beta functions

Given the counterterms from the previous section, one
obtains the following 1-loop beta functions:

βg ¼
g3

48π2
; γφ ¼ −

g2ð3 − ξÞ
16π2

;

βλ ¼
3g2

4π2
ð3g2 − λÞ; βm2 ¼ −

3g2

8π2
m2;

βξ ¼ −ξ
g2

48π2
; βv ¼ −v

g2

16π2

�
2

3
þ ð3 − ξÞ

�
;

βw ¼ g2

16π2
½wð3 − ξÞ − 2v�: ð18Þ

βg warns of the standard Landau pole. Reassuringly the
beta functions of g, m2, and λ do not depend on ξ or v.
Normally one would also have a 1-loop contribution to βλ
that is proportional to λ2. We neglected it as a contribution
of the order g8.

C. Effective action as a sum of diagrams

We wish to calculate a perturbative approximation to the
full effective action, usually denoted by Γ½ϕ�, a functional
that generates 1PI Green functions. To this end we
represent Γ as an spacetime integral of an effective
Lagrangian, Leff . The Leffðϕ; ∂μϕÞ is constructed as a
function of fields and their spacetime derivatives, such that

the nth functional derivative of its Fourier transform δn ~Leff

δn ~ϕ
is
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equal to a sum of n-legged 1PI diagrams. Also, we limit
ourselves and ask only about the dependence on the φ1

field, Γ½φ1� ¼ Γ½φ1;φ2 ¼ 0; Aμ ¼ 0;ψ ¼ 0�.
The computation of Leff hinges on a fact that we employ

yet another expansion. Namely, from all diagramatic
contributions we will drop any dependence on the external
momenta above the first nontrivial order, i.e. the second
power. In other words the (already perturbative in cou-
plings) effective action will be a function of a field variable
understood as the value homogeneously filling the four-
dimensional spacetime where any position dependence is
treated as a perturbation.

D. Effective potential at 1 loop

Sum of the vacuum diagrams constructed with the
shifted Feynman rules constitutes the momentum indepen-
dent part of the effective Lagrangian, called effective
potential, Veffðφ∘Þ. At the level of 1 loop, every contribu-
tion to Veff is just a closed line of subsequent propagators
and masses (two-field couplings). Summing such contri-
butions one readily obtains the well-known formula for the
so-called Coleman-Weinberg 1-loop effective potential,

Veffðφ∘Þ ¼ −
i
2

X
fields∶
bos ðþ1Þ
fer ð−2Þ

Z
k
log det ½iD−1

fieldðφ∘; kÞ�: ð19Þ

The matrix under the determinant is exactly the one given
in (12). The sum symbol reminds us to multiply the

contribution from ghosts by −2 (owing to them being
complex scalars that follow the Fermi statistics). We get
(D ¼ 4 − ϵ)

V1-loop
eff ðφ∘Þ ¼ −

i
2
μϵ

Z
dDk
ð2πÞD

�
log

�
k2 −m2 −

λ

2
φ∘2

�
þ ðD − 1Þ log½k2 − g2φ∘2�

þ log½DN � − 2 log½k2 þ g2vφ∘�
�
: ð20Þ

Already at this point we can count the powers of g.

Veff ¼ Vg4 þ Vg6 þOðg8Þ: ð21Þ

Sincem2 and λ are assumed to be of order g4, the first log
in (20) is of order g8 and we will skip it. The second log is a
nice (gauge fixing independent) contribution of order g4,
which makes it as important as the tree-level Lagrangian.
That is of course part of the design underlying our hope to
manufacture qualitative changes in the action via quantum
corrections. Using

−
i
2
μϵ

Z
dDk
ð2πÞD logðk2 − ΔÞ ¼ 1

4

Δ2

ð4πÞ2
�
log

Δ
μ̄2

−
3

2
−
2

ϵ

�
ð22Þ

one arrives at

Vg4ðφ∘Þ ¼ m2

2
φ∘2 þ Zλg0

λ

4!
φ∘4 þ 1

4

ðg2φ∘2Þ2
ð4πÞ2

�
3

�
log

g2φ∘2
μ̄2

−
3

2
−
2

ϵ

�
þ ϵ

2

ϵ

�
¼ m2

2
φ∘2 þ λ

4!
φ∘4 þ 3g4φ∘4

64π2

�
log

g2φ∘2
μ̄2

−
5

6

�
þ 1

ϵ

�ðZλ − 1Þg0
4!

λ −
3g4

32π2

�
φ∘4: ð23Þ

The divergent parts cancel. It is not difficult to convince
oneself that no multiple-loop diagram contributes at
order g4.
The last two logarithms in (20) should be combined:

log½DN � − 2 log½k2 þ g2vφ∘�

¼ log

�
1 −

k2 − g2φ∘2ξ
ðk2 þ g2vφ∘Þ2

�
m2 þ λ

6
φ∘2

��
: ð24Þ

With the help of dimensional analysis, one can
easily see that, after the integration over k, only the
first term in expansion of the logarithm contributes at
order g6.

ð25Þ

where m2ð2;2Þðφ∘Þ ¼ m2 þ λ

6
φ∘2 ¼ 1

φ∘
∂
∂φ∘ V tree

g4 : ð26Þ

OurOðg6Þ contribution is simply a single φ2 propagator,
contracted with the tree-level self-coupling of φ2, and
computed at the lowest order in g.
Any remaining g6 correction would originate exclusively

from 2 (and more) loop diagrams. Many of those were
analyzed in [16]. In this paper, we decide to omit higher
loop diagrams. Numerically this is fully justified thanks to
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the suppression by ð4πÞ2. Also we do not expect them to
bring any qualitative novelty to the presented results.
One remark about a particular 2-loop contribution is

in place: One could easily include in his potential the
diagrams in Fig. 1 by extending the definition of the

effective φ2 coupling in (26) by m2ð2;2Þ→fm2ð2;2Þ ¼ ∂
∂φ∘Vg4.

Formally the difference between m2ð2;2Þ and fm2ð2;2Þ in (25)
is, as a 2-loop correction, beyond our level of accuracy. But
we will continue to omit the “tree” superscript for the sake
of convenience.
Performing the integration in (25) and including all our

counterterms we arrive at

Vg6 ¼
g2

32π2

�
v − ð2vþ ξφ∘Þ log−g

2vφ∘
μ̄2

� ∂Vg4ðφ∘Þ
∂φ∘ : ð27Þ

E. Correction to the kinetic term

We move on to the calculation of corrections to the
kinetic term of the φ1 field. To that end, as discussed at the
beginning of this section, we will use the φ∘ dependent
Feynman rules given in the Appendix to calculate the loop
corrected φ0 two-point function, ðD−1Þðp2Þ. Its derivative
with respect to p2 is then the desired kinetic term,
ðD−1Þ0ðp2Þ ¼ K ¼ Kðφ∘Þ,

Lkðφ1Þ ¼
1

2
Kðφ1Þ∂μφ1∂μφ1;

K ¼ Zφ þ δK ¼ 1þ Kg2 ; ð28Þ

where (cf. also [16])

Kg2 ¼ 3
g2

ð4πÞ2 log
g2φ∘2
μ̄2

− ξ
g2

ð4πÞ2
�
log

−g2vφ∘
μ̄2

þ 1

�
− 2

g2

ð4πÞ2
v
φ∘ þOðg4Þ: ð29Þ

It is not obvious at which power of g one should truncate
the expansion of K to be consistent with expansion of the
potential up to g6. Of course intuitively, since we have
included corrections one order in g2 higher than the tree-
level potential, we shall do the same for the K function.
Another argument for the consistency of such a truncation
will be given below in the form of the formulas (42), (43).

IV. RENORMALIZATION SCALE (IN)
DEPENDENCE OF THE ACTION

We will now solve the RGEs (18).

gðμÞ ¼ g0 þ
g30

48π2
log

μ

μ0
þOðg5Þ;

λðμÞ ¼ λ0 þ
3

4π2

�
ð3g40 − λ0g20Þ log

μ

μ0
−
g60
π2

log2
μ

μ0

�
þOðg8Þ;

m2ðμÞ ¼ m2
0

�
1 −

3g20
8π2

log
μ

μ0

�
þOðg8Þ;

ΓðμÞ ¼ Γ0

�
1þ g20

16π2
ð3 − ξÞ log μ

μ0

�
þOðg4Þ;

ξðμÞ ¼ ξ0 þOðg2Þ;
vðμÞ ¼ v0 þOðg2Þ;

wðμÞ ¼ w0 þ
g20

16π2
ðw0ð3 − ξ0Þ − 2v0Þ log

μ

μ0
þOðg4Þ;

ð30Þ

where g0 ¼ gðμ0Þ, etc.
The level of expansion in g is limited by the accuracy of

our counterterms (15) which was g2. Altogether we are able
to write down the effective action including corrections
computed at 1-loop up to the order g6 in the coupling
constant and up to first power of momentum squared, that is
up to p2.
We can now take our perturbative effective action with its

explicit μ dependence,

L ¼ 1

2
½1þ Kg2ðφ1; μÞ�ð∂φ1Þ2 − Vg4ðφ1; μÞ − Vg6ðφ1; μÞ

ð31Þ

and plug the running parameters (30) together with the
running and shifted field variable in

g → gðμÞ;… ð32Þ

φ1 → ΓðμÞφ1 þ wðμÞ: ð33Þ

The implicit μ dependence induced by the running
perfectly cancels the explicit one. The whole effect on
the action amounts to adding the “0” subscripts to all
parameters and to the renormalization scale. The μ param-
eter disappears completely at the employed accuracy.
Taking φ̂ðxÞ ¼ Γ0φ1ðxÞ þ w0, one finds

FIG. 1. The painlessly included 2-loop diagrams.
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L ¼ 1

2
½1þ Kg2ðφ̂Þ�∂μφ̂∂μφ̂ − ðVg4 þ Vg6Þðφ̂Þ;

Kg2 ¼ 3
g20

ð4πÞ2 log
g20φ̂

2

μ̄20
− ξ0

g20
ð4πÞ2

�
log

−g20v0φ̂
μ̄20

þ 1

�
− 2

g20
ð4πÞ2

v0
φ̂
;

Vg4 ¼
m2

0

2
φ̂2 þ λ0

4!
φ̂4 þ 3g40φ̂

4

64π2

�
log

g20φ̂
2

μ̄20
−
5

6

�
;

Vg6 ¼
g20

32π2

�
v0 − ð2v0 þ ξ0φ̂Þ log

−g20v0φ̂
μ̄20

� ∂Vg4ðφ̂Þ
∂φ̂ :

ð34Þ

We note that the Γ0 and w0 parameters are irrelevant, as
they serve only to linearly reparametrize the field variable
and disappear when the action is expressed in terms of φ̂.

V. GAUGE FIXING (IN)DEPENDENCE
OF THE ACTION

As is well known, although the effective action exhibits
dependence on the gauge fixing parameters, all physical
“observables,”when derived consistently in frames of some
perturbative expansion, should end up being gauge inde-
pendent at the level of employed accuracy.

Γ½ϕ� ¼ Γðξ; vÞ½ϕ�: ð35Þ

An observable could be for instance the value of action
computed at some solution to the equation of motion.
Schematically

EOM∶
δΓ½ϕ�
δϕ

				
ϕ¼ϕsol

¼ 0;

gauge fixing independence∶ ξ
∂
∂ξΓ½ϕsol� ¼ v

∂
∂vΓ½ϕsol� ¼ 0:

ð36Þ

The least contrived example of such a solution would
probably be a homogeneous field value extremizing the
effective potential,

φðxÞ ¼ w ¼ const;

Γ½φðxÞ� ¼ −VeffðwÞ
Z

d4x; ð37Þ

∂
∂wVeffðwÞ ¼ ξ

∂
∂ξVeffðξ; v;wÞ ¼ v

∂
∂vVeffðξ; v;wÞ ¼ 0;

ð38Þ

where the gauge invariant is VeffðwÞ.

A. Nielsen identities and vacuum decay

Another interesting example of an observable would
be the so-called vacuum decay rate. Assuming there are
two nondegenerate minima in Veff and the homogenous
field configuration resides in the energetically less
favorable one, there generally exists a nonzero chance
of tunneling between the minima [9,10]. The important
point here is that a crucial quantity for determining the
tunneling rate is the action value SB of a specific
solution φB of the equation of motion. The action
functional is derived from the Wick-rotated version of Γ
(denoted by ΓE, signifying that the spacetime metric
became Euclidean).

SB ¼ ΓE½φB�;
δΓE½ϕ�
δϕ

				
ϕ¼φB

¼ 0 ðþspecific boundary conditions forϕBÞ

ð39Þ

ξ
∂
∂ξ SB ¼ v

∂
∂v SB ¼ 0 ð40Þ

It was conjectured that gauge fixing independence of SB
is necessary for arguing that the full tunneling rate is
gauge fixing independent [16].
Looking at (36), we see that there should exist a

functional H½ϕ� such that

α
∂Γ½ϕ�
∂α ¼

Z
H

α
½ϕ� δΓ½ϕ�

δϕ
; ð41Þ

where α denotes a generic gauge fixing parameter
and Hα ¼ CαðϕÞ þDαðϕÞð∂ϕÞ2 þ � � �.
The above formula is the famous Nielsen identity. It was

formally derived by Nielsen without using a specific form
of the action [13]. The generic derivation is made possible
by the BRST invariance present in the Lagrangian of any
gauge field theory. But notably the finiteness of H½ϕ� is not
guaranteed.
The Nielsen identities for the Abelian Higgs model were

carefully rederived and studied in detail in [20].
In [16] they were used in the context of the tunneling

problem in the same model. The gauge fixing independence
was examined there on top of a perturbative expansion in
the gauge coupling constant g. We now summarize a few
points from that work. The authors showed that the Nielsen
identities, after expanding in g and field momentum (in the
manner used also in these notes), produce the following
identities:

ξ
∂Kg2

∂ξ ¼ 2
∂Cξ

g2

∂φ1

; ξ
∂Vg6

∂ξ ¼ Cξ
g2
∂Vg4

∂φ1

; ð42Þ
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v
∂Kg2

∂v ¼ 2
∂Cv

g2

∂φ1

; v
∂Vg6

∂v ¼ Cv
g2
∂Vg4

∂φ1

: ð43Þ

We use our expressions (34) to explicitly check these
identities and compute the functions Cα

g2
:

Cξ
g2
¼ −

g20
32π2

ξ0φ̂ log
−g20v0φ̂

μ̄20
;

Cv
g2
¼ −

g20
32π2

�
ξ0φ̂þ v0

�
2 log

−g20v0φ̂
μ̄20

þ 1

��
: ð44Þ

(This is not to say that C functions may only be inferred
from Nielsen identities. On the contrary, in the context of a
perturbative calculation, they have their own representation
as a sum of 1PI diagrams [20].)
Assumed finiteness of C’s allowed the authors to derive

the gauge fixing independence of SB in the context of
perturbative calculation done up to g6, which is, as we have
seen, the lowest nontrivial order exhibiting gauge fixing
parameters. Consider first how the order of expansion in g
translates into expansion of the solution φB,

L ¼ L0 þ L1 þ � � � ;

L0ðφÞ ¼ 1

2
ð∂μφÞ2 þ Vg4ðφÞ; ð45Þ

φB ¼ φ0
B þ φ1

B þ � � � where by definition; ð46Þ

0 ¼ δL0ðφÞ
δφ

				
φ¼φ0

B

⇔ ∂2
μφ

0
B ¼ V 0

g4ðφ0
BÞ: ð47Þ

And further into the expansion of the action

S0B ¼
Z

d4xL0ðφ0
BÞ

ðwhich is explicitly gauge fixing independentÞ;
ð48Þ

S1B ¼
Z

d4x

�
δL0ðφÞ
δφ

				
φ¼φ0

B

· φ1
B þ L1ðφ0

BÞ
�

¼
Z

d4xL1ðφ0
BÞ: ð49Þ

Now we hit it with the derivative with respect to the gauge
fixing parameter(s),

α
∂
∂α SB ¼

Z
d4xα

∂
∂αL

1ðφ0
BÞ

¼
Z

d4x

�
1

2
α
∂
∂αKg2ð∂μφÞ2 þ α

∂
∂αVg6

�				
φ¼φ0

B

¼
Z

d4x

�∂Cα
g2
ðφÞ

∂φ ð∂μφÞ2 þ Cα
∂Vg4

∂φ
�				

φ¼φ0
B

¼
Z

d4x

2664 ∂
∂xμ

�
Cα
g2
ðφÞ∂μφ

�			
φ¼φB|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

boundary conditions for φ0
B

þ Cα

�
−∂2

μφþ ∂
∂φVg4

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

				
φ¼φB

EOM

3775 ¼ 0; ð50Þ

where we used (42). We end up with zero, thanks to the
reasons specified under the horizontal braces.
This closes the discussion of gauge fixing dependence of

the action computed at any solution to the equation of
motion in the Abelian Higgs model, computed up to the
corrections of order g6 at 1 loop in the perturbative
expansion. The dependence cancels, under the assumption
that ðlogφÞ∂μφ vanishes at the boundaries. Notice also that,
at this accuracy, one does not include φ1

B in the computation
of SB.

B. Depth of the minima

For the sake of completeness of our discussion, using the
same approach as above, we will examine the corrections to
the position and value of the extrema of the effective
potential.

φmin ¼ φ0
min þ φ1

min þ � � � ; 0 ¼ ∂Vg4

∂φ
				
φ¼φ0

min

ð51Þ

0 ¼ ∂ðVg4 þ Vg6 þ � � �Þ
∂φ

				
φ¼φmin

¼ ∂2Vg4

∂φ2

				
φ¼φ0

min

· φ1
min þ

∂Vg6

∂φ
				
φ¼φ0

min

þ � � � ¼ � � � ð52Þ

recall thatVg6 ¼ fðφÞ ∂Vg4

∂φ ;

fðφÞ ¼ g20
32π2

�
v0 − ð2v0 þ ξ0φÞ log

−g20v0φ
μ̄20

�
;

ð53Þ

∂Vg6

∂φ
				
φ¼φ0

min

¼ fðφ0
minÞ

∂2Vg4

∂φ2

				
φ¼φ0

min

; so that ð54Þ
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� � � ¼ ∂2Vg4

∂φ2

				
φ¼φ0

min

ðφ1
min þ fðφ0

minÞÞ þOðg8Þ and finally

ð55Þ

φ1
min ¼ −fðφ0

minÞ ð56Þ

VðφminÞ−Vg4ðφ0
minÞ¼V 0

g4ðφ0
minÞ ·φ1

minþVg6ðφ0
minÞþOðg8Þ

¼V 0
g4ðφ0

minÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0

ðφ1
minþfðφ0

minÞÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
0

þOðg8Þ:

ð57Þ
At the lowest order, an extremum resides in φ0

min with the
value of Vg4ðφ0

minÞ. Including corrections one level of g2

higher has an effect only in non-Landau gauges: It shifts
φmin by a value of order g2, but the height of the extremum
does not change.
Of course, if one were to just start plotting our Vg4 þ Vg6

with different choices of ξ0 and v0, he would observe the
minima going up or down by some nonzero value since he
would implicitly have not thrown away all of the Oðg8Þ
from (57).

C. Physical mass of φ1

Physical mass of the φ1 field (the pole mass) should also
stay independent of the gauge fixing. We would like to
demonstrate this in our simple setup.
Physical mass squared, m2 is defined as a pole of the

inverse two-point function regarded as a function of the
momentum squared,

KðφminÞm2 − V 00ðφminÞ ¼ 0: ð58Þ

Value of the field variable used here, φ1 ¼ φmin, is a
minimum of the potential, and corresponds to one of the
vacua. Again, we search for a perturbative solution to (58):

m2 ¼ m2
g4 þm2

g6
þ � � � ð59Þ

Equation (58) reads now

½ð1þ Kg2 þ � � �Þðm2
g4 þm2

g6
þ � � �Þ

¼ V 00
g4 þ V 00

g6 þ � � ��jφ0
minþφ1

minþ��� ð60Þ

Hence, at the lowest order we have

m2
g4 ¼ V 00

g4ðφ0
minÞ: ð61Þ

Further, we need to remember that

Vg6 ¼ fðφÞV 0
g4ðφÞ;

Kg2ðφÞ ¼ 3
g20

ð4πÞ2 log
g20φ

2

μ̄2
þ 2f0ðφÞ; ð62Þ

φmin ¼ φ0
min þ φ1

min þ � � � ;
V 0
g4ðφ0

minÞ ¼ 0; φ1
min ¼ −fðφ0

minÞ; ð63Þ

and ultimately it is only the function f that depends on
gauge fixing parameters. The next contribution to the mass
squared is now given by

m2
g6 þ Kg2ðφ0

minÞm2
g4 ¼ V 000

g4ðφ0
minÞφ1

min þ V 00
g4ðφ0

minÞ; ð64Þ

m2
g6 ¼ −

�
3

g20
ð4πÞ2 log

g20φ̂
2

μ̄20
þ 2f0ðφ0

minÞ
�
V 00
g4ðφ0

minÞ þ V 000
g4ðφ0

minÞ½−fðφ0
minÞ�

þ f00ðφ0
minÞV 0

g4ðφ0
minÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

0

þ 2f0ðφ0
minÞV 00

g4ðφ0
minÞ þ fðφ0

minÞV 000
g4ðφ0

minÞ

¼ −3
g20

ð4πÞ2 log
�
g20φ̂

2

μ̄20

�
V 00
g4ðφ0

minÞ: ð65Þ

We observe that m2
g4 and m2

g6
are ξ and v independent.

Notably, to reach this conclusion, it is crucial to remem-
ber about gauge fixing dependence of φmin the position of
a minimum in the potential. The mass depends on ξ and v
both via their explicit presence in the action, and
implicitly through φmin. It is again the Nielsen identity
that guarantees that the two dependencies cancel each
other.

D. Removing gauge dependence

Let us take a step back and rethink why do we bother
with an unspecified (but only parametrized) gauge fixing
and what would be the alternative.
Ending with a gauge dependent formula for something

that was supposed to be a physical quantity raises warning
flags. There may be an unrecognized implicit gauge
dependence left in some of the variables. Or perhaps one’s
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perturbative calculation was not one hundred percent
consistent all the way through and relies on some estimates.
Or maybe the result is plain wrong. Being gauge indepen-
dent does not of course guarantee that a formula represents
a physical quantity, but it is a reasonably optimistic sign.
Following this line of thought, it is most desirable for the

gauge dependence to vanish at the very last step of a
calculation. It does not need to be so; one may get “lucky”
and witness a cancellation at an earlier stage. A good
example is the Coleman-Weinberg Uð1Þ model as consid-
ered here, but written in terms of radial coordinates for the
scalar field [21],

φ1 þ iφ2 ¼ ρeiσ: ð66Þ

In this approach Feynman rules appear gauge dependent,
but the dependence cancels already at the moment of
contracting vertices with propagators.
Another moment to walk away from gauge dependence

in our model would be at the level of the effective
Lagrangian (34). There one could make a field redefinition
to normalize the kinetic term,

Kð∂φÞ2 ≕ ð∂ ~φðφÞÞ2; ð67Þ

invert for φð ~φÞ and plug it into the potential. The
resulting expression for Lð ~φÞ would be explicitly gauge
independent.
The point we wish to make is that there is nothing

difficult in removing the gauge dependence. The methods
mentioned above are rather general. But they are no better
than the simplest method of all, which is to fix the gauge at
the very beginning.

VI. NONRENORMALIZABLE INTERACTIONS

Although we are obviously dealing with a toy model, we
would like to draw lessons applicable to more realistic
models. Those can often be represented as effective field
theories and one may need to include nonrenormalizable
interactions in their Lagrangian. Following this reasoning
we will discuss the addition of simplest nonrenormalizable
terms which are most relevant for the effective potential:

δLg4 ¼
λ6
6

ðφiφiÞ3
Λ2

þ λ8
8

ðφiφiÞ4
Λ4

þ � � � : ð68Þ

Immediately we had to assign the power in g to the new
couplings λk. In order for them to be visible at the level of
our previous calculations, they have to be Oðg6Þ at the
most. However, since we are curious about loop effects
introduced with the new interactions, we have no other
choice than to assume λk ¼ Oðg4Þ for at least some of
the k ¼ 6; 8;….
Consequently, we have new tree-level terms in the

potential,

δVg4 ¼
λ6
6

φ∘6
Λ2

þ λ8
8

φ∘8
Λ4

þ � � � ; ð69Þ

but also new vertices,

∼φ4
1φ

2
2;φ

6
1φ

2
2…; ð70Þ

with the property that a pair of their φ2 legs may be
contracted and form an Oðg2Þ loop. It is easy to quickly
reproduce the induced loop corrections, simply by updating

the effective mass given by
∂Vg4 ðφ∘Þ

∂φ∘ in (27). We get the
contribution to Vg6

δloopVg6 ¼
i
2

�
i

8π2
ð−g2vφ∘Þ

�
2

ϵ
þ 1

2
− log

−g2vφ∘
μ̄2

�
−

i
16π2

ðg2φ∘2ξÞ
�
2

ϵ
− log

−g2vφ∘
μ̄2

��
1

φ∘
∂δVg4

∂φ∘

and the required counterterms

δtreeVg6 ¼ ðZλ6 − 1Þ λ6
6

φ∘6
Λ2

þ ðZλ8 − 1Þ λ8
8

φ∘8
Λ4

þ � � �

þ
�
λ6

φ∘5
Λ2

þ λ8
φ∘7
Λ4

�
δw þ � � � ; ð71Þ

where

Zλk ¼ 1 − ξ
kg2

16π2
1

ϵ
: ð72Þ

The RGEs as usual may be computed requiring that the
renormalized couplings do not depend on μ or are simply
extracted from δloopVg6 . Both methods result in

βλk ¼ −k
3g2

16π2
λk; ð73Þ

λk ¼ λk0

�
1 − k

3g2

16π2
log

μ

μ0

�
þOðg8Þ; ð74Þ

and finally

δnonrenV ¼ λ60
6

φ̂6

Λ2
þ λ80

8

φ̂8

Λ4
þ � � �

þ g20
32π2

�
v0 − ð2v0 þ ξ0φ̂Þ log

−g20v0φ̂
μ̄20

�
·

�
λ60

φ̂4

Λ2
þ λ80

φ̂6

Λ4
þ � � �

�
: ð75Þ

An important point here is that the above result is
completely compatible with and could have been to large
extent obtained from the Nielsen identities in (42), (43).
This means in particular that the proof of the gauge fixing
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independence of the bounce’s action SB, (50), goes through
unchanged.

VII. NUMERICAL STUDY OF THE MODEL

In this section we present the numerically obtained
results aimed to illustrate the effective potential and
tunneling solutions between its vacua as well as the higher
order corrections to these results.

A. Shape of the potential

Let us begin by reparametrizing the lowest order
potential Vg4 , defining cm2 , cλ, and x,

m2
0 ≕ cm

3g40
16π2

μ̄20; λ0 ≕ cλ
3g40
8π2

; x ≔
φ2

μ̄20
; ð76Þ

Vg4=μ̄
4
0 ¼

g40
64π2

�
6cmxþ

�
cλ þ 3 log g20 −

5

2
þ 3 log x

�
x2
�
:

ð77Þ

Note that putting cm and cλ of order one is consistent with
our power counting in g. That is, assuming that the chosen
μ̄20 would be in fact some scale characteristic for the
processes one wishes to describe using the potential.
One extremum of Vg4 is of course at φ ¼ 0. Others have

to satisfy the equation

1

φ=μ̄0

∂Vg4=μ̄
4
0

∂φ=μ̄0 ¼ g40
16π2

½3cm þ xðcλ þ 3 logg20 − 1þ 3 logxÞ�

≕
3g40
16π2

cmhðxÞ ¼ 0; ð78Þ

hðxÞ ¼ 1þ x
A
ðlog x − BÞ; A ¼ cm;

B ¼ 1 − cλ
3

− log g20: ð79Þ

In the two-dimensional space of A and B parameters, there
are two interesting regions. One where hðxÞ ¼ 0 has no
solutions and one with two such solutions (at the boundary
there is one solution). The region with two solutions is
given by the constraints

0 < A < eB−1; which translates to

g20 <
1

cm
e−

2þcλ
3 ∧ cm > 0: ð80Þ

For example, when cm ¼ 1, varying cλ in the range ð−1; 1Þ
changes the upper bound on g0, respectively, in the range
(0.8, 0.6). Analogously the range ð−π2; π2Þ translates to
(3.7, 0.1). It is fair to say, that λ and m2 being roughly of
order g4 are indeed consistent with radiative symmetry
breaking. Also under this assumption, it does not matter
much, whether cλ is positive or negative. If we were
inclined to strain the consistency of the perturbative
calculation by going with cm to higher values, the structure
of the minima could be preserved by making either log g20 or
cλ negative.

B. Simple case study

Figure 2 shows the potential for a few values of g0
between 0.1 and 0.55 choosing the other parameters equal
to one ðcλ; cm; g0Þ ¼ ð1; 1; g0Þ. Note that this explicitly
makes both λ0 and m2

0 functions of g0, while μ0 may be
thought of as being substituted with our unit of energy.
We observe that the Abelian Higgs model allows us to

study both cases: when the two minima are nearly degen-
erate and when the second minimum is much deeper and
further from the first one. The second case is more closely
associated with the issue of an electroweak vacuum
instability in the Standard Model.
The dependence on ξ and v shows up starting from Vg6 .

The one additional order of g2 noticeably suppresses this
contribution. This is shown in Fig. 3, where we had to

0.55

0.5

0.45
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FIG. 2. Plots of the potential at the lowest order, Vg4 , for a specific choice of couplings (see text). The renormalization scale μ0 is used
as a unit of energy.
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multiply the correction by a factor of 30 to make it
comparable with the lowest order potential.
Figure 4 again shows plots of the Vg6 with cλ ¼ 1,

cm ¼ 1, and g0 ¼ 0.5, this time for several different values
of the gauge fixing parameters ξ0 and v0. They all cross the
x axis around the value φmin ≈ 1.7 since this is where the
second minimum lies. Hence only the part of the plots to
the left of this value is of interest.
The plots allow us to gain some insight into how the

potential changes with the gauge fixing. One may for
example notice that increasing ξ0 seems to actually flatten
the correction. But to quantify this fact, we define a crude
measure of the overall correction,

ΔV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

φmin

0

ðVg6Þ2dφ
s

; ð81Þ

and plot it as a function of ξ0 and v0 (as before g0 ¼ 0.5).
The result is presented in Fig. 5. We are reminded that the
contribution blows up for v0 ¼ 0 (ξ ≠ 0). But we also
observe that making −v0 extremely large should be met
with larger values of ξ0 as well, if one wishes to keep the
correction as small as possible. Also for v0 around −3 the

correction appears to be exceptionally insensitive to the
value of ξ0.

1. Tunneling bounces

We have numerically computed bounce solutions φB

(45) for the potentials in Fig. 2. The dots show φ0
Bð0Þ values

of the field probed by the tunneling instantons. The field,
having tunneled through the barrier, ends up at the slope of
the potential at φ0

Bð0Þ and continues its travel by a classical
roll towards the minimum. We observe a typical depend-
ence, the further the minima are from the degenerate case,
the further from the true vacuum the field emerges.
Computed values of the tree-level action S0B, as well as

the correction S1B (48), are summarized in Table I. Thanks
to the Nielsen identity (42), the obtained S1B exhibits
absolutely no dependence on the gauge fixing. Even though
the consistency of our perturbative calculation demands ξ
and v to be unsuppressed by any power of g, we could have
put ξ0 ¼ 0 and v0 ¼ 0 and still obtain the S1B given in
Table I. In this particular case the correction to the action is
caused solely by the modification of the kinetic term:

Kg2 ¼ 3
g2
0

ð4π2Þ log
g2
0
φ̂2

μ̄2
0

, see (34).
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FIG. 3. Left: the higher order correction to the potential multiplied by 30 and plotted along the Vg4 . Right: the correction for different
values of g0.
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FIG. 4. Dependence of the potential on the gauge fixing parameters. The v0 should be understood as v0=μ̄0.
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VIII. PREFACTOR

The semiclassical 1-loop expression for the tunneling
rate (per unit volume) contains in addition to the exponent
of the bounce action the prefactor. Its origin lies in the
extraction of zero modes of the fluctuations around the
bounce and in the functional integration over fluctuations
around the bounce solution. The well-known form of the
1-loop expression is

γ

V
¼ S2B

4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi				 detð−□E þ V 00ðφminÞÞ
det0ð−□E þ V 00ðφBÞÞ

				
s

e−SB ; ð82Þ

where S̄E is the action of the Euclidean bounce, the φB
denotes the bounce itself and φf is the false vacuum. The
prefactor contains the square of the action of the bounce,
which comes from the Jacobian of the change of variables
in the path integral that replaces the integration over the 4
zero modes of the full determinant of the second variation
of the action around the bounce by integration over the
position of the center of the bounce. The primed determi-
nant is understood to have the zero modes omitted. This
expression is formally valid at the 1-loop level and can
easily take into account renormalization, which is seen
when one writes down the determinant as the exponent of
the logarithm:

γ

V
¼ S2B

4π2
e−Γ

0
E½φB�þΓE½φmin�; ð83Þ

with

Γ0
E½ϕ� ¼ SE½ϕ� −

1

2
re tr0 logð−□E þ V 00ðϕÞÞ;

SB ¼ SE½φB�; ð84Þ

where the prime represents the omission of the zero
modes. Taking into account that the standard counter-
terms in the action Γ0

E½ϕ�, which cancel UV divergencies,
must have the same form independently of the back-
ground, it is obvious that they will cancel the UV
divergencies encountered in the computation of the
determinant. Operators with higher (than two) derivatives
do not need new counterterms when computed on φBðxÞ
(see for instance [22]).
The fact that the Jacobian contains simply the action of

the bounce computed with the lowest order action is related
to the canonical normalization of the kinetic term. In fact,
this happens to be the normalization of the zero mode at
the tree level in such a case. If the kinetic term in the
action becomes more complicated, say ZðϕÞð∂ϕÞ2, one
should define the canonically normalized field according to
~ϕðxÞ ¼ R

ϕðxÞ ffiffiffiffiffiffiffiffiffiffi
ZðyÞp

dy, which leads to a more complicated
form of the scalar potential and mixes the orders of the
expansion in g. Generalization of the expression (83) to the
case of higher order corrections needs some care. First of
all, in the case of radiative breaking already the tree-level
parameters in the potential, λ andm2, are numerically of the
order g4. First corrections are of the order g6 in the scalar
potential and order g2 in the kinetic part, Z ¼ 1þ Kg2ðϕÞ.
However, Nielsen identities relate these two classes of
corrections, hence it is consistent to derive the leading-
order bounce configuration with the canonical kinetic term,
Z ¼ 1, and order g4 scalar potential, hence it is consistent to
derive the leading-order bounce configuration with the
canonical kinetic term, Z ¼ 1, and order g4 scalar potential.
Since we are dealing with the stationary configuration, we
shall not need to know the next correction to the bounce if
we compute the tunneling rate to the order g6 only. Hence
in the case under consideration it is consistent to adopt the
semiclassical expression in the form
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2.5× 10–6

7.5× 10–6

0.0000125

0.0000175

FIG. 5. The quantity ΔV (81) plotted for a range of gauge fixing parameters. The v0 should be understood as v0=μ̄0.

TABLE I. Action of the bounce solutions computed for the
discussed potentials; see Fig. 2.

g0 0.1 0.2 0.3 0.4 0.45 0.5

S0B 572.7 71.4 29.7 27.1 39.8 124.8
S1B −1.1 −0.4 −0.3 −0.4 −0.8 −2.7

GAUGE FIXING AND RENORMALIZATION SCALE … PHYSICAL REVIEW D 94, 085028 (2016)

085028-13



γ

V
¼ S2E½ϕb;g4 �

4π2
e−ΓE½ϕb�þΓE½ϕf �; ð85Þ

with

ΓE½ϕ�¼
Z

d4x

�
1

2
½1þKg2ðφ̂Þ�∂μφ̂∂μφ̂þðVg4 þVg6Þðφ̂Þ

�
;

ð86Þ

which is the renormalized action given in (34). This
expression is gauge invariant. It agrees with the modified
perturbative expansion of the result given in [14]. In
practice, given a more complicated model like the SM,
one resorts to 1-loop calculations of the determinant or to
an educated parametrization of the prefactor, as discussed
later in the paper. One should note that truncation of the
action at the level of second derivatives is not well justified
in the case of an inhomogeneous bounce background.
This issue has been mentioned briefly in [12] and needs
further study.

IX. COMMENTS ON GAUGE FIXING
REPARAMETRIZATION AND

RGE IMPROVEMENT

There are two interesting technical questions which
appear here in the context of the radiatively corrected
effective action. We are discussing an explicit example of a
model with two gauge fixing parameters, one of which is
dimensionful. Gauge fixing parameters are unphysical,
completely absent from observables at each and every
level of a perturbative calculation. The same is true of the
renormalization scale μ. Thus we have two gauge fixing
parameters which can in principle mix with each other
and two dimensionful scales which parametrize radiative
corrections. Hence, it is legitimate to ask the following
questions. First, whether arbitrary reparametrization
ðξ; vÞ → ðξ̄; v̄Þ leaves invariant the effective action for
the bounce solution and second, how well the renormal-
ization group improvement works in the presence of the
second, in addition to μ, dimensionful parameter in the
action. We shall discuss these issues below in some detail.
In the remaining part of this section we will omit the 0

subscript in ξ0 and v0 for brevity.

A. Reparametrizing the gauge fixing parameters

Say we a have a new favorite pair ðξ̄; v̄Þ, so that

ξ ¼ ξðξ̄; v̄Þ; v ¼ vðξ̄; v̄Þ: ð87Þ

For example ξ̄ ¼ ξ and v̄ ¼ ξv.
Next we try to mimic the Nielsen identities (42) and (43),

but for the new parameters

∂K
∂ log ξ̄ ¼

∂K
∂ log ξ

∂ log ξ
∂ log ξ̄þ

∂K
∂ log v

∂ log v
∂ log ξ̄

¼ 2
∂Cξ

∂φ1

∂ log ξ
∂ log ξ̄þ 2

∂Cv

∂φ1

∂ log v
∂ log ξ̄

¼ 2
∂

∂φ1

�
Cξ ∂ log ξ

∂ log ξ̄þ Cv ∂ log v
∂ log ξ̄

�
≕ 2

∂
∂φ1

Cξ̄ ð88Þ

∂Vg6

∂ log ξ̄ ¼
∂Vg6

∂ log ξ
∂ log ξ
∂ log ξ̄þ

∂Vg6

∂ log v
∂ log v
∂ log ξ̄

¼
�
Cξ ∂ log ξ

∂ log ξ̄þ Cv ∂ log v
∂ log ξ̄

� ∂Vg4

∂φ1

≕ Cξ̄
∂Vg4

∂φ1

ð89Þ

and similarly for derivatives with respect to v. Thus we
consistently obtain new, equally good C functions

Cξ̄ ¼ Cξ ∂ log ξ
∂ log ξ̄þ Cv ∂ log v

∂ log ξ̄ ;

Cv̄ ¼ Cξ ∂ log ξ
∂ log v̄þ Cv ∂ log v

∂ log v̄ : ð90Þ

As a conclusion, the switch to ðξ̄; v̄Þ does not spoil the
Nielsen identities. Hence, the action of the bounce stays
invariant under such reparametrization.
At this point one can make an additional observation,

that our C functions, (44), satisfy

∂Cv

∂ log ξ ¼
∂Cξ

∂ log v ; ð91Þ

and this property is preserved by reparametrization (87).
We could again perform a brute force check. But this
property, just as (90), follows immediately from what we
already know. Namely that Cα is proportional to the

derivative
∂Vg6

∂ log α. Hence (90) is simply an example of a
chain rule in differentiation and (91) expresses the sym-
metry of a mixed double derivative. But those properties
hold irrespective of which coordinate system is used.

B. RGE improvement

Without going into a deep theoretical discussion of the
implications of the presence of the second dimensionful
parameter, we shall use the example worked out in this
paper to see whether the correct effective action can be
reconstructed with the help of the RGE improvement. Let
us assume that we have only the tree-level Lagrangian
[corrected up to the Oðg4Þ for consistency], that we wish to
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“RGE improve” with higher order corrections obtained
only through the renormalization group equations.
There is a simple contribution to RGEs at the lowest

order,

λðμÞg4 ¼ λþ 9g40
4π2

log
μ

μ̄0
þOðg6Þ: ð92Þ

Plugging it into the tree-level potential, we would get

VðRÞ
g4

¼ 1

2
m2φ̂2 þ 1

4!
λφ̂4 þ 3

g40
64π2

log
μ2

μ̄20
φ̂4: ð93Þ

Now, assuming we also managed to compute the proper
correction to the Lagrangian at zeroth order, we actually
have

Vg4 ¼
1

2
m2φ̂2þ 1

4!
λφ̂4þ3

g40
64π2

�
log

g20φ̂
2

μ̄20
−
5

6

�
φ̂4: ð94Þ

Comparing the last two expressions, we guess that a
substitution

μ2 → μ2AðφÞ ≔ g20φ̂
2e−

5
6 ð95Þ

could have spared us some work.
Now we set on to plug in higher order μ dependence. Let

us first take the kinetic term under consideration,

ð1þ KðRÞ1Þð∂μφ̂Þ2 ¼ Γ2ð∂μφÞ2

¼
�
1þ g20

2ð4πÞ2 ð3 − ξ0Þ log
μ2

μ̄20

�
2

ð∂μφ̂Þ2

ð96Þ

hence

KðRÞ1 ¼ 3
g20

ð4πÞ2 log
μ2

μ̄20
− ξ0

g20
ð4πÞ2 log

μ2

μ̄20
: ð97Þ

We could have also gone with more exotic supposition that
μ, newly promoted to φ, should be hit with the derivative as
well:

ð1þKðRÞ2Þð∂μφ̂Þ2
¼ ½∂μðΓφþwÞ�2

¼ ð∂μφ̂Þ2þð3− ξ0Þ
g20

ð4πÞ2 ∂μφ̂

�
log

μ2

μ̄20
∂μφ̂þ φ̂∂μ logμ2

�
− 2

g20
ð4πÞ2 v0∂μφ̂∂μ logμ2: ð98Þ

As we can see this second option appears as a more
desirable one, since, when μ2 ∼ φ̂, it can reproduce the

curious looking part of our original kinetic term of the
form v

φ.
Let us go back to the potential,

VðRÞ
g6

¼ −
g20

2ð4πÞ2 log
μ2

μ̄20
ð2v0 þ ξ0φ̂Þ

∂Vg4

∂φ̂ : ð99Þ

Unfortunately there is no way to get all the nominators
under the logatithms right with just a single ansatz for μ2.
But one could go a long way towards reproducing the
proper form of the correction, if he could justify a following
prescription: Inside terms that vanish in the limit ξ0,
v0 → 0, substitute

μ2 → −g20v0φ̂: ð100Þ

And inside any other terms

μ2 → g20φ̂
2: ð101Þ

Even so, terms built from two different logarithms, like
logð−g20v0φ̂Þ logðg20φ̂2Þ, would require careful analysis in
order to realize which logarithm originates from lower level
correction.
Thus we are generically unable to reconstruct the full

form of the action via the RGE improvement.

X. GAUGE INDEPENDENCE OF THE VACUUM
LIFETIME IN THE STANDARD MODEL

Nowwe turn to the computation of the lifetime of the SM
electroweak vacuum. Ideally one should perform a full
calculation and show the gauge invariance of the result
explicitly. However the formal level gauge independence
is easily lost in the course of approximations needed in
practice to obtain an analytical result. We will discuss this
point on the example of the simplest method used to
estimate the lifetime of an electroweak vacuum.
We begin with a classical Lagrangian of a neutral scalar

field

L ¼ 1

2
ð∂ϕÞ2 − λc

4
ϕ4; ð102Þ

where this time λc is a negative constant. This very simple
model admits an analytical bounce solution corresponding
the decay of the ϕ ¼ 0 configuration [23]. The correspond-
ing action is S ¼ 8π2

3
1
λc
. The next step is to use this solution

by reinterpreting this classical Lagrangian as an effective
quantum Lagrangian of the Higgs field and simply using
the well-known decay rate formula which now takes the
form

γ

V
¼ ðdimensionful quantityÞ4e−8π2

3
1

jλc j: ð103Þ
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Due to the classical scale invariance present in the simple
classical Lagrangian, one has no dimensionful quantity to
fill in above. This problem can be solved due to quantum
corrections since even in the lowest order of perturbative
calculation our actual Lagrangian reads

L ¼ 1

2
ZðμÞð∂ϕÞ2 − λðμÞ

4
ZðμÞ2ϕ4: ð104Þ

where

ZðμÞ12 ¼ e−
R

γðμÞd logðμÞ ð105Þ

denotes the running of the Higgs field due to a nonzero
anomalous dimension, while λðμÞ is the running Higgs
quartic coupling. Naively using this obtained quartic
coupling in (103) results in the following tunneling rate:

ρ ∼ Λ4e
−8π2

3
1

jZ2ðΛÞλðΛÞj: ð106Þ

Nowwe can chose the scale Λ to minimize the value of λðμÞ
which corresponds to a lower bound on the lifetime

τ

TU
∼

1

Λ4T4
U
e
8π2

3
1

jZ2ðΛÞλðΛÞj: ð107Þ

We also approximated the four-volume of our past light-
cone simply by fourth power of the age of the Universe
which allowed us to integrate (103) and switch from the
decay rate to the lifetime. This is a fair approximation since
neglecting order one factors in front of the exponential
function introduces an error much smaller than the uncer-
tainty of the exponent.
Requiring gauge invariance of our results clearly shows a

problem with this simple approximation. λðμÞ does not
depend on gauge fixing. Explicit perturbative calculations
of the running of the StandardModel coefficients have been
performed in the general Rξ gauge (see the definition e.g.
in [24]) at the level of three loops [25]. Running of gauge,
Yukawa and scalar couplings, including the Higgs mass
parameter, has been found to be gauge fixing independent,
whereas anomalous dimensions of matter fields (as well as
running of the gauge parameters themselves) do in general
depend on the gauge fixing; we assume this to be true to all
orders. Since the SM anomalous dimension γðμÞ is gauge
dependent, (107) becomes very sensitive to the values of
gauge fixing parameters.
To improve this result we first notice that the full

coefficients in front of the quartic and kinetic terms are
dimensionless, and due to the absence of any dimensionful
parameters in the theory, they have to depend on μ only via
ϕ=μ. Second, running of Z and Z2λ fully captures the
dependence of these coefficients on μ, which means that it
cancels between explicit dependence in loop corrections
and running of the couplings. In conclusion, to improve the

accuracy of our approximation at any field value we can
replace the scale with the value of the field, μ → ϕ, and the
resulting μ-independent function of ϕ will be a good
approximation of the full effective quantum Lagrangian.
This leads to

L ¼ 1

2

�
∂Z1

2ðϕÞϕ
�
2
−
λðϕÞ
4

Z2ðϕÞϕ4: ð108Þ

The above Lagrangian suggests that it makes sense to
redefine the field variable by ~ϕ ¼ Z

1
2ðϕÞϕ, which com-

pletely eliminates the field renormalization ZðμÞ. This
brings us to the point: the jZ2λj in (107) should simply
be replaced by jλj alone,

τ

TU
∼

1

Λ4T4
U
e
8π2

3
1

jλðΛÞj; ð109Þ

where the absence of Z trivially makes the result gauge
independent. This approach is connected with the treatment
of Abelian gauge theory we discussed in the previous
sections, where it was shown that for formal consistency,
including quantum corrections to the kinetic term is crucial.
It is important to stress that replacing μ with ϕ requires
treating also ϕ in ZðϕÞ, as a spacetime dependent con-
figuration, and thus hitting ZðϕðxÞÞ with the derivative ∂μ.
In the Standard Model, the difference between (107) and

(109) is very significant. The Z2ðμÞ changes from 1.0 at the
scale of the top mass,Mtop, to about 0.8 close to the Planck
mass, when computed in Landau gauge. This dependence
ends up in the exponent of (107) increasing it from roughly
1800 to 2100. As a result the lifetime of the electroweak
vacuum compared to the lifetime of the Universe, com-
puted via (107) is around 10676 while properly using (109)
gives 10529. Figure 6 illustrates gauge dependence of the
action, using the simplest class of gauge fixing, the so-
called Fermi gauges, with ξ ¼ ξWðMtopÞ ¼ ξBðMtopÞ.
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FIG. 6. Solid line: gauge dependence of the bounce action
calculated including the field renormalization factor Z only in the
potential. Dashed line: the action calculated after the redefinition
~ϕ ¼ Z

1
2ðϕÞϕ. ξ is a gauge fixing parameter.
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Landau gauge is an example of this class as an RGE-stable
choice of ξ ¼ 0. Thus incorrectly including the field
renormalization in the SM, even in Landau gauge, results
in a large overestimation of the expected lifetime.
Now we turn to the possible nonrenormalizable terms in

scalar potential, e.g. λ6
6!M2 ϕ6. In our simplified approach the

effective contribution of this term reads

λ6ðϕÞ
6!M2

Z3ðϕÞϕ6; ð110Þ

with λ6 contributing to RGE’s of other couplings. However,
it does not appear in γ at one loop. Again, since running of
λ6ðμÞ does not depend on the gauge fixing, absorbing the
field renormalization into redefinition of the field, we end
up without any gauge dependence.
There is another important point to be made about gauge

dependence of nonrenormalizable terms in the potential,
which was detailed in earlier sections in the case of the
simple Abelian model. Nielsen identities bind variation of
the effective action to its derivative with respect to gauge
parameters [13]. Taking momentum independent part of
this relation (which means going from effective action to
effective potential), one arrives at

ξ
∂VðϕÞ
∂ξ ¼ CξðϕÞ ∂VðϕÞ∂ϕ : ð111Þ

The function C admits a perturbative expansion, like other
parts of the equation (111). However then it inherently
involves ghost, goldstone, and gauge propagators [20]. As a
result vertices produced by nonrenormalizable operators,
like the six-legged λ6, do not contribute to C at the lowest
levels of the expansion. When we classify terms on the left-
and right-hand sides of (111) by their power of M, we see
immediately that the same C function separately governs
gauge dependence of both renormalizable and nonrenor-
malizable part of the potential with any dimension. As a
result, for practical purposes, it is enough to uncover gauge
dependence of the renormalizable part of the Lagrangian, to
be able to fully reconstruct it for all operators including
those of higher dimension.
Finally, let us pause to comment on the validity of the

“radiative” expansion based on the relation λ ∼ g4 in case of
the SM. The relation between couplings which holds in the
SM at the 1-loop order at the critical points of the effective
potential reads

λ ¼ ℏ
256π2

�
g41 þ 2g21g

2
2 þ 3g42 − 48h4t

− 3ðg21 þ g22Þ2 log
g21 þ g22

4
− 6g42 log

g22
4
þ 48y4t log

y2t
2

�
:

ð112Þ

The running of the quartic coupling λ vs running of the right-
hand side of the formula (112) is shown in Fig. 7. The points
where the curves meet mark the radiatively generated
extrema of the effective potential. The first from the left
is the maximum and the second is the global minimum. In
general this relation between couplings which holds at the
extrema is violated, and the region where the violation is
significant also contributes to the action of the bounce.
Additionally, for the inhomogenous bounce solution the
momentum expansion becomes problematic and the real role
of the prefactor is somewhat obscure, since some corrections
are already taken into account in the effective action.
Perhaps playing with numerical values of various

contributions could lead to identification of the best
approximation to the complete expression, but in practice
considerations based on global measures like the one given
in the expression (81) could be useful.

XI. SUMMARY

In this paper we have investigated at the perturbative
level the gauge fixing independence of the tunneling rate to
a stable radiatively induced vacuum in the Abelian Higgs
model in a class of Rξ gauges, in the presence of both
dimensionless and dimensionful gauge fixing parameters.
We performed explicit calculations in the spirit of improved
perturbative expansion which assumes the quartic coupling,
and the tree-level mass parameter, to be of the order of the
fourth power of the gauge coupling. We also explicitly
showed gauge fixing independence of the tunneling rate,
depth of the extrema, and the value of the physical pole
mass. We also proved that Nielsen identities survive the
inclusion of higher order operators. We also discussed the
applicability of these results to the Standard Model.
Unfortunately, finding the appropriate improved expansion

5 10 15 20 25 30 35

0.00

0.05

0.10

µ

running (2loop)

RHS

FIG. 7. Running of the quartic coupling λ vs running of the
right-hand side of the formula (112). The points where the curves
meet mark the radiatively generated extrema of the SM effective
potential—first from the left is the maximum and the second is
the stable minimum. In general the relation between couplings
which holds at the extrema becomes violated, and the region
where the violation is significant contributes to the action of the
bounce.
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scheme in the SM does not seem to be practically feasible at
the next-to-leading order of radiative corrections, but it is
important to understand reasons for the presence of the
gauge fixing noninvariance of numerical calculations and
this is the aim of the present paper. We have discussed the
independence of the bounce action with respect to repar-
ametrization of the gauge fixing. The presence of the
dimensionful gauge fixing parameter introduces a second
mass scale into the RG running, which makes the RGE
improvement procedure for the effective action less useful.
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APPENDIX Feynman rules in Abelian Higgs Model

In this appendix we show Table II.

TABLE II. Feynman rules in the studied model with background field value φ∘ and gauge fixing parameters ξ and v;
DN ¼ k4 − k2ðm2 þ λ

6
φ∘2 − 2g2φ∘vÞ þ g2φ∘2½ξðm2 þ λ

6
φ∘2Þ þ g2v2�.
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