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In manifolds with spatial boundary, BRST formalism can be used to quantize gauge theories. We show
that, in a Uð1Þ gauge theory, only a subset of all the boundary conditions allowed by the self-adjointness of
the Hamiltonian preserves BRST symmetry. Hence, the theory can be quantized using BRST formalism
only when that subset of boundary conditions is considered. We also show that for such boundary
conditions, there exist fermionic states which are localized near the boundary.
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I. INTRODUCTION

Topological insulators and their surface modes are sub-
jects of emerging interest (for example, see Refs. [1–5]).
Especially, understanding a two-dimensional topological
insulator in the light of the fractional Hall effect has been
a priority in the subject for the last decade [6,7]. In this
context, theories of gauge fields interacting with matter,
especially in two and three spatial dimensions, have gained
importance. We investigate the quantization of Uð1Þ gauge
theories with Dirac fermions from this perspective.
Quantization of gauge theories using BRST (where the

BRST refers to Becchi, Rouet, Stora and Tyutin) formalism
is conventional. It is elegant, yet simple. One introduces a
ghost field for every constraint of the system. This breaks
the gauge symmetry but introduces a new global symmetry
(called BRST symmetry) generated by appropriate combi-
nations of the ghosts and the constraints. The generators of
this new global symmetry are fermionic and hence nilpo-
tent, and the physical Hilbert space is identified by its
cohomology.
We are interested in systems like topological insulators.

All such real systems available for experiment are of finite
size and hence have spatial boundaries. The presence of
boundaries, in general, can reduce the symmetry of the
system. As a reflection of this, all boundary conditionsmight
not preserve the symmetry (as shown in Ref. [8]). Therefore,
boundary conditions naturally assume significance in the
discussion of gauge theories in manifolds with boundaries
and their quantization using the BRST formalism.

We do not address the question of how to derive the
boundary conditions when the system is restricted to a
partial domain with boundaries. The general treatment of
this problem does not seem to exist. This problem has been
dealt with in some isolated cases. An important example
is Halperin’s work on quantum Hall edge states [9].
The general approach has been to assume certain
boundary conditions and then check the predictions against
experiments.
Edge states of course have come to play an important

role in string theories (D branes) and related spacetime
models which treat the four-dimensional spacetime as the
boundary of a higher-dimensional one.
The boundary conditions cannot be chosen arbitrarily.

Rather, we need to consider only those boundary conditions
which define domains of self-adjointness of the
Hamiltonian [10–12]. That is, we treat our system as a
closed system with unitary evolution. The more general
scenario in which this is not true is also important, but we
do not consider it here. Even for our closed systems, all
associated domains might not be preserved under BRST
transformations. Therefore, in order to quantize the closed
system by BRST formalism, we must choose only those
boundary conditions which not only define a self-adjoint
Hamiltonian but are also consistent with the BRST
symmetry.
The presence of boundaries also naturally leads to the

discussion of edge states, which, if extant, play an
important role in the physics of the boundary in systems
like topological insulators [5,13].
In this paper, we consider a Uð1Þ gauge theory with

Dirac fermions on a (dþ 1)-dimensional manifold M × R
with spatial boundary ∂M of codimension 1. In Sec. II, we
review the usual discussion of a Uð1Þ gauge theory. In
Sec. III, we introduce the ghosts and invoke BRST
symmetry. We obtain the set of all allowed boundary
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conditions by demanding the self-adjointness of the gauge
fixed Hamiltonian. We show that, out of the set of boundary
conditions on the gauge fields consistent with the self-
adjointness of the Hamiltonian, only some of them are
invariant under BRST transformations. This subset of boun-
dary conditions is the sameas that obtainedbyquantization of
the system using the canonical formalism [10,14].
However, we show that there is no such constraint on the

boundary conditions of the Dirac fermions. Hence, any
domain of self-adjointness of the Dirac Hamiltonian is
compatible with the BRST symmetry.
For a system like a topological insulator, we are further

required to use physical conditions to choose the suitable
boundary conditions from this set of allowed BRST-
preserving boundary conditions.
Finally, we discuss the possibility of fermionic edge states

in the system. In a simple (2þ 1)-dimensional geometry, we
solve for the eigensates of the Hamiltonian in the limit of a
small coupling constant, with boundary conditions that
ensure the self-adjointness of the Hamiltonian and preserve
the BRST symmetry. We show that there exist fermionic
edge states (protected by a mass gap), which interact with
soft photons and do not break BRST symmetry. These states
should be experimentally detectable.

II. MAXWELL-DIRAC SYSTEM

Consider a gauge theory of Dirac fields [which we call the
Uð1Þ Maxwell-Dirac system] on a (dþ 1)-dimensional flat
manifoldM ×R with spatial boundary ∂M of codimension
1. We choose the metric gμν ¼ diagð1;−1;…;−1Þ. We use
the convention thatGreek alphabets ðμ; ν;…Þ range from0 to
d and indiceswithLatin alphabets ði; j;…Þ range from1 tod.
The Uð1Þ gauge fields Aμ are Hermitian,

A†
μ ¼ Aμ; ð2:1Þ

and the field strength is given by

Fμν ¼ ∂μAν − ∂νAμ: ð2:2Þ

The covariant derivative is

Dμ ¼ ∂μ − ieAμ; ð2:3Þ

with e the gauge coupling constant.
The Maxwell-Dirac action is given by

S ¼
Z
M×R

ddþ1xL; ð2:4Þ

L ¼ −
1

4
FμνFμν þ iψ̄γμDμψ −mψ̄ψ ; ð2:5Þ

where m is the mass of the fermions and ψ̄ ¼ ψ†γ0. The
Gamma matrices generate the Clifford algebra:

fγμ; γνg ¼ 2gμν; γ0† ¼ γ0; γi† ¼ −γi: ð2:6Þ

The conjugate momenta to the gauge fields Aμ and the
fermions ψ ; ψ̄ are given by

Πi
gauge ≡ ∂L

∂ _Ai

¼ Fi0; Π0
gauge ≡ ∂L

∂ _A0

¼ 0; ð2:7Þ

Πψ ≡ ∂L
∂ _ψ

¼ iψ̄γ0 ¼ iψ†; Πψ̄ ≡ ∂L
∂ _̄ψ

¼ 0; ð2:8Þ

where the dot denotes derivation with respect to time.
Notice that the field A0 is not dynamical. In other words,
the Lagrangian (2.5) does not depend on _A0. As a
consequence, the momentum Π0

gauge conjugate to A0

vanishes, and thus A0 is arbitrary and plays the role of a
Lagrange multiplier. In fact, Π0

gauge ¼ 0 is a primary
constraint, and as such, it is part of the gauge symmetry
generator.1 The Hamiltonian is

H ¼
Z
M
ddxðΠi

gauge
_Ai þ Πψ _ψ − LÞ ð2:9Þ

¼
Z
M
ddx

�
1

2
ðΠi

gaugeÞ2 þ
1

4
FijFij

− Πψγ
0ðγiDi þ imÞψ þ GA0

�
; ð2:10Þ

where G, the Gauss law operator, is

G ¼ ∂iΠi
gauge − ieΠψψ : ð2:11Þ

In order for this operator to generate gauge transformations
infinitesimally, the correct expression for the Gauss law is
not (2.11) but rather

GðhÞ≡
Z
M
ddx½Πi

gauge∂i − ieΠψψ �hðx0; ~xÞ ¼ 0; ð2:12Þ

with hðx0; ~xÞ a test function that vanishes at the spatial
boundary of our manifold:

hðx0; ~xÞj∂M ¼ 0: ð2:13Þ

The operatorGðhÞ vanishes on quantum state vectors in the
physical subspace.
This analysis must be followed by a suitable choice

of boundary conditions on Ai and ψ invoking the

1A detailed review of primary constraints and their relation to
gauge transformations can be found in Ref. [15].
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self-adjointness of the Hamiltonian and subsequent canoni-
cal quantization, as in Ref. [10].

III. BRST SYMMETRY

In this section, we explore the quantization of the
Maxwell-Dirac theory using BRST formalism. The BRST
formalism deals with the quantization of gauge fields in a
rigorousmathematical framework.This approach amounts to
replacing the gauge symmetry of the theory by a global
BRST symmetry, which enlarges the number of degrees of
freedom in the original theory. In this enlargedHilbert space,
the usual canonical quantization can be performed. Then,
restricting attention to BRST-invariant states, one recovers
the Hilbert space of physical states of the original theory.
The gauge symmetry of the above Maxwell-Dirac

system can be replaced by the BRST global symmetry
by introducing three additional fields: an auxiliary field B, a
ghost field G, and an antighost field Ḡ. This new action is
given by

SBRST ¼
Z
M
ddþ1xLBRST; ð3:1Þ

LBRST ¼ Lþ B
�
∂μAμ −

ζ

2
B
�
þ ð∂μḠÞð∂μGÞ; ð3:2Þ

where ζ is a real parameter and L is given in (2.4).
In the presence of such new fields, the conjugate

momentum Π0
gauge becomes nonzero:

Π0
gauge ¼ B: ð3:3Þ

On the other hand, the conjugate momenta to the auxiliary,
ghost, and antighost fields are given by

ΠB ≡ ∂LBRST

∂ _B ¼ 0; ΠG ≡ ∂LBRST

∂ _G ¼ _̄G;

ΠḠ ≡ ∂LBRST

∂ _̄G
¼ _G: ð3:4Þ

The Hamiltonian is

H ¼
Z
M
ddxðΠμ

gauge _Aμ þ Πψ _ψ þ ΠG
_Gþ _̄GΠḠ − LBRSTÞ ð3:5Þ

¼
Z
M
ddx

�
ζ − 1

2
ðΠ0

gaugeÞ2 þ
1

2
ðΠ0

gauge − ∂iAiÞ2 −
1

2
ð∂iAiÞ2 þ

1

2
ðΠi

gauge þ ∂iA0Þ2

−
1

2
ð∂iA0Þ2 þ

1

4
FijFij − Πψγ

0ðγiDi þ im − ieγ0A0Þψ þ ΠGΠḠ − ð∂iḠÞð∂iGÞ
�
: ð3:6Þ

Defining

P0 ≡ Π0
gauge − ∂iAi; Pi ≡ Πi

gauge − ∂iA0; ð3:7Þ

we can rewrite the Hamiltonian as

H ¼
Z
M
ddx

�
ζ − 1

2
ðΠ0

gaugeÞ2 þ
1

2
ðP0Þ2 þ 1

2
ðPiÞ2 − Πψγ

0ðγiDi þ im − ieγ0A0Þψ

þ ΠGΠḠ − Ḡð∂2
iGÞ þ

1

2
A0ð∂2

i A0Þ þ Aið∂i∂jAjÞ −
1

2
Aið∂2

jAiÞ
�

þ
Z
∂M

dd−1x

�
Ḡ∂nG −

1

2
A0∂nA0 þ

1

2
Ai∂nAi −

1

2
An∂iAi −

1

2
Ai∂iAn

�
; ð3:8Þ

where n denotes the outward-pointing unit vector of the
boundary ∂M.
We can derive the equations of motion and the current

conservation consistently by taking Poisson brackets of
(3.8) with fields supported in the interior of M.
The boundary conditions in the classical theory are

imposed to have unique solutions of the equations of

motion. However, in the quantum theory, boundary con-
ditions are imposed so that the Hamiltonian is self-adjoint.
To analyze the self-adjointness of the Hamiltonian, we
can ignore the boundary term in the above Hamiltonian.
For a scalar field theory, this discussion can be found in
Ref. [16]. Here, we adapt the same discussion to the
interacting gauge theory.
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Removing the boundary terms, the Hamiltonian is

H ¼
Z
M
ddx

�
ζ − 1

2
ðΠ0

gaugeÞ2 þ
1

2
ðP0Þ2 þ 1

2
ðPiÞ2 − Πψγ

0ðγiDi þ im − ieγ0A0Þψ

þ ΠGΠḠ − Ḡð∂2
iGÞ þ

1

2
A0ð∂2

i A0Þ þ
1

2
Aið−∂2

jAi þ 2∂i∂jAjÞ
�
: ð3:9Þ

The fields can be expanded in the basis of the eigen-
functions of the operators

−∂2
jAi þ 2∂i∂jAj ¼ ω2Ai; ∂2

i A0 ¼ ω2
0A0;

∂2
iG ¼ ω2

gG; HDψ ¼ EDψ ; ð3:10Þ

where HD is the Dirac Hamiltonian given by

HD ¼ iγ0γμDμ −mγ0 ð3:11Þ

and ω2;ω2
0;ω

2
g; ED ≥ 0, by the requirement of positivity of

the Hamiltonian.
As we show in detail in the Appendix, this requirement

leads to the following most general boundary conditions on
the fields:

ð~A⊥ þ i~Fn⊥ÞðxÞj∂M ¼ U⊥ðxÞð~A⊥ − i~Fn⊥ÞðxÞj∂M; ð3:12Þ

ðAn þ i∂iAiÞðxÞj∂M ¼ UnðxÞðAn − i∂iAiÞðxÞj∂M; ð3:13Þ

ðA0 þ i∂nA0ÞðxÞj∂M ¼ U0ðxÞðA0 − i∂nA0ÞðxÞj∂M; ð3:14Þ

ðGþ i∂nGÞðxÞj∂M ¼ UgðxÞðG − i∂nGÞðxÞj∂M; ð3:15Þ

ψþðxÞj∂M ¼ UFðxÞγ0ψ−ðxÞj∂M: ð3:16Þ

Here, ∀x ∈ ∂M, and we have defined

ψ� ≡ 1

2
ðI� γ0~γ · n̂Þψ ; FðAÞ

in ≡ ∂iAn − ∂nAi; ð3:17Þ

and the operators U⊥, Un, U0, Ug, and UF satisfy

U†
⊥U⊥ ¼ I; U†

nUn ¼ I; U†
0U0¼ I;

U†
gUg ¼ I; U†

FUF ¼ I; ½UF;γ0~γ · n̂� ¼ 0: ð3:18Þ

The ghost field can be expanded in a complete ortho-
normal set of functions fHkðx0; xiÞg as

Gðx0; xiÞ ¼
X
k

CkHkðx0; xiÞ: ð3:19Þ

Using the Gauss law (2.12), the momenta (2.7)–(2.8)
and (3.3)–(3.4) and the above ghost field expansion, the
BRST charge can be written as

Ω̂≡G

�X
k

CkHk

�
− i

Z
M
ddxΠḠΠ0

gauge; ð3:20Þ

where

G

�X
k

CkHk

�
≡

Z
M
½Πi

gaugeð∂i − ieΠψψ �
X
k

CkHmðx0; xiÞ:

ð3:21Þ

This BRST charge generates the variation of the fields
under which the action (3.1) remains invariant. In this
work, we are only interested in the BRST variation of the
gauge fields Ai and fermions ψ . Upon imposing the
following canonical commutation relations,

½Πi
gaugeðx0; ~xÞ; Ajðx0; ~yÞ� ¼ −iδijδdð~x − ~yÞ; ð3:22Þ

fΠψðx0; ~xÞ;ψðx0; ~yÞg ¼ δdð~x − ~yÞ; ð3:23Þ

the BRST variations of our interest are

δA0 ¼ iϵ½Ω̂; A0� ¼ ϵ∂0G; ð3:24Þ

δAi ¼ iϵ½Ω̂; Ai� ¼ ϵ∂iG; ð3:25Þ

δψ ¼ iϵfΩ̂;ψg ¼ −ϵGψ ; ð3:26Þ

δG ¼ iϵfΩ̂;Gg ¼ 0; ð3:27Þ

where ϵ is a Grassmannian number.

IV. BOUNDARY CONDITIONS

The boundary conditions (3.12)–(3.16) which preserve
the self-adjointness of the Hamiltonian are not consistent
with BRST symmetry. In the following, we show that only
a smaller subset of these boundary conditions preserves
BRST symmetry.
As we mentioned, the BRST charge Ω̂ in (3.20) gen-

erates a global BRST symmetry in the action (3.1).
However, in order for Ω̂ to generate the BRST symmetry
infinitesimally, all Hkðx0; xiÞ in (3.19) must vanish on ∂M:
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Gj∂M ¼
X
k

CkHkðx0; xiÞj∂M ¼ 0: ð4:1Þ

This requirement implies that

~∇⊥GðxÞj∂M ¼ 0; ∂0GðxÞj∂M ¼ 0: ð4:2Þ

Thus, the BRST transformation (3.27) enforces Ug ¼ −I
in (3.15).

A. Allowed boundary conditions on Aμ

From (3.24) and (4.2), it follows that

δA0ðxÞj∂M ¼ 0: ð4:3Þ

Using the above in (3.14), we get

½1þU0ðxÞ�δð∂nA0ÞðxÞj∂M¼ ϵ½1þU0ðxÞ�∂0∂nGðxÞj∂M¼0:

ð4:4Þ

As ∂nGðxÞj∂M ≠ 0 in general, the above implies that
BRST symmetry enforces U0 ¼ −I, and hence the BRST-
preserving boundary condition on A0 is

A0ðxÞj∂M ¼ 0: ð4:5Þ

For any other boundary condition on A0, the BRST
symmetry will be broken.
From (3.25) and (4.2), it is easy to check that

δ~A⊥ðxÞj∂M ¼ 0; δ~Fn⊥ðxÞj∂M ¼ 0: ð4:6Þ

Consequently, the BRST variation of (3.12) becomes
trivial, and the boundary conditions (3.12) are allowed
by BRST symmetry for all U⊥. In a similar fashion, the
boundary conditions (3.12) are also not constrained by the
BRST symmetry, and any UnðxÞ is allowed.
These are the same set of boundary conditions (4.5)

and (3.12) that one obtains if the theory is quantized using
Dirac constraints in canonical formalism [10,14].
In a system like a topological insulator where boundaries

play a vital role, we can further use physical conditions to
constrain this allowed set of BRST-preserving boundary
conditions. The surface of a topological insulator, unlike
the bulk (which is an insulator), behaves like a conductor.
Therefore, the tangential component of the electric field
must vanish on the boundary of the topological insulator.
Then, recalling that A0 vanishes on the boundary, we need
to choose

~A⊥ðxÞj∂M ¼ 0: ð4:7Þ

This is one of the allowed boundary conditions from the set
(3.12) (for this case, U⊥ ¼ −I), and this ensures that the

tangential component of the electric field ~E⊥ ¼ ∂0
~A⊥ −

~∇⊥A0 vanishes on the boundary. Also, this is one of the
boundary conditions obtained in Ref. [14] using canonical
formalism.

B. Fermionic boundary conditions

From (3.26) and (4.1), it follows that

δψðxÞj∂M ¼ 0: ð4:8Þ
Using the above in (3.17), it is easy check that

δψ�ðxÞj∂M ¼ 0: ð4:9Þ
A BRST variation of the boundary condition (3.16) is thus
trivial, and hence the boundary condition (3.16) is com-
patible with the BRST symmetry for any choice of UF.
Thus, the BRST symmetry constrains the boundary con-
ditions on the gauge fields Aμ, but it does not constrain the
fermionic boundary conditions.

V. (2þ 1)-DIMENSIONAL EXAMPLE

In the following, we consider the (2þ 1)-dimensional
case, which is particularly relevant in the context of
topological insulators. Consider the (2þ 1)-dimensional
manifold

~M ≡ fx0; x1; x2∶ x1 ≤ 0g ð5:1Þ

with spatial boundary

∂ ~M ¼ fx0; x1; x2∶ x1 ¼ 0g: ð5:2Þ
We choose the representation of the Gamma matrices,

γ0 ¼ σ2; γ1 ¼ iσ1; γ2 ¼ iσ3; ð5:3Þ

with σi’s the Pauli matrices. It follows then that ψ� are
given by

ψþ ¼
�
ψ1

0

�
; ψ− ¼

�
0

ψ2

�
: ð5:4Þ

It is easy to check that the matrixUF must then take the form

UF ¼
�
eiθ 0

0 ei~θ

�
; θ; ~θ ∈ R: ð5:5Þ

The boundary conditions in (3.16) in this case are simply

ψ1jx1¼0 ¼ −iei~θψ2jx1¼0; ð5:6Þ

and the gauge fields satisfy the following boundary
conditions:
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A0jx1¼0 ¼ 0; A2jx1¼0 ¼ 0: ð5:7Þ
The vanishing of A0 on the boundary x1 ¼ 0 is required by
BRST symmetry. However, the conditionA2jx1¼0 ¼ 0 is one
of themany boundary conditions (3.12) that preserves BRST
symmetry. We choose this particular boundary condition
because it leads to the vanishing of the tangential component
of the electric field on the boundary, as it should in a
topological insulator.
It is easy to check that

AðkÞ
0 ¼ 0; AðkÞ

1 ¼ akk2 cosðk1x1Þ cosðk2x2Þ;
AðkÞ
2 ¼ akk1 sinðk1x1Þ sinðk2x2Þ; ð5:8Þ

with ak ∈ C, satisfy the above boundary conditions and are
solutions of the eigenvalue equations

−∂2
jA

ðkÞ
i þ2∂i∂jA

ðkÞ
j ¼ω2

kA
ðkÞ
i ; ∂2

i A
ðkÞ
0 ¼ω2

0A
ðkÞ
0 ; ð5:9Þ

with

ω2
k ¼ k21 þ k22; ω0 ¼ 0: ð5:10Þ

Thus, the gauge field can be expressed as

A0 ¼ 0; A1 ¼
X
k1;k2

akk2 cosðk1x1Þ cosðk2x2Þ;

A2 ¼
X
k1;k2

akk1 sinðk1x1Þ sinðk2x2Þ: ð5:11Þ

Demanding reality of the gauge fields yields

a�k ¼ ak⇒ ak ∈ R: ð5:12Þ
The ghost field can be expanded in the eigenfunctions of

the scalar Laplacian

H ~k ¼ ei~k2x2 sinð~k1x1Þ ð5:13Þ

with eigenvalues

ω2
g ¼ ~k21 þ ~k22: ð5:14Þ

Hence, the ghost field can be expressed as

G ¼
X
~k1;~k2

C ~kH ~k; C ~k ∈ C: ð5:15Þ

A. Eigenstates of the Dirac operator

In this section, we solve for the fermionic edge states in
~M when the coupling constant g is small. As we have
shown in Sec. IV, the BRST symmetry and the self-
adjointness of the Hamiltonian yield the same boundary
conditions that are obtained from the standard Hamiltonian
formalism. Consequently, the edge states that we show to

exist here can be obtained using the canonical formalism as
well. The existence of the edge states is a physical property
of the Yang-Mills-Dirac system and is not an artifact of the
BRST formalism in a manifold with boundaries.
We want to consider the interaction of the fermions with

photons of very small energies. For such soft photons, we
can terminate the sums in (5.11) at small values of k1, k2,
which in turn imply a small ωk.
For simplicity, we will assume that ~θ ¼ π=2 in (5.6).

With this choice, the fermionic boundary condition (5.6)
reduces to

ψ1jx1¼0 ¼ ψ2jx1¼0: ð5:16Þ
However, it is not difficult to generalize the analysis to
arbitrary ~θ.
For small gauge coupling constant e, we expand the field

ψ in e as

ψ ¼ χ þ eξþ � � � ð5:17Þ
The eigenvalue equation for the Dirac fermions

HDψ≡ ½iγ0γið∂i− ieAiÞþeA0þmγ0�ψ ¼Eψ ; E∈R;

ð5:18Þ
at order 1, leads to

iγ0ðγi∂i − imÞχ ¼ Eχ; ð5:19Þ

subject to the boundary condition (5.16). It is easy to see
that the above has solution

χ ¼
�
1

1

�
emx1þiEx2 : ð5:20Þ

At order e, the eigenvalue equation (5.18) gives

iγ0ðγi∂i − imÞξþ γ0γiAiχ ¼ Eξ: ð5:21Þ

To solve this, we start by rewriting Ai as

A1 ¼
X
k1;k2

ak
4
k2ðeik1x1 þ e−ik1x1Þðeik2x2 þ e−ik2x2Þ; ð5:22Þ

A2 ¼ −
X
k1;k2

ak
4
k1ðeik1x1 − e−ik1x1Þðeik2x2 − e−ik2x2Þ: ð5:23Þ

Inserting the ansatz

ξ ¼
X
k1;k2

ðξð1Þk eðik1þmÞx1þiðk2þEÞx2 þ ξð2Þk eð−ik1þmÞx1þiðk2þEÞx2

þ ξð3Þk eðik1þmÞx1þið−k2þEÞx2 þ ξð4Þk eð−ik1þmÞx1þið−k2þEÞx2Þ
ð5:24Þ
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in (5.21), we obtain

ξð1Þk ¼−
ak
4
ð2Ek2−2imk1þω2

kÞ−1
�
2Ek1þ2imk2−ω2

k

2Ek1þ2imk2þω2
k

�
;

ξð2Þk ¼ ak
4
ð2Ek2þ2imk1þω2

kÞ−1
�
2Ek1−2imk2þω2

k

2Ek1−2imk2−ω2
k

�
;

ξð3Þk ¼−
ak
4
ð2Ek2þ2imk1−ω2

kÞ−1
�
2Ek1−2imk2−ω2

k

2Ek1−2imk2þω2
k

�
;

ξð4Þk ¼ ak
4
ð2Ek2−2imk1−ω2

kÞ−1
�
2Ek1þ2imk2þω2

k

2Ek1þ2imk2−ω2
k

�
:

ð5:25Þ

When ωk is very small, we can set ω2
k ≈ 0, and hence the

above reduces to

ξð1Þk ¼−
ak
4

Ek1þ imk2
Ek2− imk1

�
1

1

�
; ξð2Þk ¼ ak

4

Ek1− imk2
Ek2þ imk1

�
1

1

�
;

ξð3Þk ¼−
ak
4

Ek1− imk2
Ek2þ imk1

�
1

1

�
; ξð4Þk ¼ ak

4

Ek1þ imk2
Ek2− imk1

�
1

1

�
:

ð5:26Þ

Therefore, in the presence of soft photons,

ψ ¼ ½ðemx1þiEx2 þ e
X
k1;k2

ðað1Þk eðik1þmÞx1þiðk2þEÞx2 þ að2Þk eð−ik1þmÞx1þiðk2þEÞx2

þ að3Þk eðik1þmÞx1þið−k2þEÞx2 þ að4Þk eð−ik1þmÞx1þið−k2þEÞx2Þ�
�
1

1

�
þOðe2Þ ð5:27Þ

with

að1Þk ¼−
ak
4

Ek1þ imk2
Ek2− imk1

; að2Þk ¼ ak
4

Ek1− imk2
Ek2þ imk1

;

að3Þk ¼−
ak
4

Ek1− imk2
Ek2þ imk1

; að4Þk ¼ ak
4

Ek1þ imk2
Ek2− imk1

; ð5:28Þ

are eigenmodes of (5.18) and satisfy the boundary con-
dition (5.16).
For a sufficiently large mass m, these eigenmodes are

exponentially damped in the bulk and are localized near the
edge x1 ¼ 0. In real systems, like topological insulators,
these modes are presumably amenable to detection.

VI. DISCUSSIONS

The BRST formalism provides a natural framework to
quantize gauge theories in the presence of spatial bounda-
ries, which are particularly important in real systems, like
topological insulators. We have shown that in aUð1Þ gauge
theory, out of the set of all local boundary conditions
on the gauge fields allowed by the self-adjointness of the
Hamiltonian, only some preserve BRST symmetry. These
BRST-preserving boundary conditions are, in general,
consistent with observations in a topological insulator.
The presence of fermionic edge states in the theory is

also very interesting from the perspective of a system like a
topological insulator. These edge states are expected to
assume an important role in the physics at the boundary; it
is possible to experimentally verify the presence of these
fermions localized at the boundary.
To demonstrate the presence of edge states, in the

previous section, we have considered a very simple

(2þ 1)-dimensional system with flat boundaries.
However, those results can be easily extended to any
spacetime dimension and to any curved boundary of codi-
mension 1. Also, we considered the fermions to be massive
so that the edge states are protected by the corresponding
mass gap.However, onemight also consider a gapless system
with time-reversal symmetry. There also, we expect to find
edge-localized fermions in a similar fashion, though the
details in that case will be a bit different.
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APPENDIX A: BOUNDARY CONDITIONS
OF THE GAUGE FIELDS

As mentioned in Sec. III, the fields Ai can be expanded
in the basis of the eigenfunctions of the operator Ô≡ ð−∂2

jþ
2∂i∂jÞ. This operator is studied in Ref. [14]. To find the
domain of self-adjointness of this operator, we impose that

Z
M
ddx½B†

i ð−∂2
jAi þ 2∂i∂jAjÞ

− ð−∂2
jB

†
i þ 2∂i∂jB

†
jÞAi�; ∀ Ai ∈ DÔ; Bi ∈ DÔ†

ðA1Þ
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vanishes if and only if the same boundary conditions are
imposed on both Ai and Bi. Now, Eq. (A1) leads to the
boundary termZ

∂M
dd−1x½B†

i ð−∂nAi þ ∂iAnÞ þ B†
nð∂iAiÞ

− ð−∂nB
†
i þ ∂iB

†
nÞAi − ð∂iB

†
i ÞAn�; ðA2Þ

which must vanish with the same conditions on Ai and Bi.
The most general local boundary conditions for which the
above rule is satisfied are

ð~A⊥ þ i~Fn⊥ÞðxÞj∂M ¼ U⊥ðxÞð~A⊥ − i~Fn⊥ÞðxÞj∂M; ðA3Þ

ðAnþ i∂iAiÞðxÞj∂M ¼UnðxÞðAn− i∂iAiÞðxÞj∂M; x∈ ∂M;

ðA4Þ
with

~Fn⊥ ¼ ∂n
~A⊥ − ~∇⊥An; U†

⊥U⊥ ¼ I ¼ U†
nUn: ðA5Þ

Similarly, A0 can be expanded in the eigenfunctions of
Ô0 ≡ ∂2

j . The domain of self-adjointness of Ô0 is obtained
by demanding that

Z
M
ddx½B†

0ð∂2
jA0Þ− ð∂2

jB
†
0ÞA0�; ∀ A0 ∈DÔ0

; B0 ∈DÔ†
0

ðA6Þ

vanishes with the same boundary conditions on A0 and B0.
The above leads to the boundary term

Z
∂M

dd−1x½B†
0ð∂nA0Þ − ð∂nB

†
0ÞA0�; ðA7Þ

which must vanish with the same conditions on A0 and B0.
It is easy to check that the most general local boundary
condition which satisfies the above requirement is

ðA0þ i∂nA0ÞðxÞj∂M¼U0ðxÞðA0− i∂nA0ÞðxÞj∂M; x∈∂M;

ðA8Þ

with U†
0U0 ¼ I.

APPENDIX B: FERMIONIC BOUNDARY
CONDITIONS

The conventional way to quantize the fermionic field is
to expand it in the basis of eigenfunctions of the Dirac
Hamiltonian HD given by

HD ¼ iγ0γμDμ þmγ0 ðB1Þ

¼ iγ0γið∂i − ieAiÞ þ eA0 þ γ0m: ðB2Þ

The domain of self-adjointness of HD can be obtained by
demanding thatZ
M
ddxχ†HDψ−

Z
M
ddxðHDχÞ†ψ¼0; ∀ψ∈DHD

; χ∈DH†
D

ðB3Þ

if and only if ψ and χ fulfill the same boundary conditions.
We assume that the photon fields are real:

A†
μ ¼ Aμ: ðB4Þ

Then, Eq. (B3) reduces to

i
Z
M
ddx½χ†γ0γi∂iψ þ ð∂iχÞ†γ0γiψ � ¼ 0; ðB5Þ

which leads to Z
∂M

dd−1xχ†γ0~γ · n̂ψ ¼ 0: ðB6Þ

We define the operators

P� ≡ 1

2
ðI� γ0~γ · n̂Þ: ðB7Þ

These are projectors, since they satisfy ðP�Þ2 ¼ P�. In terms
of these projectors, the above integral can be written as

Z
∂M

dd−1xχ†ðPþ − P−Þψ ¼
Z
∂M

dd−1xχ†ðP2þ − P2
−Þψ ¼ 0:

ðB8Þ

Calling ψ� ≡ P�ψ , we can further rewrite the above asZ
∂M

dd−1xðχ†þψþ − χ†−ψ−Þ ¼ 0: ðB9Þ

This requirement leads to the domain of self-adjointness
of HD,

DHD
¼ fψ∶ ψþj∂M ¼ UFγ

0ψ−j∂Mg; ðB10Þ

where the matrix UF satisfies

U†
FUF ¼ I: ðB11Þ

Also, as Pþγ0 ¼ γ0P− and P2
� ¼ P�, UF must satisfy

½UF; γ0~γ · n̂� ¼ 0: ðB12Þ
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