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Based on the Son-Yamamoto relation obtained for the transverse part of the triangle axial anomaly in
QCD,, we derive its analog in a two-dimensional system. It connects the transverse part of the mixed
vector-axial current two-point function with the diagonal vector and axial current two-point functions.
Being fully nonperturbative, this relation may be regarded as anomaly matching for conductivities or
certain transport coefficients depending on the system. We consider the holographic renormalization group
flows in holographic Yang-Mills-Chern-Simons theory via the Hamilton-Jacobi equation with respect to
the radial coordinate. Within this holographic model, it is found that the renormalization group flows for the
following relations are diagonal: the Son-Yamamoto relation and the left-right polarization operator. Thus,
the Son-Yamamoto relation holds at a wide range of energy scales.
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I. INTRODUCTION

The usefulness of anomalies is partially related to the fact
that they are exact and can be determined at strong
coupling. This is a consequence of certain nonrenormal-
ization properties and allows nonperturbative insight.
Indeed, the Adler-Bell-Jackiw (ABJ) axial anomaly can
be captured perturbatively by the one-loop Feynmann
diagram. However, the result is nonperturbative, being
exact from low to high energies since the anomaly reflects
the spectral flow at all scales. Recently, Son and Yamamoto
derived an anomaly matching condition which relates the
U(1)* AVV triangle anomaly [1], Fig. 1, to the two-point
VV and AA current functions, where V refers to the vector
current and A refers to the axial current. The result was
obtained via holography and can be regarded as a non-
perturbative exact relation between three- and two-point
current functions. They used a five-dimensional Yang-Mills
action of the holographic dual of QCD and considered a
holographic mechanism of chiral symmetry breaking via
the boundary conditions for the gauge fields in the infrared.
This class of holographic theories incorporates a bottom-up
AdS/QCD inspired models and the top-down Sakai-
Sugimoto models.

In this paper, we consider the holographic dual of
(1 + 1)-dimensional systems given by a three-dimensional
action and derive the analog of Son-Yamamoto relation,
Fig. 2. Like in holographic QCD, dual action can be
considered as the world volume action on the probe flavor
brane, and therefore it involves the 3D Yang-Mills and
Chern-Simons terms. The duals of the (1 + 1)-dimensional
systems in this approach have been considered in
Refs. [2,3]. We will discuss the case of the single flavor
in the boundary non-Abelian gauge theory at large N. The
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cigar geometry implies that, like in the 4 4- 1 case, we have
to consider left and right copies of the gauge group in the
3D bulk theory reflecting the global U(1), x U(1)g
symmetry at the boundary. The 2D QCD enjoys the chiral
symmetry breaking [4] via chiral condensate formation.
There is the pionlike degree of freedom of which the mass
is related to the fermion mass via the analog of the GOR
relation.

There is some important difference between the 4 + 1
and 2 4 1 bulk gauge theories. The Son-Yamamoto relation
has been derived in five-dimensional theory taking into
account that the contribution of Chern-Simons (CS) terms
is suppressed by the large 't Hooft coupling. Therefore, it
was possible to first consider the equation of motion
without the CS term, derive the constant Wronskian
condition, and then treat the CS term as a kind of
perturbation. The situation in 2 + 1 is different, and there
is no suppression of the CS term anymore, which is crucial
for imposing the self-consistent boundary conditions [2].
Therefore, we have to consider the equation of motion
including the CS terms which have the opposite signs for
the left and right fields. Therefore one can not obtain the
constant Wronskian condition analytically in 1+ 1 case.

FIG. 1. Axial (ABJ)anomaly in (3 + 1) dimensions: pion decay
7y — 2y. Solid lines represent chiral fermions, and wavy lines
represent U(1) gauge bosons.
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FIG. 2. Parity-violating anomaly in (1 + 1) dimensions: mass
generation myy. Solid lines represent chiral fermions, and wavy
lines represent U(1) gauge bosons.

However, the numerical analysis of the equations of motion
demonstrates that the Wronskian exhibits a plateau in the
very wide interval of the radial holographic coordinate and
the transition to the plateau is very sharp. One could also
have in mind the formal regime when Yang-Mills (YM)
terms dominate. Therefore, we can explore the constant
Wronskian condition with some reservations in the 2 + 1
case as well.

It was shown in Ref. [1] that the Son-Yamamoto (SY)
relation is consistent with the Vainshtein relation [5] for the
magnetic susceptibility of the quark condensate in QCD
introduced in Ref. [6]. However, in two dimensions, the
operator product expansion (OPE) for the vector-axial
correlator trivially reduces the four-fermion operator to
the square of the chiral condensate due to the 2D chiral
algebra. As a result, we obtain from the Son-Yamamoto
relation an estimate for the pion decay constant. We note
that it is derived in the region when the application of the
low-energy theory is questionable. Hence, this result should
be taken with some reservation and deserves the addi-
tional study.

An additional question concerns renormalization group
(RG) flow of our holographic model. This question is
related to renormalization and regularization of effective
theories in holography, which were solved along two
avenues. First is the method of standard holographic
renormalization that involves the cancellation of all
cutof-related divergences from the gravity on-shell action
by adding the counterterms on the cutoff boundary surface
and the subsequent removal of cutoff [7]. Holographic
renormalization has been used in the calculation of two-
point functions in deformed conformal field theory (CFT)
[7]. In parallel development, the Hamilton-Jacobi equation
was used for renormalization in order to separate terms in
the bulk on-shell action, which can be written as local
functions of boundary data. The remaining nonlocal
expression was identified, according to the AdS/CFT
prescription, with the generating functional of a boundary
field theory [8,9]. In the Hamilton-Jacobi equation, the bulk
radial coordinate is treated as the time variable, which is
consistent with holographic identification of radial coor-
dinate with the RG energy scale. The second approach
provides correct results for anomalies and gives a simple
description of RG flow in deformed CFTs [10]. We apply
the Hamilton-Jacobi equation in the bulk theory to the
Yang-Mills-Chern-Simons holographic action similar to
Ref. [11] and demonstrate that the SY relation is diagonal
with respect to holographic RG flow.
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The paper is organized as follows. We derive the two-
dimensional Son-Yamamoto relation in Sec. II. In Sec. III,
we check the Son-Yamamoto relation in the small- and
large-Q? limits and obtain an estimate for the pion decay
constant. In Sec. IV, we demonstrate using the Hamilton-
Jacobi equations in the bulk theory that the Son-Yamamoto
relation is diagonal under the RG flows. Section V is
devoted to the comparison of our results for the 1 -+ 1-
dimensional Son-Yamamoto relation with that obtained
in the 3 4+ 1-dimensional QCD. The results are summarized
in the Conclusion, and technical details are collected in
Appendixes A and B.

II. MODEL AND SON-YAMAMOTO RELATION

We consider chiral dynamics in two dimensions. Chiral
symmetry is U(1), x U(1)g, which corresponds to the
conserved left- and right-handed currents. According to
AdS/CFT duality, there are left- A; and right-handed A
gauge fields in a three-dimensional dual model. The 3D
dual action involves three-dimensional Maxwell theory and
the topological Chern-Simons term

S = SM + SCS
= Su(AL) + Su(Ag) + Scs(AL) = Ssc(Ag), (1)
where S, and Scg are defined as

Sul) = [ etz 107 - 578) @)

and [2,12]

Scs(A) = K/ dxdz(A* F) (3)
with [2,12]
N,
T “)
and the dual field strength is +F, = 1¢,,, 7.

The IR brane is located at z = 0, and the UV boundary of
the asymptotic 3 dimensional anti-de Sitter space (AdS;) is
located at z = z;. It is convenient to use vector V and axial
A gauge fields

AL =V+A,  Ag=V-A (5)

which obey Neumann and Dirichlet boundary conditions in
the IR, respectively,

IR: 0.V,(z=0)=0, A,(z=0)=0, (6)

and V(—z) = V(z) is parity even, and A(—z) = —A(z) is
parity odd. Making use of the decomposition (5), the
Maxwell and Chern-Simons terms in the action (1) are
given by
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1
SM—/dZXdZ< ( ) (FVZﬂ—i_F%zp)_zg( ) (F%/ﬂl/_'—F.%ﬂI/))
(7)
SCS = ZK/dZ)CdZ(VM * FAﬂ +A/4 * FVﬂ)' (8)

We will work in the radial gauge, V, = A, = 0, and assume
there is a translation invariance along the boundary “UV”
brane and perform the Fourier transform for gauge fields,

qu —igx
V}l(-xv Z) :/(27[)26 1 V(q’ Z)’ (9)
and the same for the axial field A,. Substituting these

expressions into the action, we can write down the holo-
graphic Maxwell and Chern-Simons terms in 3D explicitly,

d2 2 2 2
Su= [ e (1@, + 0.0

1
—W(FVW"‘F/Z; )>’ (10)
d’q
Scs = 2K/ 2n)7 dze"(0.A,V, +0,V,A,), (11)

where we used the convention [13] &# = ¢*¥. Here,
€,, = —&y, is the two-dimensional antisymmetric symbol,
g9y = 1 = —€%, which obeys

8/‘/1£,,p = —5’;5f, + 8,67, e, = = 5. (12)
Following Son and Yamamoto [1], we are interested in the
transversal part of the correlators. Further, for short, we will

omit perpendicular projectors Pjy :nﬂy—q;;’” in the

expressions for gauge fields V and A. However, it can
be easily reinstated in the resulting formulas by substituting
O = P,fy. We perform the field decomposition

Vi(g) =V(g.2)Volq).  Auq) =A(q.2)Ag.  (13)
where V, and A, are the sources of the corresponding
boundary currents. We require the Dirichlet boundary
conditions in the UV,

UViV(g.2)[7 =1 A(g.2)f7* =1, (14)

and therefore sources coincide with the bulk gauge fields at
the boundary. According to the AdS/CFT prescription to
obtain correlation functions for currents, we need to vary
the action evaluated on the classical solutions with respect
to the corresponding sources of the currents, Vi, and A,.

Next, let us remind the reader of the observation made by
Son and Yamamoto, which made it possible to derive the
relation between three- and two-point functions [1]. In our
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case, we will obtain the relation between diagonal and
mixed two-point functions. The linearized equation of
motion in the pure Maxwell theory is

9,(f20.V) - 0, (% aﬂv) - (15)

which, due to the translation invariance along the boundary
direction, is

Pz
7*(2)
Here, we did not take into account the Chern-Simons term.

The same equation of motion is satisfied by the axial gauge
field; i.e., we have

0,(f*(2)0.V(q.2)) +

V(g,z) =0. (16)

af2

VY + v 0 (17)

of? q°
A/
AR

Since V and A are linearly independent solutions of the
same equation, we have [1]

V(g,2)0A(q, 2) — Alg,2)9V (g, 2)
fafz/fz (19)

A+ 2+ A= (18)

=W(q
which can be written as

*(2)(V(g.2)9.A(q.2) —Alq.2)0,V(q.2)) = W(q). (20)

where W(q) is a z-independent Wronskian. The independ-
ence on z of the combination in Eq. (20) is crucial to
obtaining the Son-Yamamoto relation, and it is responsible
for the unique properties of the RG equations for the
diagonal and mixed correlators. The relation for Wronskian
(20) is obtained in the pure Maxwell theory.

In Appendix B, we include the Chern-Simons term
and regulate the Maxwell-Chern-Simons theory using
dimensional regularization. We show numerically that
the logarithmic divergences characteristic of the (1 + 1)-
dimensional boundary theory [2] are regularized; solutions
for the gauge fields V(Q, z) and A(Q, z) converge in the
UV. It justifies the use of the finite boundary conditions in
Eq. (14). Furthermore, the Wronskian for the regulated
Maxwell-Chern-Simons theory has a plateau starting from
some radial coordinate z > z,,. Therefore, it is legitimate to
take the z-independent Wronskian for large Q? or when the
coefficient in front of the Chern-Simons term is small.

A. Diagonal correlators

Now, we are ready to obtain two-point diagonal corre-
lators for the vector (V,V,) and axial (A,A,) fields in
(1 + 1) dimensions. Varying the action twice with respect
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to the boundary value V,, we obtain the vector current
two-point correlator

(Ju(@)iu(=

/ Pxe®(,(x),0) (1)

& Sym
5‘/0;4 (Q)(SVOU (_q

where the Yang-Mills action is given by Eq. (10).
Integrating the first term of Eq. (10) by parts, we obtain

=20

Sym = /( )zfz() (q,2)0.A4(q, Z) . (23)

where A stands either for V or A, and the action is evaluated
at the solutions (18). Varying Eq. (23) twice with respect to
the boundary values V, (22),

Uudo) =222V (0. )V (4. 2)78,.  (24)

where we introduced the notation V' = 0,V. Substituting
the boundary conditions (14), we obtain for the two-point
correlation functions

(o) = 212V [728,, = Tly(9)5,u. (25)

() = 2f2ATF7506,, = T4 (q)8y, (26)

where we introduced (dimensionless) polarization opera-
tors ITy, and I14. Therefore, the polarization operators are
given by

y=22VE, T, = 2P, (27)
Equation (27) represents the known expression for a
diagonal conductivity obtained from the Kubo formula.

From Eq. (23), the diagonal current-current correlator is
given by

0, A;|7%
(ijj) =2 =~ 1 5. (28)

where via the Kubo formula the relation to the conductivity
s (Jijj) =0
Using the expression for the Wronskian (20) and the
boundary conditions (14), we obtain the relation
1
FAVA =AV) =5 (M =Tly) = W(g),  (29)
which we use further. Since the combination in Eq. (20)
does not depend on z, it can be estimated at any point, for
example, at z = z; where the polarization operators are

defined by Eq. (27). The Wronskian equation (29) is the

PHYSICAL REVIEW D 94, 085023 (2016)

crucial formula to establish a relation between diagonal and
mixed current correlators.

B. Mixed correlator

Now, our aim is to obtain the mixed correlator for axial
and vector fields (V,A,). It is easy to see that the only
contribution to this correlator function is coming from the
Chern-Simons term (11). After Fourier transformation, the
Chern-Simons term (11) can be rewritten as

2
SCS = ZK/%CZZ&‘ (azA/)( )Va(q)

- azva(Q)Ap(_Q))' (30)

As in Refs. [1,14], we can add the surface term to the
action,

5Scs = 2k / <%2dzewaz<Ap<—q>vg<q>>, (31)

which is equivalent to the gauge transformation done
in Ref. [1]. The Chern-Simons term becomes
Scs + 6Scs = Scss

2
Ses = —dk / éﬂ;’z dze" A, (~q)0.V,o(q).  (32)

Varying twice the (new) Chern-Simons term with respect to
the boundary fields

Scs 5
= {JuJ>): 33
5V0”5A0D <]/4]l/> ( )
we obtain
525(:5 . .5
6V0}I5A0y - <.][4.]l/>

— ke AV [0 4 2k / “ dZ(AV = V'A)

1
=5 wir() (34)
v/

where we introduced a (dimensional) transversal part of the
vector-axial current correlator wy. Therefore, we have

wy = 4k — dak / YA AV - VA, (35)
From Eq. (29), it can be written as
wr(Q?) = 4nk
dz
—dm [ S (0 =T (@2). GO

where we used and Q> = —¢°. In the context of the QCD,,
4zk = N, (4). The relation between the mixed and diagonal
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correlators (36) is the (1 4 1)-dimensional analog of the
Son-Yamamoto relation, which was originally obtained for
QCD in (3 + 1) dimensions [1]. One can think of the Son-
Yamamoto relation (36) as the expansion in the large Q2.
The first term [normalized by Eq. (34) to be equal to
4nx = N_.] is the perturbative contribution of the axial
anomaly, which is obtained from perturbation theory loop
calculation. In QCD, the integral of the metric factor [ 1/f2
produces 1/f2 where f, is the pion decay constant [11].

We rewrite the Son-Yamamoto relation in the form
20 dZ
SY)=w —4m<—|—4m</ — (I, —I1y) =0. 37
( ) T 2f2(Z) ( A V) ( )

This relation holds for any metric factors f(z) and g(z).
Generally, we decompose the axial anomaly as

. 1 L
<J;¢.]15/> - %PzL(Pg wr + PE”WL)gaﬁ’ (38)
where the transverse and longitudinal projection tensors are
Pt =% —q,q4*/q* and Pl — 4,9°/ 4%, respectively. In
Eq. (38), the perturbative w are given by [13]

wy =4zk = N, wy = 8nk = 2N,. (39)

The same relation w; = 2wy holds in QCD,.

We give another representation for the Son-Yamamoto
relation through the left-right correlator. The left-right
correlator (LR), which is the measure of the chiral
symmetry breaking, can be expressed through the diagonal
correlators (VV) and (AA) as

HLR - HA - Hv. (40)

Using the definition of wy (38), we rewrite the Son-
Yamamoto relation (36) as

5 » w0 dz
<J,615>L:P,,LP€leaﬂ(4x—4x /O THLR), (41)

where jﬁ =iy, 1s the left-handed current and
j,’f = WgryWr is the right-handed current. We rewrite
Eq. (41) in more physical terms,

. N I1
Gk = PPl e e (1-T8) @)

T

where we introduced as in Ref. [1] the pion decay constant
% = #?Z). The pion decay constant f, can be obtained

from the longitudinal part of the axial current correlator w;
[1]. The first term in Eq. (42) is a perturbative contribution,

. N
(LR = —eu(a,q" —ml) —5., (43)
nq
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where the pole 1/¢? corresponds to the physical propaga-
tion of the single effective bosonic degree of freedom which
is massless in the absence of electromagnetic interaction. In
the Schwinger model, the intermediate boson becomes
massive due to the electric field F which is responsible for
the chiral anomaly o jﬁ = N7 F. The residue of the pole in
the correlation function of Eq. (43) is given by the
coefficient of chiral current anomaly N./z. The massless
pole 1/4> with finite residue determined by the chiral
anomaly is obtained in the Schwinger model in Ref. [13]
and in the two-dimensional massless QCD, [4]. The second
term in Eq. (42) proportional to I1; ; is a nonperturbative
correction. This is a new relation which is not known in
field theory. It shows that the transverse part of the chiral
anomaly has a dynamical nature rather than a topological
one. It can be regarded as an anomaly matching condition
for resonances as an analog of that for the massless
excitations in QCD, (Sec. IV).

In what follows, we use the two representations of the
Son-Yamamoto relation, Eqs. (37) and (41).

III. CHECKING THE SON-YAMAMOTO
RELATION. THE PION DECAY CONSTANT

Let us check if the Son-Yamamoto relation (37) is
satisfied in a model-independent setting. To estimate the
individual two-point current correlators, we will consider
the two opposite limits of small and large momenta Q2,
where some simplifications can be done. Also, we will
make an estimate for the decay constant.

A. Regime of small Q*

First, we consider the limit of small Q% < AZ. In this
case, we estimate the Son-Yamamoto relation at the point
zo — 0. In the next section, we associate the UV boundary
cutoff z; with the RG scale in the Hamilton-Jacobi
equation. Therefore, the limit when the UV cutoff is taken
to be zero corresponds to the field theory in the regime of
the low energy/momentum. In the limit z, = 0, the different
boundary conditions (6) enable us to simplify the holo-
graphic action. As discussed in Ref. [11], in the Yang-Mills
action, we can neglect 9.V, = 0; however, we approximate

BZA” = /2—:. Therefore, we can write to the leading order
Sym = d? Fo-Llp (44)
YM = 20 X Z(z) Y Vv |

which gives

2 2
I, — fZ(Zo) ’ M, = 0, (45)
0

and together with the integral,
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d 2f2

/_Zz(HA_HV): 220 M:

2f 2f*(z0) 20

In the Chern-Simons action (8), (30) and the boundary term
(31), we can neglect the term e’””IA Fy,, but again take

1. (46)

d.A, z(’)‘ in the term e”MV F4,;. Approximating the
mtegral over z, we have to leading order

Scs = 2K/d2xs’“‘AMVD,
8Scs = =2k / d*xe™ A,V ,; (47)

thus, from Eq. (34),
wyp = 0. (48)

Combining together Egs. (46) and (48), the Son-Yamamoto
relation (37) is satisfied at z, = 0; i.e., it holds for small Q2.

B. Regime of large Q*

Next, we consider the opposite limit Q% > A?, where we
can use the operator product expansion. From the Son-
Yamamoto relation, we will make an estimate for the decay
constant.

In two dimensions, the field dimensions are given as
follows: [w] = V/E for the fermion field; [F] = E, [A] = 1
for the gauge field; [g] = E for the coupling between
fermion and gauge fields [f,] = 1 for the decay constant.
The anomalous divergence of the axial current is

0

”j’; = 4Kgl~?, (49)

where the dual field strength equals the 2D electric field
F = 28WF”” = E which is the pseudoscalar. The Dirac
matrices in the 2 x 2 chiral representation are given by the
Pauli matrices [13,15]

Yo = Oy, Y1 = —ioy, vs=rori =03, (50)
where 6;0; = 6;; + ie;op With 4, j, k=1, 2, 3. A special
property of the gamma matrices in two dimensions is [13]

r'rs = r.e, (51)
which gives for the spin-operator 6,, = 3 (y,7, — 7.7,
Oy = 1Y5E. (52)

This property enables us to make significant simplifications
in the diagrams of the OPE in the two dimensions, which
follows next.

We check the Son-Yamamoto relation at large virtualities
and obtain the result for the decay constant. As in Ref. [1],

PHYSICAL REVIEW D 94, 085023 (2016)

we compare the OPE and the Son-Yamamoto relation for
the two-point left-right current correlator. Diagrams con-
tributing to the (j,j3) in the OPE are the fermion loops,
which are open on two sides and have insertions of the
(chiral) scalar (py) and the spin-chiral (yo,,iysy) con-
densates with spin operator 6,,, and different arrangements
of a photon line in the fermion loop are possible. Therefore,
on one hand, the OPE is written as
2
0u). (53

Q2

N =

GEIR) = = (i) = PP <4Kgaﬁ L
where the operator

((Frarsw)@ygy))
Q2

Oy = (54)

is the four-fermion operator. Using the Fierz transformation
and in the large-N_ limit where the four-fermion operator
factorizes, we have in the leading order

- 77 /' 7 2
(ww)(wQGZaWsW :_<wa/2> e (59)

Oaﬁ =

where we simplified the spin-chiral condensate with the
help of Eq. (52). The leading-order OPE for the left-right
current correlator is given by the operator dimension 2,

kit = piplen (-2 ). (59

On the other hand, the Son-Yamamoto relation is given by
Eq. (41),

0 dz
f2

The leading term in the OPE for Il;; is dimension-2
operator [16]

(ERYE = PelPlte,, <4K — 4k i

nLR) (57)

G A@Lrawn) Wrrr))  29°
(o)

HLR == Q2 Q2 - Q4

(58)

Comparing terms proportional to (yy)? in Egs. (56) and
(57), we find

;t';: 1, (59)

where we made the following identification of the integral
with the decay constant [1]

I [ dz
a2/ 70 (60)
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Equation (59) relies completely on the Son-Yamamoto
relation. We consider it not as an exact result but as an
estimate for the f,, because, as discussed for QCD, in
Ref. [1], the Son-Yamamoto equation does not provide a
complete match for resonances at large virtualities. In the
QCD,, the Chern-Simons x is proportional to N, (4).
Therefore, we have from Eq. (59)

f%NNc’ (61)

which agrees with the estimate done in the weak coupling
regime of the ’t Hooft solution N, — co and g>N, = const
for QCD, by Zhitnitsky in Ref. [4].

Also, we can check the Son-Yamamoto relation using the
parallel component. The OPE for the parallel component is
given by Fig. 1 in Ref. [4] and includes the operator of
dimension 2,

. ., 2m(po,piysy)
<.]/4.]2>” = P;lplljll (4K€(1/} - 25 >
2mli
_ lepglleaﬂ <4K‘ ”l<l/;l//>) ) (62)

On the other hand, expanding the pion pole propagator

[4,13], we have
fr A, _m:
e 15) (63

Comparing Egs. (62) and (63), we obtain

fam = =2m(py), (64)

which is the Gell-Mann-Oakes-Renner (GOR) relation; i.e.,
we trivially satisfy the Son-Yamamoto relation. Using that
m2 ~m + 1/N, and the GOR relation, we find the behav-
ior of the chiral (py) and the spin-chiral (o, iysy)
condensates at N, — oo,

(wy) ~Neo  (wopiysy) ~ N, (65)
where we used (wo,,iysy) = —¢,, (py). The estimate for
the chiral condensate agrees with the one for the massless
QCD, in Ref. [4]. Due to the chiral anomaly 9,5 ~ F, the
vacuum of QCD, exhibits chiral symmetry breaking (CSB)
(py) #0 and there exit the massless Goldstone boson
which is a pion with pion decay constant and the superfluid
pairing. In the Schwinger model, this corresponds to the
chiral bosonization and superfluid pairing of bosons
composed of fermion pairs [13].

Our calculations for the parallel component rely
on the pion pole dominance—saturation of the two-point
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correlators by the pion pole contribution—valid at small Q>
[2]. Here, we analytically continue it to the large Q.

IV. SUM RULES FOR QCD,

Here, we summarize the sum rules for the resonances. In
the large-N, limit, besides the pion state, a tower of
resonances with the decay widths I'~ 1/N, is defined.
The matrix elements of vector and axial currents between
the vacuum and one-particle states (a pion z, a vector
meson V;, or an axial-vector meson A;) are fixed by the
nonperturbative correction in the Son-Yamamoto relation
(37) and Eq. (42). Derivation is identical to that for QCDy,
in Ref. [1], and therefore we omit it. The matrix elements
are

(017,(0)|2(q)) = q% (66)

(O0)A(a. ) = (o =2 )2Nf2qA . (67)

(01720)[Vi(g.e€))

Y]
|:<'7ﬂ qﬂq >2 }ng qﬂzq fﬂgVﬂ.’:| aﬁ’ (68)

where Eq. (60) is the longitudinal and Eqs. (67) and (68) are
the transversal set of sum rules. Here, f, is the pion decay
constant; gy and 9a, are the vector and axial-vector decay

constants defined as

(017, 0)IVi(p.€)) = gv,€u: (69)

(072(0)1A;(p.€)) = ga,€u (70)
and we define V;xr and V;A; couplings in two-dimensional
QCDZ’

LV,-ﬂ = Em/gv,-ﬂviyauﬂ’ (71)

LVA - ‘ElwgVA Vlﬂ jur (72)

If one replaces the vector current by an on-shell photon in
Eq. (66), Eq. (66) represents the decay of the pion. Our
Eq. (66) agrees with the result found for QCD, when
N, — oo and g>N, = const in Ref. [4]. However, Egs. (67)
and (68) are the new formulas involving resonances. There
are also sum rules which provide stringent constraints
between the resonance parameters. Again, this set of sum
rules is a direct consequence of the nonperturbative
correction in the Son-Yamamoto relation, and it is obtained
similarly to QCD, in Ref. [1],
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29y, N,
ZQV,;ZZQV, _ c , (73)
i my, ﬂf”
9va;94; N, .
= — , i=1,2,..., 74
Zj:mi/_ - my, 2rf? i (74)
9v.a,;9v; N, .
= - . =12,..., 75
zi:mij_m%/i zn_f]zrgA/ J ( )

where Eq. (73) expresses the longitudinal and Eqgs. (74) and
(75) express the transversal set of sum rules. Here, my, and
My are masses of the vector and axial mesons. The above

sum rules and resultant matrix elements are generic to any
theory with a Yang-Mills-Chern-Simons gravity dual in the
limit of large N,.. The set of sum rules for the matrix
elements and for the parameters can be checked explicitly
in a specific model (for example, the “cosh” model).

V. HAMILTON-JACOBI EQUATION

As was argued in Ref. [8], the holographic renormaliza-
tion group equation can be obtained as a Hamiltonian-
Jacobi equation when time is identified with the radial z
coordinate. According to the AdS/CFT prescription, it is
written as

oS
— 4 H(7y, Agy 29) =0, (76)
aZo

where evolution goes from the IR to the UV boundary z;;
i.e., the bulk action S and Hamiltonian H are taken at z;.
The Hamiltonian is expressed through canonical momen-
tum 7 conjugated to the gauge field A, at the boundary

oL oS

T B0 A 5 gy (77)

According to the AdS/CFT prescription, because .4, is a
source of the current, we vary once and get

oS

i) = 52— (78)

From the action

S = /dzxdz <f2((8ZAM)2 +(0,V,)?)
1
03 P Fh) + 4xewazv,,Aa) . (9)

we find the canonical momenta
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OL
= =2f%0.A
e G0a,)
oL
= =212
”Vﬂ a(azvﬂ) f 81‘/# +¢V;u (80)

where the shift in the canonical momenta due to the Chern-
Simons term is

Py, = 4Kke'A, (81)
and the corresponding “velocities” are

1 1

5‘A 8V :2—f27~1'vﬂ.

2 :2_‘](-27[Aﬂ’ z (82)

To simplify the notation, we introduced shifted momentum
Ty,

<j;4> _¢Vw (83)

where ¢’s are given by Eq. (81). This shows the mechanism
of how the bulk Chern-Simons term leads to the parity
breaking in 1+ 1-dimensional boundary field theory.
Namely, the Chern-Simons term is responsible for the shift
in canonical momenta, which gives a nonzero vacuum
expectation value of the current

TAy = <j;54>7 ﬁVﬂ = Tyy — ¢Vﬂ =

(jﬂ> = 4xe* A, # 0. (84)

Expressing velocities through momenta
H— / Px(mp, 0., + 1,0V, — L), (85)
we obtain the Hamiltonian at the UV boundary, at 7 = z,
H= [ d& L 2 ! ke’ A
= X 27]52”A/‘+27f2ﬂv”(ﬂv”_ K& (7)
1
- [P(@A + 0V,7) = 5 (P + Fi)

+ 4xe*? 0, V,JAJ} )

1 1
— /dzx (4—fz7l'%” - e (v, — Pv)?

1

Finally, we arrive at the Hamilton-Jacobi equation (76),

20

oS d’q 1 - 1
8_zo+ /W (4—fz (73, +77,) +2—92(F/24,w + F%@))

=0, (87)
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where we traded time for holographic coordinate z and the
shifted momentum is given by Eq. (83). Now, to obtain
the corresponding RG equations for correlators, we vary the
Hamilton-Jacobi equation (87) with respect to boundary
values of the gauge fields and introduce the notation for the
one-point functions,

oS ) oS

Taa = 5A—oa = (2> ya = m = (Ja)» (88)
and the two-point functions,
(314127;401; <Ja]/;> b4,
ey = Ui = g 89
(W;S:Tiw = <jaj2> = %EaﬂwT = EgpWrs (90)

One- and two-point functions were calculated in Sec. II. We
introduced a notation wy/(27) = Wwr.

A. Hamilton-Jacobi equation
for diagonal correlators

First, we examine the RG equation for the diagonal
correlators (26). We start off varying the Hamiltonian (86)
twice with respect to the boundary value A,

20

’

LL(2+~ ).,.L( LR
SAgubAgy \af? e T ) g (Fat Fow

o1)
and we obtain
() + () + i+ a5
—sr (Pr+ (- 35)
HEWFP)+ D) - U )
2;2 (I + (y — dkA[0)2) 5%, (92)

Our Abelian action is quadratic in fields, and therefore we
neglect three-point functions. Varying the Hamilton-Jacobi
(HJ) equation (87) and using Eq. (14), we obtain the HJ
equations for the diagonal correlators:

0 1

2
920 HA+2f2 (T3 + (w

wr—4x)?) =0 (93)
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an+1
azy V22

The HJ equation for the difference is given by

(I3, + (wr — 4x)?) = 0. (94)

i(n y) + 5>

3 —113) =
5o (G -1R) =0, (95)

1
212
where all quantities are taken at the point zy, i.e., f(zg),

I, (zp), and ITy(zg). Using Eq. (40), we can rewrite
Eq. (95) for the left-right correlator,

0 1

%HLR = 2f2 (ITy + Ty )T g. (96)

The RG equation for the left-right correlator is diagonal;
i.e., its running is expressed again through the left-right
correlator. The momentum-dependent coefficient is given
by the sum of the correlators I1, + ITy .

B. Hamilton-Jacobi equation for mixed correlator

Varying the Hamiltonian part in the HJ equation (87)
twice with respect to the boundary values V(, and A,, we
obtain

2 (1 1
m 4f2(ﬂA;4+”Vu) 2 5 (Fiu+Fiu)

and we obtain

C o)

1 87y oy
2126V, 64,

1 <5n'A oy

(3271'A - 527}\/
212\ 6V, 64,

TASVosA, Y SVodA,

- zlfz <<jj5><ff> + <<jf> - 5A0> i)

GG + () - ¢v)<1‘5jj>>

1
= TJ‘Q (S{IYVNVTHAéyﬂ + (6’7/}17\/7‘ - Sy/}4KA‘ZO)Hvéya)

1
— Tﬁgaﬂ(%m + (Wy — 40)TTy). (98)

Varying the HJ equation (87), we obtain the HJ equations
for the mixed correlator,

8

WT + 25 (W (T +T1y)

2 f2
+ 2c(Ily —Ily) = 2x(I4 +Iy)) =0, (99)
where f(zo)?, wr(zo), 4 (z0), and I1y(z) are taken at z.
As seen from Eq. (99), due to the Chern-Simons term,
k # 0, the RG equation for the mixed correlator wy is not
diagonal,
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0 . 1
a_Z()WT = 2f2 (ITy + Ty )Wy
2 21<

It is remarkable that the diagonal RG flow for w; has the
same rate (1/2f2)(Tl4 +I1y) as the left-right correla-
tor HLR'

C. Hamilton-Jacobi equation
for Son-Yamamoto relation

We write the HJ equation for the Son-Yamamoto
relation (37),

20 dz
2f2

where w; = wyp/(27). To this end, we differentiate
Eq. (101) with respect to z; and use the HJ equations
for the diagonal and mixed two-point functions, Eqs. (95)
and (99),

0 . dz 0 2
—WT+2K/Z0—Z—(HA—H‘/)+2_;(

(SY) :wT—2K+2K/ (I, —1,),  (101)

I, —1Iy) +

(102)

(Wr (I + Iy) + 2& (T4 = ITy) — 2x(IT4 + 1))

3 f2

+2K/

where the first and the fourth terms constitute Eq. (99) and
the second and the fifth terms constitute Eq. (95). Note that
the integral with the metric term 1/f? in Eq. (101) is
differentiated. Combining the terms, we have

0 dz
02 (WT—2K+2K/2f2 (T4 Hv))

dz 1 1
2222 (3 - 115) —2’<2—fz(HA -1Iy) =0,

(103)

2;2 (M4 +11y) <VvT — 2K+ ZK/;'I—]Z(HA - HV)> =0,
(104)
which can be written in a short form,
o (SY) = -1 (I, + ,)(SY).  (105)
0z 22

where (SY) denotes the Son-Yamamoto relation (101). The
RG flow for the Son-Yamamoto relation is diagonal. It is
remarkable that the Son-Yamamoto relation (SY) and the
left-right correlator I,z (96) both flow with the same
coefficient which is given by the sum ~(IT, + ITy).
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In Sec. IIT (the regime of small momenta), we showed
that the Son-Yamamoto relation (101) is satisfied at the
point zo — 0. This means that, since the RG (105) is
diagonal, the Son-Yamamoto relation holds for any energy
scale z.

VI. SIMILARITY OF QCD AND
TWO-DIMENSIONAL SYSTEM.
DIMENSIONAL REDUCTION

In this section, we draw parallels between the four-
dimensional QCD [1,11] and our two-dimensional system.
We write formulas for the 2D system in the context of
QCD,. We summarize the RG equations,

0 1

8710HLR 2f2 (I, + Iy ) g (106)
4 SY) = ! I1 IT1,)(SY 107
6_10( )= _2—f2( 4 +1y)(SY), (107)

which are identical in both the QCD and linear cases. It is
remarkable that the two equations have the same rate of
change # (I14 +1I1y). Further comparing QCD, and QCD,,
the polariztion operators I1, and ITy, are the same; however,
the Son-Yamamoto relations slightly differ. Explicitly, they
are given by

d
2D: (SY) = wy — N, + N, /°2fz2 (I, —I1,)
=0, (108)
i) =5z (Ne=Ne [ 5 M =Te ),
(109)
where wr ~ {(j(q)jy(~q))* and [1]
N. N,
e
. Q2 N. N, .
<]ﬂ]l§>L @ - F(HA - HV)FﬂD . (1 1 1)
Here the dual field strength is F w = 1/2€,,05F ' and the

transverse part of the vector-axial current correlator is
defined as  wyF(k) ~ (ja(q)jv(—q —k)jy(k)*  with
k=0, F is the field strength of the vector gauge field,
0? = —q?. The following identification is done:

1 20 d
f,%:/o 2—;2 (112)
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Note that the dimension of the pion decay constant is
[fz]=1 in two dimensions and [f,]=E in four
dimensions.

Next, we consider the dimensional reduction d — d — 2
that occurs at strong magnetic field B — oo, in order to see
a connection between four-dimensional QCD and 2D
systems. The Dirac action is written as

Sp = i/d“xl/'/(F”D” —m)y, (113)
where I" are the four-component gamma matrices and the
covariant derivative contains the gauge field. We choose the

gauge
(114)

with B||z and where B is positive, and consider a z slice for
the time being. Then, we decompose the Dirac spinor into
two two-component Weyl spinors,

y = e—iwt—‘rikx(fl(y))’ (115)
&(y)
with k, = k. For a new variable,
k

the Dirac equation for &; is reduced to a harmonic oscillator,
where a solution is defined in terms of the Hermite
polynomials H,,,

& = C(a)’ k)ln(rl)1 &= :I:c(a), k)ln—] (’7)

1 2
1,(n) = ———=¢""/2H,(n), 117
(n) NETING (n) (117)
and the energy is quantized
® = tV2Bn. (118)

n=20,1,2,... are Landau levels, where + distinguishes the
two solutions. Motion in the direction perpendicular to
the magnetic field (x,y) is described by Larmor orbits. In
the limit B — oo, only the lowest Landau level (LLL) is
important. Indeed the LLL has a vanishing energy because
the zero point energy 4B is exactly compensated by the
Zeeman splitting due to spin coupling —%B. Therefore,
the zero modes for each of the two-component spinors is

given by
o
gi:e—ﬂ/2<g>. (119)
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The fact that only one spin component is populated means
that the LLL is spin polarized. Reinstating the z depend-
ence back, the zero modes become functions ¢;(7, z). There
is one zero mode for each state of the LLL, for each k.
These zero modes are described by a 1 + 1-dimensional
effective action for a two-component Weyl spinor

i: = (Cl ) €2>a

Seff = i/d2x5}'ﬂD”§, (120)

where y are given by the Pauli matrices, and the covariant
derivative does not contain the gauge field now. In strong
magnetic fields B — oo where only the LLL is important,
the dynamics is reduced from four dimensions to two
dimensions. Since the LLL is spin polarized, the density of
states for the LLL is %. This means that in the limit B — oo,
in order to get one- and two-point functions of the currents,
we calculate correlators for the two-dimensional fermions
and then sum over the Fermi zero modes using the density
of states in the LLL,

) = 5 @), (121

and schematically

(J()J(0))sa = 2% (1(x)J(0))24: (122)

where Ty = J and {y{ = j are fermion currents in four
dimensions and two dimensions, respectively. Similar
calculations can be done in a holographically dual theory
with dual fermions and currents, where the reduction in the
bulk theories from five dimensions to three dimensions
occurs [17,18]. This means that at large B the dimensional
reduction from four dimensions to two dimensions for the
current correlators holds also nonperturbatively.

VII. CONCLUSIONS

We derived the analog of the Son-Yamamoto relation for
(1 + 1)-dimensional systems. Quantum field theory does
not allow us to predict and calculate the Son-Yamamoto
relation between the anomalous two-point current correla-
tion function and the nonanomalous ones. The holographic
method permits us to establish this relation using the
holographic dictionary. We considered the implications
of the Son-Yamamoto relation in QCD, and obtained a
new set of sum rules for the current matrix elements and for
the decay parameters for the resonances. We also discussed
the Son-Yamamoto relation in application to the field
theory models: the Schwinger model with N fermions
and the 't Hooft solution of QCD, in the limit of
N, = 0, ¢*N, = const.
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Two-dimensional systems are presently realized by
organic quasi-one-dimensional metals, organic nanotubes,
edge states of quantum Hall liquids, one-dimensional
semiconducting structures, and edge states of topological
insulators [19]. In these systems, it is believed that electron-
electron interaction invalidates Landau Fermi liquid pic-
ture. Instead, a different state described approximately by
Tomanaga-Luttinger theory [20] is generated. Since elec-
tronic correlations in this state are stronger than in Fermi
liquid, it is interesting to calculate two-point correlations
that represent conductivities or related transport coeffi-
cients and obtain relations between them. For example, it is
interesting to translate our transport coefficients in terms of
the Coulomb/spin drag transresistivity between two quan-
tum wires [21] or examine transport properties in chiral
edge states in the quantum Hall state and helical edge states
in topological insulators/topological superconductors [22].

The Son-Yamamoto relation is based on the chiral
anomaly. We show that in the transverse direction the
chiral anomaly is dynamical rather than topological. As one
of the consequences, the QCD, vacuum exhibits the chiral
symmetry breaking with py # 0 and a pairing of the
massless fermions (chiral bosonization).

We summarize the two representations of the Son-
Yamamoto relation for (1 + 1)-dimensional systems. The
Son-Yamamoto equation relates w;—the mixed (VA)
current correlator and the diagonal (VV) and (AA) current
correlators

I, =1T,
f

Also the Son-Yamamoto equation can be written for the

left-right correlator (LR)

(SY)=w; —N+N 0, (123)

N _N Tlg
r w2f*(2)

L . L
<]/ll‘]11/e>l = Pﬂng 8aﬁ(

), (124)

where j and j§ are the left- and right-handed currents, P+
is the transverse projection operator, and N stands for N
fermions in Schwinger model or for N, number of colors in
QCD, with f is the decay constant. In Eq. (124), the first
term coincides with the result of the Schwinger model [13]
and the QCD, [4]: the massless pole 1/¢> with finite
residue N/z is determined by the chiral anomaly. The
second term is purely nonperturbative. It gives a new set of
sum rules. Therefore, the Son-Yamamoto relation can be
viewed as an anomaly matching condition.

The key point in deriving the Son-Yamamoto relation
was the independence on the radial coordinate of the
Wronskian for vector and axial gauge fields. It gives the
range of validity for the Son-Yamamoto relation: generally,
small Chern-Simons « (47k = N) or large virtuality Q%. We
estimated Wronskian in the cosh and Sakai-Sugimoto
models, using for parameters the momentum Qz, the
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Chern-Simons «, the ratio of holographic sources r, and
€ in the D =3 4 ¢ dimensional regularization scheme.
In the dimensional regularization, there is a wide range of
parameters where solutions for vector and axial gauge
fields remain regular, which produce a z-independent
Wronskian starting from some small z in the IR
(Appendix B). Specific estimates slightly differ in the
models. It would be instructive to get quantitative estimates
for the parameter range where W(z) = const.

The two-dimensional Son-Yamamoto matching condi-
tion at large virtualities provides an estimate for the decay
constant

fi~Ne, (125)
which was found in the limit of the weak coupling N, — o
and ’t Hooft condition ¢>N, = const by Zhitnitsky [4].
Since this estimate is done at large O where the application
of the low-energy effective action is questionable, this
result deserves independent derivation by other means.
We also showed that the pion decay constant f2 ~ N, is
consistent with the Gell-Mann-Oakes-Renner relation and
the chiral condensate () ~ N.. In QCDy, the analog of
the estimate for f, (125) is the holographic result for
magnetic susceptibility of Vainshtein [5] y ~ 1/f2 [1].

Finally, we found that the RG flow equations for the Son-
Yamamoto relations in (1 4+ 1)- and (3 + 1)-dimensional
systems are the same and they are diagonal. Moreover, the
rate of the RG flow for the SY relation and the left-right
correlator is the same,

9 1

Oy R _2_f2(HA +1y)Mg (126)
0 1
5z SY) = =g ML+ M)(SY).  (127)

where z; is the UV boundary value of the radial bulk
coordinate—the end point of the evolution. We believe that
the diagonal form and this rate hold only for the Abelian
case. We showed that the similarity between (3 + 1)- and
(1 + 1)-dimensional systems can be attributed to the
dimensional reduction D — D — 2 in strong magnetic field.
However, it does not explain why the RG flows are
diagonal and have the certain rate.
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APPENDIX A: CHECKING THE
SON-YAMAMOTO RELATION IN A MODEL.
1+ 1 SYSTEMS IN AN ADS MODEL
WITH THE CHIRAL CONDENSATE

We consider the Son-Yamamoto relation for 1+ 1
systems in a gravity dual model which incorporates the
chiral condensate [23]. Contrary to Ref. [23], we do not
impose the hard-wall cutoff in the IR that insured confine-
ment in 3D QCD. The metric is a slice of the AdS space

1

Z2

ds* = — (=df* + dz* + dx?), (A1)
where 0 < 7 < o0, the AdS UV boundary is at z = 0, and
we rescale the curvature radius of the space to unity. The
action in the bulk

S = Sym + Scs (A2)

includes the scalar field

1
Sou= [ d3x¢§(|DW|2 HIPIOP - o (7 + F%o),
3

(A3)

Scs = K/ d*x(w3(Ar) — ws(Ag)). (A4)

where D® = 0P —iA; D + iAg®, F,, =0J,A, —0,A,,
w(A) = A« F+32A3% and M? is specified further. From

the AdS dictionary, a bulk field ® dual to operator O
behaves at the asymptotic UV boundary AdS,,, as

O(z) =Az%(1+---)+ Bz (1+---), z-0, (A5)
where the source to O (leading term) is A, the expectation
of O (subleading term) is B = (O), and the characteristic
exponents A, for scalar and vector fields are solutions to
equations

scalar: A(A —d) = M?, (A6)

vector: A(A —d+2) = M?, (A7)
where the AdS curvature radius is 1. We take the scalar mass
equal to the Breitenlohner-Freedman bound M? = —1 to
insure the positive energy, and the mass of the vector field is
M? = 0. From Eq. (A7), for the AdS;, d = 2, the character-
istic exponents are A, = 1 for scalar and A = 0 for vector
fields. This implies the following behavior in the UV:

scalar: ¥ = mzlnz + (¢q)z, (A8)

vector: V =Alnz+ (J). (A9)
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In the context of QCD, the source is the quark mass m, and
the response is the chiral condensate {gg), and the electro-
magnetic field A sources the U(1) conserving current with
expectation value (J). To check that the scalar field behaves
asin Eq. (A8), we solve the equation of motion for ¥ without
the gauge field

1 1
0. <—az\11) -5 M*¥ =0. (A10)
z z
Indeed, the solution is
U= Lmzing 4o (AL1)
= 5 mzinzg 252,
with M? = —1, and o is the chiral condensate. As in
Ref. [24], we parametrize the scalar field as
b 1
U = \Ijoel ”, \I]O = EU(Z),
v(z) =mzlnz + oz. (A12)

Introducing the vector and axial-vector fields, V =
(AL +Ag)/2 and A = (A, — Ag)/2, the covariant deriva-
tive for the scalar becomes DW = 2i¥(dr — A). We work
in the radial gauge, V, = A, = 0. We decompose the gauge
fields as

V,=V5,  9,V,=0, (A13)
A, =AF+ AL 9AF=0. (A14)
The action Eq. (A3) Sym = Sy + S4 is
Sy = /d3x L 27F% (A15)
\%4 4g§ 5
3 1 2, PP() 2
SA = d*x 73 ZZFA + (871' —A) s (A16)
493 Z
which can be written as
|
5= [ <_ 4_9%) Q0P 82, + 4cFi) (A17)

Sy = / dx (- é) 22F32, +4zF 42, + 4zF ) ]
5 V2(2) 2 N2 4 Al2
+/d xT[(azﬂ—Az) + (0, — Ap)* + A7,
(A18)
where v(z) is given by Eq. (A12). Comparing the gauge

action in Eq. (23) and Egs. (A17) and (A18), the identi-
fication of the metric factors in Eq. (23) can be made,
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1 2./g z
f2)=-> V9 _

43 9.9 203

1 12 z
i (19
3 Gun 3
where the determinant is /g =1/ 23 for the AdS; [not to
confuse factor 1/¢% in Eq. (23) with the metric determinant
gl. Let the gauge fields be V#(q.z) = V(gq,z)V} and
AF(q,z) = A(q.z)Ay with Vj, Ay being sources of the
vector and axial-vector currents and g be the Fourier
transform momentum in the boundary space component
x. From Egs. (A17) and (A18), the linearized equations of
motion (EOM) for the perpendicular components of the
vector and axial-vector fields, V (g, z) and A(g, z), read

0.(z0.V) = zQ*V = 0, (A20)
B
9.(20.A) —zQ*A =2 —A =0, (A21)
z

where Q> = —¢” and we omit the perpendicular sign. The

boundary conditions (BCs) in the UV and IR are
UV: 20V|_g =1,  20.A]_=1. (A22)
R: 0,V|, .o =0, A _o=0,  (A23)

where we introduced the hard-wall cutoff z,,,, which we take
to be infinite. The UV BC says that the source for the
components V (g, z) and A(g, z) is unity. Indeed, the source
of the vector field is given by zV’_, when asymptotic
behavior is as in Eq. (A9). First, we solve the EOM for the
vector field

2V 4V = 0?2V = 0. (A24)

The solution
V =c1y(Qz) + 2Ky (QZ) (A25)

is expressed through the modified Bessel functions /,,, K,
with n = 0. Imposing BC’s

IR: ¢;1,(Qz,) — c2K(Qz,) =0, Zn — 0 (A20)
UVv: ZQ(C]I[(O) - CzKl(O)) = 1, (A27)
we obtain
_ _Ki(Qz,) e
V.(0.2) = —Ko(Qz) 1,(02,) 1y(0z) Ko(Q2).
(A28)
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Using asymptotic expansion at z =0 for the modified
Bessel functions
I(z)m 1+ 22/4+ -,
Kom (—y+(1=p)2/4+ )

—In(z/2)(1 + /4 + --+), (A29)
we find that V behaves in the UV as in Eq. (A9),
V.1(0Q,z) — In(Qz) + const, 70, (A30)

with the source being unity.

Next, we solve the EOM for the perpendicular
component of the axial-vector field perturbatively for large
0* - o,

A=Ag+A +---, (A31)
with Ay(Q,z) =V, (0,z) (A28). The first correction
satisfies the equation

x202A, + x0,A; — xA, = Ax*A,, (A32)
where we defined x = Qz, 4= ¢g36°/Q?% and 21— 0 as

O — o0. The solution of this equation can be found by
using the Green function

A= /dx’G(x,x’)/Ix’on(x/), (A33)

where the Green function is obtained from solving the
homogeneous part of Eq. (A32),

fi=—Kox)  fax) = ~Iol).  (A34)
and
Glx. ) = = s (1 ()fa(r O =)
L0070 — ), (A35)
with the Wronskian
WIFL£)(0) = fufs = fifa = 1/x, (A36)

which is simple to estimate for x — 0. We find the small-z
behavior of Ay,

_ 1 g%az

A(Q.2) = 300 (A37)

where we used the following integral:
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/oo dxx*K3(x) = % (A38)

0

Summarizing, solutions near the boundary for the vector
and axial-vector fields are

V1(0Q.2) = —Ko(Q2), (A39)

1 g%az
A1(0.2) = —Ko(Qz) + 307 (A40)
As pointed out in Ref. [1], these solutions near the
boundary are sufficient to evaluate the two-point correla-
tion functions which are determined by the boundary
values at z = € or by the integrals dominated by small-z
regions.

The derivation of correlation functions is similar to that
in Sec. II. Therefore, we put the resulting expressions here.
The transverse parts of the diagonal vector and axial current
correlation functions are

1

I, (Q%) = _?VL(Q’Z)|Z=G7 (A41)
3
1

HA(QZ) = _?AL(Q’ Z)'z:e’ (A42)
3

where we used the boundary condition zV'|_,
zA'|,_. =1. We introduce a cutoff A as e=1/A.
The transverse part of the mixed vector-axial current
correlator is

=00
wr =26 [T d:(0.2)V(0.2) - VI(.24(0.2))
0
(A43)
Here, we do not add the boundary term (31) because the

gauge fields diverge on the boundary. Expanding V| and
A | near the boundary,

1

V, =~ E1n(Q212) + const + 0(z?), (A44)
1 1 2.2

A ziln(Q%z) +§g3Q—62+const+ 0(z%),  (A45)

with const = y — In 2, we obtain for the diagonal and mixed
current correlators

1

Iy (Q?) = _2_g§1n 02, (A46)
1 1 62

M(Q) = -3l Q =37 (A4)
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1 g%o?
wr(Q?) = -2k =B

300 InA,

(A48)
where we used for evaluating wy

/0 T Ky (x) = Ko(x)| . = —InA,  (Ad9)

with asymptotic value Ky(x) =—Inx at small x and
e = 1/A. Combining the above results, we obtain

wr(0?) = 2kg3 (4 (Q?) — Iy (0?)) In A. (A50)
This expression should be compared with the Son-

Yamamoto relation (37). Using Eq. (A19) for the metric
factor, the integral in the Son-Yamamoto relation becomes

© dz %
7=€ 4

which has the same divergent leading-log behavior as wy. It
proves that the Son-Yamamoto relation (37) is satisfied.

Now, we calculate the left-right correlator I1; ; (40), to
which the terms proportional to the chiral condensate and
the fermion mass contribute. We consider the chiral limit
with zero fermion mass m = 0. Using Eqgs. (A46) and
(A47), we find that the left-right correlator is

1 6?
Me=-375 (A52)
up to the quadratic order in the chiral condensate.

Finally, let us evaluate the chiral condensate that fixes the
relation between o and (). In the field theory, one can
evaluate the condensate as the variation of the vacuum
energy with respect to the quark mass. In the dual theory,
because m is the source for ¢ (A11), we variate action on
the classical solution [24]

554(¥o)

: A53
S (A53)

m=0

() =

where the action is given in Eq. (A18). The variation of the
action is

5S4 = / dPx\/gA0, W5 |, _,

2
= /dzx—(mlnz+m+a)zém
z

o (AS4)

where we used Eq. (A12). Therefore, the chiral condensate
is

(wy) = 20. (A55)
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APPENDIX B: NUMERICAL SOLUTION FOR
THE COSH AND SAKAI-SUGIMOTO MODELS

In this Appendix, we solve equations of motion
numerically and show that the Wronskian is independent
on the radial coordinate in the regime of large momen-
tum Q2 and at large radial coordinate z. As we showed in
Appendix A, the 3D bulk solutions are divergent. Using
the analog of (4 — €)-dimensional regularization, we will
work in the bulk (3 + ¢) dimensions and take the limit of
small ¢ at the end. Let us start with the equations of
motion,

2
0.(f2(2)0.A,) - %AH 4 2k, .V, = 0,
Q2
9.(f*(z)0.V,) ==V, + 2ke,, 0.A, =0, (B1)

2
where u,v=0, 1, since we work in the gauge

A, =V, =0. Again, we write down V, and A, fields
through the mode and UV boundary functions Vy,, Ag,:

Ve=V(0.9)Vpu(Q), Ay =A(Q,2)Au(Q).  (B2)
To simplify further computations, we work in the
reference frame where Agy = 0. It can be easily seen
that the nontrivial solution can only be found in the case
when Vo, =0, Ag; #0, and V, # 0. It means,
V,A* . =0, (B3)
that the gauge vectors V and A are perpendicular
at the UV boundary. Of course, this condition does
not hold in the bulk. Equation (B3) follows from the
chiral algebra in 1+ 1 dimensions where j, = ¢,,j* for
each left and right component (ji = —jb, j& = jk),
and the bulk relation VA ~ L% — R?. Using that only
Ag; #0 and Vi, # 0 are nonzero, we can write down
explicitly a system of differential equations for the mode
functions A(Q, z) and V(Q,z),

Q2
0.(f*(2)0,A) - A+2krd,V =0,

g

Q2

1
d.(f*(2)0.V) —?V+2K;8ZA =0, (B4)

where we treat momentum Q2 k, and the ratio of sources
r = Voo/Ap; as parameters. We solve this system numeri-
cally with boundary conditions
IR brane: 0,V(Q,z)|._o =0,

A(Q,0) =0, (B5)

UVbrane: V(Q,z) =1,

A(Q,Zo) =1, (36)
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and z; = oo. Further, we justify that one can choose
finite UV boundary values. To regulate the divergency,
we use (3 + e)-dimensional regularization with (2 + ¢€)
spacial dimensions where € is small. The metric factors
defined in Eq. (A19) are

1 ge/2 g1—€/2
@) =5"=. Jk=¢g"—. (BI)
BTz N

where we omit the factor of 2 and include it in redefining
the other constant and the squared of coupling has
dimension of mass [g3] =m in the three-dimensional
theory, for the metric factors [f?] = [1/¢*] = L with L
denoting the dimension of length. In (3 + ¢) dimensions,
the integral defining the pion constant f, and the
susceptibility y (which are both dimensionless in three

dimensions),
[ 5
—20 2f2(z) ’

becomes convergent (it will be clear in a concrete
model). Let us estimate the Wronskian in the IR and
see how the dimensional regularization works in this
case. Using that 9,V =0 and A =0 around z = 0, the
first equation in the system (B4) reduces to

(B8)

(92(f28ZA) =0, (B9)

with the solution given by

A(Q,z)zcoz%, C:(AZ()JCQ‘I—(ZZ))_I. (B10)

Using the IR boundary conditions in the second equation
of Eq. (B4), we have

0 1
-V +2-9.A=0, (B11)
g r
Substituting the solution for A, we find
2xC ¢*(2)
V(Q.2) =—3 . (B12)
rQ? f2(z)

Using these solutions, we get for the Wronskian around
z=0

W(Q%z) = fA(VA' — AV') = f2VA'
_2C 1 g(2)

r AZQZfQ(Z) ’ (B13)

where the z dependence is given by the metric
factors (B7)
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2
?28 939 (2);

(B14)

A is introduced to make z dimensionless. We plot the
Wronskian around z = 0 (B13) in the cosh model with
¢/ f?* ~ (cosh(z))?(1=¢) using different e, Fig. 3. A
decrease in € leads to a flatter dependence for W. It is
a desirable result.

In what follows, we consider the cosh and Sakai-
Sugimoto models [23,25] and perform the numerical
calculations of system (B4). Using Eq. (B7), we have
for the cosh model in (3 4 ¢) dimensions

£(2) = A (cosh(z))’,

. (B15)

9(z) = g5(cosh(z))'~, (B16)
where 6 = ¢€/2 (6 =0 corresponds to three dimensions,
and 0 =1 corresponds to five dimensions), and we
add the energy scale A to make the radial coordinate z
dimensionless.

Using cosh metric factors we perform calculations
numerically. We find diverging solutions in three
dimensions are regulated, i.e., become converging in
the (3 4 €)-dimensional Wronskian is a constant for the
Maxwell case.

Using the cosh metric factors, we add the Chern-Simons
term in (3 + €) dimensions, Fig. 3. We find that, due to the
dimensional regularization, the Wronskian develops a
plateau starting from some z. Also, solutions for the gauge
functions converge to a finite value in the UV asymptotics.
Solutions for V(Q,z) and A(Q,z) do not change much
when the Chern-Simons term is included (with Chern-
Simons, the difference between solutions becomes slightly
larger in the IR). Increasing k practically does not change
the transition point at which W(Q, z) tends to a plateau.

20 40 60 80 100

FIG. 3.

PHYSICAL REVIEW D 94, 085023 (2016)

We also do not see any crucial difference for the cases
Q0> Aand Q < A.

With cosh metric factors, decreasing €, we find that
the solutions V(Q, z) and A(Q, z) remain regular, which
produce a z-independent Wronskian starting from
some z. We observe numerically that the limit of small
€ exists with regular solutions. Diverging solutions
appear exactly in three dimensions. We suggest that
the logarithmic divergence is an artifact of (24 1)-
dimensional theory and it can be regulated by the
dimensional regularization.

We also examine numerical solutions in the Sakai-
Sugimoto model. Solutions in this model express similar
behavior, although we found the cosh model is more
suitable for numerical investigation.

From Eq. (B7), we have for the Sakai-Sugimoto model in
(3 + ¢) dimensions

ﬂ@—A§u+fWMé (B17)
3

9(z) = g3(1 +22)/*72, (B18)
where 6 = €/6 (6 = 0 is three dimensional and § = 1/3 is
five dimensional) and A is added to make z dimensionless.

Using Sakai-Sugimoto metric factors, we find solutions
in the pure Maxwell theory. We see that the dimension-
ally regulated solutions converge to a finite value in
the UV.

With Sakai-Sugimoto metric factors, the Wronskian
(left panel) and solutions (right panel) in the Maxwell-
Chern-Simons theory are displayed in Fig. 4 in (3 +¢)
dimensions. The dimensionally regulated case in Fig. 4
shows that the Wronskian tends to a plateau and
solutions are regular in the UV. Decreasing ¢, we find
that this trend remains, which suggests that the limit
€ = 0 exists.

0.8

0.4

0.2

0.0

Cosh model in (3 + ¢)-dimensions. The Wronskian W(Q, z) (left panel) and gauge functions V(Q, z), A(Q, z) (right panel) in

the Maxwell-Chern-Simons theory. Parameters are Q =5, A =10, 2k =1, r =10, § = 0.1.
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FIG. 4. Sakai-Sugimoto model in (3 + ¢) dimensions. The Wronskian W(Q, z) (left panel) and gauge functions V(Q, z), A(Q, z)
(right panel) in the Maxwell-Chern-Simons theory. Parameters are Q =5, A =10, 2k =1, r =5, § =0.1.

Our numerical data justify the assumption that the
Wronskian is independent of the radial coordinate for
z> 1. We find that adding the Chern-Simons term does
not solve the problem of logarithmically diverging sol-
utions. We used the dimensional regularization in (3 + €)

dimensions with small ¢ in order to regulate the gauge
functions V(Q,z) and A(Q,z) which produce constant
behavior for the Wronskian W(Q). It also justifies the
use of the finite UV boundary conditions for V(Q, z)
and A(Q, 2).
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