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Based on the Son-Yamamoto relation obtained for the transverse part of the triangle axial anomaly in
QCD4, we derive its analog in a two-dimensional system. It connects the transverse part of the mixed
vector-axial current two-point function with the diagonal vector and axial current two-point functions.
Being fully nonperturbative, this relation may be regarded as anomaly matching for conductivities or
certain transport coefficients depending on the system. We consider the holographic renormalization group
flows in holographic Yang-Mills-Chern-Simons theory via the Hamilton-Jacobi equation with respect to
the radial coordinate. Within this holographic model, it is found that the renormalization group flows for the
following relations are diagonal: the Son-Yamamoto relation and the left-right polarization operator. Thus,
the Son-Yamamoto relation holds at a wide range of energy scales.
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I. INTRODUCTION

The usefulness of anomalies is partially related to the fact
that they are exact and can be determined at strong
coupling. This is a consequence of certain nonrenormal-
ization properties and allows nonperturbative insight.
Indeed, the Adler-Bell-Jackiw (ABJ) axial anomaly can
be captured perturbatively by the one-loop Feynmann
diagram. However, the result is nonperturbative, being
exact from low to high energies since the anomaly reflects
the spectral flow at all scales. Recently, Son and Yamamoto
derived an anomaly matching condition which relates the
Uð1Þ3 AVV triangle anomaly [1], Fig. 1, to the two-point
VVand AA current functions, where V refers to the vector
current and A refers to the axial current. The result was
obtained via holography and can be regarded as a non-
perturbative exact relation between three- and two-point
current functions. They used a five-dimensional Yang-Mills
action of the holographic dual of QCD and considered a
holographic mechanism of chiral symmetry breaking via
the boundary conditions for the gauge fields in the infrared.
This class of holographic theories incorporates a bottom-up
AdS/QCD inspired models and the top-down Sakai-
Sugimoto models.
In this paper, we consider the holographic dual of

(1þ 1)-dimensional systems given by a three-dimensional
action and derive the analog of Son-Yamamoto relation,
Fig. 2. Like in holographic QCD, dual action can be
considered as the world volume action on the probe flavor
brane, and therefore it involves the 3D Yang-Mills and
Chern-Simons terms. The duals of the (1þ 1)-dimensional
systems in this approach have been considered in
Refs. [2,3]. We will discuss the case of the single flavor
in the boundary non-Abelian gauge theory at large N. The

cigar geometry implies that, like in the 4þ 1 case, we have
to consider left and right copies of the gauge group in the
3D bulk theory reflecting the global Uð1ÞL ×Uð1ÞR
symmetry at the boundary. The 2D QCD enjoys the chiral
symmetry breaking [4] via chiral condensate formation.
There is the pionlike degree of freedom of which the mass
is related to the fermion mass via the analog of the GOR
relation.
There is some important difference between the 4þ 1

and 2þ 1 bulk gauge theories. The Son-Yamamoto relation
has been derived in five-dimensional theory taking into
account that the contribution of Chern-Simons (CS) terms
is suppressed by the large ’t Hooft coupling. Therefore, it
was possible to first consider the equation of motion
without the CS term, derive the constant Wronskian
condition, and then treat the CS term as a kind of
perturbation. The situation in 2þ 1 is different, and there
is no suppression of the CS term anymore, which is crucial
for imposing the self-consistent boundary conditions [2].
Therefore, we have to consider the equation of motion
including the CS terms which have the opposite signs for
the left and right fields. Therefore one can not obtain the
constant Wronskian condition analytically in 1þ 1 case.

FIG. 1. Axial (ABJ) anomaly in (3þ 1) dimensions: pion decay
π0 → 2γ. Solid lines represent chiral fermions, and wavy lines
represent U(1) gauge bosons.
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However, the numerical analysis of the equations of motion
demonstrates that the Wronskian exhibits a plateau in the
very wide interval of the radial holographic coordinate and
the transition to the plateau is very sharp. One could also
have in mind the formal regime when Yang-Mills (YM)
terms dominate. Therefore, we can explore the constant
Wronskian condition with some reservations in the 2þ 1
case as well.
It was shown in Ref. [1] that the Son-Yamamoto (SY)

relation is consistent with the Vainshtein relation [5] for the
magnetic susceptibility of the quark condensate in QCD
introduced in Ref. [6]. However, in two dimensions, the
operator product expansion (OPE) for the vector-axial
correlator trivially reduces the four-fermion operator to
the square of the chiral condensate due to the 2D chiral
algebra. As a result, we obtain from the Son-Yamamoto
relation an estimate for the pion decay constant. We note
that it is derived in the region when the application of the
low-energy theory is questionable. Hence, this result should
be taken with some reservation and deserves the addi-
tional study.
An additional question concerns renormalization group

(RG) flow of our holographic model. This question is
related to renormalization and regularization of effective
theories in holography, which were solved along two
avenues. First is the method of standard holographic
renormalization that involves the cancellation of all
cutof-related divergences from the gravity on-shell action
by adding the counterterms on the cutoff boundary surface
and the subsequent removal of cutoff [7]. Holographic
renormalization has been used in the calculation of two-
point functions in deformed conformal field theory (CFT)
[7]. In parallel development, the Hamilton-Jacobi equation
was used for renormalization in order to separate terms in
the bulk on-shell action, which can be written as local
functions of boundary data. The remaining nonlocal
expression was identified, according to the AdS=CFT
prescription, with the generating functional of a boundary
field theory [8,9]. In the Hamilton-Jacobi equation, the bulk
radial coordinate is treated as the time variable, which is
consistent with holographic identification of radial coor-
dinate with the RG energy scale. The second approach
provides correct results for anomalies and gives a simple
description of RG flow in deformed CFTs [10]. We apply
the Hamilton-Jacobi equation in the bulk theory to the
Yang-Mills-Chern-Simons holographic action similar to
Ref. [11] and demonstrate that the SY relation is diagonal
with respect to holographic RG flow.

The paper is organized as follows. We derive the two-
dimensional Son-Yamamoto relation in Sec. II. In Sec. III,
we check the Son-Yamamoto relation in the small- and
large-Q2 limits and obtain an estimate for the pion decay
constant. In Sec. IV, we demonstrate using the Hamilton-
Jacobi equations in the bulk theory that the Son-Yamamoto
relation is diagonal under the RG flows. Section V is
devoted to the comparison of our results for the 1þ 1-
dimensional Son-Yamamoto relation with that obtained
in the 3þ 1-dimensional QCD. The results are summarized
in the Conclusion, and technical details are collected in
Appendixes A and B.

II. MODEL AND SON-YAMAMOTO RELATION

We consider chiral dynamics in two dimensions. Chiral
symmetry is Uð1ÞL ×Uð1ÞR, which corresponds to the
conserved left- and right-handed currents. According to
AdS=CFT duality, there are left- AL and right-handed AR
gauge fields in a three-dimensional dual model. The 3D
dual action involves three-dimensional Maxwell theory and
the topological Chern-Simons term

S ¼ SM þ SCS

¼ SMðALÞ þ SMðARÞ þ SCSðALÞ − SSCðARÞ; ð1Þ
where SM and SCS are defined as

SMðAÞ ¼
Z

d2xdz

�
fðzÞF 2

zμ −
1

2gðzÞF
2
μν

�
ð2Þ

and [2,12]

SCSðAÞ ¼ κ

Z
d2xdzðA � F Þ ð3Þ

with [2,12]

κ ¼ Nc

4π
; ð4Þ

and the dual field strength is �F μ ¼ 1
2
εμνλF νλ.

The IR brane is located at z ¼ 0, and the UV boundary of
the asymptotic 3 dimensional anti-de Sitter space (AdS3) is
located at z ¼ z0. It is convenient to use vector V and axial
A gauge fields

AL ¼ V þ A; AR ¼ V − A ð5Þ
which obey Neumann and Dirichlet boundary conditions in
the IR, respectively,

IR∶ ∂zVμðz ¼ 0Þ ¼ 0; Aμðz ¼ 0Þ ¼ 0; ð6Þ
and Vð−zÞ ¼ VðzÞ is parity even, and Að−zÞ ¼ −AðzÞ is
parity odd. Making use of the decomposition (5), the
Maxwell and Chern-Simons terms in the action (1) are
given by

FIG. 2. Parity-violating anomaly in (1þ 1) dimensions: mass
generation mψ̄ψ . Solid lines represent chiral fermions, and wavy
lines represent U(1) gauge bosons.
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SM¼
Z

d2xdz

�
fðzÞ2ðF2

VzμþF2
AzμÞ−

1

2gðzÞ2ðF
2
VμνþF2

AμνÞ
�

ð7Þ

SCS ¼ 2κ

Z
d2xdzðVμ � FAμ þ Aμ � FVμÞ: ð8Þ

Wewill work in the radial gauge, Vz ¼ Az ¼ 0, and assume
there is a translation invariance along the boundary “UV”
brane and perform the Fourier transform for gauge fields,

Vμðx; zÞ ¼
Z

d2q
ð2πÞ2 e

−iqxVðq; zÞ; ð9Þ

and the same for the axial field Aμ. Substituting these
expressions into the action, we can write down the holo-
graphic Maxwell and Chern-Simons terms in 3D explicitly,

SM ¼
Z

d2q
ð2πÞ2 dz

�
fðzÞ2ðð∂zVμÞ2 þ ð∂zAμÞ2Þ

−
1

2gðzÞ2 ðF
2
Vμν þ F2

AμνÞ
�
; ð10Þ

SCS ¼ 2κ

Z
d2q
ð2πÞ2 dzε

μνð∂zAμVν þ ∂zVμAνÞ; ð11Þ

where we used the convention [13] εzμν ≡ εμν. Here,
εμν ¼ −ενμ is the two-dimensional antisymmetric symbol,
ε01 ¼ 1 ¼ −ε01, which obeys

εμλενρ ¼ −δμνδλρ þ δμρδλν; εμνενρ ¼ δμρ: ð12Þ
Following Son and Yamamoto [1], we are interested in the
transversal part of the correlators. Further, for short, we will
omit perpendicular projectors P⊥

μν ¼ ημν −
qμqν
q2 in the

expressions for gauge fields V and A. However, it can
be easily reinstated in the resulting formulas by substituting
δμν → P⊥

μν. We perform the field decomposition

VμðqÞ ¼ Vðq; zÞV0μðqÞ; AμðqÞ ¼ Aðq; zÞA0μ; ð13Þ

where V0μ and A0μ are the sources of the corresponding
boundary currents. We require the Dirichlet boundary
conditions in the UV,

UV∶ Vðq; zÞjz¼z0 ¼ 1; Aðq; zÞjz¼z0 ¼ 1; ð14Þ
and therefore sources coincide with the bulk gauge fields at
the boundary. According to the AdS=CFT prescription to
obtain correlation functions for currents, we need to vary
the action evaluated on the classical solutions with respect
to the corresponding sources of the currents, V0μ and A0μ.
Next, let us remind the reader of the observation made by

Son and Yamamoto, which made it possible to derive the
relation between three- and two-point functions [1]. In our

case, we will obtain the relation between diagonal and
mixed two-point functions. The linearized equation of
motion in the pure Maxwell theory is

∂zðf2∂zVÞ − ∂μ

�
1

g2
∂μV

�
¼ 0; ð15Þ

which, due to the translation invariance along the boundary
direction, is

∂zðf2ðzÞ∂zVðq; zÞÞ þ
q2

g2ðzÞVðq; zÞ ¼ 0: ð16Þ

Here, we did not take into account the Chern-Simons term.
The same equation of motion is satisfied by the axial gauge
field; i.e., we have

V 00 þ ∂f2
f2

V 0 þ q2

g2
V ¼ 0 ð17Þ

A00 þ ∂f2
f2

A0 þ q2

g2
A ¼ 0: ð18Þ

Since V and A are linearly independent solutions of the
same equation, we have [1]

Vðq; zÞ∂Aðq; zÞ − Aðq; zÞ∂Vðq; zÞ
¼ WðqÞe−

R
∂f2=f2 ; ð19Þ

which can be written as

f2ðzÞðVðq; zÞ∂zAðq; zÞ−Aðq; zÞ∂zVðq; zÞÞ ¼WðqÞ; ð20Þ
where WðqÞ is a z-independent Wronskian. The independ-
ence on z of the combination in Eq. (20) is crucial to
obtaining the Son-Yamamoto relation, and it is responsible
for the unique properties of the RG equations for the
diagonal and mixed correlators. The relation for Wronskian
(20) is obtained in the pure Maxwell theory.
In Appendix B, we include the Chern-Simons term

and regulate the Maxwell-Chern-Simons theory using
dimensional regularization. We show numerically that
the logarithmic divergences characteristic of the (1þ 1)-
dimensional boundary theory [2] are regularized; solutions
for the gauge fields VðQ; zÞ and AðQ; zÞ converge in the
UV. It justifies the use of the finite boundary conditions in
Eq. (14). Furthermore, the Wronskian for the regulated
Maxwell-Chern-Simons theory has a plateau starting from
some radial coordinate z > zp. Therefore, it is legitimate to
take the z-independent Wronskian for large Q2 or when the
coefficient in front of the Chern-Simons term is small.

A. Diagonal correlators

Now, we are ready to obtain two-point diagonal corre-
lators for the vector hVμVνi and axial hAμAνi fields in
(1þ 1) dimensions. Varying the action twice with respect
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to the boundary value V0μ, we obtain the vector current
two-point correlator

hjμðqÞjνð−qÞi ¼
Z

d2xeiqxhjμðxÞjνð0Þi ð21Þ

δ2SYM
δV0μðqÞδV0νð−qÞ

¼ hjμðqÞjνð−qÞi; ð22Þ

where the Yang-Mills action is given by Eq. (10).
Integrating the first term of Eq. (10) by parts, we obtain

SYM ¼ 2

Z
d2q
ð2πÞ2 f

2ðzÞAμðq; zÞ∂zAμðq; zÞ
���z¼z0

0

; ð23Þ

whereA stands either for V or A, and the action is evaluated
at the solutions (18). Varying Eq. (23) twice with respect to
the boundary values V0 (22),

hjμjνi ¼ 2f2ðzÞVðq; zÞV 0ðq; zÞjz¼z0δμν; ð24Þ

where we introduced the notation V 0 ¼ ∂zV. Substituting
the boundary conditions (14), we obtain for the two-point
correlation functions

hjμjνi ¼ 2f2V0jz¼z0δμν ≡ ΠVðqÞδμν; ð25Þ

hj5μj5νi ¼ 2f2A0jz¼z0δμν ≡ ΠAðqÞδμν; ð26Þ

where we introduced (dimensionless) polarization opera-
tors ΠV and ΠA. Therefore, the polarization operators are
given by

ΠV ¼ 2f2V 0jz¼z0 ; ΠA ¼ 2f2A0jz¼z0 : ð27Þ

Equation (27) represents the known expression for a
diagonal conductivity obtained from the Kubo formula.
From Eq. (23), the diagonal current-current correlator is
given by

hjijji ¼ 2f2
∂zAi

Ai

����
z¼z0

δij; ð28Þ

where via the Kubo formula the relation to the conductivity
σij is hjijji ¼ σij.
Using the expression for the Wronskian (20) and the

boundary conditions (14), we obtain the relation

f2ðVA0 − AV 0Þ ¼ 1

2
ðΠA − ΠVÞ ¼ WðqÞ; ð29Þ

which we use further. Since the combination in Eq. (20)
does not depend on z, it can be estimated at any point, for
example, at z ¼ z0 where the polarization operators are
defined by Eq. (27). The Wronskian equation (29) is the

crucial formula to establish a relation between diagonal and
mixed current correlators.

B. Mixed correlator

Now, our aim is to obtain the mixed correlator for axial
and vector fields hVμAνi. It is easy to see that the only
contribution to this correlator function is coming from the
Chern-Simons term (11). After Fourier transformation, the
Chern-Simons term (11) can be rewritten as

SCS ¼ 2κ

Z
d2q
ð2πÞ2 dzε

ρσð∂zAρð−qÞVσðqÞ

− ∂zVσðqÞAρð−qÞÞ: ð30Þ
As in Refs. [1,14], we can add the surface term to the
action,

δSCS ¼ −2κ
Z

d2q
ð2πÞ2 dzε

ρσ∂zðAρð−qÞVσðqÞÞ; ð31Þ

which is equivalent to the gauge transformation done
in Ref. [1]. The Chern-Simons term becomes
SCS þ δSCS → SCS,

SCS ¼ −4κ
Z

d2q
ð2πÞ2 dzε

ρσAρð−qÞ∂zVσðqÞ: ð32Þ

Varying twice the (new) Chern-Simons term with respect to
the boundary fields

δ2SCS
δV0μδA0ν

¼ hjμj5νi; ð33Þ

we obtain

δ2SCS
δV0μδA0ν

¼ hjμj5νi

¼ −2κενμAVjz0 þ 2κενμ
Z

z0
dzðA0V − V 0AÞ

≡ 1

2π
εμνwTðqÞ; ð34Þ

where we introduced a (dimensional) transversal part of the
vector-axial current correlator wT. Therefore, we have

wT ¼ 4πκ − 4πκ

Z
z0
dzðA0V − V 0AÞ: ð35Þ

From Eq. (29), it can be written as

wTðQ2Þ ¼ 4πκ

− 4πκ

Z
z0

0

dz
2f2ðzÞ ðΠAðQ2Þ − ΠVðQ2ÞÞ; ð36Þ

where we used and Q2 ¼ −q2. In the context of the QCD2,
4πκ ¼ Nc (4). The relation between the mixed and diagonal
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correlators (36) is the (1þ 1)-dimensional analog of the
Son-Yamamoto relation, which was originally obtained for
QCD in (3þ 1) dimensions [1]. One can think of the Son-
Yamamoto relation (36) as the expansion in the large Q2.
The first term [normalized by Eq. (34) to be equal to
4πκ ¼ Nc] is the perturbative contribution of the axial
anomaly, which is obtained from perturbation theory loop
calculation. In QCD, the integral of the metric factor

R
1=f2

produces 1=f2π where fπ is the pion decay constant [11].
We rewrite the Son-Yamamoto relation in the form

ðSYÞ¼wT −4πκþ4πκ

Z
z0 dz
2f2ðzÞðΠA−ΠVÞ¼ 0: ð37Þ

This relation holds for any metric factors fðzÞ and gðzÞ.
Generally, we decompose the axial anomaly as

hjμj5νi ¼
1

2π
Pα⊥
μ ðPβ⊥

ν wT þ Pβ∥
ν wLÞεαβ; ð38Þ

where the transverse and longitudinal projection tensors are
Pα⊥
μ ¼ ηαμ − qμqα=q2 and Pα∥

μ ¼ qμqα=q2, respectively. In
Eq. (38), the perturbative w are given by [13]

wT ¼ 4πκ ¼ Nc; wL ¼ 8πκ ¼ 2Nc: ð39Þ

The same relation wL ¼ 2wT holds in QCD4.
We give another representation for the Son-Yamamoto

relation through the left-right correlator. The left-right
correlator hLRi, which is the measure of the chiral
symmetry breaking, can be expressed through the diagonal
correlators hVVi and hAAi as

ΠLR ¼ ΠA − ΠV: ð40Þ

Using the definition of wT (38), we rewrite the Son-
Yamamoto relation (36) as

hjLμ jRν i⊥ ¼ Pα⊥
μ Pβ⊥

ν εαβ

�
4κ − 4κ

Z
z0

0

dz
2f2

ΠLR

�
; ð41Þ

where jLμ ¼ ψ̄LγμψL is the left-handed current and
jRμ ¼ ψ̄RγμψR is the right-handed current. We rewrite
Eq. (41) in more physical terms,

hjLμ jRν i⊥ ¼ Pα⊥
μ Pβ⊥

ν εαβ
Nc

π

�
1 −

ΠLR

f2π

�
; ð42Þ

where we introduced as in Ref. [1] the pion decay constant
1
f2π
¼ R

dz
2f2ðzÞ. The pion decay constant fπ can be obtained

from the longitudinal part of the axial current correlator wL
[1]. The first term in Eq. (42) is a perturbative contribution,

hjLμ jRν i⊥PT ¼ −εμλðqνqλ − ηλνÞ
Nc

πq2
; ð43Þ

where the pole 1=q2 corresponds to the physical propaga-
tion of the single effective bosonic degree of freedomwhich
is massless in the absence of electromagnetic interaction. In
the Schwinger model, the intermediate boson becomes
massive due to the electric field ~F which is responsible for
the chiral anomaly ∂μj5μ ¼ Nc

π
~F. The residue of the pole in

the correlation function of Eq. (43) is given by the
coefficient of chiral current anomaly Nc=π. The massless
pole 1=q2 with finite residue determined by the chiral
anomaly is obtained in the Schwinger model in Ref. [13]
and in the two-dimensional massless QCD2 [4]. The second
term in Eq. (42) proportional to ΠLR is a nonperturbative
correction. This is a new relation which is not known in
field theory. It shows that the transverse part of the chiral
anomaly has a dynamical nature rather than a topological
one. It can be regarded as an anomaly matching condition
for resonances as an analog of that for the massless
excitations in QCD2 (Sec. IV).
In what follows, we use the two representations of the

Son-Yamamoto relation, Eqs. (37) and (41).

III. CHECKING THE SON-YAMAMOTO
RELATION. THE PION DECAY CONSTANT

Let us check if the Son-Yamamoto relation (37) is
satisfied in a model-independent setting. To estimate the
individual two-point current correlators, we will consider
the two opposite limits of small and large momenta Q2,
where some simplifications can be done. Also, we will
make an estimate for the decay constant.

A. Regime of small Q2

First, we consider the limit of small Q2 ≪ Λ2. In this
case, we estimate the Son-Yamamoto relation at the point
z0 → 0. In the next section, we associate the UV boundary
cutoff z0 with the RG scale in the Hamilton-Jacobi
equation. Therefore, the limit when the UV cutoff is taken
to be zero corresponds to the field theory in the regime of
the low energy/momentum. In the limit z0 ¼ 0, the different
boundary conditions (6) enable us to simplify the holo-
graphic action. As discussed in Ref. [11], in the Yang-Mills
action, we can neglect ∂zVμ ¼ 0; however, we approximate

∂zAμ ¼ Aμ

z0
. Therefore, we can write to the leading order

SYM ¼ z0

Z
d2x

�
f2

z20
A2
μ −

1

2g2
F2
Vμν

�
; ð44Þ

which gives

ΠA ¼ 2f2ðz0Þ
z0

; ΠV ¼ 0; ð45Þ

and together with the integral,
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Z
dz
2f2

ðΠA − ΠVÞ ¼
z0

2f2ðz0Þ
2f2ðz0Þ

z0
¼ 1: ð46Þ

In the Chern-Simons action (8), (30) and the boundary term
(31), we can neglect the term εμνλAμFVνλ but again take

∂zAμ ¼ Aμ

z0
in the term εμνλVμFAνλ. Approximating the

integral over z, we have to leading order

SCS ¼ 2κ

Z
d2xεμνAμVν;

δSCS ¼ −2κ
Z

d2xεμνAμVν; ð47Þ

thus, from Eq. (34),

wT ¼ 0: ð48Þ

Combining together Eqs. (46) and (48), the Son-Yamamoto
relation (37) is satisfied at z0 ¼ 0; i.e., it holds for smallQ2.

B. Regime of large Q2

Next, we consider the opposite limitQ2 ≫ Λ2, where we
can use the operator product expansion. From the Son-
Yamamoto relation, we will make an estimate for the decay
constant.
In two dimensions, the field dimensions are given as

follows: ½ψ � ¼ ffiffiffiffi
E

p
for the fermion field; ½F� ¼ E, ½A� ¼ 1

for the gauge field; ½g� ¼ E for the coupling between
fermion and gauge fields ½fπ� ¼ 1 for the decay constant.
The anomalous divergence of the axial current is

∂μj
μ
5 ¼ 4κg ~F; ð49Þ

where the dual field strength equals the 2D electric field
~F ¼ 1

2
εμνFμν ¼ E which is the pseudoscalar. The Dirac

matrices in the 2 × 2 chiral representation are given by the
Pauli matrices [13,15]

γ0 ¼ σ1; γ1 ¼ −iσ2; γ5 ¼ γ0γ1 ¼ σ3; ð50Þ

where σiσj ¼ δij þ iϵijkσk with i, j, k ¼ 1, 2, 3. A special
property of the gamma matrices in two dimensions is [13]

γμγ5 ¼ γνε
νμ; ð51Þ

which gives for the spin-operator σμν ¼ 1
2i ðγμγν − γνγμÞ

σμν ¼ iγ5εμν: ð52Þ

This property enables us to make significant simplifications
in the diagrams of the OPE in the two dimensions, which
follows next.
We check the Son-Yamamoto relation at large virtualities

and obtain the result for the decay constant. As in Ref. [1],

we compare the OPE and the Son-Yamamoto relation for
the two-point left-right current correlator. Diagrams con-
tributing to the hjμj5νi in the OPE are the fermion loops,
which are open on two sides and have insertions of the
(chiral) scalar hψ̄ψi and the spin-chiral hψ̄σμνiγ5ψi con-
densates with spin operator σμν, and different arrangements
of a photon line in the fermion loop are possible. Therefore,
on one hand, the OPE is written as

hjLμ jRν i ¼
1

2
hjμj5νi ¼ Pα⊥

μ Pβ⊥
ν

�
4κεαβ þ

2g2

Q2
Oαβ

�
; ð53Þ

where the operator

Oαβ ¼
hðψ̄γαγ5ψÞðψ̄γβψÞi

Q2
ð54Þ

is the four-fermion operator. Using the Fierz transformation
and in the large-Nc limit where the four-fermion operator
factorizes, we have in the leading order

Oαβ ¼
hψ̄ψihψ̄σαβiγ5ψi

Q2
¼ −

hψ̄ψi2
Q2

εαβ; ð55Þ

where we simplified the spin-chiral condensate with the
help of Eq. (52). The leading-order OPE for the left-right
current correlator is given by the operator dimension 2,

hjLμ jRν i⊥ ¼ Pα⊥
μ Pβ⊥

ν εαβ

�
4κ −

2g2

Q4
hψ̄ψi2

�
: ð56Þ

On the other hand, the Son-Yamamoto relation is given by
Eq. (41),

hjLμ jRν i⊥ ¼ Pα⊥
μ Pβ⊥

ν εαβ

�
4κ − 4κ

Z
z0

0

dz
2f2

ΠLR

�
: ð57Þ

The leading term in the OPE for ΠLR is dimension-2
operator [16]

ΠLR ¼ −
g2

Q2

hðψ̄LγμψLÞðψ̄RγμψRÞi
Q2

¼ 2g2

Q4
hψ̄ψi2: ð58Þ

Comparing terms proportional to hψ̄ψi2 in Eqs. (56) and
(57), we find

4κ

f2π
¼ 1; ð59Þ

where we made the following identification of the integral
with the decay constant [1]

1

f2π
¼

Z
z0 dz
2f2ðzÞ : ð60Þ
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Equation (59) relies completely on the Son-Yamamoto
relation. We consider it not as an exact result but as an
estimate for the fπ , because, as discussed for QCD4 in
Ref. [1], the Son-Yamamoto equation does not provide a
complete match for resonances at large virtualities. In the
QCD2, the Chern-Simons κ is proportional to Nc (4).
Therefore, we have from Eq. (59)

f2π ∼ Nc; ð61Þ

which agrees with the estimate done in the weak coupling
regime of the ’t Hooft solution Nc → ∞ and g2Nc ¼ const
for QCD2 by Zhitnitsky in Ref. [4].
Also, we can check the Son-Yamamoto relation using the

parallel component. The OPE for the parallel component is
given by Fig. 1 in Ref. [4] and includes the operator of
dimension 2,

hjμj5νi∥ ¼ Pα⊥
μ Pβ∥

ν

�
4κεαβ −

2mhψ̄σαβiγ5ψi
Q2

�

¼ Pα⊥
μ Pβ∥

ν εαβ

�
4κ þ 2mhψ̄ψi

Q2

�
: ð62Þ

On the other hand, expanding the pion pole propagator
[4,13], we have

f2π
Q2 þm2

π
¼ f2π

Q2

�
1 −

m2
π

Q2

�
: ð63Þ

Comparing Eqs. (62) and (63), we obtain

f2πm2
π ¼ −2mhψ̄ψi; ð64Þ

which is the Gell-Mann-Oakes-Renner (GOR) relation; i.e.,
we trivially satisfy the Son-Yamamoto relation. Using that
m2

π ∼mþ 1=Nc and the GOR relation, we find the behav-
ior of the chiral hψ̄ψi and the spin-chiral hψ̄σμνiγ5ψi
condensates at Nc → ∞,

hψ̄ψi ∼ Nc; hψ̄σμνiγ5ψi ∼ Nc; ð65Þ

where we used hψ̄σμνiγ5ψi ¼ −εμνhψ̄ψi. The estimate for
the chiral condensate agrees with the one for the massless
QCD2 in Ref. [4]. Due to the chiral anomaly ∂j5 ∼ ~F, the
vacuum of QCD2 exhibits chiral symmetry breaking (CSB)
hψ̄ψi ≠ 0 and there exit the massless Goldstone boson
which is a pion with pion decay constant and the superfluid
pairing. In the Schwinger model, this corresponds to the
chiral bosonization and superfluid pairing of bosons
composed of fermion pairs [13].
Our calculations for the parallel component rely

on the pion pole dominance—saturation of the two-point

correlators by the pion pole contribution—valid at smallQ2

[2]. Here, we analytically continue it to the large Q2.

IV. SUM RULES FOR QCD2

Here, we summarize the sum rules for the resonances. In
the large-Nc limit, besides the pion state, a tower of
resonances with the decay widths Γ ∼ 1=Nc is defined.
The matrix elements of vector and axial currents between
the vacuum and one-particle states (a pion π, a vector
meson Vi, or an axial-vector meson Aj) are fixed by the
nonperturbative correction in the Son-Yamamoto relation
(37) and Eq. (42). Derivation is identical to that for QCD4

in Ref. [1], and therefore we omit it. The matrix elements
are

h0jjμð0ÞjπðqÞi ¼ iqν
Nc

πfπ
εμν; ð66Þ

h0jjμð0ÞjAjðq; ϵÞi ¼ −ϵα
�
ηβμ −

qμqβ

m2
Aj

�
Nc

2πf2π
qAj

εαβ; ð67Þ

h0jj5μð0ÞjViðq;ϵÞi

¼−ϵα
��

ηβμ−
qμqβ

m2
Vi

�
Nc

2πf2π
gVi

−
qμqβ

m2
Vi

fπgViπ

�
εαβ; ð68Þ

where Eq. (66) is the longitudinal and Eqs. (67) and (68) are
the transversal set of sum rules. Here, fπ is the pion decay
constant; gVi

and gAj
are the vector and axial-vector decay

constants defined as

h0jjμð0ÞjViðp; ϵÞi ¼ gVi
ϵμ; ð69Þ

h0jj5μð0ÞjAjðp; ϵÞi ¼ gAj
ϵμ; ð70Þ

and we define Viπ and ViAj couplings in two-dimensional
QCD2,

LViπ ¼ εμνgViπViμ∂νπ; ð71Þ

LViAj
¼ εμνgViAj

ViμAjν: ð72Þ

If one replaces the vector current by an on-shell photon in
Eq. (66), Eq. (66) represents the decay of the pion. Our
Eq. (66) agrees with the result found for QCD2 when
Nc → ∞ and g2Nc ¼ const in Ref. [4]. However, Eqs. (67)
and (68) are the new formulas involving resonances. There
are also sum rules which provide stringent constraints
between the resonance parameters. Again, this set of sum
rules is a direct consequence of the nonperturbative
correction in the Son-Yamamoto relation, and it is obtained
similarly to QCD4 in Ref. [1],
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X
i

gViπgVi

m2
Vi

¼ Nc

πfπ
; ð73Þ

X
j

gViAj
gAj

m2
Aj
−m2

Vi

¼ −
Nc

2πf2π
gVi

; i ¼ 1; 2;…; ð74Þ

X
i

gViAj
gVi

m2
Aj
−m2

Vi

¼ −
Nc

2πf2π
gAj

; j ¼ 1; 2;…; ð75Þ

where Eq. (73) expresses the longitudinal and Eqs. (74) and
(75) express the transversal set of sum rules. Here, mVi

and
mAj

are masses of the vector and axial mesons. The above
sum rules and resultant matrix elements are generic to any
theory with a Yang-Mills-Chern-Simons gravity dual in the
limit of large Nc. The set of sum rules for the matrix
elements and for the parameters can be checked explicitly
in a specific model (for example, the “cosh” model).

V. HAMILTON-JACOBI EQUATION

As was argued in Ref. [8], the holographic renormaliza-
tion group equation can be obtained as a Hamiltonian-
Jacobi equation when time is identified with the radial z
coordinate. According to the AdS=CFT prescription, it is
written as

∂S
∂z0 þHðπα;Aα; z0Þ ¼ 0; ð76Þ

where evolution goes from the IR to the UV boundary z0;
i.e., the bulk action S and Hamiltonian H are taken at z0.
The Hamiltonian is expressed through canonical momen-
tum π conjugated to the gauge field A0 at the boundary

πα ¼
∂L

∂ð∂zA0αÞ
¼ δS

δA0α
: ð77Þ

According to the AdS=CFT prescription, because A0 is a
source of the current, we vary once and get

hjαi ¼
δS

δA0α
: ð78Þ

From the action

S ¼
Z

d2xdz

�
f2ðð∂zAμÞ2 þ ð∂zVμÞ2Þ

−
1

2g2
ðF2

Aμν þ F2
VμνÞ þ 4κενσ∂zVνAσ

�
; ð79Þ

we find the canonical momenta

πAμ ¼
∂L

∂ð∂zAμÞ
¼ 2f2∂zAμ;

πVμ ¼
∂L

∂ð∂zVμÞ
¼ 2f2∂zVμ þ ϕVμ; ð80Þ

where the shift in the canonical momenta due to the Chern-
Simons term is

ϕVμ ¼ 4κεμσAσ ð81Þ

and the corresponding “velocities” are

∂zAμ ¼
1

2f2
πAμ; ∂zVμ ¼

1

2f2
~πVμ: ð82Þ

To simplify the notation, we introduced shifted momentum
~πVμ,

πAμ ¼ hj5μi; ~πVμ ¼ πVμ − ϕVμ ¼ hjμi − ϕVμ; ð83Þ

where ϕ’s are given by Eq. (81). This shows the mechanism
of how the bulk Chern-Simons term leads to the parity
breaking in 1þ 1-dimensional boundary field theory.
Namely, the Chern-Simons term is responsible for the shift
in canonical momenta, which gives a nonzero vacuum
expectation value of the current

hjμi ¼ 4κεμνAν ≠ 0: ð84Þ

Expressing velocities through momenta

H ¼
Z

d2xðπAμ∂zAμ þ πVμ∂zVμ − LÞ; ð85Þ

we obtain the Hamiltonian at the UV boundary, at z ¼ z0,

H ¼
Z

d2x

�
1

2f2
π2Aμ þ

1

2f2
πVμðπVμ − 4κεμσAσÞ

−
�
f2ðð∂zAμÞ2 þ ð∂VμÞ2Þ −

1

2g2
ðF2

Aμν þ F2
VμνÞ

þ 4κενσ∂zVνAσ

��

¼
Z

d2x

�
1

4f2
π2Aμ þ

1

4f2
ðπVμ − ϕVμÞ2

þ 1

2g2
ðF2

Aμν þ F2
VμνÞ

�
: ð86Þ

Finally, we arrive at the Hamilton-Jacobi equation (76),

∂S
∂z0 þ

Z
d2q
ð2πÞ2

�
1

4f2
ðπ2Aμ þ ~π2VμÞ þ

1

2g2
ðF2

Aμν þF2
VμνÞ

�����
z0

¼ 0; ð87Þ
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where we traded time for holographic coordinate z and the
shifted momentum is given by Eq. (83). Now, to obtain
the corresponding RG equations for correlators, we vary the
Hamilton-Jacobi equation (87) with respect to boundary
values of the gauge fields and introduce the notation for the
one-point functions,

πAα ¼
δS
δA0α

¼ hj5αi; πVα ¼
δS
δV0α

¼ hjαi; ð88Þ

and the two-point functions,

δ2S
δA0αδA0β

¼ hj5αj5βi ¼ ΠAδαβ;

δ2S
δV0αδV0β

¼ hjαjβi ¼ ΠVδαβ; ð89Þ

δ2S
δV0αδA0β

¼ hjαj5βi ¼
1

2π
εαβwT ≡ εαβ ~wT; ð90Þ

One- and two-point functions were calculated in Sec. II. We
introduced a notation wT=ð2πÞ ¼ ~wT .

A. Hamilton-Jacobi equation
for diagonal correlators

First, we examine the RG equation for the diagonal
correlators (26). We start off varying the Hamiltonian (86)
twice with respect to the boundary value A0,

δ2

δA0αδA0β

�
1

4f2
ðπ2Aμ þ ~π2VμÞ þ

1

2g2
ðF2

Aμν þ F2
VμνÞ

�����
z0
;

ð91Þ

and we obtain

1

2f2

��
δπA
δA0

�
2

þ
�
δ ~πV
δA0

�
2

þ πA
δ2πA
δA2

0

þ ~πV
δ2 ~πV
δA2

0

�

¼ 1

2f2

�
ðhj5j5iÞ2 þ

�
hjj5i − δϕV

δA0

�
2

þ hj5ihj5j5j5i þ ðhji − ϕVÞhjj5j5i
�

¼ 1

2f2
ðΠ2

A þ ð ~wT − 4κAjz0Þ2Þδαβ: ð92Þ

Our Abelian action is quadratic in fields, and therefore we
neglect three-point functions. Varying the Hamilton-Jacobi
(HJ) equation (87) and using Eq. (14), we obtain the HJ
equations for the diagonal correlators:

∂
∂z0 ΠA þ 1

2f2
ðΠ2

A þ ð ~wT − 4κÞ2Þ ¼ 0 ð93Þ

∂
∂z0ΠV þ 1

2f2
ðΠ2

V þ ð ~wT − 4κÞ2Þ ¼ 0: ð94Þ

The HJ equation for the difference is given by

∂
∂z0 ðΠA − ΠVÞ þ

1

2f2
ðΠ2

A − Π2
VÞ ¼ 0; ð95Þ

where all quantities are taken at the point z0, i.e., fðz0Þ,
ΠAðz0Þ, and ΠVðz0Þ. Using Eq. (40), we can rewrite
Eq. (95) for the left-right correlator,

∂
∂z0ΠLR ¼ −

1

2f2
ðΠA þ ΠVÞΠLR: ð96Þ

The RG equation for the left-right correlator is diagonal;
i.e., its running is expressed again through the left-right
correlator. The momentum-dependent coefficient is given
by the sum of the correlators ΠA þ ΠV .

B. Hamilton-Jacobi equation for mixed correlator

Varying the Hamiltonian part in the HJ equation (87)
twice with respect to the boundary values V0 and A0, we
obtain

δ2

δV0αδA0β

�
1

4f2
ðπ2Aμþ ~π2VμÞþ

1

2g2
ðF2

AμνþF2
VμνÞ

�����
z0
; ð97Þ

and we obtain

1

2f2

�
δπA
δV0

δπA
δA0

þ 1

2f2
δ ~πV
δV0

δ ~πV
δA0

þ πA
δ2πA

δV0δA0

þ ~πV
δ2 ~πV

δV0δA0

�

¼ 1

2f2

�
hjj5ihj5j5i þ

�
hjj5i − δϕV

δA0

�
hjji

þ hj5ihjj5j5i þ ðhji − ϕVÞhj5jji
�

¼ 1

2f2
ðεαγ ~wTΠAδ

γβ þ ðεγβ ~wT − εγβ4κAjz0ÞΠVδ
γαÞ

¼ 1

2f2
εαβð ~wTΠA þ ð ~wT − 4κÞΠVÞ: ð98Þ

Varying the HJ equation (87), we obtain the HJ equations
for the mixed correlator,

∂
∂z0 ~wT þ 1

2f2
ð ~wTðΠA þ ΠVÞ

þ 2κðΠA − ΠVÞ − 2κðΠA þ ΠVÞÞ ¼ 0; ð99Þ

where fðz0Þ2, ~wTðz0Þ, ΠAðz0Þ, and ΠVðz0Þ are taken at z0.
As seen from Eq. (99), due to the Chern-Simons term,
κ ≠ 0, the RG equation for the mixed correlator ~wT is not
diagonal,
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∂
∂z0 ~wT ¼ −

1

2f2
ðΠA þ ΠVÞ ~wT

þ 2κ

2f2
ðΠA þ ΠVÞ −

2κ

2f2
ðΠA − ΠVÞ: ð100Þ

It is remarkable that the diagonal RG flow for wT has the
same rate ð1=2f2ÞðΠA þ ΠVÞ as the left-right correla-
tor ΠLR.

C. Hamilton-Jacobi equation
for Son-Yamamoto relation

We write the HJ equation for the Son-Yamamoto
relation (37),

ðSYÞ ¼ ~wT − 2κ þ 2κ

Z
z0 dz
2f2

ðΠA − ΠVÞ; ð101Þ

where ~wT ¼ wT=ð2πÞ. To this end, we differentiate
Eq. (101) with respect to z0 and use the HJ equations
for the diagonal and mixed two-point functions, Eqs. (95)
and (99),

∂
∂z0 ~wT þ 2κ

Z
z0 dz
2f2

∂
∂z0 ðΠA − ΠVÞ þ

2κ

2f2
ðΠA − ΠVÞþ

ð102Þ

þ 1

2f2
ð ~wTðΠA þ ΠVÞ þ 2κðΠA − ΠVÞ − 2κðΠA þ ΠVÞÞ

þ 2κ

Z
z0 dz
2f2

1

2f2
ðΠ2

A − Π2
VÞ − 2κ

1

2f2
ðΠA − ΠVÞ ¼ 0;

ð103Þ

where the first and the fourth terms constitute Eq. (99) and
the second and the fifth terms constitute Eq. (95). Note that
the integral with the metric term 1=f2 in Eq. (101) is
differentiated. Combining the terms, we have

∂
∂z0

�
~wT − 2κþ 2κ

Z
dz
2f2

ðΠA −ΠVÞ
�

þ 1

2f2
ðΠAþΠVÞ

�
~wT − 2κþ 2κ

Z
dz
2f2

ðΠA −ΠVÞ
�
¼ 0;

ð104Þ

which can be written in a short form,

∂
∂z0 ðSYÞ ¼ −

1

2f2
ðΠA þ ΠVÞðSYÞ; ð105Þ

where (SY) denotes the Son-Yamamoto relation (101). The
RG flow for the Son-Yamamoto relation is diagonal. It is
remarkable that the Son-Yamamoto relation (SY) and the
left-right correlator ΠLR (96) both flow with the same
coefficient which is given by the sum ∼ðΠA þ ΠVÞ.

In Sec. III (the regime of small momenta), we showed
that the Son-Yamamoto relation (101) is satisfied at the
point z0 → 0. This means that, since the RG (105) is
diagonal, the Son-Yamamoto relation holds for any energy
scale z0.

VI. SIMILARITY OF QCD AND
TWO-DIMENSIONAL SYSTEM.
DIMENSIONAL REDUCTION

In this section, we draw parallels between the four-
dimensional QCD [1,11] and our two-dimensional system.
We write formulas for the 2D system in the context of
QCD2. We summarize the RG equations,

∂
∂z0ΠLR ¼ −

1

2f2
ðΠA þ ΠVÞΠLR ð106Þ

∂
∂z0 ðSYÞ ¼ −

1

2f2
ðΠA þ ΠVÞðSYÞ; ð107Þ

which are identical in both the QCD and linear cases. It is
remarkable that the two equations have the same rate of
change 1

f2 ðΠAþΠVÞ. Further comparing QCD4 and QCD2,

the polariztion operators ΠA and ΠV are the same; however,
the Son-Yamamoto relations slightly differ. Explicitly, they
are given by

2D∶ ðSYÞ ¼ wT − Nc þ Nc

Z
z0

0

dz
2f2

ðΠA − ΠVÞ

¼ 0; ð108Þ

hjμj5νi⊥ ¼ 1

2π

�
Nc − Nc

Z
z0

0

dz
2f2

ðΠA − ΠVÞεμν
�
;

ð109Þ

where wT ∼ hjAðqÞjVð−qÞi⊥ and [1]

4D∶ ðSYÞ ¼ wT −
Nc

Q2
þ Nc

f2π
ðΠA − ΠVÞ ¼ 0; ð110Þ

hjμj5νi⊥ ¼ Q2

4π2

�
Nc

Q2
−
Nc

f2π
ðΠA − ΠVÞ ~Fμν

�
: ð111Þ

Here the dual field strength is ~Fμν ¼ 1=2εμναβFαβ, and the
transverse part of the vector-axial current correlator is
defined as wTFðkÞ ∼ hjAðqÞjVð−q − kÞjVðkÞi⊥ with
k ¼ 0, F is the field strength of the vector gauge field,
Q2 ¼ −q2. The following identification is done:

1

f2π
¼

Z
z0

0

dz
2f2

: ð112Þ
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Note that the dimension of the pion decay constant is
½fπ� ¼ 1 in two dimensions and ½fπ� ¼ E in four
dimensions.
Next, we consider the dimensional reduction d → d − 2

that occurs at strong magnetic field B → ∞, in order to see
a connection between four-dimensional QCD and 2D
systems. The Dirac action is written as

SF ¼ i
Z

d4xψ̄ðΓμDμ −mÞψ ; ð113Þ

where Γ are the four-component gamma matrices and the
covariant derivative contains the gauge field. We choose the
gauge

Ay ¼ −yB; ð114Þ

with B∥z and where B is positive, and consider a z slice for
the time being. Then, we decompose the Dirac spinor into
two two-component Weyl spinors,

ψ ¼ e−iωtþikx

�
ξ1ðyÞ
ξ2ðyÞ

�
; ð115Þ

with kx ≡ k. For a new variable,

η ¼
ffiffiffiffi
B

p �
yþ k

B

�
; ð116Þ

the Dirac equation for ξi is reduced to a harmonic oscillator,
where a solution is defined in terms of the Hermite
polynomials Hn,

ξ1 ¼ cðω; kÞInðηÞ; ξ2 ¼ �cðω; kÞIn−1ðηÞ

InðηÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nn!
ffiffiffi
π

pp e−η
2=2HnðηÞ; ð117Þ

and the energy is quantized

ω ¼ �
ffiffiffiffiffiffiffiffiffi
2Bn

p
: ð118Þ

n ¼ 0; 1; 2;… are Landau levels, where� distinguishes the
two solutions. Motion in the direction perpendicular to
the magnetic field ðx; yÞ is described by Larmor orbits. In
the limit B → ∞, only the lowest Landau level (LLL) is
important. Indeed the LLL has a vanishing energy because
the zero point energy 1

2
B is exactly compensated by the

Zeeman splitting due to spin coupling − 1
2
B. Therefore,

the zero modes for each of the two-component spinors is
given by

ξi ¼ e−η
2=2

�
0

ζi

�
: ð119Þ

The fact that only one spin component is populated means
that the LLL is spin polarized. Reinstating the z depend-
ence back, the zero modes become functions ζiðt; zÞ. There
is one zero mode for each state of the LLL, for each k.
These zero modes are described by a 1þ 1-dimensional
effective action for a two-component Weyl spinor
ζ ¼ ðζ1; ζ2Þ,

Seff ¼ i
Z

d2xζ̄γμDμζ; ð120Þ

where γ are given by the Pauli matrices, and the covariant
derivative does not contain the gauge field now. In strong
magnetic fields B → ∞ where only the LLL is important,
the dynamics is reduced from four dimensions to two
dimensions. Since the LLL is spin polarized, the density of
states for the LLL is B

2π. This means that in the limit B → ∞,
in order to get one- and two-point functions of the currents,
we calculate correlators for the two-dimensional fermions
and then sum over the Fermi zero modes using the density
of states in the LLL,

hψ̄Γψi ¼ B
2π

hζ̄γζi; ð121Þ

and schematically

hJðxÞJð0Þi4d ¼
B
2π

hjðxÞjð0Þi2d; ð122Þ

where ψ̄Γψ ¼ J and ζ̄γζ ¼ j are fermion currents in four
dimensions and two dimensions, respectively. Similar
calculations can be done in a holographically dual theory
with dual fermions and currents, where the reduction in the
bulk theories from five dimensions to three dimensions
occurs [17,18]. This means that at large B the dimensional
reduction from four dimensions to two dimensions for the
current correlators holds also nonperturbatively.

VII. CONCLUSIONS

We derived the analog of the Son-Yamamoto relation for
(1þ 1)-dimensional systems. Quantum field theory does
not allow us to predict and calculate the Son-Yamamoto
relation between the anomalous two-point current correla-
tion function and the nonanomalous ones. The holographic
method permits us to establish this relation using the
holographic dictionary. We considered the implications
of the Son-Yamamoto relation in QCD2 and obtained a
new set of sum rules for the current matrix elements and for
the decay parameters for the resonances. We also discussed
the Son-Yamamoto relation in application to the field
theory models: the Schwinger model with N fermions
and the ’t Hooft solution of QCD2 in the limit of
Nc → ∞, g2Nc ¼ const.
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Two-dimensional systems are presently realized by
organic quasi-one-dimensional metals, organic nanotubes,
edge states of quantum Hall liquids, one-dimensional
semiconducting structures, and edge states of topological
insulators [19]. In these systems, it is believed that electron-
electron interaction invalidates Landau Fermi liquid pic-
ture. Instead, a different state described approximately by
Tomanaga-Luttinger theory [20] is generated. Since elec-
tronic correlations in this state are stronger than in Fermi
liquid, it is interesting to calculate two-point correlations
that represent conductivities or related transport coeffi-
cients and obtain relations between them. For example, it is
interesting to translate our transport coefficients in terms of
the Coulomb/spin drag transresistivity between two quan-
tum wires [21] or examine transport properties in chiral
edge states in the quantum Hall state and helical edge states
in topological insulators/topological superconductors [22].
The Son-Yamamoto relation is based on the chiral

anomaly. We show that in the transverse direction the
chiral anomaly is dynamical rather than topological. As one
of the consequences, the QCD2 vacuum exhibits the chiral
symmetry breaking with ψ̄ψ ≠ 0 and a pairing of the
massless fermions (chiral bosonization).
We summarize the two representations of the Son-

Yamamoto relation for (1þ 1)-dimensional systems. The
Son-Yamamoto equation relates wT—the mixed hVAi
current correlator and the diagonal hVVi and hAAi current
correlators

ðSYÞ ¼ wT − N þ N
ΠA − ΠV

f2π
¼ 0; ð123Þ

Also the Son-Yamamoto equation can be written for the
left-right correlator hLRi

hjLμ jRν i⊥ ¼ Pα⊥
μ Pβ⊥

ν εαβ

�
N
π
−
N
π

ΠLR

2f2ðzÞ
�
; ð124Þ

where jLμ and jRμ are the left- and right-handed currents, P⊥
is the transverse projection operator, and N stands for N
fermions in Schwinger model or for Nc number of colors in
QCD2 with fπ is the decay constant. In Eq. (124), the first
term coincides with the result of the Schwinger model [13]
and the QCD2 [4]: the massless pole 1=q2 with finite
residue N=π is determined by the chiral anomaly. The
second term is purely nonperturbative. It gives a new set of
sum rules. Therefore, the Son-Yamamoto relation can be
viewed as an anomaly matching condition.
The key point in deriving the Son-Yamamoto relation

was the independence on the radial coordinate of the
Wronskian for vector and axial gauge fields. It gives the
range of validity for the Son-Yamamoto relation: generally,
small Chern-Simons κ (4πκ ¼ N) or large virtualityQ2. We
estimated Wronskian in the cosh and Sakai-Sugimoto
models, using for parameters the momentum Q2, the

Chern-Simons κ, the ratio of holographic sources r, and
ϵ in the D ¼ 3þ ϵ dimensional regularization scheme.
In the dimensional regularization, there is a wide range of
parameters where solutions for vector and axial gauge
fields remain regular, which produce a z-independent
Wronskian starting from some small z in the IR
(Appendix B). Specific estimates slightly differ in the
models. It would be instructive to get quantitative estimates
for the parameter range where WðzÞ ¼ const.
The two-dimensional Son-Yamamoto matching condi-

tion at large virtualities provides an estimate for the decay
constant

f2π ∼ Nc; ð125Þ

which was found in the limit of the weak couplingNc → ∞
and ’t Hooft condition g2Nc ¼ const by Zhitnitsky [4].
Since this estimate is done at largeQ2 where the application
of the low-energy effective action is questionable, this
result deserves independent derivation by other means.
We also showed that the pion decay constant f2π ∼ Nc is
consistent with the Gell-Mann-Oakes-Renner relation and
the chiral condensate hψ̄ψi ∼ Nc. In QCD4, the analog of
the estimate for fπ (125) is the holographic result for
magnetic susceptibility of Vainshtein [5] χ ∼ 1=f2π [1].
Finally, we found that the RG flow equations for the Son-

Yamamoto relations in (1þ 1)- and (3þ 1)-dimensional
systems are the same and they are diagonal. Moreover, the
rate of the RG flow for the SY relation and the left-right
correlator is the same,

∂
∂z0ΠLR ¼ −

1

2f2
ðΠA þ ΠVÞΠLR ð126Þ

∂
∂z0 ðSYÞ ¼ −

1

2f2
ðΠA þ ΠVÞðSYÞ; ð127Þ

where z0 is the UV boundary value of the radial bulk
coordinate—the end point of the evolution. We believe that
the diagonal form and this rate hold only for the Abelian
case. We showed that the similarity between (3þ 1)- and
(1þ 1)-dimensional systems can be attributed to the
dimensional reductionD → D − 2 in strong magnetic field.
However, it does not explain why the RG flows are
diagonal and have the certain rate.
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APPENDIX A: CHECKING THE
SON-YAMAMOTO RELATION IN A MODEL.

1þ 1 SYSTEMS IN AN ADS MODEL
WITH THE CHIRAL CONDENSATE

We consider the Son-Yamamoto relation for 1þ 1
systems in a gravity dual model which incorporates the
chiral condensate [23]. Contrary to Ref. [23], we do not
impose the hard-wall cutoff in the IR that insured confine-
ment in 3D QCD. The metric is a slice of the AdS space

ds2 ¼ 1

z2
ð−dt2 þ dz2 þ dx2Þ; ðA1Þ

where 0 ≤ z < ∞, the AdS UV boundary is at z ¼ 0, and
we rescale the curvature radius of the space to unity. The
action in the bulk

S ¼ SYM þ SCS ðA2Þ

includes the scalar field

SYM ¼
Z

d3x
ffiffiffi
g

p �
jDΨj2 þM2jΨj2 − 1

4g23
ðF2

L þ F2
RÞ
�
;

ðA3Þ

SCS ¼ κ

Z
d3xðw3ðALÞ − w3ðARÞÞ; ðA4Þ

where DΦ ¼ ∂Φ − iALΦþ iARΦ, Fμν ¼ ∂μAν − ∂νAμ,
wðAÞ ¼ A � F þ 2

3
A3, and M2 is specified further. From

the AdS dictionary, a bulk field Θ dual to operator O
behaves at the asymptotic UV boundary AdSdþ1 as

ΘðzÞ¼AzΔ−ð1þ���ÞþBzΔþð1þ�� �Þ; z→ 0; ðA5Þ

where the source to O (leading term) is A, the expectation
of O (subleading term) is B ¼ hOi, and the characteristic
exponents Δ� for scalar and vector fields are solutions to
equations

scalar∶ ΔðΔ − dÞ ¼ M2; ðA6Þ

vector∶ ΔðΔ − dþ 2Þ ¼ M2; ðA7Þ

where the AdS curvature radius is 1.We take the scalar mass
equal to the Breitenlohner-Freedman bound M2 ¼ −1 to
insure the positive energy, and the mass of the vector field is
M2 ¼ 0. From Eq. (A7), for the AdS3, d ¼ 2, the character-
istic exponents are Δ� ¼ 1 for scalar and Δ ¼ 0 for vector
fields. This implies the following behavior in the UV:

scalar∶ Ψ ¼ mz ln zþ hqq̄iz; ðA8Þ

vector∶ V ¼ A ln zþ hJi: ðA9Þ

In the context of QCD, the source is the quark mass m, and
the response is the chiral condensate hqq̄i, and the electro-
magnetic field A sources the Uð1Þ conserving current with
expectation value hJi. To check that the scalar field behaves
as inEq. (A8),we solve the equation ofmotion forΨwithout
the gauge field

∂z

�
1

z
∂zΨ

�
−

1

z3
M2Ψ ¼ 0: ðA10Þ

Indeed, the solution is

Ψ ¼ 1

2
mz ln zþ 1

2
σz; ðA11Þ

with M2 ¼ −1, and σ is the chiral condensate. As in
Ref. [24], we parametrize the scalar field as

Ψ ¼ Ψ0ei2π; Ψ0 ¼
1

2
vðzÞ;

vðzÞ ¼ mz ln zþ σz: ðA12Þ

Introducing the vector and axial-vector fields, V ¼
ðAL þ ARÞ=2 and A ¼ ðAL − ARÞ=2, the covariant deriva-
tive for the scalar becomes DΨ ¼ 2iΨ0ð∂π − AÞ. We work
in the radial gauge, Vz ¼ Az ¼ 0. We decompose the gauge
fields as

Vμ ¼ V⊥
μ ; ∂μVμ ¼ 0; ðA13Þ

Aμ ¼ A⊥
μ þ A∥

μ; ∂μA⊥
μ ¼ 0: ðA14Þ

The action Eq. (A3) SYM ¼ SV þ SA is

SV ¼
Z

d3x

�
−

1

4g23

�
2zF2

V; ðA15Þ

SA ¼
Z

d3x

��
−

1

4g23

�
2zF2

A þ v2ðzÞ
z

ð∂π − AÞ2
�
; ðA16Þ

which can be written as

SV ¼
Z

d3x

�
−

1

4g23

�
½2zF⊥2

Vμν þ 4zF⊥2
Vzμ�; ðA17Þ

SA ¼
Z

d3x

�
−

1

4g23

�
½2zF⊥2

Aμν þ 4zF⊥2
Azμ þ 4zF∥2

Azμ�

þ
Z

d3x
v2ðzÞ
z

½ð∂zπ − AzÞ2 þ ð∂μπ − A∥
μÞ2 þ A⊥2

μ �;

ðA18Þ

where vðzÞ is given by Eq. (A12). Comparing the gauge
action in Eq. (23) and Eqs. (A17) and (A18), the identi-
fication of the metric factors in Eq. (23) can be made,
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f2ðzÞ ¼ 1

4g23

2
ffiffiffi
g

p
gzzgμμ

¼ z
2g23

;

1

g2
¼ 1

4g23

2
ffiffiffi
g

p
g2μμ

¼ z
2g23

; ðA19Þ

where the determinant is
ffiffiffi
g

p ¼ 1=z3 for the AdS3 [not to
confuse factor 1=g2 in Eq. (23) with the metric determinant
g]. Let the gauge fields be Vμðq; zÞ ¼ Vðq; zÞVμ

0 and
Aμðq; zÞ ¼ Aðq; zÞAμ

0 with V0, A0 being sources of the
vector and axial-vector currents and q be the Fourier
transform momentum in the boundary space component
x. From Eqs. (A17) and (A18), the linearized equations of
motion (EOM) for the perpendicular components of the
vector and axial-vector fields, Vðq; zÞ and Aðq; zÞ, read

∂zðz∂zVÞ − zQ2V ¼ 0; ðA20Þ

∂zðz∂zAÞ − zQ2A −
g23v

2

z
A ¼ 0; ðA21Þ

where Q2 ¼ −q2 and we omit the perpendicular sign. The
boundary conditions (BCs) in the UV and IR are

UV∶ z∂zVjz¼0 ¼ 1; z∂zAjz¼0 ¼ 1; ðA22Þ

IR∶ ∂zVjzm→∞ ¼ 0; ∂zAjzm→∞ ¼ 0; ðA23Þ

where we introduced the hard-wall cutoff zm, which we take
to be infinite. The UV BC says that the source for the
components Vðq; zÞ and Aðq; zÞ is unity. Indeed, the source
of the vector field is given by zV 0

z¼0 when asymptotic
behavior is as in Eq. (A9). First, we solve the EOM for the
vector field

z2V 00 þ zV 0 −Q2z2V ¼ 0: ðA24Þ

The solution

V ¼ c1I0ðQzÞ þ c2K0ðQZÞ ðA25Þ

is expressed through the modified Bessel functions In, Kn
with n ¼ 0. Imposing BC’s

IR∶ c1I1ðQzmÞ − c2K1ðQzmÞ ¼ 0; zm → ∞ ðA26Þ

UV∶ zQðc1I1ð0Þ − c2K1ð0ÞÞ ¼ 1; ðA27Þ

we obtain

V⊥ðQ; zÞ ¼ −K0ðQzÞ − K1ðQzmÞ
I1ðQzmÞ

I0ðQzÞ →
zm→∞

− K0ðQzÞ:

ðA28Þ

Using asymptotic expansion at z ¼ 0 for the modified
Bessel functions

I0ðzÞ ≈ 1þ z2=4þ � � � ;
K0 ≈ ð−γ þ ð1 − γÞz2=4þ � � �Þ

− lnðz=2Þð1þ z2=4þ � � �Þ; ðA29Þ

we find that V behaves in the UV as in Eq. (A9),

V⊥ðQ; zÞ → lnðQzÞ þ const; z → 0; ðA30Þ

with the source being unity.
Next, we solve the EOM for the perpendicular

component of the axial-vector field perturbatively for large
Q2 → ∞,

A ¼ A0 þ A1 þ � � � ; ðA31Þ

with A0ðQ; zÞ ¼ V⊥ðQ; zÞ (A28). The first correction
satisfies the equation

x2∂2
xA1 þ x∂xA1 − xA1 ¼ λx2A0; ðA32Þ

where we defined x ¼ Qz, λ ¼ g23σ
2=Q2, and λ → 0 as

Q → ∞. The solution of this equation can be found by
using the Green function

A1 ¼
Z

dx0Gðx; x0Þλx02A0ðx0Þ; ðA33Þ

where the Green function is obtained from solving the
homogeneous part of Eq. (A32),

f1 ¼ −K0ðxÞ; f2ðxÞ ¼ −I0ðxÞ; ðA34Þ

and

Gðx; x0Þ ¼ −
1

W½f1; f2�ðx0Þ
ðf1ðxÞf2ðx0Θðx − x0Þ

þ f2ðxÞf1ðx0ÞΘðx0 − xÞÞ; ðA35Þ

with the Wronskian

W½f1; f2�ðxÞ ¼ f1f02 − f01f2 ¼ 1=x; ðA36Þ

which is simple to estimate for x → 0. We find the small-z
behavior of A1,

A1ðQ; zÞ ¼ 1

3

g23σ
2

Q2
; ðA37Þ

where we used the following integral:
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Z
∞

0

dxx3K2
0ðxÞ ¼

1

3
: ðA38Þ

Summarizing, solutions near the boundary for the vector
and axial-vector fields are

V⊥ðQ; zÞ ¼ −K0ðQzÞ; ðA39Þ

A⊥ðQ; zÞ ¼ −K0ðQzÞ þ 1

3

g23σ
2

Q2
: ðA40Þ

As pointed out in Ref. [1], these solutions near the
boundary are sufficient to evaluate the two-point correla-
tion functions which are determined by the boundary
values at z ¼ ϵ or by the integrals dominated by small-z
regions.
The derivation of correlation functions is similar to that

in Sec. II. Therefore, we put the resulting expressions here.
The transverse parts of the diagonal vector and axial current
correlation functions are

ΠVðQ2Þ ¼ −
1

g23
V⊥ðQ; zÞjz¼ϵ; ðA41Þ

ΠAðQ2Þ ¼ −
1

g23
A⊥ðQ; zÞjz¼ϵ; ðA42Þ

where we used the boundary condition zV 0jz¼ϵ ¼
zA0jz¼ϵ ¼ 1. We introduce a cutoff Λ as ϵ ¼ 1=Λ.
The transverse part of the mixed vector-axial current
correlator is

wT ¼ 2κ

Z
zm→∞

0

dzðA0ðQ; zÞVðQ; zÞ − V 0ðQ; zÞAðQ; zÞÞ:

ðA43Þ

Here, we do not add the boundary term (31) because the
gauge fields diverge on the boundary. Expanding V⊥ and
A⊥ near the boundary,

V⊥ ≈
1

2
lnðQ2z2Þ þ constþOðz2Þ; ðA44Þ

A⊥ ≈
1

2
lnðQ2z2Þ þ 1

3

g23σ
2

Q2
þ constþOðz2Þ; ðA45Þ

with const ¼ γ − ln 2, we obtain for the diagonal and mixed
current correlators

ΠVðQ2Þ ¼ −
1

2g23
lnQ2; ðA46Þ

ΠAðQ2Þ ¼ −
1

2g23
lnQ2 −

1

3

σ2

Q2
; ðA47Þ

wTðQ2Þ ¼ −2κ
1

3

g23σ
2

Q2
lnΛ; ðA48Þ

where we used for evaluating wT

Z
∞

0

dxK0
0ðxÞ ¼ K0ðxÞjx¼ϵ ¼ − lnΛ; ðA49Þ

with asymptotic value K0ðxÞ ¼ − ln x at small x and
ϵ ¼ 1=Λ. Combining the above results, we obtain

wTðQ2Þ ¼ 2κg23ðΠAðQ2Þ − ΠVðQ2ÞÞ lnΛ: ðA50Þ

This expression should be compared with the Son-
Yamamoto relation (37). Using Eq. (A19) for the metric
factor, the integral in the Son-Yamamoto relation becomes

Z
∞

0

dz
2f2ðzÞ ¼

Z
z¼ϵ

dz
g23
z
¼ g23 lnΛ; ðA51Þ

which has the same divergent leading-log behavior as wT . It
proves that the Son-Yamamoto relation (37) is satisfied.
Now, we calculate the left-right correlator ΠLR (40), to

which the terms proportional to the chiral condensate and
the fermion mass contribute. We consider the chiral limit
with zero fermion mass m ¼ 0. Using Eqs. (A46) and
(A47), we find that the left-right correlator is

ΠLR ¼ −
1

3

σ2

Q2
ðA52Þ

up to the quadratic order in the chiral condensate.
Finally, let us evaluate the chiral condensate that fixes the

relation between σ and hψ̄ψi. In the field theory, one can
evaluate the condensate as the variation of the vacuum
energy with respect to the quark mass. In the dual theory,
because m is the source for σ (A11), we variate action on
the classical solution [24]

hψ̄ψi ¼ δSAðΨ0Þ
δm

����
m¼0

; ðA53Þ

where the action is given in Eq. (A18). The variation of the
action is

δSA ¼
Z

d2x
ffiffiffi
g

p
4∂zΨδΨjz¼0

¼
Z

d2x
2

z
ðm ln zþmþ σÞzδmjz¼0; ðA54Þ

where we used Eq. (A12). Therefore, the chiral condensate
is

hψ̄ψi ¼ 2σ: ðA55Þ
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APPENDIX B: NUMERICAL SOLUTION FOR
THE COSH AND SAKAI-SUGIMOTO MODELS

In this Appendix, we solve equations of motion
numerically and show that the Wronskian is independent
on the radial coordinate in the regime of large momen-
tum Q2 and at large radial coordinate z. As we showed in
Appendix A, the 3D bulk solutions are divergent. Using
the analog of (4 − ϵ)-dimensional regularization, we will
work in the bulk (3þ ϵ) dimensions and take the limit of
small ϵ at the end. Let us start with the equations of
motion,

∂zðf2ðzÞ∂zAμÞ −
Q2

g2
Aμ þ 2κεμν∂zVν ¼ 0;

∂zðf2ðzÞ∂zVμÞ −
Q2

g2
Vμ þ 2κεμν∂zAν ¼ 0; ðB1Þ

where μ; ν ¼ 0, 1, since we work in the gauge
Az ¼ Vz ¼ 0. Again, we write down Vμ and Aμ fields
through the mode and UV boundary functions V0μ, A0μ:

Vμ ¼ VðQ; zÞV0μðQÞ; Aμ ¼ AðQ; zÞA0μðQÞ: ðB2Þ

To simplify further computations, we work in the
reference frame where A00 ¼ 0. It can be easily seen
that the nontrivial solution can only be found in the case
when V01 ¼ 0, A01 ≠ 0, and V00 ≠ 0. It means,

VμAμjz0 ¼ 0; ðB3Þ

that the gauge vectors V and A are perpendicular
at the UV boundary. Of course, this condition does
not hold in the bulk. Equation (B3) follows from the
chiral algebra in 1þ 1 dimensions where jμ ¼ εμνjν for
each left and right component (jL0 ¼ −jL1 , jR0 ¼ jR1 ),
and the bulk relation VA ∼ L2 − R2. Using that only
A01 ≠ 0 and V00 ≠ 0 are nonzero, we can write down
explicitly a system of differential equations for the mode
functions AðQ; zÞ and VðQ; zÞ,

∂zðf2ðzÞ∂zAÞ −
Q2

g2
Aþ 2κr∂zV ¼ 0;

∂zðf2ðzÞ∂zVÞ −
Q2

g2
V þ 2κ

1

r
∂zA ¼ 0; ðB4Þ

where we treat momentum Q2, κ, and the ratio of sources
r ¼ V00=A01 as parameters. We solve this system numeri-
cally with boundary conditions

IR brane∶ ∂zVðQ; zÞjz¼0 ¼ 0; AðQ; 0Þ ¼ 0; ðB5Þ

UVbrane∶ VðQ; z0Þ ¼ 1; AðQ; z0Þ ¼ 1; ðB6Þ

and z0 ¼ ∞. Further, we justify that one can choose
finite UV boundary values. To regulate the divergency,
we use (3þ ϵ)-dimensional regularization with (2þ ϵ)
spacial dimensions where ϵ is small. The metric factors
defined in Eq. (A19) are

f2ðzÞ ¼ 1

g23

gϵ=2μμffiffiffiffiffiffi
gzz

p ; g2ðzÞ ¼ g23
g1−ϵ=2μμffiffiffiffiffiffi

gzz
p ; ðB7Þ

where we omit the factor of 2 and include it in redefining
the other constant and the squared of coupling has
dimension of mass ½g23� ¼ m in the three-dimensional
theory, for the metric factors ½f2� ¼ ½1=g2� ¼ L with L
denoting the dimension of length. In (3þ ϵ) dimensions,
the integral defining the pion constant fπ and the
susceptibility χ (which are both dimensionless in three
dimensions),

Z
z0

−z0

dz
2f2ðzÞ ; ðB8Þ

becomes convergent (it will be clear in a concrete
model). Let us estimate the Wronskian in the IR and
see how the dimensional regularization works in this
case. Using that ∂zV ¼ 0 and A ¼ 0 around z ¼ 0, the
first equation in the system (B4) reduces to

∂zðf2∂zAÞ ¼ 0; ðB9Þ

with the solution given by

AðQ; zÞ ¼ C
Z

z

0

dz
f2ðzÞ ; C ¼

�Z
z0

0

dz
f2ðzÞ

�
−1
: ðB10Þ

Using the IR boundary conditions in the second equation
of Eq. (B4), we have

−
Q2

g2
V þ 2κ

1

r
∂zA ¼ 0; ðB11Þ

Substituting the solution for A, we find

VðQ; zÞ ¼ 2κC
rQ2

g2ðzÞ
f2ðzÞ : ðB12Þ

Using these solutions, we get for the Wronskian around
z ¼ 0

WðQ2; zÞ ¼ f2ðVA0 − AV 0Þ → f2VA0

¼ 2κC2

r
1

Λ2Q2

g2ðzÞ
f2ðzÞ ; ðB13Þ

where the z dependence is given by the metric
factors (B7)
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g2ðzÞ
f2ðzÞ ¼ g43g

1−ϵ
μμ ðzÞ; ðB14Þ

Λ is introduced to make z dimensionless. We plot the
Wronskian around z ¼ 0 (B13) in the cosh model with
g2=f2 ∼ ðcoshðzÞÞ2ð1−ϵÞ using different ϵ, Fig. 3. A
decrease in ϵ leads to a flatter dependence for W. It is
a desirable result.
In what follows, we consider the cosh and Sakai-

Sugimoto models [23,25] and perform the numerical
calculations of system (B4). Using Eq. (B7), we have
for the cosh model in (3þ ϵ) dimensions

fðzÞ ¼ Λ
1

g3
ðcoshðzÞÞδ; ðB15Þ

gðzÞ ¼ g3ðcoshðzÞÞ1−δ; ðB16Þ

where δ ¼ ϵ=2 (δ ¼ 0 corresponds to three dimensions,
and δ ¼ 1 corresponds to five dimensions), and we
add the energy scale Λ to make the radial coordinate z
dimensionless.
Using cosh metric factors we perform calculations

numerically. We find diverging solutions in three
dimensions are regulated, i.e., become converging in
the (3þ ϵ)-dimensional Wronskian is a constant for the
Maxwell case.
Using the cosh metric factors, we add the Chern-Simons

term in (3þ ϵ) dimensions, Fig. 3. We find that, due to the
dimensional regularization, the Wronskian develops a
plateau starting from some z. Also, solutions for the gauge
functions converge to a finite value in the UV asymptotics.
Solutions for VðQ; zÞ and AðQ; zÞ do not change much
when the Chern-Simons term is included (with Chern-
Simons, the difference between solutions becomes slightly
larger in the IR). Increasing κ practically does not change
the transition point at which WðQ; zÞ tends to a plateau.

We also do not see any crucial difference for the cases
Q > Λ and Q < Λ.
With cosh metric factors, decreasing ϵ, we find that

the solutions VðQ; zÞ and AðQ; zÞ remain regular, which
produce a z-independent Wronskian starting from
some z. We observe numerically that the limit of small
ϵ exists with regular solutions. Diverging solutions
appear exactly in three dimensions. We suggest that
the logarithmic divergence is an artifact of (2þ 1)-
dimensional theory and it can be regulated by the
dimensional regularization.
We also examine numerical solutions in the Sakai-

Sugimoto model. Solutions in this model express similar
behavior, although we found the cosh model is more
suitable for numerical investigation.
From Eq. (B7), we have for the Sakai-Sugimoto model in

(3þ ϵ) dimensions

fðzÞ ¼ Λ
1

g3
ð1þ z2Þ1=6þδ; ðB17Þ

gðzÞ ¼ g3ð1þ z2Þ1=2−δ; ðB18Þ

where δ ¼ ϵ=6 (δ ¼ 0 is three dimensional and δ ¼ 1=3 is
five dimensional) and Λ is added to make z dimensionless.
Using Sakai-Sugimoto metric factors, we find solutions

in the pure Maxwell theory. We see that the dimension-
ally regulated solutions converge to a finite value in
the UV.
With Sakai-Sugimoto metric factors, the Wronskian

(left panel) and solutions (right panel) in the Maxwell-
Chern-Simons theory are displayed in Fig. 4 in (3þ ϵ)
dimensions. The dimensionally regulated case in Fig. 4
shows that the Wronskian tends to a plateau and
solutions are regular in the UV. Decreasing ϵ, we find
that this trend remains, which suggests that the limit
ϵ ¼ 0 exists.
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FIG. 3. Cosh model in (3þ ϵ)-dimensions. The WronskianWðQ; zÞ (left panel) and gauge functions VðQ; zÞ, AðQ; zÞ (right panel) in
the Maxwell-Chern-Simons theory. Parameters are Q ¼ 5, Λ ¼ 10, 2κ ¼ 1, r ¼ 10, δ ¼ 0.1.
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Our numerical data justify the assumption that the
Wronskian is independent of the radial coordinate for
z ≫ 1. We find that adding the Chern-Simons term does
not solve the problem of logarithmically diverging sol-
utions. We used the dimensional regularization in (3þ ϵ)

dimensions with small ϵ in order to regulate the gauge
functions VðQ; zÞ and AðQ; zÞ which produce constant
behavior for the Wronskian WðQÞ. It also justifies the
use of the finite UV boundary conditions for VðQ; zÞ
and AðQ; zÞ.
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