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We consider rigidly rotating states in thermal equilibrium on static spherically symmetric spacetimes.
Using the Maxwell-Jüttner equilibrium distribution function, constructed as a solution of the relativistic
Boltzmann equation, the equilibrium particle flow four-vector, stress-energy tensor and the transport
coefficients in the Marle model are computed. Their properties are discussed in view of the topology of the
speed-of-light surface induced by the rotation for two classes of spacetimes: maximally symmetric
(Minkowski, de Sitter and anti-de Sitter) and nonrotating black hole (Schwarzschild and Reissner-
Nordström) spacetimes. To facilitate our analysis, we employ a nonholonomic comoving tetrad field,
obtained unambiguously by applying a Lorentz boost on a fixed background tetrad.
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I. INTRODUCTION

Because of their simplicity, rigidly rotating systems in
thermal equilibrium represent attractive toy models which
can be used to gain insight on the physical features of more
complex systems or geometries which exhibit rotation (e.g.
rotating Kerr black holes). Such systems can be interesting
also from a quantum field theory point of view, where the
definition of vacuum states or states at finite temperature is
still an open field (for some recent results, see Ref. [1] and
references therein).
On Minkowski spacetime, such systems were studied

using both kinetic theory and quantum field theory [2–19]
and the quantum corrections can be obtained analytically
[14,15,17]. In this paper, we use the relativistic Boltzmann
equation to study the equilibrium states and the transport
coefficients of fluids undergoing rigid rotation on static
spherically symmetric background spacetimes, as well as to
discuss the topology of the speed of light surface (SOL)
which forms due to the rotation.
In order to obtain expressions for the transport coef-

ficients, the Marle model is employed for the Boltzmann
collision integral [20]. To facilitate our analysis, we employ
nonholonomic tetrad fields [21–23] with respect to which
the mass shell condition for the momentum four-vector
becomes independent of the background metric, while the
calculation of the transport coefficients becomes identical
with that on the Minkowski spacetime [6]. The tetrad of the
comoving frame is obtained by applying a pure Lorentz
boost (i.e. without rotation) on the tetrad of the background
metric [24]. The only degrees of freedom available in this
procedure correspond to choosing the gauge for the fixed
tetrad. Our formulation is sufficiently general to encompass
previously studied examples, such as the Minkowski [17]

and Schwarzschild [25,26] spacetimes. We specialize our
results to the cases of maximally symmetric spacetimes
(Minkowski, de Sitter and anti-de Sitter spaces), as
well as for nonrotating black hole spacetimes (i.e. the
Schwarzschild and Reissner-Nordström spacetimes).
In Sec. II, we discuss the tetrad formalism, which we

apply to obtain the transport coefficients in the Marle
model. The construction of the comoving frame for rigidly
rotating flows on spherically symmetric spaces is presented
in Sec. III, while Sec. IV is dedicated to the discussion of
rigidly rotating thermal states on maximally symmetric
and Schwarzschild and Reissner-Nordström black hole
spacetimes by considering the properties of the Killing
horizons seen by rotating observers. Section V concludes
this paper.

II. THE RELATIVISTIC BOLTZMANN
EQUATION

We start this section by presenting in Sec. II A a
technique for defining the comoving frame with no
unspecified degrees of freedom, which relies on a fixed
tetrad field corresponding to the (arbitrary) background
spacetime.
Section II B reviews the Boltzmann equation written

with respect to tetrad fields in conservative form, as
described in Ref. [23]. Details regarding the transition
from the generally covariant Boltzmann equation to the
Boltzmann equation with respect to tetrad fields, as well as
from this latter form to the conservative form of the
Boltzmann equation, are presented in Appendices A
and B, respectively.
Section II C introduces the Maxwell-Jüttner distribution

for local thermodynamic equilibrium, as well as the
conditions that the chemical potential, temperature and
four-velocity must satisfy in order for the fluid to be in
global thermodynamic equilibrium.
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Section II D ends this section by introducing the trans-
port coefficients arising when the Marle model is used for
the collision integral, which are calculated starting from the
Boltzmann equation in conservative form in a manner
analogous to that employed on flat space [6]. The expres-
sions for the resulting coefficients, defined by using a
covariant generalization [27] of their flat spacetime defi-
nitions, are identical to those obtained in flat spacetime.

A. Comoving frame

For a fixed spacetime having the line element

ds2 ¼ gμνdxμdxν; ð2:1Þ

an orthonormal frame fe ~ag can be chosen such that the
metric is locally flat:

gμνe
μ
~ae

ν
~b
¼ η ~a ~b; ð2:2Þ

where η ~a ~b ¼ diagð−1; 1; 1; 1Þ is the metric of the
Minkowskian model of this spacetime. The tetrad frame
vectors eμ~a uniquely determine a set of covectors (one-
forms) fω ~ag through [24]:

he ~b;ω ~ai≡ ω ~a
μe

μ
~b
¼ δ ~a ~b: ð2:3Þ

There are 6 degrees of freedom in choosing the tetrad, due
to the invariance of Eq. (2.2) under Lorentz transforma-
tions. However, we consider that the tetrad fe ~ag is fixed in
some predefined gauge, such that it can serve as a reference
tetrad for the future development in this chapter.
A comoving frame is defined as an orthonormal frame

feα̂g with respect to which the fluid four-velocity is

uα̂ ≡ uμωα̂
μ ¼ ð1; 0; 0; 0Þ; ð2:4Þ

where fωα̂g are the covectors corresponding to the tetrad
vectors feα̂g. Equation (2.4) implies

eμ
0̂
¼ uμ: ð2:5Þ

Equation (2.5) reduces the number of degrees of freedom in
Eq. (2.2) to 3. We eliminate these degrees of freedom by
requiring that the comoving frame feα̂g is obtained from
the local frame fe ~ag by applying a pure Lorentz boost L ~a

α̂,
such that

eα̂ ¼ e ~aL ~a
α̂: ð2:6Þ

The components L ~a
0̂ can be obtained by contracting

Eq. (2.5) with ω ~a
μ:

L ~a
0̂ ¼ u ~a ≡ uμω ~a

μ: ð2:7Þ

The above equation fixes all 3 degrees of freedom of the
genuine Lorentz boost L ~a

α̂, which can be written as
follows:

L ~a
α̂ ¼

0
B@ u~0 u~|

u~{ δ~{ ~| þ
u~{u~|

u~0 þ 1

1
CA: ð2:8Þ

It can be checked that L ~a
β̂ is indeed a pseudo-orthogonal

matrix:

η ~a ~bL
~a
α̂L

~b
β̂ ¼ ηα̂ β̂; ηα̂ β̂L ~a

α̂L
~b
β̂ ¼ η ~a ~b; ð2:9Þ

satisfying LT ¼ L [28].

B. Conservative relativistic Boltzmann equation

The relativistic Boltzmann equation with respect to
arbitrary coordinate systems on arbitrary geometries can
be written as [6,27,29]

pμ ∂f
∂xμ − Γi

μνpμpν ∂f
∂pi ¼ C½f�; ð2:10Þ

where f ≡ fðxμ; piÞ is the Boltzmann distribution function,
xμ represent spacetime coordinates and pμ ¼ ðp0; piÞ are
the components of the particle four-momentum vector. The
time component p0 of the momentum 4-vector is fixed by
the mass-shell condition:

gμνpμpν ¼ −m2; ð2:11Þ

where gμν are the components of the spacetime metric. The
connection coefficients Γi

μν appearing in Eq. (2.10) have
the following expression with respect to a coordinate frame:

Γλ
μν ¼

1

2
gλσðgσμ;ν þ gσν;μ − gμν;σÞ; ð2:12Þ

where a comma denotes differentiation with respect to the

coordinates, e.g. gσμ;ν ≡ ∂νgσμ ≡ ∂gσμ
∂xν .

The Boltzmann equation (2.10) can be expressed with
respect to the tetrad components of the momentum vector
as follows:

pα̂eμα̂
∂f
∂xμ − Γ{̂

α̂ β̂p
α̂pβ̂ ∂f

∂p{̂ ¼ C½f�: ð2:13Þ

For more details on the relation between Eqs. (2.10)
and (2.13), we refer the reader to Appendix A. The
connection coefficients Γγ̂

α̂ β̂ appearing in Eq. (2.13) can
be obtained using

Γγ̂
α̂ β̂ ¼ ηγ̂ ρ̂ðcρ̂ α̂ β̂ þ cρ̂ β̂ α̂ − cα̂ β̂ ρ̂Þ; ð2:14Þ
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where the Cartan coefficients can be calculated from the
commutators of the tetrad vectors [24]:

cα̂ β̂
γ̂ ¼ h½eα̂; eβ̂�;ωγ̂i: ð2:15Þ

In order to derive transport equations for macroscopic
quantities, we follow Ref. [23] and express Eq. (2.13) in
conservative form:

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
pα̂eμα̂fÞ − p0̂

∂
∂p{̂

�
Γ{̂

α̂ β̂

pα̂pβ̂

p0̂
f

�
¼ C½f�:

ð2:16Þ

For completeness, we provide the details of the derivation
of the transition from Eq. (2.13) to Eq. (2.16) in
Appendix B. The form (2.16) of the Boltzmann equation
is particularly convenient from a numerical point of view,
being directly amenable to finite-element or finite-volume
numerical methods. Furthermore, Eq. (2.16) can be used to
easily derive transport equations for the moments T α̂1…α̂nþ1

of f:

∇α̂nþ1
T α̂1α̂2…α̂nα̂nþ1 ¼

Z
d3p

p0̂
C½f�pα̂1…pα̂n ; ð2:17Þ

where

T α̂1α̂2…α̂nα̂nþ1 ≡
Z

d3p

p0̂
fpα̂1…pα̂npα̂nþ1 : ð2:18Þ

In particular, the conservation equation for the particle
four-flow Nα ≡ T α̂ and stress-energy tensor T α̂ β̂ can be
obtained from Eq. (2.17) for n ¼ 0 and n ¼ 1:

∇α̂Nα̂ ¼ 0; ∇β̂T
α̂ β̂ ¼ 0: ð2:19Þ

The right-hand sides of the above equations vanish since 1
and pα̂ are collision invariants [6], i.e.

Z
d3p

p0̂
C½f� ¼

Z
d3p

p0̂
C½f�pα̂ ¼ 0: ð2:20Þ

C. Thermodynamic equilibrium

At local equilibrium, the collision integral C½f� vanishes
and f is given by [6,30]

fðeqÞ ¼ Z
ð2πÞ3 ½exp ð−βμ − βpα̂uα̂Þ − ε�−1; ð2:21Þ

where Z represents the number of degrees of freedom, β ¼
1=T is the inverse local temperature, uα̂ are the covariant
components of the macroscopic velocity 4-vector, and μ is
the chemical potential. The constant ε takes the values −1,

0 and 1 for the Fermi-Dirac (F-D), Maxwell-Jüttner (M-J)
and Bose-Einstein (B-E) distributions, respectively. Since
the equilibrium distributions corresponding to the F-D or
B-E statistics can be inferred from the M-J distribution
[17,31], the focus in this paper will be on the latter
distribution, which we give explicitly below:

fðeqÞ ¼ Z
ð2πÞ3 exp ðβμþ βpα̂uα̂Þ: ð2:22Þ

When the fluid is in global thermodynamic equilibrium,
f ¼ fðeqÞ everywhere in the spacetime. Substituting
Eq. (2.22) into the Boltzmann equation in conservative
form (2.16) shows that βμ must be constant, while the
vector field kα̂ ¼ βuα̂ must satisfy the Killing equa-
tion [6,32–35]:

∇α̂ðβμÞ ¼ 0; kα̂;β̂ þ kβ̂;α̂ ¼ 0; ð2:23Þ

where the semicolon denotes the covariant differentiation.
In Sec. III, Eq. (2.23) will be solved for the case of rigidly
rotating thermal distributions on general static spherically
symmetric spacetimes.

D. Transport coefficients

1. Out-of-equilibrium flows

In an out-of-equilibrium flow, the distribution function f
is generally different from fðeqÞ. In the Eckart decompo-
sition, the particle flow 4-vector Nα̂ ≡ T α̂ and the stress-
energy tensor T α̂ β̂, corresponding to the cases n ¼ 0 and
n ¼ 1 in Eq. (2.18), respectively, can be written as
[6,27,36]

Nα̂ ¼ nuα̂; ð2:24aÞ

T α̂ β̂ ¼ Euα̂uβ̂ þ ðPþ ωÞΔα̂ β̂ þ 2qðα̂uβ̂Þ þ πα̂ β̂; ð2:24bÞ

where the energy density E and hydrostatic pressure P
define the nonequilibrium inverse temperature β through
Eq. (C5). The energy density E, dynamic pressure ω, heat
flux qα̂ and pressure deviator πα̂ β̂ can be computed from
T α̂ β̂ using the following expressions:

E ¼ uα̂uβ̂T
α̂ β̂; ð2:25aÞ

Pþ ω ¼ 1

3
Δα̂ β̂T

α̂ β̂; ð2:25bÞ

qα̂ ¼ −Δα̂
β̂uγ̂T

β̂ γ̂; ð2:25cÞ

πα̂ β̂ ¼ Thα̂ β̂i; ð2:25dÞ
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where the notation Ahα̂ β̂i refers to

Ahα̂ β̂i ≡
�
1

2
ðΔα̂

γ̂Δβ̂
ρ̂ þ Δα̂

ρ̂Δβ̂
γ̂Þ −

1

3
Δα̂ β̂Δγ̂ ρ̂

�
Aγ̂ ρ̂: ð2:26Þ

In the hydrodynamic limit, the following relations hold
[6,27]:

ω ¼ −η∇γ̂uγ̂; ð2:27aÞ

qα̂ ¼ −λΔα̂ β̂

�
∇β̂T −

T
Eþ P

∇β̂P

�
; ð2:27bÞ

πα̂ β̂ ¼ −2μ∇hα̂uβ̂i; ð2:27cÞ

where T ¼ β−1 and the bulk viscosity η, shear viscosity μ
and thermal conductivity λ are the transport coefficients
which make the subject of the present subsection.

2. Transport coefficients in the Marle model

The values of the transport coefficients depend on the
form of the collision operator C½f� in the Boltzmann
equation (2.16). In general, C½f� is a nonlinear integral
operator which drives f towards local thermodynamical
equilibrium [6,37]. The computation of the transport
coefficients requires the analysis of the hydrodynamic
regime of the Boltzmann equation, for the recovery of
which there are various procedures, including the
Chapman-Enskog procedure [20,38], the Grad moments
method [6] and the renormalization group method [39–41].
To illustrate the methodology for the computation of the
transport coefficients, we employ in this section the single
relaxation time models proposed by Marle [20] and
Anderson-Witting [42]:

C½f�M ¼ −
m
τ
ðf − fðeqÞÞ; ð2:28aÞ

C½f�A−W ¼ uα̂pα̂

τ
ðf − fðeqÞÞ; ð2:28bÞ

where τ is the relaxation time. For the remainder of this
section, we only consider the Marle collision term, with
which the Boltzmann equation (2.16) in conservative form
reads

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
pα̂eμα̂fÞ − p0̂

∂
∂p{̂

�
Γ{̂

α̂ β̂

pα̂pβ̂

p0̂
f

�

¼ −
m
τ
ðf − fðeqÞÞ: ð2:29Þ

In order for the Marle model (2.28a) to be consistent, the
collision invariants 1 and pα̂ must be preserved. Replacing
Eq. (2.28a) in Eq. (2.20) gives

∇α̂Nα̂ ¼ −
m
τ

Z
d3p

p0̂
ðf − fðeqÞÞ ¼ 1

mτ
ðT α̂

α̂ − T α̂
E α̂Þ;

ð2:30aÞ

∇β̂T
α̂ β̂ ¼ −

m
τ
ðNα̂ − Nα̂

EÞ: ð2:30bÞ

The above equations can be used to determine the param-
eters nE, uα̂E and TE of the Maxwell-Jüttner distribution
fðeqÞ, as well as of the corresponding “equilibrium” stress-

energy tensor T α̂ β̂
E . Since Nα̂ ¼ nuα̂ and Nα̂

E ¼ nEuα̂E by
virtue of Eq. (2.24a), the requirement that the right-hand
side of Eq. (2.30b) vanishes imposes

nE ¼ n; uα̂E ¼ uα̂: ð2:31Þ

By contracting Eq. (2.24b), Eq. (2.30a) reduces to

EE − 3PE ¼ E − 3ðPþ ωÞ: ð2:32Þ

It is important to note that βE, defined by Eq. (2.32), does
not in general coincide with the inverse temperature β of the
system, which is defined by Eq. (C5) in terms of the energy
density E corresponding to the stress-energy tensor T α̂ β̂

computed from f.
The expressions for the transport coefficients in the

hydrodynamic limit (i.e. when f is not far from fðeqÞ) can
be obtained using the Chapman-Enskog method. Since the
explicit calculation is quite technical, we provide the
necessary details in Appendix C, while here we only
summarize the final results:

η ¼ τPEð3 − cv;EÞ
3c2v;E

ð20GE þ 3ζE − 3ζEG2
E

− 2ζ2EGE − 10ζEG2
E þ 2ζ2EG

3
EÞ; ð2:33aÞ

λ ¼ τPE

m
ð1þ cv;EÞ; ð2:33bÞ

μ ¼ τPEGE; ð2:33cÞ

where GE ≡GðζEÞ is defined in Eq. (C6) in terms of the
relativistic coldness ζE ¼ mβE.

3. Relaxation time and effective transport coefficients

According to Ref. [6], the generalization of the relax-
ation time τ to the relativistic case yields the following
expression [38]:

τ ¼ 1

nσV
; ð2:34Þ

where σ is the cross section and the mean velocity V can be
taken to represent either the average of the Möller velocity
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gϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv − v�Þ2 − ðv × v�Þ2

p
, or of the modulus of the

velocity v ¼ cp=p0̂:

hgϕi ¼
2

ζ2E½K1ðζEÞ�2
½4ζ2EKi2ð2ζEÞ þ 6ζEKi3ð2ζEÞ

þ ð3 − 4ζ2EÞKi4ð2ζEÞ − 6ζEKi5ð2ζEÞ
− 3Ki6ð2ζEÞ�; ð2:35aÞ

hvi ¼ ζE
K1ðζEÞ

�
e−ζE

1þ ζE
ζ2E

− Γð0; ζEÞ
�
; ð2:35bÞ

where KinðzÞ is the repeated integral of K0ðzÞ, defined as
[6,43,44]

KinðzÞ ¼
Z

∞

0

e−z cosh t

ðcosh tÞn dt; ð2:36Þ

while Γðν; zÞ denotes the incomplete Gamma function
[43,44]:

Γðν; zÞ ¼
Z

∞

z
dte−ttν−1: ð2:37Þ

In order to have a quantitative estimate of how much hgϕi
and hvi differ, Fig. 1 shows their dependency on the
relativistic coldness ζ, confirming the following limits:

hgϕi→
ζ≪1

4

5
; hgϕi→

ζ≫1

ffiffiffiffiffi
16

πζ

s
; ð2:38aÞ

hvi→
ζ≪1

1; hvi→
ζ≫1

ffiffiffiffiffi
8

πζ

s
: ð2:38bÞ

It is also interesting to note that the maximum value of
hgϕi is attained at ζmax ≃ 1.034, where hgϕi≃ 0.876.
Using Eq. (2.34) for the definition of τ, it is convenient to

introduce the following notation:

~η ¼ ση

m
; ~λ ¼ σλ; ~μ ¼ σμ

m
; ð2:39Þ

gg

vv

1616

88

0.01 0.1 1 10 100

0.2

0.4

0.6

0.8

1.0
Mean velocity

FIG. 1. Comparison between the mean of the Möller velocity
hgϕi (2.35a) and of the modulus of the velocity hvi (2.35b) as
functions of the relativistic coldness ζ. The limits (2.38) at small
and large ζ are confirmed: hgϕi goes to 4

5
at small ζ and is well

approximated by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
16=πζ

p
at large ζ; while hvi goes to 1 (the

speed of light) as ζ → 0, while at large ζ, it behaves like
ffiffiffiffiffiffiffiffiffiffi
8=πζ

p
.

gg

0.1 1 10 100

0.001

0.002

0.003

0.004

gg

2 4 6 8 10

0.4
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(c)

FIG. 2. Plots of (a) the effective bulk viscosity ~η≡ a2η=m;
(b) the thermal conductivity ~λ≡ a2λ; and (c) the shear viscosity
~μ≡ a2μ=m. Each plot shows two curves, corresponding to the
cases when the mean velocity in Eq. (2.34) is taken to be the
average of the Möller velocity hgϕi and the average of the particle
velocity hvi, respectively. It can be seen that, in both cases, the
coefficient of shear viscosity has a maximum located at ζhgϕi ¼
1.342 and ζhvi ¼ 1.535, having the values ~ηðζhgϕiÞ ¼ 3.292 ×

10−4 and ~ηðζhviÞ ¼ 3.554 × 10−4, respectively.
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where the “effective” transport coefficients ~η, ~λ and ~μ only
depend on ζE (since PE ¼ nm=ζE). Figure 2 shows a
comparison of Eq. (2.39) in terms of ζ when the mean
velocity is taken to be hgϕi or hvi. It can be seen that, while
~λ and ~μ decrease monotonically from infinite values at
ζ → 0 to 0 as ζ → ∞, the “effective” bulk viscosity ~η
presents a maximum value at ζ ¼ ζmax, while decreasing to
0 as ζ → 0 or ζ → ∞. The value of ζmax depends on the
definition of the mean velocity, having the value ζhgϕi ¼
1.342 and ζhvi ¼ 1.535, when the mean velocity is taken as
hgϕi and hvi, respectively. A direct comparison of the
curves for the transport coefficients corresponding to the
relaxation time constructed using hgϕi and hvi reveals
that their qualitative behavior is the same. Thus, for the
remainder of this paper, we will only discuss the case when
hvi is employed.
To conclude this section, it is worth emphasizing that the

tetrad formalism has made possible the analogy between
the computation of the transport coefficients on curved
spaces with respect to arbitrary coordinate systems and on
Minkowski space in Cartesian coordinates, as discussed in
Appendix C. Moreover, the expressions (2.33) for the
coefficients of bulk viscosity, thermal conductivity and
shear viscosity are identical to those obtained for
Minkowski space [6], in agreement with Einstein’s equiv-
alence principle. This is not surprising, since the equa-
tions (2.27) defining the transport coefficients, as well as
Eq. (C12) describing the nonequilibrium part of the stress-
energy tensor, are written in a covariant form, reducing to
the Minkowski expressions presented in Ref. [6] in the flat-
space limit. The effect of curvature is however felt through
the covariant derivatives in Eqs. (2.27), which define the
transport coefficients. It is worth writing down the expres-
sion for ∇γ̂uγ̂ appearing in Eq. (2.27a):

∇γ̂uγ̂ ¼ eμγ̂∂μuγ̂ þ Γγ̂
β̂ γ̂u

β̂ ¼ Γγ̂
0̂ γ̂; ð2:40Þ

since, in the comoving frame, uγ̂ ¼ ð1; 0; 0; 0Þ.
Finally, we note that the expressions that we obtained

for the transport coefficients depend on the form of the
constitutive equations. In this section, we defined the
transport coefficients using Eqs. (2.27), which represent
the covariant form of the standard definitions on
Minkowski space [27]. While other definitions of the
transport coefficients are possible [25,26], in this paper
we only consider the covariant formalism presented in this
section.

III. ROTATING FLOWS IN
CENTRAL CHARTS

In this section, we consider an application of the
formalism presented in Sec. II to the case of flows under-
going rigid rotation on spherically symmetric spacetimes.
In Sec. III A, the expression of the inverse temperature β

and 4-velocity uμ are found by solving the Killing
equation (2.23). Section III B defines the comoving frame
using the Lorentz boost (2.8) introduced in Sec. II A.
Section III C ends this section with a discussion of the form
of the rigidly rotating equilibrium states on arbitrary static
spherically symmetric spacetimes.

A. Four-velocity

Let us consider a central chart (i.e. static and spherically
symmetric) whose metric in spherical coordinates ðxμÞ ¼
ðt; r; θ;φÞ may be written in the general form

ds2 ¼ w2

�
−dt2 þ dr2

u2
þ r2

v2
ðdθ2 þ sin2θdφ2Þ

�
; ð3:1Þ

where u, v and w depend only on the radial coordinate r.
The nonvanishing Christoffel symbols corresponding to the
above metric are given below (the prime denotes differ-
entiation with respect to r):

Γt
tr ¼

w0

w
; Γr

tt ¼ u2
w0

w
; Γr

rr ¼
w0

w
−
u0

u
;

Γr
θθ ¼

u2r2

v2

�
w0

w
þ 1

r
−
v0

v

�
; Γθ

φφ ¼ − sin θ cos θ

Γr
φφ ¼ −

u2ρ2

v2

�
w0

w
þ 1

r
−
v0

v

�
; Γφ

θφ ¼ cot θ;

Γθ
rθ ¼ Γφ

rφ ¼ w0

w
þ 1

r
−
v0

v
: ð3:2Þ

For the remainder of this paper, we will consider rigidly
rotating flows rotating with constant angular velocity Ω
about the z axis. The only nonvanishing components of the
4-velocity of such flows are ut and uφ, which can be found
once kμ ¼ ðkt; 0; 0; kφÞT is known. Substituting ðμ; νÞ ¼
ðt; rÞ in Eq. (2.23) gives

kt ¼ C1w2ðrÞ; ð3:3Þ

where C1 is an integration constant. Furthermore, setting
ðμ; νÞ ¼ ðr;φÞ in Eq. (2.23) gives

kφ ¼ ΘðθÞ
�
wr
v

�
2

: ð3:4Þ

The function ΘðθÞ can be determined by setting
ðμ; νÞ ¼ ðθ;φÞ:

ΘðθÞ ¼ C2sin2θ; ð3:5Þ
where C2 is an integration constant. Let us consider the
norm of kμ:

k2 ≡ gμνkμkν ¼ −C2
1w

2 þ C2
2

�
wρ
v

�
2

; ð3:6Þ
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where ρ ¼ r sin θ represents the distance to the z axis. Since
k2 ¼ −β2, it is convenient to set C1 ¼ −β0 and C2 ¼ β0Ω,
such that

kμ ¼ β0ð1; 0; 0;ΩÞT; ð3:7aÞ

β≡ βðr; θÞ ¼ β0w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ρΩ
v

�
2

s
: ð3:7bÞ

The velocity field uμ can be obtained by dividing kμ (3.7a)
by β (3.7b):

uμ ¼ γ

wðrÞ ð1; 0; 0;ΩÞ
T; ð3:8Þ

where the Lorentz factor γ is defined as

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ρΩ
v

�
2

s : ð3:9Þ

B. Comoving frame

In this subsection, we follow the steps in Sec. II A in
order to define a comoving tetrad for the problem of rigidly
rotating flows described in the previous subsection. The
first step is to construct a tetrad with respect to which the
spacetime metric (3.1) is diagonal. Such a local frame is
that of the diagonal gauge, defined as

e~0 ¼
1

w
∂t; ω~0 ¼ wdt;

e~r ¼
u
w
∂r; ω~r ¼ w

u
dr;

e~θ ¼
v
rw

∂θ; ω~θ ¼ rw
v
dθ;

e ~φ ¼ v
ρw

∂φ; ω ~φ ¼ ρw
v

dφ: ð3:10Þ

With respect to the above tetrad, the flow four-velocity
(3.8) has the following components:

u ~a ¼ γ

�
1; 0; 0;

ρΩ
v

�
T
; ð3:11Þ

where we remind the reader that ρ ¼ r sin θ is the distance
to the z axis, Ω is the angular velocity of the rotation,
the Lorentz factor γ is defined in Eq. (3.9) and v≡ vðrÞ
is defined in Eq. (3.1). Substituting u ~a in Eq. (2.8),
the following expression can be found for the Lorentz
boost L ~a

α̂:

L ~a
α̂ ¼

0
BBBBBB@

γ 0 0
γρΩ
v

0 1 0 0

0 0 1 0
γρΩ
v

0 0 γ

1
CCCCCCA
: ð3:12Þ

The comoving frame vectors can now be calculated:

e0̂ ¼
γ

w
ð∂t þ Ω∂φÞ;

er̂ ¼
u
w
∂r;

eθ̂ ¼
v
rw

∂θ;

eφ̂ ¼ γ

w

�
ρΩ
v

∂t þ
v
ρ
∂φ

�
: ð3:13Þ

while the corresponding coframe one-forms are given by

ω0̂ ¼ γw

�
dt −

ρ2Ω
v2

dφ

�
;

ωr̂ ¼ w
u
dr;

ωθ̂ ¼ rw
v
dθ;

ωφ̂ ¼ ργw
v

ð−Ωdtþ dφÞ: ð3:14Þ

The expression for Lα̂
~a is useful in obtaining the above

coframe one-forms:

Lα̂
~a ¼

0
BBBBBB@

γ 0 0 −
γρΩ
v

0 1 0 0

0 0 1 0

−
γρΩ
v

0 0 γ

1
CCCCCCA
: ð3:15Þ

It is now easy to check that the spatial components of the
flow four-velocity (3.8) vanish with respect to the comov-
ing frame:

uα̂ ¼ ð1; 0; 0; 0ÞT: ð3:16Þ

Before ending this section, it is worth giving the metric
(3.1) with respect to corotating coordinates, defined as
t ¼ tstatic and φ ¼ φstatic − Ωtstatic:

ds2 ¼ w2

�
−γ−2dt2 þ 2ρ2Ω

v2
dtdφþ dr2

u2
þ r2

v2
dΩ2

�
:

ð3:17Þ

Thus, the corotating observer sees g00 → 0 as the Killing
horizon (i.e. where kμ ¼ uβμ becomes null) is approached:
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−g00 ¼ w2

�
1 −

ρ2Ω2

v2

�
¼ β2

β20
¼ 0: ð3:18Þ

It can be seen that, on these Killing horizons, the temper-
ature β−1 tends to infinity, in agreement with Tolman’s law
[45,46]. In Sec. IV, we will discuss the structure of these
horizons for the particular cases of maximally symmetric
spacetimes and of the Schwarzschild and Reissner-
Nordström (charged) black holes.

C. Equilibrium states

According to the first of Eqs. (2.23), the chemical
potential for a state in global thermodynamic equilibrium
is constant. Setting, without loss of generality, the chemical
potential to 0, the Maxwell-Jüttner (M-J) distribution
function (2.22) can be written with respect to the tetrad
field feα̂g (when pμuμ ¼ −p0̂) as follows:

fðeqÞ ≡ fðeqÞðZ; βÞ ¼ Z
ð2πÞ3 e

−βp0̂

; ð3:19Þ

giving rise to the following macroscopic quantities:

Nα̂
eq ¼

Z
d3p

p0̂
fðeqÞpα̂ ¼ ðn; 0; 0; 0ÞT; ð3:20aÞ

T α̂ β̂
eq ¼

Z
d3p

p0̂
fðeqÞpα̂pβ̂ ¼ diagðE;P; P; PÞ: ð3:20bÞ

The integrals in the above equations can be performed
analytically in terms of modified Bessel functions
[6,17,31]:

EM−J ¼
m2Z
2π2β2

½3K2ðmβÞ þmβK1ðmβÞ�; ð3:21aÞ

PM−J ¼
m2Z
2π2β2

K2ðmβÞ; ð3:21bÞ

while n ¼ βP. While in this paper we only considered
particles obeying Maxwell-Jüttner statistics, the above
results can readily be extended to Bose-Einstein and
Fermi-Dirac statistics, as described in Refs. [17,31].
Since the modified Bessel functions in the expressions

of E and P in Eq. (3.21) decrease monotonically as their
argument increases, it can be seen that these quantities
also decrease monotonically with the increase of m or β.
The plots in Fig. 3 show the dependence of the energy
density E (3.21a) and equation of state w ¼ P=E with
respect to the temperature β−1 for various values of the
mass, confirming the monotonic behavior of these func-
tions as the temperature is increased.

IV. KILLING HORIZONS FOR RIGIDLY
ROTATING STATES

In this section, we consider the properties of rigidly
rotating states in global thermodynamic equilibrium.
According to Figs. 2 and 3, ~λ, ~μ, E and P (as well as
n ¼ βP) are monotonic functions of β, such that their
properties can be inferred directly from the behavior of β.
Thus, in this section, only the properties of β and ~η [which
has the nontrivial dependence on β depicted in Fig. 2(a)]
will be presented.
The analysis of β will be focused on the structure of the

Killing horizons seen by corotating observers, as described
by Eq. (3.18). Furthermore, the regimes where ~η is
monotonic, or where it exhibits regions of local extrema
will be discussed. For simplicity, in this section, we only
consider the relaxation time (2.34) constructed using hvi
(2.35b), since the results obtained using hgϕi are qualita-
tively similar.
According to Eq. (3.18), the temperature measured by

corotating observers diverges on the Killing horizons asso-
ciated with the Killing vector in Eq. (3.7a). In the case when
themetric functionsw andv, defined inEq. (3.1), are nonzero
and well defined everywhere in the spacetime, such surfaces
represent speed of light surfaces (i.e. where corotating
observers travel at the speed of light):

1 −
�
ρΩ
v

�
2

¼ 0: ð4:1Þ

The second class refers to horizons which occur in spaces
where w and v can vanish for some choice of the spacetime
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FIG. 3. The dependence of the energy density E (top) and
equation of state w ¼ P=E (bottom) on the inverse temperature
β−1, for various values of the mass m. The expressions for E and
P can be found in Eqs. (3.21a) and (3.21b), respectively.
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coordinates. In the absence of rotation, they coincidewith the
event horizons for the cases of black holes or with the
cosmological horizons in the case of the de Sitter expanding
universe.
In Sec. IVA, the maximally symmetric spacetimes (e.g.

the Minkowski, de Sitter and anti-de Sitter spacetimes) will
be discussed. Sections IV B and IV C will be dedicated to
the discussion of the properties of the Schwarzschild and
Reissner-Nordström spacetimes, respectively.

A. Maximally symmetric spaces

The maximally symmetric spaces which make the
subject of the present subsection represent vacuum sol-
utions of the Einstein equations in the presence of a
cosmological constant equal to

Λ ¼ 3ϵω2; ð4:2Þ

where ϵ ¼ 0, 1 and −1 for the Minkowski, de Sitter and
anti-de Sitter spacetimes, respectively. The notation ω
refers to the Hubble constant for de Sitter space and to
the inverse radius of curvature for anti-de Sitter space. For
completeness, we also give the corresponding Ricci scalar:

R ¼ 12ϵω2: ð4:3Þ

The line element can be written as [47]

ds2 ¼ −ð1 − ϵω2r2Þdt2 þ dr2

1 − ϵω2r2
þ r2dΩ2; ð4:4Þ

where the radial coordinate r has the range ½0;∞Þ on AdS
and r ∈ ½0;ω−1Þ on dS. On dS spacetime, the surface r ¼
ω−1 represents the cosmological horizon. Equation (4.4)
can be put in the form of the generic line element in
Eq. (3.1) by making the following identifications:

w ¼ v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵω2r2

p
; u ¼ w2; ð4:5Þ

Using Eq. (3.7b), the following expression can be obtained
for the inverse temperature β:

β ¼ β0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðϵω2 þ Ω2sin2θÞr2

q
; ð4:6Þ

where β0 represents the inverse temperature at the origin
r ¼ 0. SettingΩ ¼ 0 in Eq. (4.6) shows that, in the absence
of rotations, the local temperature β−1 remains constant
(Minkowski case), decreases to 0 as r → ∞ (AdS case) or
increases to infinity as the cosmological horizon r ¼ ω−1 is
approached (dS case).
When Ω ≠ 0, the rotation induces an SOL where β (4.6)

vanishes, such that

1 − ϵ~r2 − ~ρ2 ~Ω2 ¼ 0; ð4:7Þ

where the notation

~r ¼ ωr; ~ρ ¼ ωr sin θ; ~Ω ¼ Ω
ω

ð4:8Þ

was introduced for convenience. In the case of the
Minkowski spacetime (ϵ ¼ 0), the SOL is located where

ρΩ ¼ 1: ð4:9Þ
Rearranging Eq. (4.7) to

~ρ2 ~Ω2 ¼ 1 − ϵ~r2 ð4:10Þ

shows that the repulsive nature of a positive cosmological
constant (ϵ ¼ 1), occurring in the case of the dS space,
induces a further centrifugal effect, pulling the SOL
inwards with increasing r. In the AdS case (ϵ ¼ −1), the
attractive nature of a negative cosmological constant Λ ¼
−3ω2 can play the role of a centripetal force, thus
diminishing the effect of rotation.
The position ~rSOL of the SOL can be found from

Eq. (4.7):

~rSOL ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Ω2sin2θ þ ϵ

p : ð4:11Þ

On dS, the SOL always forms inside the cosmological
horizon, being located at

~rSOL ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Ω2sin2θ þ 1

p ðde SitterÞ: ð4:12Þ

It can be seen that the SOL always touches the cosmo-
logical horizon on the rotation axis (i.e. sin θ ¼ 0), where
~rSOL ¼ 1. This behavior is illustrated in Fig. 4(a).
The situation on AdS is quite different: as shown in

Ref. [48], compact manifolds do not exhibit superluminal
velocities unless the rotation parameter is sufficiently large.
In this case, no SOL forms if ~Ω < 1 and the temperature
β−1 remains finite throughout the spacetime. For ~Ω ≥ 1, the
location of the SOL is given by

~rSOL ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Ω2sin2θ − 1

p ðanti-de SitterÞ; ð4:13Þ

where θ is constrained such that sin θ ≥ ~Ω−1, as shown in
Fig. 4(b). Furthermore, Eq. (4.7) implies that for a fixed
value of ~Ω, the value of β (and indeed of all quantities
derived from it, such as n, E, P, ~η, ~μ and ~λ) is constant on
the cones having their apex at the origin, for which

sin θ ¼ ~Ω−1: ð4:14Þ

In particular, setting ~Ω ¼ 1 implies that β is constant
throughout the equatorial plane.
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A more geometric assessment of the location of the SOL
is the proper radial distance ~s ¼ ωs from the origin to the
SOL, which can be written as follows:

~s¼ω

Z
~rSOL

0

d~r
ffiffiffiffiffiffi
grr

p

¼

8>><
>>:
arcsin½ð ~Ω2sin2θþ1Þ−1=2� ðdSÞ;
~Ω−1 ðMinkowskiÞ;
arcsinh½ð ~Ω2sin2θ−1Þ−1=2� ðAdSÞ:

ð4:15Þ

11

00

11

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0
sSOL

2

FIG. 5. The proper radial distance ~sSOL (4.15) between the
origin and the SOL in the equatorial plane (sin θ ¼ 1) with
respect to ~Ω ¼ Ω=ω. The bottom, middle and top lines corre-
spond to the cases ϵ ¼ 1 (dS), ϵ ¼ 0 (Minkowski) and ϵ ¼ −1
(AdS). In the case of Minkowski spacetime, we adopt the
convention ~s ¼ s ¼ Ω−1 and ~Ω ¼ Ω (i.e. the parameter ω is
immaterial in this case).
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FIG. 4. The SOL structure of (a) dS and (b) AdS. The vertical
axis represents the coordinate ~z≡ ωr cos θ along the rotation
axis, while the horizontal axis represents the distance ~ρ≡
ωr sin θ from the rotation axis. In the dS case, the rightmost
line corresponding to ~Ω ¼ 0 represents the cosmological horizon,
located at ~r ¼ π=2. On AdS, no SOL forms when ~Ω < 1. The
Minkowski case, when ρ ¼ ~Ω−1, is not shown here.
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FIG. 6. Dependence of the effective coefficient of bulk vis-
cosity ~η (2.33a) divided by its maximum value ~ηmax on ~r on (a) dS
and (b) AdS spacetimes in the absence of rotation ( ~Ω ¼ 0). Each
curve corresponds to a different value of ζ0 ¼ mβ0, where β0 ≡
βðr ¼ 0Þ is the inverse temperature at the coordinate origin. The
local maxima exhibited by ~η (highlighted by circular points)
appear only when ζ0 is large (dS) or small (adS), its locations
being given by Eqs. (4.16) and (4.17) for the dS and adS spaces,
respectively.
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Figure 5 shows that, for fixed ~Ω, the distance from the SOL
to the rotation axis in the equatorial plane is larger in the
AdS and smaller in the dS cases with respect to the same
distance in Minkowski space.
The plots in Fig. 6 show the dependence of ~η on ~r for

various values of the relativistic coldness ζ0 ¼
mβ0 ≡mβðr ¼ 0Þ measured at the origin when ~Ω ¼ 0
for the cases of (a) the dS and (b) the adS spaces. On dS
space, β decreases monotonically from the maximum value
β0 at the origin towards 0 on the cosmological horizon
(where ~r ¼ 1). For all ζ ≤ ζmax ≃ 1.53508, Fig. 2(a)
implies that ~η also decreases monotonically, since in this
regime, ~η shows no local extrema. However, for all
ζ0 > ζmax, ~η increases up to the maximum value
~ηmax ≃ 3.554 × 10−4, attained when

~rmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ζmax

ζ0

�
2

s
; ð4:16Þ

as can be seen in Fig. 6(a). On adS space, ζ increases
monotonically from ζ0 at the origin to infinity as ~r → ∞.
Figure 6(b) shows that ~η also decreases monotonically to 0
as ~r → ∞ for all ζ0 ≥ ζmax, while in the case when
ζ0 < ζmax, ~η attains the maximum value ~ηmax when

~rmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ζmax

ζ0

�
2

− 1

s
: ð4:17Þ

At nonvanishing values of ~Ω, ~η attains the maximum
value ~ηmax at

~rmax ¼
�
1 − ðζmax=ζ0Þ2

~Ω2 þ ϵ

�
1=2

: ð4:18Þ

For the dS space, Fig. 7(a) shows that increasing the value
of ~Ω decreases the distance to the horizon, while the
location of the maximum also decreases according to

~rmax⌋dS ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ~Ω2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ζmax

ζ0

�
2

s
: ð4:19Þ

Figure 7(b) shows that, on Minkowski space, ~η is constant
throughout the spacetime in the absence of rotation, while
for nonvanishing values of ~Ω, it attains a maximum for all
ζ0 ≥ ζmax located at

~rmax⌋Mink ¼
1

~Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ζmax

ζ0

�
2

s
: ð4:20Þ
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FIG. 7. Dependence of the effective coefficient of bulk viscosity ~η (2.33a) in the equatorial plane (θ ¼ π=2) divided by its maximum
value ~ηmax on (a) dS, (b) Minkowski and (c), (d) AdS spacetimes. Each curve corresponds to a different value of ~Ω, while the parameter
ζ0 ¼ 4 for (a)–(c) and ζ0 ¼ 1 for (d). It should be noted that when ~Ω ¼ 1, ~η is constant in the equatorial plane of AdS space, cf. (4.14).
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On AdS space, three regimes can be distinguished. When
~Ω > 1, an SOL forms and the characteristics of ~η are
similar to the case when dS space is considered. When
~Ω ¼ 1, ~η is constant throughout the equatorial plane, as
implied by Eq. (4.14). These two regimes can be clearly
seen in Fig. 7(c). Finally, when ~Ω < 1, no SOL forms and ~η
only attains a maximum when ζ0 < ζmax, as shown in
Fig. 7(d). The coordinate of this maximum increases as ~Ω
increases.

B. Schwarzschild black hole spacetime

The line element of the Schwarzschild spacetime is
given by

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ dr2

1 − 2M
r

þ r2dΩ2; ð4:21Þ

describing the gravitational field of a black hole of massM.
Comparing Eq. (4.21) with Eq. (3.1) gives the following
expressions for the metric functions:

w ¼ v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r
; u ¼ 1 −

2M
r

; ð4:22Þ

such that the inverse temperature β (3.7b) becomes

β ¼ β0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

− ρ2Ω2

r
; ð4:23Þ

where β0 is the inverse temperature at infinity on the
rotation axis (i.e. z ¼ r cos θ → �∞ and ρ ¼ 0). In the
absence of rotation, the temperature β−1 increases from β0
at infinity to an infinite value as the black hole horizon is
approached (i.e. r → M). To better investigate the topology
of the horizon structure whenΩ > 0, it is convenient to cast
the equation β2 ¼ 0 as

β2

β20
¼ 1 −

1

~r
− ~ρ2 ~Ω2 ¼ 0; ð4:24Þ

where the following notations were introduced:

~r ¼ r
2M

; ~Ω ¼ 2MΩ: ð4:25Þ

Figure 8(a) shows the dependence of β2=β20 (4.24) on ~r in
the equatorial plane sin θ ¼ 1 at various values of ~Ω (the rest
of the plots in this figure refer to the case of Reissner-
Nordström black holes, which are discussed in the following
subsection). In the regions where β2 > 0, the local temper-
ature β−1 is finite and the hydrodynamic moments (3.21) are
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FIG. 8. The dependence of β2=β20 on ~r ¼ r=2M in the equatorial plane sin θ ¼ 1 for (a)-(c) ~Q fixed at (a) 0 (Schwarzschild space),
(b) 0.5 and (c) 1.0 (extremal Reissner-Nordström space), for various values of ~Ω ¼ 2MΩ. In (d), ~Ω is fixed at 0.4 and the charge is varied
from ~Q ¼ 0 to ~Q ¼ 1.0. The regions where β2 > 0 represent “allowed” regions (where the temperature is finite and well defined), while
the points where β ¼ 0 represent horizons.
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well defined. At small enough values of ~Ω, the two
intersections of the graph of β2=β20 with the horizontal axis
correspond to the locations of the black hole horizon and of
the SOL.As ~Ω increases, β2 remains negative for all values of
~r, showing that the SOL and the black hole event horizon
join, forming an exclusion region which incorporates the
whole equatorial plane. It is interesting to note that the black
hole horizon moves outwards as ~Ω is increased, while the
SOL moves inwards, as expected.
The horizon structure of the Schwarzschild spacetime is

represented in Fig. 9(a) for various values of ~Ω (as before,
the remaining plots refer to the case of charged black holes,

which are discussed in Sec. IV C). It can be seen that
increasing ~Ω pushes the black hole horizon outwards, while
the SOL is pulled inwards. At large enough ~Ω, these two
horizons merge, thus excluding the entire equatorial plane
from the region where β2 > 0.
In the absence of rotation, ζ ¼ mβ increases monoton-

ically from 0 on the event horizon up to ζ0 as r → ∞. In this
case, the dependence of ~η on r is nonmonotonic only when
ζ0 > ζmax, as shown in Fig. 10(a). The points of maxima
~rmax occurring outside the event horizon are located at

~rmax ¼ ½1 − ðζmax=ζ0Þ2�−1; ð4:26Þ
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FIG. 9. The SOL structure of the Reissner-Nordström spacetime for four values of ~Q ¼ Q=M. The vertical axis represents the
coordinate ~z≡ z=2M along the rotation axis, while the horizontal axis represents the distance ~ρ ¼ r sin θ=2M from the rotation axis. The
contours represent the surfaces where β ¼ 0, i.e. either the black hole horizon (only the outer horizons are shown) or the rotation horizon
(i.e. where the SOL induced by the rotation forms). The case (a) shows the horizon structure for the Schwarzschild space (Q ¼ 0), while
the case (d) represents an extremal Reissner-Nordström black hole (Q ¼ M).
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valid only for ζ0 > ζmax. When the rotation is switched on,
the location of the points of maxima is given by the
following cubic equation:

1 −
1

~r
− ~ρ2 ~Ω2 ¼

�
ζmax

ζ0

�
2

: ð4:27Þ

Figures 10(b) and 10(c) suggest that ~η can develop two
points of maxima with a point of local minimum between

the event and rotation horizons. For the cases shown in
these plots, it can be seen that the regime where ~η presents a
local minimum can be obtained either by increasing ~Ω at

fixed values of ζ0, or by increasing ζ0 at fixed values of ~Ω.
The properties of ~η in the case of the charged black hole are
presented in Fig. 11, which is discussed in the following
section.

C. Reissner-Nordström metric

Let us now consider the case of a black hole with massM
and charge Q, for which the metric functions in Eq. (4.22)
become
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FIG. 10. Dependence of the ratio ~η=~ηmax (2.33a) of the effective
coefficient of bulk viscosity divided by its maximum value,
evaluated in the equatorial plane (θ ¼ π=2), with respect to the
distance from the rotation axis for the Schwarzschild space-time
( ~Q ¼ 0) in the following cases: (a) ~Ω ¼ 0 for various values of
ζ0; (b) ζ0 ¼ 7 for various values of ~Ω; (c) ~Ω ¼ 0.36 for various
values of ζ0.
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FIG. 11. Same as Fig. 10 for the Reissner-Nordström
black hole. (a) ð ~Ω; ζ0Þ ¼ ð0; 1.1Þ; (b) ð ~Ω; ζ0Þ ¼ ð0; 4Þ;
(c) ð ~Ω; ζ0Þ ¼ ð0.36; 10Þ, for various values of ~Q ¼ Q=M.
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w¼ v¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2M
r

þQ2

r2

r
; u¼ 1−

2M
r

þQ2

r2
: ð4:28Þ

Hence, the inverse temperature β picks up a term which
depends on the charge Q, such that Eq. (4.24) becomes

β2

β20
¼ 1 −

1

~r
þ

~Q2

4~r2
− ~ρ2 ~Ω2; ð4:29Þ

where the reduced charge is defined as ~Q ¼ Q
M. If ~Q ≠ 0,

the event horizon is split into an inner and an outer

horizon, which are located at ~r− ¼ ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~Q2

p
Þ=2

and rþ ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~Q2

p
Þ=2, respectively. At Q ¼ 0, the

inner horizon collapses to the black hole center, while the
outer horizon forms at ~r ¼ 1. As Q is increased, the radius
of the inner horizon grows, while the outer horizon is pulled
in, up to the extremal case ~Q ¼ 1, when the two horizons
touch at ~r− ¼ ~rþ ¼ 0.5. While Eq. (4.29) admits up to four
roots where β2 vanishes, some of these solutions may be
imaginary, negative or located inside the outer horizon, in
which case they will be discarded. In the following, only
the roots which correspond to the rotation and the outer
horizons will be discussed.
As expected, Figs. 8(b), 8(c) and especially 8(d) confirm

thatQ acts contrary toM, since as ~Q is increased at fixed ~Ω,
the outer horizon moves inwards. Furthermore, the SOL is
pushed outwards as ~Q is increased. It is interesting to note
that, in the extremal Reissner-Nordström case, an equilib-
rium distribution of rotating particles sees an event horizon
near the black hole which dresses the singularity at ~r ¼ 0.
Similar conclusions can be drawn by inspecting the horizon
structure presented in Fig. 9.
To assess the effect of ~Q on ~η, the equivalent of

Eq. (4.26) when the charge is not zero can be investigated:

~rmax ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~Q2½1 − ðζmax=ζ0Þ2�

q
2½1 − ðζmax=ζ0Þ2�

: ð4:30Þ

As in the case of the Schwarzshild black hole, the above
equation also implies that no points of maxima exist unless
ζ0 > ζmax. When ζ0 < ζmax and no maximum of ~η occurs,
Fig. 11(a) shows that ~η increases as ~Q is increased.
Furthermore, Fig. 11(b) shows that increasing ~Q decreases
~rmax when ζ0 > ζmax. In the rotating case, Eq. (4.27)
becomes quartic in ~r:

1 −
1

~r
þ

~Q2

4~r2
− ~ρ2 ~Ω2 ¼

�
ζmax

ζ0

�
2

: ð4:31Þ

Increasing ~Q for large enough (fixed) ζ0 and at fixed ~Ω
pulls the first maximum towards the rotation axis, while
pushing the second maximum towards the SOL, as can be
seen from Fig. 11(c).

V. CONCLUSION

In this paper, we employed the tetrad formalism to study
the properties of equilibrium states of gases undergoing
rigid rotation on spherically symmetric spacetimes. By
employing the Boltzmann equation in conservative form
[23], we obtained covariant expressions for the transport
coefficients when the Marle model for the collision
operator is employed. Our results coincide with the
expressions on flat spacetime, in agreement with the
equivalence principle. In order to study rigidly rotating
thermal states, we employed a comoving tetrad field, which
we obtained by performing a Lorentz boost on a fixed tetrad
which diagonalizes the background spacetime metric.
Using the tetrad formalism, we obtained expressions for
the particle flow four-vector and stress-energy tensor
corresponding to such states. Furthermore, we discussed
the formation of speed of light surfaces and their topology
in the cases of maximally symmetric spacetimes
(Minkowski, anti-de Sitter, and de Sitter spaces) and
spherically symmetric black hole spacetimes (i.e. the
Schwarzschild and Reissner-Nordström spacetimes).
In constructing the transport coefficients, the Marle

model was employed, where the relaxation time was
chosen to be inversely proportional to the average of the
Möller velocity or the modulus of the velocity. Our analysis
showed no qualitative differences between the results
obtained using the two aforementioned definitions for
the mean velocity. We found that the particle number
density, energy density, equilibrium pressure, coefficient of
thermal conductivity and coefficient of shear viscosity
exhibit a monotonic dependence on the inverse temperature
β, such that their properties can be inferred from those of β.
However, since the coefficient of bulk viscosity η attains a
maximum value at a finite value of β, while decreasing to 0
as β approaches either 0 or infinity, its properties were also
studied in detail. We note here that, according to Ref. [49],
the Chapman-Enskog analysis indicates that the transport
coefficients obtained when the collision term is approxi-
mated using the Anderson-Witting model exhibit features
which are qualitatively similar to those corresponding to
the Marle model. Indeed, the coefficients of thermal
conductivity and shear viscosity depend monotonically
on β, while the coefficient of bulk viscosity can be
approximately related to that obtained in the Marle model
by means of a suitable rescaling.
For the case of maximally symmetric spacetimes, we

showed that the speed-of-light surface forms closer to the
rotation axis on de Sitter space compared to Minkowski
space, while on anti-de Sitter space, it forms farther away.
Furthermore, no SOL forms on adS if the rotation param-
eter Ω is smaller than the inverse radius of curvature ω. Our
analysis also revealed that, on AdS, the inverse temperature
β and all quantities derived from it (i.e. the stress-energy
tensor and the transport coefficients) are constant on cones
defined by Ω sin θ ¼ ω. In particular, β is constant
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throughout the equatorial plane when Ω ¼ ω. We found
that the coefficient of bulk viscosity can display a non-
monotonic behavior for certain values of the relativistic
coldness ζ0 measured at the origin of the spacetime.
In the Schwarzschild case, the SOL plays the role of a

“rotational horizon,” complementing (and indeed enhanc-
ing) the event horizon of the black hole. As the rotation
parameter Ω is increased, the distance between the rota-
tional horizon and the rotation axis decreases, while the
distance between the event horizon and the rotation axis
increases. When the rotation parameter is nonzero, the
coefficient of bulk viscosity η can exhibit two points of
maxima and one local minimum between the event horizon
and the speed-of-light surface.
Similar conclusions were obtained in the case of

Reissner-Nordström (charged) black holes. Furthermore,
it was shown that increasing the value of the black hole
charge at fixed rotation parameter has the inverse effect of
decreasing the radius of the event horizon, while pushing
the rotational horizon away. In the case of the extremal
Reissner-Nordström black hole, the tendency of rotation to
close the distance between the event and rotation horizons
induces an event horizon which dresses the singularity at
the origin. The points of maxima observed in the
Schwarzschild case are modified in the same spirit as
the Killing horizons, namely the maximum closer to the
event horizon is pulled towards the rotation axis, while the
maximum farther away is pushed towards the SOL.
We would like to highlight the fact that the results

presented in this paper represent a solid starting point for a
systematic comparison between kinetic theory results and
the properties of rigidly rotating thermal states obtained
using quantum field theory on curved spaces. We wish to
perform such comparisons for, e.g., rigidly rotating states
on the Minkowski spacetime, where analytic results are
available from the quantum-field theory approach [14,15],
as well as from the kinetic theory approach [17].
Furthermore, similar comparisons can be performed for
the case of the anti-de Sitter space, where analytic results
obtained using quantum field theory are already avail-
able [50]. Another possible extension is in the direction of
the Einstein static universe (not covered in the present
work), where quantum field theory results for nonrotating
thermal states of the Klein-Gordon field were obtained in
Ref. [51]. Finally, this work can be extended to the case of
rigidly rotating thermal states on axisymmetric space-
times, such as the Kerr black hole spacetime.
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APPENDIX A: BOLTZMANN EQUATION WITH
RESPECT TO NONHOLONOMIC

TETRAD FIELDS

In this section of the appendix, the transition from the
Boltzmann equation (2.10) with respect to arbitrary coor-
dinates fxμg to Eq. (2.13), where nonholonomic tetrad
fields are employed, is presented. Following Ref. [6], it is
possible to write the exterior derivative of f as follows:

df ¼
� ∂f
∂xμ

�
pi
dxμ þ ∂f

∂pi dp
i

¼
� ∂f
∂xμ

�
p{̂
dxμ þ ∂f

∂p{̂ dp
{̂; ðA1Þ

where on the first line, ∂f=∂xμ is taken while considering
pi to be constant. On the second line, the components p{̂ ¼
pμω{̂

μ with respect to the tetrad one-forms fωα̂g are kept
constant. In order to derive the Boltzmann equation when
the components of the momentum 4-vector are expressed
with respect to nonholonomic tetrad fields, the derivatives
on the first line of Eq. (A1) must be expressed with respect
to derivatives on the second line.
Using Eq. (2.11), the following expression can be

obtained for the exterior derivative of p0:

dp0 ¼ −
1

2
gμν;λ

pμpν

p0

dxλ −
pi

p0

dpi; ðA2Þ

such that the exterior derivative of p{̂ can be written as

dp{̂ ¼
�∂ω{̂

ν

∂xμ p
ν −

1

2
ω{̂
0gαβ;μ

pαpβ

p0

�
dxμ

þ
�
ω{̂
j − ω{̂

0

pj

p0

�
dpj: ðA3Þ

Substituting the above result in Eq. (A1) yields the
following identifications:

� ∂f
∂xμ

�
pi
¼

� ∂f
∂xμ

�
p{̂
þ ∂f
∂p{̂

�
pν ω{̂

ν

∂xμ − ω{̂
0gαβ;μ

pαpβ

2p0

�
;

∂f
∂pi ¼

�
ω|̂
i − ω|̂

0

pi

p0

� ∂f
∂p|̂ : ðA4Þ

The Boltzmann equation can now be written as

pμ

� ∂f
∂xμ

�
p{̂
−

∂f
∂p{̂

�
−pμpν ∂ω{̂

ν

∂xμ þ Γj
μνpμpνω{̂

j

−ω{̂
0

�
Γj

μν
pμpνpi

p0

− gαβ;μ
pαpβpμ

2p0

��
¼ C½f�:

ðA5Þ
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The term involving the derivative of the metric gαβ;μ can be
written in terms of the Christoffel symbols (2.12):

gαβ;μ
pαpβpμ

2p0

¼ Γαβμ
pαpβpμ

p0

; ðA6Þ

while the two terms inside the square bracket on the first
line of Eq. (A5) can be related to the covariant derivative
of ω|̂

ν:

− pμpν ∂ω{̂
ν

∂xμ þ Γj
μνpμpνω{̂

j

¼ −pμpν∇μω
{̂
ν − Γ0

μνpμpνω{̂
0; ðA7Þ

which can be written in terms of the connection
coefficients (2.14):

∇μω
|̂
ν ¼ ωβ̂

μ∇β̂ω
|̂
ν ¼ −Γ|̂

α̂ β̂ω
α̂
νω

β̂
μ: ðA8Þ

Inserting Eqs. (A6), (A7) and (A8) into Eq. (A5) gives the
final form for the Boltzmann equation:

pα̂eμα̂

� ∂f
∂xμ

�
p{̂
− Γ{̂

α̂ β̂p
α̂pβ̂ ∂f

∂p{̂ ¼ C½f�: ðA9Þ

APPENDIX B: CONSERVATIVE FORM OF THE
BOLTZMANN EQUATION WRITTEN WITH

RESPECT TO NONHOLONOMIC
TETRAD FIELDS

In this section of the appendix, we present a derivation of
the conservative form (2.16) of the Boltzmann equa-
tion (2.13), written with respect to nonholonomic tetrad
fields. Even though the relation between these equations
was already found in Ref. [23], we present this calculation
here for completeness.
The term involving the spatial derivatives of f in

Eq. (2.13) can be put in conservative form as follows:

pα̂eμα̂
∂f
∂xμ ¼

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
pα̂eμα̂fÞ − Γβ̂

α̂ β̂p
α̂f; ðB1Þ

where the connection coefficient appears from taking the
covariant derivative of eμα̂:

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
eμα̂Þ ¼ ∇μe

μ
α̂ ¼ ωβ̂

μΓρ̂
α̂ β̂e

μ
ρ̂ ¼ Γβ̂

α̂ β̂: ðB2Þ

The second term in Eq. (2.13) can be written as

Γ{̂
α̂ β̂p

α̂pβ̂ ∂f
∂p{̂ ¼ p0̂

∂
∂p{̂

�
Γ{̂

α̂ β̂

pα̂pβ̂

p0̂
f

�

− fp0̂Γ{̂
α̂ β̂

∂
∂p{̂

�
pα̂pβ̂

p0̂

�
: ðB3Þ

The term on the second line in Eq. (B3) can be computed as
follows. For the case when the derivative acts on pα̂, the
following expression is obtained:

Γ{̂
α̂ β̂

∂pα̂

∂p{̂ ¼ Γ{̂
0̂ β̂

p{̂

p0̂
þ Γ|̂

|̂ β̂ ðB4aÞ

¼ Γα̂
0̂ β̂

pα̂

p0̂
ðB4bÞ

¼ Γ0̂
α̂ β̂

pα̂

p0̂
; ðB4cÞ

where the term Γ|̂
|̂ β̂ in Eq. (B4a) vanishes due to the

antisymmetry of the connection coefficients in the first two
indices. Furthermore, the term Γ{̂

0̂ β̂p{̂ ¼ Γα̂
0̂ β̂pα̂, since

Γ0̂
0̂ β̂ ¼ 0. Finally, Eq. (B4c) can be established by noting

that Γα̂
0̂ β̂pα̂ ¼ Γα̂ 0̂ β̂p

α̂ ¼ −Γ0̂ α̂ β̂p
α̂ ¼ Γ0̂

α̂ β̂p
α̂.

Next, the term involving the derivative of pβ̂ can be
expressed as

Γ{̂
α̂ β̂

∂pβ̂

∂p{̂ ¼ Γ{̂
α̂ 0̂

p{̂

p0̂
þ Γ{̂

α̂ {̂ ðB5aÞ

¼ Γβ̂ α̂ 0̂

pβ̂

p0̂
þ Γβ̂

α̂ β̂; ðB5bÞ

where the relation Γ{̂
α̂ 0̂p{̂ ¼ Γβ̂ α̂ 0̂p

β̂ þ Γ0̂
α̂ 0̂p

0̂ was
used.
Finally, the term involving the derivative of p0̂ can be

computed as follows:

Γ{̂
α̂ β̂

∂
∂p{̂

�
1

p0̂

�
¼ −Γ{̂

α̂ β̂

p{̂

ðp0̂Þ3
ðB6aÞ

¼ −Γγ̂ α̂ β̂

pγ̂

ðp0̂Þ3
− Γ0̂

α̂ β̂

1

ðp0̂Þ2
: ðB6bÞ

Inserting Eqs. (B4c), (B5b) and (B6b) into Eq. (B3)
yields:

Γ{̂
α̂ β̂p

α̂pβ̂ ∂f
∂p{̂ ¼ p0̂

∂
∂p{̂

�
Γ{̂

α̂ β̂

pα̂pβ̂

p0̂
f

�
þ Γβ̂

α̂ β̂p
α̂f:

ðB7Þ

The final result is obtained by substituting Eqs. (B1)
and (B7) into Eq. (A9):

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
pα̂eμα̂fÞ − p0̂

∂
∂p{̂

�
Γ{̂

α̂ β̂

pα̂pβ̂

p0̂
f
�

¼ C½f�:

ðB8Þ
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APPENDIX C: TRANSPORT COEFFICIENTS IN
THE MARLE MODEL OBTAINED VIA DE

CHAPMAN-ENSKOG EXPANSION

The simplified version of the Chapman-Enskog
procedure is performed in three steps, which are described
below.

1. First step

In the first step, f is considered to be close to fðeqÞ, in
which case it can be written as

f ¼ fðeqÞð1þ ϕÞ; ðC1Þ

where ϕ is regarded as a small number. Similarly, the
relaxation time τ is also considered to be small, such that
the leading contribution on the left-hand side of Eq. (2.29)
is given by fðeqÞ:

∇μpα̂eμα̂f
ðeqÞ − p0̂

∂
∂p{̂

�
Γ{̂

α̂ β̂

pα̂pβ̂

p0̂
fðeqÞ

�
¼ −

m
τ
fðeqÞϕ:

ðC2Þ

Starting from Eq. (2.22), fðeqÞ can be written in terms of
the “equilibrium” particle number density nE, macroscopic
velocity uα̂E and inverse temperature βE as follows [6]:

fðeqÞ ¼ nEβE
4πm2K2ðmβEÞ

exp ðβEpα̂uα̂EÞ: ðC3Þ

According to Eqs. (2.31), nE ¼ n and uα̂E ¼ uα̂, where n
and uα̂ are defined by Nα̂ (2.24a), which is obtained by
integrating f. In order to obtain the definition of βE, it is
instructive to consider the expression of the equilibrium
SET, which can be obtained by substituting fðeqÞ given by
Eq. (C3) into Eq. (2.18), with n ¼ 1:

T α̂ β̂
E ¼ EEuα̂uβ̂ þ PEΔα̂ β̂; ðC4Þ

where Δα̂ β̂ ¼ ηα̂ β̂ þ uα̂uβ̂ is the projector corresponding to
the hypersurface orthogonal to uα̂, while the equilibrium
energy density EE and pressure PE are given by

EE ¼ nmGðζEÞ − PE; ðC5aÞ

PE ¼ n
βE

: ðC5bÞ

In the above, ζE ¼ mβE is the relativistic coldness [6,27],
while GðζEÞ is defined in terms of modified Bessel
functions of the third kind Kn [6]:

GðζEÞ ¼
K3ðζEÞ
K2ðζEÞ

: ðC6Þ

Thus, the inverse temperature βE uniquely determines the
energy density EE and hydrostatic pressure P through
Eqs. (C5). Furthermore, substituting Eqs. (C5) into
Eq. (2.32) allows βE to be written in terms of quantities
derived from f:

nm
K1ðζEÞ
K2ðζEÞ

¼ E − 3ðPþ ωÞ: ðC7Þ

2. Second step

In the second step, Eq. (2.20) is used to determine
the evolution equations of the equilibrium quantities n, uα̂

and EE:

Dn ¼ −n∇γ̂uγ̂; ðC8aÞ

Duα̂ ¼ −
1

EE þ PE
Δα̂ γ̂∇γ̂PE; ðC8bÞ

DEE ¼ −ðEE þ PEÞ∇γ̂uγ̂; ðC8cÞ

where

D≡ uγ̂∇γ̂ ðC9Þ

is the convective derivative [6,27]. Combining Eqs. (C8a)
and (C8c), the convective derivative of the equilibrium
temperature TE ¼ β−1E can be obtained:

DTE ¼ −
1

βEcv;E
∇γ̂uγ̂; ðC10Þ

where cv;E ≡ 1
n ð∂EE=∂TEÞ is the heat capacity, which has

the following expression:

cv;E ¼ ζ2E þ 5ζEGE − ζ2EG
2
E − 1; ðC11Þ

where GE ≡GðζEÞ is defined in Eq. (C6).

3. Third step

In the third step, the nonequilibrium part δT α̂ β̂ ≡ T α̂ β̂ −
T α̂ β̂
E of the SET is calculated by integrating Eq. (C2) after a

multiplication by pα̂pβ̂:

−
m
τ
δT α̂ β̂ ¼ ∇γ̂T

α̂ β̂ γ̂
E : ðC12Þ

The third order moment T α̂ β̂ γ̂
E of fðeqÞ is known analytically

and has the following expression [6]:
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T α̂ β̂ γ̂
E ¼ nm2

�
K4ðζEÞ
K2ðζEÞ

uα̂uβ̂uγ̂

þGE

ζE
ðuα̂ηβ̂ γ̂ þ uβ̂ηγ̂ α̂ þ uγ̂ηα̂ β̂Þ

�
: ðC13Þ

Performing the contractions in Eqs. (2.25) on Eq. (C12)
gives

−
1

τ
ðE − EEÞ ¼ nD

�
3GE

βE

�
− 2PEGE

Dn
n

; ðC14aÞ

−
1

τ
ðPþ ω − PEÞ ¼ nD

�
GE

βE

�
þ 2

3
PEGE∇γ̂uγ̂; ðC14bÞ

−
1

τ
qγ̂ ¼ nm

�
1þ 5GE

mβE

�
Duγ̂

þ Δγ̂ β̂∇β̂

�
EE þ PE

mβE

�
; ðC14cÞ

−
1

τ
πα̂ β̂ ¼ 2PEGE∇hα̂uβ̂i: ðC14dÞ

Replacing the convective derivative Dn from Eq. (C14a)
with the right-hand side of Eq. (C8a) shows that Eq. (2.32)
indeed holds, allowing ω to be cast in the form:

ω ¼ 1

3
ðE − EEÞ − ðP − PEÞ: ðC15Þ

The difference P − PE can be expressed in terms of the
difference E − EE by expanding E in powers of β−1 − β−1E ,
and retaining only the first order term, as follows [6]:

E − EE ¼ ðP − PEÞcv;E þ � � � : ðC16Þ

Substituting Eq. (C16) in Eq. (C15) gives (to first order in
β−1 − β−1E )

ω ¼ cv;E − 3

3cv;E
ðE − EEÞ: ðC17Þ

A tedious but straightforward calculation, involving the
use of Eqs. (C8a) and (C10) to eliminate the convective
derivatives in Eq. (C14a), yields the following expression
for the coefficient of bulk viscosity:

η ¼ τPEð3 − cv;EÞ
3c2v;E

ð20GE þ 3ζE − 3ζEG2
E

− 2ζ2EGE − 10ζEG2
E þ 2ζ2EG

3
EÞ: ðC18Þ

To set Eq. (C14c) in the form in Eq. (2.27b), the
convective derivative Duγ̂ can be replaced using
Eq. (C8b), while the following identities can be employed
in the second term:

Δγ̂ β̂∇β̂

�
EE þ PE

mβE

�
¼ Δγ̂ β̂∇β̂ðPEGEÞ

¼ Δγ̂ β̂

�
GE∇β̂PEþ

1

m
ðcv;E þ 1Þ∇β̂TE

�
:

ðC19Þ

The coefficient of thermal conductivity can now be
obtained:

λ ¼ τPE

m
ð1þ cv;EÞ: ðC20Þ

Finally, the coefficient of shear viscosity can be read by
comparing Eqs. (2.25d) and (C14d):

μ ¼ τPEGE: ðC21Þ
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