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Exploiting conformal symmetry, we derive a simple exact formula for the classical electromagnetic
Casimir interaction of two perfectly conducting three-spheres, including the sphere-plate geometry as a
special case, in four Euclidean dimensions. We verify that the short distance expansion of the Casimir
energy agrees to leading order with the proximity force approximation (PFA), while the next-to-leading
order is in agreement with a recently proposed derivative expansion of the Casimir energy. At the next-to-
next-to-leading order we find a nonanalytic correction to PFA, which for a sphere-plate system is of the
order of ðd=RÞ3=2 logðd=RÞ, where d is the separation and R the sphere radius.

DOI: 10.1103/PhysRevD.94.085021

I. INTRODUCTION

The Casimir effect [1] is the tiny force between two
neutral macroscopic polarizable bodies that originates from
quantum and thermal fluctuations of the electromagnetic
(em) field in the region of space bounded by the surfaces of
the two bodies. This is one of the rare manifestations of
quantum physics at the macroscopic scale, like super-
conductivity and superfluidity. The last two decades
witnessed a strong resurgence of interest in the Casimir
effect, spurred by a new wave of experiments which
measured the Casimir force with unprecedented precision.
For reviews, see [2–4].
The (em) Casimir effect represents just an example of

more general fluctuation-induced forces [5] that arise when
two objects are embedded in a correlated medium. In recent
years much attention has been attracted by so-called critical
Casimir forces [6,7] that originate from classical thermal
fluctuations of a fluid in the vicinity of a critical point,
where correlation lengths are macroscopic. Very recently,
critical Casimir forces have been observed in helium [8]
and in binary liquid mixtures [9–11]. (In the rest of this
paper, by “Casimir effect” we shall denote just the original
em effect discovered by Casimir).
A distinctive feature of Casimir forces is their non-

additivity. As a result of this feature Casimir forces depend
in a complicated way on the geometry and material
properties of the intervening objects, and thus they are
very hard to compute in nonplanar geometries. In his
pioneering paper Casimir studied the highly idealized
system of two perfectly conducting large parallel plates
in vacuum at zero temperature, for which he obtained an
attractive force of magnitude

FC ¼ π2ℏc
240d4

A; ð1Þ

with A the area of the plates and d the separation. The
theory of the Casimir effect for real material surfaces was
developed a few years later by Lifshitz [12], who derived a
formula for the force between two plane-parallel dielectric
slabs at finite temperature. Unfortunately the planar
geometry studied by Casimir and Lifshitz is extremely
hard to implement, due to the insurmountable difficulty of
keeping parallel two macroscopic plates posed at a sub-
micron distance from each other. To avoid these problems,
practically all present Casimir experiments (with the
notable exception of [13,14] where the plane-parallel
geometry was used) adopt the sphere-plate geometry.
Until recently, nobody knew how to compute the
Casimir interaction between two nonplanar surfaces, like
a sphere and a plate. The commonly used approximation to
deal with curved surfaces was the old-fashioned proximity
force approximation (PFA) introduced long ago by
Derjaguin [15], which amounts to averaging the force
between two parallel plates as provided by Lifshitz for-
mula, over the (appropriately defined) local surface-surface
separation. The PFA is believed to provide the leading term
of the small-distance expansion of the Casimir energy
between two smooth surfaces in the limit of vanishing
separation. An important breaktrough came about ten years
ago when, extending early findings by Balian and
Duplantier [16], a scattering formula was found that in
principle allows to compute Casimir forces between
dielectric objects of any shape [17–19]. While some of
these results had been discovered much earlier by Langbein
[20], but soon sank into oblivion, concrete analytical and
numerical results have been obtained only recently. Indeed,
the experimentally relevant sphere-plate system has been
treated only recently [21,22].
Despite the tremendous theoretical advancement repre-

sented by the scattering formalism, approximate methods
like the PFA still retain a great practical importance. This is
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so because the exact scattering formula is viable only for
relatively large sphere-plate separations d, but becomes
untractable even numerically in typical experimental sit-
uations where d=R ∼ 10−3–10−4, with R the sphere radius.
As a matter of fact, the PFA is still widely used today to
interpret theoretically current precise Casimir experiments.
The resolution of much debated issues in Casimir physics,
like the magnitude of the thermal contribution to the
Casimir force [4,23–26], depends crucially on one’s ability
to reliably compute the Casimir force between metallic
conductors. In order to assess the theoretical error intro-
duced by the PFA, several researchers have endeavored to
compute the next-to-leading-order (NTLO) term in the
small-distance expansion of the Casimir energy, i.e. the first
correction beyond PFA. There are presently two
approaches to achieve this goal. The first one is rigorous,
but extremely laborious, as it involves working out the
asymptotic small-distance expansion of the exact scattering
formula. By following this route, the NTLO energy has
been computed for the cylinder-plate and the sphere-plate
geometries, initially for a free scalar field obeying Dirichlet
(D) boundary conditions (bc) [27], and then for the em field
with ideal metallic bc [28]. Later the same approach was
applied to a free scalar field obeying D, Neumann (N) and
mixed ND bc on two parallel cylinders [29]. An alternative
and computationally much simpler route to compute the
NTLO energy was introduced in [30], based on a derivative
expansion (DE) in the local separation between surfaces for
the force between gently curved bodies. In [30] the DE was
applied to a D scalar field in the cylinder- and sphere-plate
geometries, giving results in agreement with those obtained
by scattering methods in [27]. The DE for the more general
case of two curved surfaces was later worked out in [31] for
the em field with perfect-conductor bc, as well as for a
scalar field obeying N and mixed DN bc. Interestingly, the
first correction beyond PFA for the perfect-conductor
sphere-plate geometry obtained in [31] by using the DE
was in disagreement with that reported in [28]: while the
DE predicted an analytic correction ∼d=R, a larger loga-
rithmic ∼d=R logðd=RÞ correction had been found in [28].
A successive recalculation by some of the authors of [28]
detected a sign mistake in their original computation, and
finally led to full agreement with the DE expansion in the
em and N cases also. The DE for a D and N scalar at zero
and finite temperature in any number of space-time
dimensions was worked out in [32], while the experimen-
tally important case of dielectric curved surfaces at finite
temperature is presented in [33]. The DE has been also used
to study curvature effects in the Casimir-Polder interaction
of a particle with a gently curved surface [34,35]. The same
method has been used very recently to estimate the shifts of
the rotational levels of a diatomic molecule due to its van
der Waals interaction with a curved dielectric surface [36].
In view of the complicated shape dependence of the

Casimir interaction in nonplanar geometries, exact

solutions are very valuable. On the one hand, with their
help one may hope to better understand the behavior of the
Casimir interaction in the experimentally important limit of
small distances, and on the other hand they provide useful
testing grounds for available approximation schemes like
the PFA or the DE. In the existing literature there exist only
a few exact solutions. As a matter of fact, all but one exact
solutions found so far are for systems possessing conformal
invariance [37]. The first example is provided by the
Casimir force between two spherical particles in a critical
fluid [38]. This system can be mapped to two concentric
spheres by means of a special conformal transformation.
By exploiting such a transformation, the authors of [38]
obtained a simple formula for the classical Casimir energy
of free scalar fields satisfying conformally invariant bc (i.e.
D bc and Robin-type bc) on the surfaces of the spheres, in
any number of space dimensions. The same solution for a D
scalar, in the special case of the sphere-plate geometry, has
been recently rederived in [39] by performing a similarity
transformation in the scattering formula. As is well known,
the group of local conformal transformations in two
dimensions is infinite dimensional [37]. The full power
of 2D local conformal transformations has been recently
exploited in [40] to derive an exact formula for the
Casimir interaction between two objects of any shape
embedded in a two-dimensional critical fluid. By using
this formula, it has been shown that the sign of the critical
Casimir force between two periodically deformed
one-dimensional boundaries can be reversed simply by
shape deformation [41].
In the experimentally relevant em case, so far the only

known exact solution in a nonplanar geometry is for two
metallic spheres and a sphere plate, either grounded or
ungrounded, in the high-temperature limit [42]. In this limit,
the quantum Casimir interaction between two conductors
reduces to the classical Casimir interaction for a scalar field
(corresponding to the scalar em potential). The scalar field is
subjected to D bc in the grounded case, and to Drude bc in the
ungrounded case. While the former case was previously
easily solved [38] using conformal invariance, the non-
conformally invariant Drude case is considerably more
difficult. The solution was derived in [42] by performing a
sequence of complicated similarity transformations on the
exact scattering formula. We note that the classical Casimir
interaction between a sphere and a plate with Drude bc was
investigated previously numerically by evaluating the scatter-
ing formula to very high (several thousandt) multipole order
[43]. The exact formula derived in [42] is in perfect agreement
with the numerical results of [43], and once expanded at short
distances it displayed an intricate structure of deviations from
the commonly employed PFA. The differences between the
high-temperature Casimir interactions of grounded vs
ungrounded conductors are further discussed in [44].
In this paper we obtain a simple formula for the

exact classical Casimir interaction between two perfectly
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conducting three-spheres, and between a three-sphere and a
hyperplane in four Euclidean dimensions. Our derivation is
based on the well-known conformal invariance of (vacuum)
Maxwell equations in four dimensions [45], and exploits
conformal invariance of perfect-conductor bc. While the
solution we find has no direct physical meaning, it presents a
certain interest on its own. Its interest stems from the well-
established correspondence between zero-temperature quan-
tum statistical systems in three spatial dimensions and
classical statistical systems in four Euclidean dimensions
[46].According to this correspondence, thequantumCasimir
interaction of two perfectly conducting (two-dimensional)

surfacesΣð2Þ
1 andΣð2Þ

2 in physical spaceEð3Þ ≡ fx1; x2; x3g at
zero temperature is the same as the classical Casimir
interaction of two (three-dimensional) perfectly conducting

cylindrical surfaces Cð3Þ1 ¼ R × Σð2Þ
1 and Cð3Þ2 ¼ R × Σð2Þ

2

embedded in four-dimensional Euclidean space Eð4Þ ≡
fx1; x2; x3; x4g [at finite temperature T the correspondence
still holds provided that one imposes periodic bc in the fourth
Euclidean direction x4, the period l being determined by the
temperature according to the relation l ¼ ℏc=ðkBTÞ].
Clearly three-spheres Sð3Þ in Eð4Þ do not correspond to
any surface Σð2Þ in physical space, and therefore their
classical Casimir energy has no direct physical interpretation
in terms of the quantum interaction between two conductors
in physical space Eð3Þ. Despite the unphysical geometry of
the boundaries, the study of the Casimir interaction of three-
spheres in four Euclidean dimensions may provide useful
information on the T ¼ 0 quantum interaction of conductors
in physical space. In particular, in the limit of small
separations, it is not unreasonable to imagine that curvature
corrections to PFA might have a similar structure for both
problems. In addition to that, the exact solution provides a
valuable opportunity to test quantitatively the accuracy of the
approximation schemes described earlier, i.e. the PFA and
the DE.
The plan of the paper is as follows: in Sec. II we briefly

review the scattering formalism for the Casimir effect, and in
Sec. III we use the scattering formula to compute the Casimir
energy for the conformal system of two perfectly conducting
three-spheres in four Euclidean dimensions. In Sec. IV we
work out the small-distance expansion of the exact Casimir
energy for two spheres derived in Sec. III and prove that its
leading term agrees with the PFA. In Sec. Vwe introduce the
DE and show that it reproduces the NTLO term of the exact
Casimir energy. In Sec. VI we prove that the DE for the em
field breaks down after the second order, and therefore it
cannot be used to compute the next-to-next-to-leading order
(NNTLO) term in the expansion of the Casimir energy. In
Sec. VI we present arguments showing that the fourth-order
DE may exist for other field theories, like a D scalar field,
while it does not exist for a N scalar. In Sec. VII we present
our conclusions. Finally, in the Appendix we briefly discuss
scattering of em waves by a perfectly conducting sphere in
four Euclidean dimensions.

II. THE SCATTERING FORMULA FOR THE
CASIMIR FREE ENERGY

According to the scattering approach [21,22] the Casimir
interaction energy F between two objects can be expressed
in terms of the respective scattering amplitudes T̂ 1 and T̂ 2

and translation operators Û12 and Û21, which translate the
scattering solution from the coordinate system of one object
to that of the other object. In the classical limit, the scattering
approach yields the Casimir energy (representing the zeroth-
order Matsubara term of the full quantum Casimir energy)

F ¼ kBT
2

ln det½1 − Û21T̂ 1Û
12T̂ 2�: ð2Þ

In principle, the above equation permits us to compute the
(classical) Casimir energy for two objects of any shape. In
practice, evaluating Eq. (2) is very hard, for two reasons. On
one hand, the scattering operators T̂ 1 and T̂ 2 of the
individual objects are unknown, and they are in general
very difficult to compute, even numerically, unless the bodies
have very simple shapes like spheres or cylinders, for which
the scattering problem can be solved analytically in a suitable
multipole basis. On the other hand, even when the scattering
operators are known, or can be computed numerically, it is
rarely the case that the scattering and the translation matrices
are simultaneously diagonal in some multipole basis. As a
rule, they are nondiagonal infinite-dimensionalmatrices, and
therefore Eq. (2) involves in general evaluation of an infinite-
dimensional determinant, which is of course an impossible
task in general. The common practice is to truncate the
determinant to some finite multipole order, and to carefully
examine convergence of the result as an increasing number of
multipoles is included. The problem is that the necessary
number of multipoles increases very rapidly as the (mini-
mum) distance d of the bodies decreases, in comparisonwith
their characteristic size L. Roughly, convergence is achieved
when the number of multipoles becomes of the order ofL=d,
i.e. 103–104 in typical experimental situations, which surely
represents a nontrivial challenge.

III. THE CASIMIR ENERGY FOR TWO
THREE-SPHERES

In this section we show that in the case of two (non-
overlapping) perfectly conducting three-spheres Sð3Þ1 and

Sð3Þ2 in four Euclidean dimensions, the scattering formula
Eq. (2) can be actually computed exactly, by exploiting the
exact conformal invariance of the system. As a first step
(see the Appendix for details) one notes that in a basis of
spherical waves with origin at the center of a three-sphere,
the scattering amplitudes for internal and external scattering
of em waves by a perfectly conducting three-sphere are
both equal to minus the identity matrix [see Eq. (A10)].
Having determined the scattering amplitude, the next step
towards computing the Casimir energy is to determine the
matrix elements of the translation operators Û12 and Û21 in
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a suitable basis of waves attached to the two spheres. By
definition [21] the matrix U21

αα0 (U
12
α0α) connects the scattered

fields Aðscatj1Þ
ijα0 (Aðscatj2Þ

ijα ) relative to sphere one (two) to the

incoming waves Aðinj2Þ
ijα (Aðinj1Þ

ijα0 ) relative to sphere two (one),

Aðscatj1Þ
ijα0 ¼

X
α

Aðinj2Þ
ijα U21

αα0 ; ð3Þ

Aðscatj2Þ
ijα ¼

X
α0
Aðinj1Þ
ijα0 U12

α0α; ð4Þ

where α and α0 label the basis elements for the two spheres.

Suppose now, to be definite, that the two spheresSð3Þ1 andSð3Þ2

are placed one outside the other. If, following the normal
procedure [21,22], we used as a wave basis the simple
spherical basis described in Eq. (A9) attached to the
respective centers of the two spheres, thiswould immediately
result into nondiagonal translation matrices, rendering the
computation of the Casimir energy very hard. However, an
alternative route is possible. As it is explained below,
conformal invariance of the problem allows us to express
the Casimir energy of two nonconcentric spheres in terms of
theCasimir energyof a conformally equivalent systemof two
concentric spheres. The Casimir energy of the latter highly
symmetric system is very easy to compute, thanks to the fact
that its translation matrices have a simple diagonal form.

A. Two concentric three-spheres

For the highly symmetric configuration of two concen-
tric spheres of radii R− and Rþ (for definiteness we take
R− < Rþ), the basis of spherical waves for the two spheres
have the same origin, coinciding with their common center.
This feature enormously simplifies the problem. Because of
that, the translation matrices U21

nlmp;n0l0m0p0 and U12
nlmp;n0l0m0p0

are both diagonal in the basis (A6), and with our normali-
zation of the respective incoming and scattered waves, it
can be easily verified that they have matrix elements,

U21
nlmp;n0l0m0p0 ¼ U21

nlmp;n0l0m0p0 ¼
�
R−

Rþ

�
n
δnn0δll0δmm0δpp0 : ð5Þ

By substituting these translation matrices together with the
scattering matrices Eq. (A10) into Eq. (2), we obtain the
following simple formula for the classical Casimir energy
of two perfectly conducting concentric spheres:

F ¼ kBT
X
n≥2

ðn2 − 1Þ logð1 − ρ2nÞ; ð6Þ

where we set ρ ¼ R−=Rþ < 1.

B. Two nonconcentric three-spheres

Consider two perfectly conducting nonconcentric
(nonoverlapping) three-spheres Sð3Þ1 and Sð3Þ2 of radii R1

and R2. The key observation that allows us to compute their
Casimir interaction is that any two such spheres may be

obtained by conformally mapping [38] the highly sym-
metric system of two concentric spheres considered in the
previous section. The special conformal map ϕ∶Eð4Þ →
Eð4Þ that achieves this goal is

r0

r02
¼ rþR

jrþRj2 −
R
2R2

; ð7Þ

where R is an arbitrary fixed four-vector. It can be verified
that for R− < R < Rþ the concentric three-spheres of radii
Rþ and R− in the r Euclidean space get respectively

mapped to the three-spheres Sð3Þ1 and Sð3Þ2 of radii R1

and R2, placed one outside the other in the r0 Euclidean
space, whose centers lie along the straight line of the vector
R. The radii R1 and R2 are

R1 ¼ 4R
RRþ

R2þ − R2
; R2 ¼ 4R

RR−

R2 − R2
−
; ð8Þ

and the minimum distance d between Sð3Þ1 and Sð3Þ2 is

d ¼ 4R
RðRþ − R−Þ

ðRþ RþÞðRþ R−Þ
: ð9Þ

By adjusting the values of Rþ; R− and R it is possible to
obtain any value for R1, R2 and d. We note that the sphere-
plate system in r0 space is recovered in the limit R → Rþ, in
which case the Rþ sphere gets mapped to the three-plane
through the origin of r0 space, perpendicular to R. For
R < R− and for R > Rþ the concentric spheres of radii R−
and Rþ in the r space get mapped to two nonconcentric
spheres in the r0 space that are placed one inside the other. For
brevity, we shall only consider below the case of two spheres
placed one outside the other in r0 space, i.e. R− < R < Rþ,
the extension to the case of two nonconcentric spheres with
one placed inside the other being straightforward.
At this point, conformal invariance of Maxwell equa-

tions in four dimensions enters into play. Conformal
invariance of Maxwell equations implies that the pull-back
by the map ϕ−1 of the ingoing and scattered fields for two
concentric spheres in r space [as given by Eqs. (A9) and
(A11) in the Appendix] constitute a basis of ingoing and
scattered em waves in r0 space. More precisely we set

Aðinj1Þ
ajnlmp¼ðϕ−1� AÞðinjintÞajnlmp; Aðscatj1Þ

ajnlmp¼ðϕ−1� AÞðscatjintÞajnlmp ; ð10Þ

Aðinj2Þ
ajnlmp¼ðϕ−1� AÞðinjextÞajnlmp; Aðscatj2Þ

ajnlmp¼ðϕ−1� AÞðscatjextÞajnlmp : ð11Þ

Since the perfect-conductor bc Eq. (A1) [or the equivalent
bc on the potential Eq. (A8)] are conformally invariant too
(in fact they are invariant under any diffeomorphism), it
follows that the scattering matrix Eq. (A10) is conformally
invariant as well. Thus, in the basis (11) the scattering

matrices of the nonconcentric spheres Sð3Þ1 and Sð3Þ2 both
have the simple diagonal form in Eq. (A10). Finally, one
observes that since the pull-back is a linear transformation,
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translation matrices are also preserved by the conformal
map, and thus the translation matrices U21

nlmp;n0l0m0p0 and

U12
nlmp;n0l0m0p0 for S

ð3Þ
1 and Sð3Þ2 written in the conformal basis

Eqs. (10) and (11) are respectively identical to the diagonal
translation matrices for two concentric spheres Eq. (5). The
conclusion of the above considerations is that the Casimir

free energy of the spheres Sð3Þ1 and Sð3Þ2 is identical to the
Casimir energy of the corresponding conformal system of
two concentric spheres, and is thus provided by the simple
formula Eq. (6) in which the parameter ρ is now expressed
in terms of the geometric parameters R1, R2 and d

characterizing Sð3Þ1 and Sð3Þ2 . The explicit relation between
these parameters is as follows:

κ ¼ 1

2
ðρþ ρ−1Þ; ð12Þ

where

κ ¼ s2 − R2
1 − R2

2

2R1R2

; ð13Þ

with s the center-to-center distance s ¼ dþ R1 þ R2

between Sð3Þ1 and Sð3Þ2 . Thus, Eq. (6) together with the
above two relations provide the complete solution of the
Casimir problem for two three-spheres placed one outside
the other. The case of two nonconcentric three-spheres
placed one inside the other is handled in a completely
analogous way, the only difference consisting in the
algebraic form of the relations connecting ρ to R1, R2

and d, that can be easily worked out starting from Eq. (7).

IV. SMALL-DISTANCE EXPANSION
OF THE CASIMIR ENERGY

Starting from the exact expression for the Casimir energy
provided by Eq. (6), one can compute explicitly the
interaction in the experimentally important limit of short
distances. According to Eqs. (12) and (13) the small-
distance limit corresponds to ρ close to one. We thus set
ρ ¼ expð−μÞ and compute the series in Eq. (6) for small μ
using the Abel-Plana formula [4]. Up to exponentially
small terms we obtain the exact expansion,

F ¼ −kBT
�

π4

360μ3
þ π2

12μ
þ 1

2
logðμ=πÞ − ζð3Þ

4π2
þ 11

120
μ

�
:

ð14Þ
Consider for simplicity a three-sphere of radius R at
distance d from a three-plane. Upon substituting R2 ¼ R
and taking R1 → ∞ into Eqs. (12) and (13) we obtain

μ ¼ log½1þ xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð2þ xÞ

p
�; ð15Þ

where we set x ¼ d=R. Substitution of Eq. (15) into
Eq. (14) results in the following small-distance expansion
for the sphere-plate energy:

F ¼ −kBT
� ffiffiffi

2
p

π4

1440x3=2

�
1þ

�
1

4
−
60

π2

�
x

þ
�
132

π4
−

7

480
−

5

π2

�
x2 þ 30

ffiffiffi
2

p

π4
x5=2

þ
�

457

120960
−
11

π4
þ 17

24π2

�
x3 −

11ffiffiffi
2

p
π4

x7=2 þ oðx4Þ
�

þ 1

4
logð2x=π2Þ þ ζð3Þ

4π2

�
: ð16Þ

The above small-distance expansion has been derived
from the exact Casimir energy Eq. (6). It is interesting to
check if its leading term is correctly reproduced by the PFA.
The starting point of the PFA is the (classical) Casimir
energy (per unit three-volume) F ð4Þ

ppðdÞ for two parallel
three-planes in Eð4Þ at distance d. On dimensional ground,

F ð4Þ
ppðdÞ must be of the form F ð4Þ

ppðdÞ ¼ kBTu=d3, where u
is a pure number. We do not need to compute the constant
u, because its value can be easily inferred from the well-
known formula for the quantum zero-temperature Casimir
energy between two parallel plates of large area A in
ordinary physical space,

EC ¼ −
π2ℏc
720d3

A: ð17Þ

The correspondence between quantum statistical systems in
physical space ðx1; x2; x3Þ, and classical statistical systems
in 4 Euclidean dimensions ðx1; x2; x3; x4Þ, implies that EC
can be identified with the zero-temperature limit of the
classical Casimir energy between two parallel (hyper)
planes in Euclidean space at distance d from each other,
having an area A in, say, the ðx1; x2Þ plane, and an
extension l ¼ ℏc=ðkBTÞ in the fourth direction x4, namely,

EC ¼ lim
T→0

F ð4Þ
ppðdÞlA: ð18Þ

Comparison with Eq. (17) gives

F ð4Þ
ppðdÞ ¼ −kBT

π2

720d3
: ð19Þ

Having determined the (unit-volume) free-energy for two
parallel hyperplanes in Eð4Þ, we can go about computing the
sphere-plate energy using the PFA. To be definite, let us fix
the hyperplane to have equation x1 ¼ 0, and the three-
sphere of radius R to have its center at the point x1 ¼ dþ R
along the x1 axis. Locally, the profile of the three-sphere
around its tip is described by the height function
x1 ¼ Hðx2; x3; x4Þ ¼ dþ ðx22 þ x23 þ x24Þ=2R. According
to the PFA, in the small-distance limit d=R → 0 the
sphere-plate Casimir energy is estimated by taking the

average of F ð4Þ
ppðdÞ over the local separation h,
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F PFA ¼
Z

dx2dx3dx4F
ð4Þ
ppðHðx2; x3; x4ÞÞ

¼ 4π

Z
∞

0

drr2F ð4Þ
ppðdþ r2=2RÞ: ð20Þ

Evaluation of the integral to leading order in x gives the
result

F PFA ¼ −kBT
π4

ffiffiffi
2

p

1440x3=2
: ð21Þ

We see that the PFA correctly reproduces the leading term
of Eq. (16). As we pointed out in the Introduction, the PFA
is still widely used today to interpret current precision
small-distance Casimir experiments. It is therefore of
interest to use our exact solution to check quantitatively
its accuracy. For this purpose, in Fig. 1 we plot the sphere-
plate Casimir energy F=F PFA normalized to the PFA
energy, versus x ¼ d=R. It is apparent from the figure that
PFA becomes increasingly accurate at d=R approaches
zero. A precise perception of the accuracy of the PFA can
be gained from Fig. 2 where we plot (solid line) the percent
error 100ðF − F PFAÞ=jF PFAj caused by the PFA, versus
−Log10ðd=RÞ.

V. THE DERIVATIVE EXPANSION

In recent years a new and powerful method has been put
forward [30,31] to compute the first curvature correction
beyond PFA, i.e. the NTLO term of the Casimir interaction
between two gently curved surfaces. In fact, the method has
a general applicability, and can be used to study curvature
corrections for any short-range interaction between two
surfaces. The idea is simple to explain. In the context of the
present paper, it can be described as follows. Consider the
Casimir energy F of the system consisting of a three-plane
Σ of equation x1 ¼ 0, opposed a surface described by a
single-valued smooth height profile x1 ¼ Hðx2; x3; x4Þ (in
general, the method can be applied also to two curved
surfaces [31], but for simplicity we do not consider this
more general case here). The energyF is a functionalF ½H�
of the height H. One postulates that for a small-slope
surface, satisfying the condition j∇Hj ≪ 1 the energy
functional admits, at least up to some order in ∇H, a
DE in powers of an increasing number of derivatives of H.
To second order in ∇H one writes

F ¼ −kBT
π2

720

Z
Σ

d3x
H3

½1þ βðHÞð∇HÞ2 þ � � ��; ð22Þ

where βðhÞ is a pure number, and dots denote higher
derivative terms. As we see, the leading term of the DE
coincideswith the PFAEq. (21). The coefficient β depends in
general on the chosen field theory, and on the bc imposed on
the surfaces. We can determine the exact functional depend-
ence of βðHÞ on H by comparing the gradient expansion,
Eq. (22), to a perturbative expansion of the Casimir energy
around two flat plates, to second order in the deformation.
For this purpose, we decompose the height of the curved
surface as Hðx2; x3; x4Þ ¼ dþ hðx2; x3; x4Þ, where d is
chosen to be the distance of closest separation. For
small deformations jhðx2; x3; x4Þj=d ≪ 1 we can expand
F ½dþ h� as

F ¼VF ð4Þ
ppðdÞþμðdÞ ~hð0Þþ

Z
d3k
ð2πÞ3Gðk;dÞj

~hðkÞj2; ð23Þ

where V is the three-volume of Σ, k is the in-plane wave
vector and ~hðkÞ is the Fourier transform of hðx2; x3; x4Þ. The
kernel Gðk; dÞ for the T ¼ 0 quantum theory in three
dimensions has been evaluated by several individuals, for
example for a scalar field fulfilling D or N bc on both plates
[47], aswell for the EMfield satisfying idealmetal bc on both
plates [48].More recently,Gðk; dÞwas evaluated inRef. [49]
for the EM field with dielectric bc. The corresponding kernel
for our classical four-dimensional Euclidean theory can be
simply obtained by dividing the kernel of [48] by
l ¼ ℏc=kBT, and then replacing the two-dimensional in-
planevectork≡ ðk1; k2Þ of the three-dimensional theory, by
the three-dimensional in-planevectorsk≡ ðk1; k2; k3Þ of the
four-dimensional theory. For a deformationwith small slope,

FIG. 1. Sphere-plate Casimir energy normalized by the PFA.

FIG. 2. Percent error on the Casimir energy made by using the
PFA (solid line) and the DE (dashed line) for the sphere-plate
Casimir energy.
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the Fourier transform is peaked around zero. Assuming that
the kernel can be expanded at least through order k2 about
k ¼ 0 [22], we define

Gðk;dÞ ¼ γðdÞ þ δðdÞk2 þ � � � : ð24Þ

For small h, the coefficients in the DE can be matched with
the perturbative result. By expanding Eq. (22) in powers of
hðx1; x2; x3Þ and then comparing with the perturbative
expansion Eq. (23) to second order in both h and k2, we
obtain

F ð4Þ0
pp ðdÞ ¼ μðdÞ;

F ð4Þ00
pp ðdÞ ¼ 2γðdÞ;

βðdÞ ¼ δðdÞ
F ð4Þ

ppðdÞ
; ð25Þ

where prime denotes a derivative. By using the above
relations the coefficient β for perfect conductor bc was
computed in [31]

β ¼ 2

3

�
1 −

15

π2

�
: ð26Þ

The values of β for other field theories, like a scalar field
satisfying D, N and mixed ND bc can be found in [30,31],
while for the experimentally important case of dielectric
surfaces at finite temperature β was computed in [33]. We
remark that the value of β in Eq. (26) was obtained in [31] by
considering the zero-temperature quantum Casimir interac-
tion in physical space. The general equivalence between
quantum statistical systems in physical space and classical
statistical systems in four Euclidean dimensions implies
identity of the respective β coefficients (for the same field
theory and bc).
Having determined the value of β, we can now use

Eq. (22) to compute the leading correction beyond PFA to
the Casimir energy between a three-plane and a three-
sphere. When doing that, one has to bear in mind that
from the PFA one knows that the points of the sphere
that contribute most to the Casimir interaction are those
contained in a disk of radius σ ≃ ffiffiffiffiffiffi

Rd
p

around the
sphere tip. For small separations, it is then legitimate to
take the power expansion of the height profile of the
sphere x1 ¼ Hðx2; x3; x4Þ ¼ dþ ðx22 þ x23 þ x24Þ=2Rþ
ðx22 þ x23 þ x24Þ2=8R3 þ � � �. When this expansion is sub-
stituted into Eq. (22), one finds

F ¼ −kBT
ffiffiffi
2

p
π4

1440x3=2

�
1þ

�
6β −

15

4

�
xþ � � �

�
: ð27Þ

Using the value of β in Eq. (26), we see that the DE
provides the correct value for the leading correction beyond

PFA to the Casimir energy. Inclusion of this OðxÞ correc-
tion leads to a significant improvement in the accuracy of
the Casimir energy. This can be fully appreciated by
looking at the dashed curve in Fig. 2 which shows the
corresponding percent error 100ðF − FDEÞ=jFDEj on the
energy. Comparison with the solid line, which corresponds
the PFA, demonstrates the superiority of the DE in the
range d=R < 0.01. For example, for d=R ¼ 0.002, the error
made by the PFA is of 0.97%, while the error made by the
DE is −0.2%.

VI. THE NEXT-TO-NEXT-TO-LEADING-ORDER
TERM

We have seen in the previous section that the DE
provides the correct value for the first correction to the
Casimir energy beyond PFA, which represents the NTLO
term in the small distance expansion of the exact Casimir
energy. It is interesting now to consider NNTLO term.
From Eq. (16) we see that this term is proportional to
logð2x=π2Þ. Compared to PFA, this term represents a
correction of order x3=2 logðxÞ, which is clearly nonana-
lytic. One may wonder if this correction can be computed
using a higher order of the DE. The answer is no, because
the DE for the em Casimir energy breaks down beyond
second order in∇H. Let us assume temporarily that the DE
exists beyond second order. It is easy to convince oneself
that at the next order in ∇H the DE involves four
derivatives of the height profile. Up to total derivatives,
the most general rotationally invariant expression involving
four derivatives of the height profile, can be recast in the
following form [50]:

F ¼ −kBT
π2

720

Z
Σ

d3x
H3

½1þ βð∇HÞ2 þ βð1ÞH2ðΔHÞ2

þ βð2ÞH2∂i∂jH∂i∂jH þ βð3ÞHΔHð∇HÞ2
þ βð4Þð∇H · ∇HÞ2 þ � � ��; ð28Þ

where dots denote again higher-order terms. If Eq. (28) is
used to estimate the Casimir energy of a three-sphere
opposed a three-plane, following the same steps that led to
Eq. (27), the result is found to be as follows:

F ¼ −
kBT

ffiffiffi
2

p
π4

1440x3=2

�
1þ

�
6β −

15

4

�
x

− 15

�
7

32
þ 1

2
β þ 144

5
βð1Þ þ 48

5
βð2Þ þ 48

5
βð3Þ

þ 4βð4Þ
�
x2 þ � � �

�
: ð29Þ

We see that at NNTLO the DE predicts an analytic
correction to PFA of order x2, instead of the correct result
of order x3=2 logðxÞ. The reason for the disagreement is that
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at fourth order the nonlocality properties of the em Casimir
interaction invalidate the DE expansion. This can be proven
as follows. When the fourth-order DE in Eq. (28) is
matched, in their common region of validity, with the
fourth-order perturbative expansion of the Casimir energy
F ½dþ h�, one finds that the coefficients βðiÞ, i ¼ 1, 2, 3, 4
occurring in Eq. (28) are linear combinations of the
coefficients of the fourth-order Taylor expansion of the
perturbative Green functions GðnÞðk1;…;kn; dÞ for n ≤ 4,
in powers of the in-plane momenta k1;…;kn, about the
point k1 ¼ … ¼ kn ¼ 0. This implies that a necessary
condition for existence of the fourth-order DE Eq. (29) is
the existence of the fourth-order Taylor expansion of the
perturbative Green functions about zero in-plane momenta.
Unfortunately, in the em case the Green functions do not
admit a Taylor expansion to fourth order. Consider for
example the second-order kernel Gðk; dÞ. This kernel was
computed in [48] for the T ¼ 0 quantum theory in three
dimensions. As said earlier, the corresponding kernel for
our classical four-dimensional Euclidean theory is obtained
by dividing the 3D quantum kernel of [48] by l ¼ ℏc=kBT,
and then replacing the two-dimensional in-plane vector of
the three-dimensional theory by the three-dimensional in-
plane vectors of the four-dimensional theory. Following
[48] the kernel is decomposed as

Gðk; dÞ ¼ −
2kBT
d5

½GTMðdk=2πÞ þ GTEðdk=2πÞ�; ð30Þ

where GTM and GTE represent, respectively, the contribu-
tions of the transverse magnetic (TM) and transverse
electric (TE) fields. For small momenta the kernels
GTEðxÞ and GTMðxÞ were shown in [48] to have the power
expansion

GTMðxÞ ¼
π2

480
þ π4

1080
x2 −

45þ π4

6750
π2x4 þ � � � ð31Þ

GTEðxÞ ¼
π2

480
þ π2ðπ2 − 30Þ

1080
x2 þ π3

32
x3

−
1095þ 50π2 þ π4

6750
π2x4 þ � � � : ð32Þ

Using the above expansions, and recalling Eqs. (25), it is
easily possible to obtain the value of β quoted in Eq. (26).
The important thing to observe though is that the expansion
of GTEðxÞ has a contribution proportional to x3, i.e. the
third term on the rhs of Eq. (32). The presence of thisOðk3Þ
term, which is not an analytic function of the components
ðk1; k2; k3Þ of the in-plane momentum k, implies that
Gðk; dÞ can be Taylor expanded about k ¼ 0 only up to
order k2, but not to higher orders. This is just enough to
ensure the existence of the DE to second order in ∇h, as in
Eq. (22), but it invalidates the fourth-order DE in Eq. (28).
The conclusion of these considerations is that the DE can

be only used to estimate the NTLO term in the Casimir
energy, but it cannot be used to compute its NNTLO term.
As a general remark, one may observe that the maximum
possible order of the Taylor expansion of the perturbative
Green functions, in powers of the in plane-momenta,
ultimately depends on how fast the perturbative Green
functions fall off to zero in coordinate space, as their
arguments are taken far apart. From this perspective, it is
clear that existence or nonexistence of the DE is a question
of how local in space the Casimir interaction is.
As a concluding remark we observe that the fourth-order

DE may exist for other more local field theories. An
example is a D free scalar field. For D bc, the theory is
conformally invariant in any number N of Euclidean
dimensions. As we said earlier, conformal symmetry was
indeed exploited in [38] to compute the Casimir energy for
a D scalar between two (N − 1)-spheres. In particular, for
N ¼ 4 one finds

FD ¼ kBT
2

X
n≥0

n2 logð1 − ρ2nÞ; ð33Þ

where ρ is the same quantity as in Eq. (6). By using the
Plana formula, one obtains the following small-distance
expansion of FD in the sphere-plate geometry:

FD ¼ −
ffiffiffi
2

p
π4

2880x3=2

�
1þ x

4
þ
�
12

π4
−

7

480

�
x2

þ
�

457

120960
−

1

π4

�
x3 þ � � �

�
þ ζð3Þ

8π2
: ð34Þ

Neglecting the constant term proportional to ζð3Þ, which
has no influence on the force, we see that the NNTLO term
(i.e. the third term between the square brackets) represents
an Oðx2Þ correction, as compared the PFA. Such an order-
Oðx2Þ correction is precisely what one would expect on the
basis of the fourth-order DE [see Eq. (29)]. A further
argument in favor of the existence of the fourth-order DE
for a D scalar comes from consideration of its second-order
kernel GDðk; dÞ. It turns out that GDðk; dÞ coincides with
the em kernel for TM polarization GTM. From Eq. (31) we
see that, differently from GTE, GTM does admit a fourth-
order Taylor expansion in powers of the momentum about
k ¼ 0. Of course, to have the conclusive proof that a
D-scalar admits a fourth-order DE, onewould have to check
the fourth-order Taylor expansions of the higher Green
functions Gð3Þðk1;k2;k3; dÞ and Gð4Þðk1;k2;k3;k4; dÞ
that are needed to determine βð3Þ and βð4Þ, something that
we shall not attempt here. Finally, we note that similar to
the em problem, the DE for a N free scalar breaks down at
second order. The exact Casimir energy for a N scalar,
which is not conformally invariant, is not known so far,
either for a system of two spheres or for a sphere and a
plate, in any number of dimensions. However, one knows
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that for a N scalar the second-order kernel GNðk; dÞ
coincides with GTE. Thus, the same considerations done
for the em problem extend to the N scalar, and show that the
DE for a N scalar stops at second order.

VII. CONCLUSIONS

We have derived a simple exact formula for the classical
Casimir interaction of two perfectly conducting three-
spheres in four Euclidean dimensions. Our solution
includes as a special case the geometry of a three-sphere
opposed a three-plane. The construction exploits the well-
known conformal symmetry of vacuum Maxwell equations
in four dimensions, together with the conformal invariance
of perfect-conductor bc. Conformal invariance is used to
map the system to a highly symmetric configuration of two
concentric spheres, whose Casimir energy can be easily
computed by the scattering formula. The solution presented
in this paper represents the only known example of an exact
Casimir energy for the full-fledged Maxwell field in a
nonplanar geometry. We computed the small-distance
expansion of the exact Casimir energy, and checked that
its leading term agrees with the commonly used PFA. We
verified that its NTLO term agrees with a recently proposed
derivative expansion of the Casimir energy functional, in
powers of an increasing number of derivatives of the height
profile of the sphere. We find that the NNTLO represents a
correction of order ðd=RÞ3=2 logðd=RÞ compared to the
PFA, where d is the separation and R the sphere radius. By
examining the singularities of the perturbative kernel of the
Casimir energy to second order in the height profile, we
prove that the derivative expansion breaks down beyond
second order, and therefore it cannot be used to compute
the NNTLO correction.
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APPENDIX: SCATTERING BY A PERFECTLY
CONDUCTING THREE-SPHERE

In this appendix we briefly discuss scattering of em
waves by a perfectly conducting three-sphere Sð3Þ of radius
R, in four Euclidean dimensions. Let ϕid∶ Sð3Þ → Eð4Þ, the
identity map on Sð3Þ providing the embedding of the three-
sphere into Eð4Þ. Perfect-conductor bc on Sð3Þ can be
conveniently expressed by the condition

ðϕ�
idFÞab ¼ 0; ðA1Þ

where ϕ� denotes the pull-back of the map ϕ, and Fab is the
Maxwell field strength. (We follow the abstract index
notation of tensors [45]. According to this notation latin

indices from the initial part of the alphabet a; b; c;… shall
denote abstract tensor indices, while greek letters μ; ν;…
shall label coordinate components of tensors. Letters from
the middle latin alphabet i; j;… shall label angular coor-
dinates on the unit three-sphere). The above bc constitute
the natural generalization of the familiar bc for perfect
conductors, requiring the vanishing of the tangential
component of the electric field and of the normal compo-
nent of the magnetic field on the surface of a perfect
conductor.
Spherical symmetry allows us to easily solve the

scattering problem. For this purpose, it is useful to use a
spherical vector wave basis. To construct it, we consider in
the Euclidean space Eð4Þ a spherical coordinate system
fxμg≡ fα1;α2; α3; rg with origin at the center of the three-
sphere. Here, r is the radial coordinate, and α1, α2, α3 are
angular coordinates on the unit three-sphere, such that the
Euclidean line element takes the form

ds2 ¼ dr2 þ r2dΩ2
3; ðA2Þ

where

dΩ2
3 ¼ Ωijdαidαj ðA3Þ

is the metric on the unit three-sphere. It is convenient to
express the field strength Fab in terms of the potential Aa,

Fab ¼ ∂aAb − ∂bAa: ðA4Þ

The potential Aa can be chosen to satisfy the following
transversality gauge condition:

Ar ¼ 0; ∇iAi ¼ 0: ðA5Þ

The transverse potential Ai admits a generalized Fourier
expansion in terms of an orthonormal basis of vector
hyperspherical harmonics Sijnlmpðα1; α2; α3Þ, which are
eigenfunctions of the vector Laplacian on the unit three-
sphere [51],

Ai ¼
X
nlmp

fnlmpðrÞSijnlmpðα1; α2; α3Þ; ðA6Þ

with coefficients fnlmpðrÞ that depend only on the radial
coordinate r. The index n takes values 2; 3;…, and the
overall degeneracy described by the indices l, m and the
parity index p is 2ðn2 − 1Þ (for details see [51]). Plugging
the expansion (A6) into Maxwell equations, one finds that
the radial dependence of the coefficients fnlmp is of the
form

fnlmp ¼ a
rn

þ brn; ðA7Þ
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where a and b are arbitrary constants. Using the above
results, the scattering problem for a perfectly conducting
three-sphere of radius R is easily solved. We note first that
the bc Eq. (A1) are equivalent to the condition

ðϕ�
idAÞa ¼ 0; ðA8Þ

which simply says that the transverse vector potential
vanishes on Sð3Þ. We need to distinguish two different
scattering problems, i.e. external and internal scattering. In

the external problem the incoming wave AðinÞ
i originates

outside the three-sphere and therefore it must be regular at
all points inside the three-sphere. In contrast, the scattered

wave AðscatÞ
i must be regular outside the sphere and vanish

at infinity. These conditions imply that for the incoming
wave the coefficient a in Eq. (A7) must vanish, while for
the scattered wave the coefficient b must be zero. We shall
normalize the incoming waves such that bðinÞ ¼ R−n, and
aðscatÞ ¼ Rn,

AðinjextÞ
ijnlmp ¼

�
r
R

�
n
Sijnlmpðα1; α2; α3Þ;

AðscatjextÞ
ijnlmp ¼

�
R
r

�
n
Sijnlmpðα1; α2; α3Þ: ðA9Þ

After we impose the bc Eq. (A8) on the total field

Ai ¼ AðinÞ
i þ AðscatÞ

i , it is easy to verify that the scattering
amplitude for the external problem is diagonal with
elements

T nlmp;n0l0m0p0 ¼ −δnn0δll0δmm0δpp0 : ðA10Þ

Consider now the internal scattering problem. Now the

incoming wave AðinÞ
i originates from a point inside the

three-sphere, and therefore it must vanish at infinity, while

the scattered wave AðscatÞ
i must be regular at all points inside

the three-sphere. These requirements imply that for the
incoming wave the coefficient b in Eq. (A7) must vanish,
while for the scattered wave the coefficient a must be zero.
We shall normalize the incoming waves such that
aðinÞ ¼ Rn, and bðscatÞ ¼ R−n,

AðinjintÞ
ijnlmp ¼

�
R
r

�
n
Sijnlmpðα1; α2; α3Þ;

AðscatjintÞ
ijnlmp ¼

�
r
R

�
n
Sijnlmpðα1; α2; α3Þ: ðA11Þ

It easily follows from the above equation that the internal
scattering amplitude coincides with the external one in
Eq. (A10).
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