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We study a six matrix model with global SOð3Þ × SOð3Þ symmetry containing at most quartic powers
of the matrices. This theory exhibits a phase transition from a geometrical phase at low temperature to a
Yang-Mills matrix phase with no background geometrical structure at high temperature. This is an exotic
phase transition in the same universality class as the three matrix model but with important differences.
The geometrical phase is determined dynamically, as the system cools, and is given by a fuzzy sphere
background S2

N × S2
N , with an Abelian gauge field which is very weakly coupled to two normal scalar

fields.
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I. INTRODUCTION

The notion of geometry as an emergent concept is not
new. See for example [1,2] for an inspiring discussion,
along the lines of causal sets and lattice dynamical
triangulation respectively, and [3,4] for some other recent
ideas from strings and random matrix theory. Another
powerful approach is the idea of emergent noncommutative
geometry [5] from IKKT Yang-Mills matrix models [6].
We examine such a phenomenon in the context of

noncommutative geometry emerging from matrix models
by studying a surprisingly rich six matrix model proposed
in [7,8]. This is a theory with two independent parameters,
the gauge coupling g and the mass deformation M, where
the particular value M ¼ 1=2 was considered in [9]. This
model is a generalization of the three matrix model studied
in [10–12]. The matrix geometry which emerges here is
also interesting because it provides an alternative setting
for the regularization of (noncommutative) field theories
[13–16], and also as the configurations of D0-branes in
particular string theories, namely in the large k limit of a
boundary Wess-Zumino-Novikov-Witten model [17–19].
Here, however, the geometry emerges as the system cools,
much as a Bose condensate or superfluid emerges as a
collective phenomenon at low temperatures. And there is
no background geometry in the high-temperature phase.
We consider the most general single trace Euclidean

action functional for a six matrix model invariant under
global SOð3Þ × SOð3Þ transformations containing no
higher than the fourth power of the matrices. We find that
generically the model has three phases. The first distinct
phase is a geometrical one whereas the other distinct phase
is a matrix phase. The third phase is a crossover phase
which appears between the geometrical and the matrix
phases for large values of M. The geometrical phase
appears at low temperature (weak coupling). Small
fluctuations in this phase are those of a Yang-Mills theory
coupled to two scalar fields around a ground state

corresponding to the Cartesian product of two round fuzzy
spheres [20], viz. S2

N × S2
N . The gauge group is Abelian.

In the strict large N limit the geometry becomes classical.
As the temperature is increased the geometry undergoes
a transition. In the matrix phase there is no background
spacetime geometry and the fluctuations are those of the
matrix entries around zero. In this high-temperature (strong
coupling) phase the model is essentially a zero-dimensional
reduction of six-dimensional Yang-Mills theory.

II. THE MODEL

Let Xa and Ya, a ¼ 1, 2, 3 be six N × N Hermitian
matrices and let us consider the action

S ¼ S1 þ S2 þ S12;

S1 ¼ N

�
−
1

4
Tr½Xa; Xb�2 þ

2iα
3

ϵabcTrXaXbXc

þ βTrX2
a þMTrðX2

aÞ2
�
;

S2 ¼ N

�
−
1

4
Tr½Ya; Yb�2 þ

2iα
3

ϵabcTrYaYbYc

þ βTrY2
a þMTrðY2

aÞ2
�
;

S12 ¼ N

�
−
1

2
Tr½Xa; Yb�2

�
: ð1Þ

The gauge coupling constant ~α4 ¼ α4N2 ¼ β plays the
role of inverse temperature, the mass parameter M controls
the stability of the geometry, and we fix N ¼ N2

0,
c02 ¼ ðN2

0 − 1Þ=4 and β ¼ −α2μ; μ ¼ 2ð4c02M − 1Þ=9 in
this study.
The absolute minimum of the action is given by Xa ¼

αϕ0La ⊗ 1N0
and Ya ¼ αϕ01N0

⊗ La with ϕ0 ¼ 2=3
and La are the generators of SUð2Þ in the irreducible
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representation of size N0. Expanding around this con-
figuration, with Xa ¼ αϕ0ðLa ⊗ 1þ AaÞ and Ya ¼
αϕ0ð1 ⊗ La þ BaÞ, yields a noncommutative Yang-Mills
action with gauge coupling g2 ¼ 1= ~α4. This theory
includes two adjoint scalar fields, which are the compo-
nents of the gauge field normal to the two spheres, given by

Φ1 ¼ 1

2

 
xaAa þ Aaxa þ

A2
affiffiffiffiffi
c02

p
!
;

Φ2 ¼ 1

2

 
yaBa þ Baya þ

B2
affiffiffiffiffi
c02

p
!
: ð2Þ

In the large N limit taken with ~α and m2 ¼ NM=2 held
fixed, the action for small fluctuations becomes that of a
Uð1Þ gauge field very weakly coupled to the above two
scalar fields defined on a background commutative sphere
S2 ⊗ S2. For large m2 the two scalar fields are simply not
excited.
One can see the background geometry as that of a fuzzy

sphere S2
N ⊗ S2

N with coordinates xa ¼ La ⊗ 1N0
=
ffiffiffiffiffi
c02

p
and ya ¼ 1N0

⊗ La=
ffiffiffiffiffi
c02

p
satisfying

x21 þ x22 þ x23 ¼ 1; ½xa; xb� ¼
iffiffiffiffiffi
c02

p ϵabcxc;

y21 þ y22 þ y23 ¼ 1; ½ya; yb� ¼
iffiffiffiffiffi
c02

p ϵabcyc; ð3Þ

and

½xa; yb� ¼ 0: ð4Þ

The algebra generated by products of the xa and ya is the
algebra of all N × N matrices with complex coefficients.
The geometry enters through the Laplacian [14]

L̂2· ¼ ½La; ½La; ·�� ⊗ 1N0
þ 1N0

⊗ ½La; ½La; ·��; ð5Þ

which has the same spectrum as the round Laplacian on
the commutative sphere S2 × S2, but cut off on each
sphere at a maximum angular momentum L ¼ N0 − 1.
The fluctuations of the scalar fields have this Laplacian as
the kinetic term.
The ground state is found by considering the configu-

ration Xa ¼ αϕLa ⊗ 1N0
and Ya ¼ 1N0

⊗ αϕ0La where ϕ
plays the role of the radius of the spheres defined by

R2 ¼ 1

N
TrX2

a or R2 ¼ 1

N
TrY2

a: ð6Þ

The radius R was defined in [21] by the formula

1

R
¼ 1

ϕ2
0 ~α

2c02
TrX2

a: ð7Þ

The effective potential [11,22,23] obtained by integrating
out fluctuations around the S2

N × S2
N background is given,

in the large N limit, by

V
2N2

¼ ~α40

�
ϕ4

4
−
ϕ3

3
þm2

ϕ4

4
− μ

ϕ2

2

�
þ logϕ2; ð8Þ

where we have redefined the coupling constant by

N2
0

2
α4 ¼ ~α40: ð9Þ

The difference between the result on S2 and this result lies
in the replacement ~α → ~α0 and the replacement c2 → c02 in
the definition of μ. The analysis of the phase structure is
therefore identical.
For example, the local minimum ϕ ¼ ϕ0 disappears

for ~α < ~α�. The critical curve ~α� is determined from the
point at which the real roots of ∂Veff=∂ϕ ¼ 0 merge and
disappear. This interpolates between ~α� ∼ N at smallM and
the large M result

~α� ¼ 3

�
2

M

�
1=4

: ð10Þ

Thus, as the system is heated, the radius R expands from
R ¼ 1, at large ~α to some critical value R� at ~α�. When
~α < ~α� the fuzzy sphere solution no longer exists and the
fuzzy sphere S2

N ⊗ S2
N evaporates.

Furthermore, defining the entropy by S ¼ hSi=N2, we
obtain in the fuzzy sphere S2

N ⊗ S2
N phase near the critical

point the formula [24]

S ¼ S� −
24

ϕ� ~α
5
2�
ffiffiffiffiffi
M

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
~α − ~α�

p
: ð11Þ

This predicts immediately that the transition has a divergent
specific heat with exponent α ¼ 1=2, and also predicts that
the entropy has a discrete jump, with a narrowing critical
regime as M is increased. However, since the effective
potential approximation does not take into account the
coupling S12 between the two spheres, the value of the
predicted discrete jump is not expected to agree with
the Monte Carlo result. Nevertheless, we have shown by
means of Monte Carlo [23] that the effective potential
approximation remains a very good fit to the Monte Carlo
data especially for large values of M where the coupling
between the two spheres is dominated by the individual
actions.

BADIS YDRI, RAMDA KHALED, and ROUAG AHLAM PHYSICAL REVIEW D 94, 085020 (2016)

085020-2



III. THE PHASE DIAGRAM

In Monte Carlo simulations we use the Metropolis
algorithm and the action (1). The errors were estimated
using the jackknife method.
The first estimation of the location of the transition is

obtained from the intersection point of the average value of
the action hSi for different values of N. This intersection
point is associated with a discrete jump in the entropy
which is neatly observed for small values ofM (Fig. 1). As
M increases it becomes harder to resolve the discontinuity.
For small values ofM (Fig. 2) a divergence in the specific

heat Cv ≔ hðS − hSiÞ2i=N2 is observed. The maximum
coincides with the intersection point of the action, and
thus it marks the location of the transition. The theoretical
prediction (10) gives also a reasonable fit in this regime.
In summary, we have the behavior

Cv

N2
→

(
5
2
; ~α ≫ ~α� fuzzy sphereS2

N ⊗ S2
N phase

3
2
; ~α ≪ ~α� Yang-Mills matrix phase:

The location of the transition, for large values ofM, moves
to the minimum of the specific heat, and it agrees very well
with the theoretical curve (10), while the intersection point
of the action gives a lower estimate of the transition point in
this case.
The maximum of Cv, for large values of M, saturates

around the value ~α ∼ 4.2. Indeed, starting from some value
of M around M ∼ 1, the peak in Cv occurs always at this
value ~α ∼ 4.2. This is the regime where the transition from
the fuzzy sphere S2

N ⊗ S2
N phase to the Yang-Mills matrix

phase becomes a crossover transition. The critical line
between the fuzzy sphere S2

N ⊗ S2
N phase and the crossover

phase is given by the maximum of Cv, whereas the critical
line between the Yang-Mills matrix phase and the crossover
phase is given by the minimum of Cv.
As the value of M is increased, our numerical study

confirms that the fuzzy sphere S2
N ⊗ S2

N to matrix model

transition is shifted to lower values of ~α, and extrapolating
M → ∞ we infer that the critical coupling goes to zero. In
other words, the fuzzy sphere S2

N ⊗ S2
N phase is only stable

in the limit M → ∞.
Our results are summarized in a phase diagram in Fig. 3

which also includes the measurement from the radius [23].
As in the two-dimensional case studied in [21], the
persistence of the critical line, as determined by the
crossing point of the average action at the minimum of
Cv, suggests that the transition is second order. This is
consistent with the theoretical analysis (11) which indicates
a divergent specific heat with exponent α ¼ 1=2 but with a
narrowing critical regime as M is increased. See also [25].
However, for large values of M the behavior seems to be
quite different with the appearance of a crossover phase
separating the fuzzy sphere S2

N ⊗ S2
N phase from the Yang-

Mills matrix phase.

IV. THE EIGENVALUE DISTRIBUTIONS

The most detailed order parameter at our disposal is
the distribution of the eigenvalues of observables. Here, we
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FIG. 1. The action for the 6D Yang-Mills matrix model.
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FIG. 3. The phase diagram of the 6DYang-Mills matrix model.
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focus mainly on X3 and Y3. The characteristic behavior of
the distributions of eigenvalues in the fuzzy sphere S2

N ⊗
S2
N and Yang-Mills matrix phases is illustrated in Figs. 4

and 5 respectively.
For small values of M, we see that, as one crosses the

critical curve in Fig. 3, the eigenvalue distribution of X3

and Y3 undergoes a transition from a point spectrum given
by the eigenvalues of the SUð2Þ generators in the largest
irreducible representation which is of size N, viz.

þN − 1

2
;
N − 1

2
− 1;…;−

N − 1

2
þ 1;−

N − 1

2
; ð12Þ

to a continuous distribution symmetric around zero given
by the d ¼ 6 law [26–29],

ρðλÞ ¼ Ωd−1

Vdðd − 1Þ ðr
2 − λ2Þðd−1Þ=2: ð13Þ

This is a generalization of the d ¼ 3 (parabolic) law found
in two dimensions [30,31]. This can be derived from the
assumption that the six matrices are commuting with a joint
eigenvalue distribution uniform inside a six-dimensional
ball with a radius r.
However, for large values of M the behavior of the

distribution inside the Yang-Mills matrix phase changes
to a uniform distribution. See Fig. 6. This occurs in the
regime of the crossover phase. Indeed, for a large value
of M, in the crossover phase, a strong gauge field is
superimposed on the fuzzy sphere S2

N ⊗ S2
N background

in such a way that the middle peaks flatten then disappear
slowly in favor of a uniform distribution. The last peaks
to go are the maximum and the minimum of the SUð2Þ
configuration (12).

V. CONCLUSIONS

In this paper we have extended our previous work [21]
to four dimensions. We have studied a six matrix model
with global SOð3Þ × SOð3Þ symmetry containing at most
quartic powers of the matrices proposed in [7]. The value
M ¼ 1=2 of the deformation corresponds to the model of
[9]. This theory exhibits a phase transition from a geo-
metrical phase at low temperature given by a fuzzy sphere
S2
N × S2

N background, to a Yang-Mills matrix phase with no
background geometrical structure at high temperature. The
geometry as well as an Abelian gauge field and two scalar
fields have been determined dynamically as the temper-
ature decreases and the fuzzy sphere S2

N ⊗ S2
N condenses.

The transition is exotic in the sense that we have observed,
for small values ofM, a discontinuous jump in the entropy,
characteristic of a first order transition, yet with divergent
critical fluctuations and a divergent specific heat with
critical exponent α ¼ 1=2. The critical temperature is
pushed upwards as the scalar field mass is increased
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(see Fig. 3). For small M, the system in the Yang-Mills
phase is well approximated by six decoupled matrices with
a joint eigenvalue distribution which is uniform inside a
ball in R6. This yields the d ¼ 6 law (13). For largeM, the
transition from the sphere S2

N ⊗ S2
N phase to the Yang-

Mills matrix phase turns into a crossover and the eigenvalue
distribution in the Yang-Mills matrix phase changes from
the d ¼ 6 law to a uniform distribution.
In the Yang-Mills matrix phase the specific heat is equal

to 3=2 which coincides with the specific heat of six
independent matrix models with quartic potential in the
high-temperature limit and is therefore consistent with this
interpretation. Once the geometrical phase is well estab-
lished the specific heat takes the value 5=2 with the gauge
field contributing 1=2 [32] and the two scalar fields each
contributing 1 [33].

The behavior of the physical radius of the two spheresR
which is defined by (6) is such that it goes to a minimum
value Rmin, which can be computed using the d ¼ 6 law
(13) for small values M, in the Yang-Mills matrix phase,
while in the fuzzy sphere S2

N ⊗ S2
N it increases for large ~α

as ~α2, i.e. the radius expands with the temperature as 1=
ffiffiffiffi
T

p
.

The model presents thus an appealing picture of a
geometrical phase emerging as the system cools and
suggests a scenario for the emergence of geometry in
the early universe.
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