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Using matrix product operators, the Schwinger model is simulated in thermal equilibrium. The
variational manifold of gauge-invariant matrix product operators is constructed to represent Gibbs states.
As a first application, the chiral condensate in thermal equilibrium is computed, and agreement with earlier
studies is found. Furthermore, as a new application, the Schwinger model is probed with a fractional
charged static quark-antiquark pair separated infinitely far from each other. A critical temperature beyond
which the string tension is exponentially suppressed is found and is in qualitative agreement with analytical
studies in the strong coupling limit. Finally, the CT symmetry breaking is investigated, and our results
strongly suggest that the symmetry is restored at any nonzero temperature.
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I. INTRODUCTION

Completing the phase diagram of QCD is one of the
major challenges of theoretical physics since the 1970s.
Huge efforts combining different techniques already led to
great insights in QCD. Perturbative computations [1] using
Feynman diagrams, which were very successful for QED,
enabled experimentalists to test QCD in the lab, for
instance, by predicting the R ratio of electron-positron
annihilation. Unfortunately, due to the asymptotic freedom
of QCD, perturbative computations are limited to high-
energy phenomenons excluding the study of confinement,
dynamical mass generation, and chiral symmetry breaking.
At the numerical level, Lattice QCD [2], based on

Monte Carlo sampling, led to a big breakthrough in
completing the phase diagram of QCD [3–6]. For vanishing
baryon density, a good understanding of the phase diagram
has been achieved. Unfortunately, when including a finite
number of baryons, which is relevant for the physics of
heavy-ion collisions, neutron stars, and supernovae, sim-
ulations are troubled by the notorious sign problem. Recent
efforts using the Taylor extrapolation method, reweighting,
or analytical continuation of the chemical potential led to
results for small baryon densities and/or high temperatures
[4,7]. However, for large chemical potential, an accurate
description is still lacking.
In the last decade, the tensor networks states (TNS) [8,9]

formalism has become a very popular method to tackle
strongly correlated many-body systems. Their construction
is motivated by the area law for ground states of local
Hamiltonians [10–12] for which the von Neumann entropy
scales with the boundary instead of being extensive. As a
Hamiltonian method, the TNS approach is free of any sign
problem, see, for instance, Refs. [13,14] for the imple-
mentation of fermions in two spatial dimensions, and
enables the difficult simulation of out-of-equilibrium

physics, e.g., Refs. [15–18]. The most famous example
of TNS is the matrix product states (MPS) [19,20] in
one dimension that underlie Steve White’s density matrix
renormalization group [21]. Different applications of MPS
on (1þ 1)-dimensional gauge theories [22–34] demon-
strated the potential of MPS to tackle gauge theories. In
higher dimensions, the TNS formalism is at present less
developed, although some first promising results have been
obtained for (2þ 1)-dimensional gauge theories [35–39].
When coupling a system to a heat bath, it is described by

mixed density operators. In one dimension, the straightfor-
ward generalization of MPS to operators are the matrix
product operators (MPO) [40,41]. Just like MPS are an
efficient and faithful representation for ground states of
local gapped Hamiltonians [10], MPO are an efficient
approximation for Gibbs states [42,43] which describe the
system in thermal equilibrium. Therefore, we expect TNS
to be useful for investigating canonical and grand canonical
ensembles for gauge field theories. This has recently been
confirmed by a successful study of the chiral condensate of
the Schwinger model at finite temperature [44–47].
In this paper, we also study the Schwinger model in

thermal equilibrium but now also focus on asymptotic
confinement and charge translation (CT) symmetry break-
ing, thereby continuing our recent work at zero temperature
[33]. Historically, Schwinger considered this model [48] as
an example of a gauge vector field that can have a nonzero
mass [49]. Not so coincidentally, a few months later,
Anderson published his proposal for the Higgs mechanism
where gauge fields acquire mass without breaking gauge
invariance [50]. Other interesting physical features like, for
instance, confinement and chiral symmetry breaking made
this model very attractive to test new methods. In the last
decade, this model also gained interest from the exper-
imentalists in the context of quantum simulators
[30,51–70].
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In the next section, we discuss the setup of our
simulations using MPO. To test our method, we compute
in Sec. III the chiral condensate and compare our results
with earlier studies [47,71]. In Sec. IV, we turn our attention
to the asymptotic aspects of confinement for a static quark-
antiquark pair with fractional charge. At high temperatures,
we find that the string tension becomes exponentially
small. Furthermore, we also study the CT symmetry and
find strong indications that the spontaneous symmetry
breaking of the ground state at zero temperature vanishes,
as soon as a nonzero temperature is turned on.

II. SETUP

A. Hamiltonian and gauge invariance

The Schwinger model is 1þ 1-dimensional QED with
one fermion flavor. We start from the Lagrangian density in
the continuum:

L ¼ ψ̄ðγμði∂μ þ gAμÞ −mÞψ −
1

4
FμνFμν: ð2:1Þ

One then performs a Hamiltonian quantization in the
timelike axial gauge (A0 ¼ 0), which can be turned into
a lattice system by the Kogut-Susskind spatial discretiza-
tion [72]. The two-component fermions live on a staggered
lattice. These fermionic degrees of freedom can be con-
verted to spin-1=2 degrees of freedom by a Jordan-Wigner
transformation with the eigenvectors fjsnin∶sn ∈ f−1; 1gg
of σzðnÞ as a basis of the local Hilbert space at site n. The
compact gauge fields θðnÞ ¼ agA1ðnÞ live on the links
between the sites. Their conjugate momenta EðnÞ, with
½θðnÞ; Eðn0Þ� ¼ igδn;n0 , correspond to the electric field. The
commutation relation determines the spectrum of EðnÞ up
to a constant, EðnÞ=g¼αðnÞþp, with αðnÞ∈R corre-
sponding to the background electric field at link n and
p ∈ Z.
In this formulation, the gauged spin Hamiltonian derived

from the Lagrangian density (2.1) reads (see Refs. [72,73]
for more details)

H ¼ g
2
ffiffiffi
x

p
 X

n∈Z

1

g2
EðnÞ2 þ

ffiffiffi
x

p
g

m
X
n∈Z

ð−1ÞnσzðnÞ

þ x
X
n∈Z

ðσþðnÞeiθðnÞσ−ðnþ 1Þ þ H:c:Þ
!
; ð2:2Þ

where σ� ¼ ð1=2Þðσx � iσyÞ are the ladder operators.
Here, we have introduced the parameter x as the inverse
lattice spacing in units of g: x≡ 1=ðg2a2Þ. The continuum
limit will then correspond to x → ∞. Notice the different
second (mass) term in the Hamiltonian for even and odd
sites which originates from the staggered formulation of
the fermions. In this formulation, the odd sites are reserved
for the charge −g “quarks,” where spin up, s ¼ þ1,

corresponds to an unoccupied site and spin down,
s ¼ −1, corresponds to an occupied site. The even sites
are reserved for the charge þg “antiquarks” where now
conversely spin up corresponds to an occupied site and spin
down corresponds to an occupied site.
In the timelike axial gauge, the Hamiltonian is still

invariant under the residual time-independent local gauge
transformations generated by

gGðnÞ ¼ EðnÞ − Eðn − 1Þ − g
2
ðσzðnÞ þ ð−1ÞnÞ: ð2:3Þ

As a consequence, if we restrict ourselves to physical
gauge-invariant operators O, with ½O;GðnÞ� ¼ 0, the
Hilbert space decomposes into dynamically disconnected
superselection sectors, corresponding to the different eigen-
values of GðnÞ. In the absence of any background charge,
the physical sector then corresponds to the GðnÞ ¼ 0 sector.
Imposing this condition (for every n) on the physical states
is also referred to as the Gauss law constraint, as this is
indeed the discretized version of ∂zE − j0 ¼ 0, where j0 is
the charge density of the dynamical fermions.
The other superselection sectors correspond to states

with background charges. Specifically, if we want to
consider two probe charges, one with charge −gQ at site
0 and one with opposite charge þgQ at site k, we have to
restrict ourselves to the sector:

gGðnÞ ¼ gQðδn;0 − δn;kÞ: ð2:4Þ

Notice that we will consider both integer and noninteger
(fractional) charges Q.
As in the continuum case [74], we can absorb the probe

charges into a background electric field string that connects
the two sites. This amounts to the substitution EðnÞ ¼
g½LðnÞ þ αðnÞ� where αðnÞ is only nonzero in between the
sites [αðnÞ ¼ −QΘð0 ≤ n < kÞ] and LðnÞ has an integer
spectrum [LðnÞ ¼ p ∈ Z]. In terms of LðnÞ, the Gauss
constraint now reads

GðnÞ ¼ LðnÞ − Lðn − 1Þ − σzðnÞ þ ð−1Þn
2

¼ 0; ð2:5Þ

and we finally find the Hamiltonian

H ¼ g
2
ffiffiffi
x

p
 X

n∈Z
½LðnÞ þ αðnÞ�2 þ

ffiffiffi
x

p
g

m
X
n∈Z

ð−1ÞnσzðnÞ

þ x
X
n∈Z

ðσþðnÞeiθðnÞσ−ðnþ 1Þ þ H:c:Þ
!
; ð2:6Þ

in accordance with the continuum result of Ref. [75].
In this paper, we will consider the system coupled to a

heat reservoir with fixed temperature T. If the system only
exchanges energy with this reservoir and it reaches thermal
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equilibrium, it is represented by the canonical ensemble.
The density operator that describes this canonical ensemble
is the Gibbs state e−βH, where β ¼ 1=T is the inverse
temperature. The probability of finding the system in a
particular eigenstate jEi of H is e−βE=ZðβÞ where ZðβÞ ¼
trðe−βHÞ is the partition function. Because the physical
sector corresponds to states with GðnÞ ¼ 0, we need to
exclude the (micro)states that are not gauge invariant. In
particular, the probability to find the system in an eigenstate
jEi of H which is not gauge invariant, GðnÞjEi ≠ 0,
should be zero: hEjρðβÞjEi ¼ 0. Therefore, we need to
project H onto the ðGðnÞ ¼ 0Þ-subspace. If P is the
projector onto the ðGðnÞ ¼ 0Þ-subspace, the canonical
ensemble is thus described by the density operator
ρðβÞ ¼ Pe−βHð¼ Pe−βHP ¼ e−βHPÞ. The ensemble aver-
age of a given gauge-invariant observableQ is computed as

hQiβ ¼
trðPQPe−βHÞ

ZðβÞ with ZðβÞ ¼ trðPe−βHÞ;

the partition function. Note that this expectation value
indeed corresponds to the expectation value obtained from
the Wilsonian path integral [76].

B. Gauge-invariant MPO

Here, we will construct a MPO to approximate the
Gibbs state Pe−βH. Therefore, we will use the method
discussed in Ref. [40]. The main idea is that we purify the
MPO Ansatz by a MPS in a higher-dimensional Hilbert
space. Starting from the identity on the ðGðnÞ ¼ 0Þ-
subspace for β ¼ 0, we obtain the state for finite β by
evolving this purification in imaginary time. In addition
to Ref. [40], we will take gauge invariance into account
when constructing the MPS purification by imposing a
block structure similar to Ref. [22] on the tensors
describing the MPS.
Consider now the lattice spin-gauge system (2.6) of 2N

sites. On site n, the matter fields are represented by the
spin operators with basis fjsnin∶sn ∈ f−1; 1gg. The gauge
fields live on the links, and on link n, their Hilbert space is
spanned by the eigenkets fjpni½n�∶pn ∈ Z½pmin; pmax�g of
the angular operator LðnÞ. Note that we only retained a
finite range for the eigenvalues pn of LðnÞ for our
numerical scheme. We will address the issue of which
values to take for pmin and pmax in Sec. II C. It will be
convenient to block site n and link n into one effective
site with local Hilbert space Hn spanned by fjsn; pning.
Writing κn ¼ ðsn; pnÞ, we introduce the multi-index

κ ¼ ððs1; p1Þ; ðs2; p2Þ;…; ðs2N; p2NÞÞ ¼ ðκ1;…; κ2NÞ:

With these notations, we have that the local Hilbert space
Hn on the effective site n is spanned by fjκning. Therefore,
the Hilbert space of the full system of 2N sites and 2N

links, H ¼ ⊗
2N

n¼1
Hn, has basis fjκi ¼ jκ1i1…jκ2Ni2Ng. A

general operator thus takes the formX
κ

Cðκ1;κ01Þ;…;ðκ2N;κ02NÞjκihκ0j

with Cðκ1;κ01Þ;…;ðκ2N;κ02NÞ ∈ C.
In this basis, the projector P on the ðGðnÞ ¼ 0Þ-subspace

reads

P ¼
X
κ

 Y2N
n¼1

δ
pn−pn−1;

snþð−1Þn
2

!
jκihκj; ð2:7Þ

where we take periodic boundary conditions (p0 ¼ p2N).
For β ¼ 0, we have that ρð0Þ ¼ P. We will now write this
state as a MPO [40,41],

ρð0Þ ¼
X
κ;κ0

tr
�
W

κ1κ
0
1

1 …W
κ2Nκ

0
2N

2N

�
jκihκ0j; ð2:8Þ

where Wκnκ
0
n

n ∈ CD×D are complex matrices. Thereto, we
put

Wκ1;κ2
n ¼

X
κa

Aκ1;κa
n ⊗ Āκ2;κa

n

with κa ¼ ðsa; paÞ and AðκÞ;ðκaÞ
n ¼ Aðs;pÞ;ðsa;paÞ

n ∈ CD×D

complex matrices. So ρð0Þ ¼ P, we give, similarly as in

Ref. [22], the virtual indices (α, β) of ½Aðs;pÞ;ðsa;paÞ
n �α;β a

multiple index structure, α → ðq; αqÞ, β → ðr; βrÞ, where
q; r ∈ Z label the eigenvalues of LðnÞ. One can now check
that if we puth
Aðs;pÞ;ðsa;paÞ
n

i
ðq;αÞ;ðr;βÞ

¼ ½an�αq;βrδr;qþ½sþð−1Þn�=2δp;rδs;saδpa;qþ½saþð−1Þn�=2; ð2:9Þ

where an ∈ CDq×Dr can be any nonzero matrix, ρð0Þ equals
Eq. (2.7) up to a normalization factor.
To obtain a purification of the state ρð0Þ, we need to

consider the Hilbert space

Hfull ¼ ⊗
2N

n¼1
Hn ⊗ Ha

n;

where Ha
n ¼ spanfjκanin ¼ jsaninjpa

nig is an auxiliary
Hilbert space with the same dimension as Hn. Then, we
introduce the MPS [40]

jΨ½A�i ¼
X
κ;κa

trðAκ1;κa1
1 …A

κ2N;κa2N
2N Þjκ; κai ∈ Hfull;

jκ; κai ¼ jκ1i1jκa1i1…; jκ2Ni2N jκa2Ni2N;
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where Aκn;κan
n is defined in (2.9). By contracting the κan, we

obtain up to a normalization factor P

trHaðjΨ½A�ihΨ½Ā�jÞ ∝P:

Because ρð0Þ is the projector P on the (GðnÞ ¼ 0)-
subspace, ½H;P� ¼ 0 implies that ρðβÞ ¼ Pe−βH ¼
e−βH=2Pe−βH=2. As a consequence, if we evolve the
purification jΨ½AðβÞ�i according to

jΨ½AðβÞ�i ¼ e−ðβ=2ÞHjΨ½Að0Þ�i; ð2:10Þ

we have for all values of β that

ρðβÞ ¼ trHaðjΨ½AðβÞ�ihΨ½ĀðβÞ�jÞ:

Note that the Hamiltonian H here only acts on Hn but not
on the auxiliary Hilbert spaces Ha

n.
Because Anðβ ¼ 0Þ takes the form (2.9), gauge invari-

ance of H implies that during the evolution (2.10) AnðβÞ
will have a similar form,

½Aðs;pÞ;ðsa;paÞ
n ðβÞ�ðq;αÞ;ðr;βÞ
¼ ½as;p;san ðβÞ�αq;βrδr;qþ½sþð−1Þn�=2δp;rδpa;qþ½saþð−1Þn�=2;

ð2:11Þ

where as;p;s
a

n ∈ CDq×Dr represents the variational freedom
of the MPS jΨ½AðβÞ�i. Note that, contrary to (2.9), as;p;san

now also depends on s, p, and sa. The total bond dimension
of this MPS is D ¼PqDq. Finally, we note that, by
restricting ourselves to finite eigenvalues of LðnÞ, we
cannot represent the initial state ρð0Þ exactly.
Fortunately, as we will see later, this does not spoil our
results for nonzero β; see Sec. II C and in particular
Figs. 1(a) and 2(a).
The MPS framework enables us to perform our simu-

lations directly in the thermodynamic limit ðN → þ∞Þ.
In this case, the Hamiltonian (2.6) is translation invariant
over an even number of sites. By starting from a state
which has this symmetry, i.e., by taking in (2.11) all an
equal for β ¼ 0, we have for all values of β that as;p;s

a

n ðβÞ
depends only on the parity of n: as;p;s

a

2n−1 ðβÞ ¼ as;p;s
a

1 ðβÞ
and as;p;s

a

2n ðβÞ ¼ as;p;s
a

2 ðβÞ; ∀ n.

C. ITEBD for thermal evolution

In the previous subsection, we purified the Gibbs state
ρðβÞ ¼ Pe−βH by the MPS jΨ½AðβÞ�i. Using gauge invari-
ance and translation invariance over two sites, we identified
the variational degrees of freedom as;p;s

a

1 ; as;p;s
a

2 ∈ CDq×Dr

of jΨ½AðβÞ�i; see Eq. (2.11). There now only remains
solving Eq. (2.10) within the MPS manifold, which is
performed by using the infinite time-evolving block

decimation (iTEBD) algorithm [15,22]. At the core of this
method lies the Trotter decomposition [77] which decom-
poses e−dβH=2 into a product of local operators, the so-
called Trotter gates. We performed a fourth-order Trotter
decomposition of e−ðdβ=2ÞH for small steps dβ which yields
an error of order ðdβÞ5 for each step dβ. By applying these
Trotter gates to the MPS jΨ½AðβÞ�i, another MPS is
obtained with larger bond dimension. This MPS is pro-
jected to a MPS with smaller bond dimensions Dq in order
to avoid the bond dimensions increasing exponentially
with β.
This projection is performed as an effective truncation

in the Schmidt spectrum of jΨ½AðβÞ�i with respect to the
bipartition fA1ðnÞ ¼ Z½−∞; n�;A2ðnÞ ¼ Z½nþ 1;þ∞�g.
The Schmidt decomposition with respect to the bipartition
fA1ðnÞ;A2ðnÞg reads

jΨ½AðβÞ�i ¼
Xpmax

q¼pmin

XDq

αq¼1

ffiffiffiffiffiffiffiffiffi
λnq;αq

q ���ψA1ðnÞ
q;αq

E���ψA2ðnÞ
q;αq

E
; ð2:12Þ

where jψAkðnÞ
q;αq i are orthonormal unit vectors in the Hilbert

space HAkðnÞ ¼ ⊗
j∈AkðnÞ

ðHj ⊗ Ha
j Þ (k ¼ 1, 2) and λnq;αq ,

called the Schmidt values, are non-negative numbers that
sum to 1. Note that the Schmidt values are labeled by the
eigenvalues of LðnÞ, which is a consequence of (2.11).
Because of translation symmetry over two sites, λnq;αq
only depends on the parity of n: λ2n−1q;αq ¼ λ1q;αq and
λ2nq;αq ¼ λ2q;αq ; ∀ n. From Eq. (2.12), one observes that the
limit Dq → þ∞, pmin → −∞, and pmax → þ∞ yields an
exact representation of the state jΨ½AðβÞ�i and thus of the
Gibbs state. The success of the approach using MPO is
explained by the fact that by using relatively small values
of Dq we can obtain very accurate approximations of the
Gibbs state [42,43]. After every Trotter step, the iTEBD
algorithm discards all Schmidt values λnq;αq < ϵ2 with ϵ a
preset tolerance. In particular, when all Schmidt values λnq;αq
corresponding to an eigenvalue q are smaller than ϵ2, this
eigenvalue sector is discarded, and pmin is increased or pmax
is decreased. In this way, pmin, pmax, and Dq are adapted
dynamically.
In Fig. 1(a), we plot pmax and pmin for our simulations

with m=g ¼ 0.25, x ¼ 200, and α ¼ 0, once with preset
tolerance ϵ ¼ 10−6 and once with preset tolerance
ϵ ¼ 5 × 10−6. For ϵ ¼ 10−6, we started with pmax ¼
−pmin ¼ 25, and for ϵ ¼ 5 × 10−6, we started with
pmax ¼ −pmin ¼ 20. We observe that pmax and pmin
decrease very quickly in magnitude as a function of β to
pmax ¼ 3 and pmin ¼ −3. The fact that we can accurately
describe the system with a finite range of eigenvalues of the
electric field should not come as a surprise. Physically, we
do not expect it to be very likely to observe the system,
which is in thermal equilibrium, in a state with extremely
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large electric field compared to the temperature. This
follows from the first term in the Hamiltonian (2.2) that
appears in the Gibbs state ρðβÞ ¼ Pe−βH. Note that the pmin
and pmax at βg ¼ 10 correspond to the values of pmax and
pmin in our simulations at zero temperature in Refs. [22,33].
In the inset, we show the evolution of the maximum bond
dimension over all the charge sectors. The bond dimension
is an almost linearly increasing function of βg for βg≲ 5.
When βg≳ 5, the bond dimension remains almost constant,
indicating that for these parameters βg≳ 5 is already very
close to zero temperature. If we want better accuracy, we
need smaller values of ϵ. In the inset of Fig. 1(a), one
observes that this requires more variational freedom in
the MPS representation of jΨ½AðβÞ�i and thus longer
computation time.
As a first check on our method, we show in Fig. 1(b) the

electric field Eαðβ; xÞ at lattice spacing a ¼ 1=
ffiffiffiffiffi
gx

p
where

Eαðβ; xÞ ¼
g
2
tr

�
Pe−βHP
trðPe−βHÞ ðLð1Þ þ Lð2Þ þ 2αÞ

�
:

For zero background field, α ¼ 0, this quantity should be
zero, which follows from CT symmetry of the Hamiltonian
(C is charge conjugation: σz → −σz; L → −L, and T is
translation over one site). For very small values of βg, the
errors on E0ðβ; xÞ are relatively large. This is a conse-
quence of taking finite values for pmin and pmax; as we
discussed in the previous section, for βg ¼ 0, one should
consider all possible electric field values (p ∈ ½−∞;þ∞�)
to represent the Gibbs state ρð0Þ ¼ P. Fortunately, dis-
carding these Schmidt values for small values of βg does
not spoil the results for larger values of βg. Indeed, for
βg > 0 the errors on E0ðβ; xÞ=g are only of order 10−4. In
this plot, one also observes that taking a smaller value for ϵ
leads to better accuracy. From this example, it is clear that,
unless one is interested in the β → 0 limit, one can safely
neglect eigenvalue sectors q with qþ α larger than 20 in
magnitude.

In Figs. 2(a) and 2(b), we compare two simulations
for different values of the step size dβ and ϵ, now for
nonzero background field α ≠ 0. The first one has ðdβ;ϵÞ¼
ð0.05;10−6Þ, and the second one has ðdβ;ϵÞ¼ð0.01;10−7Þ.
In Fig. 2(b), we compare the electric field, which is nonzero
for α ≠ 0, for both simulations and observe that the results
are the same up to order 10−5. For βg≲ 2, the difference is
slightly larger but still sufficiently small. This slightly
larger error mainly originates from ignoring large eigen-
values of LðnÞ at βg ¼ 0. The fact that the results for
different choices of dβ and ϵ are in agreement indicates
that taking ðdβ; ϵÞ ¼ ð0.05; 10−6Þ is sufficient for most of
our simulations. An extended discussion on how quantify
the errors made of taking nonzero ðϵ; dβÞ is given in
Appendixes A 1 and B 1.

III. CHIRAL CONDENSATE

In QCD with massless up and down quarks, the nonzero
chiral quark condensate signals spontaneous symmetry
breaking of the chiral symmetry. This spontaneous sym-
metry breaking occurs for relatively low temperatures
and explains the existence of pions [78,79]. For physical
quark masses, this chiral symmetry is explicitly broken.
One can still distinguish two phases separated by a
pseudocritical temperature Tc ≈ 150–190 MeV. For tem-
peratures T ≪ Tc, thermal expectation values are domi-
nated by the pions which are a “remnant” of the chiral
symmetry, while at high temperatures the thermodynamics
are well described by the quarks and the gluons. Hence, the
pions can be interpreted as an example of confined quark
bound states that dominate the physics only below Tc.
Therefore, not so surprisingly, it is also suggested that
around this pseudocritical temperature QCD changes from
the confined phase to the deconfined phase, although this is
still a subject of debate [80,81]. In the confined phase, the
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FIG. 2. m=g ¼ 0.5, x ¼ 100, and α ¼ 0.25. (a) pmin and pmax

for ϵ ¼ 10−7, dβ ¼ 0.01 and ϵ ¼ 10−6, dβ ¼ 0.05. Inset: maxi-
mum bond dimension over all the charge sectors. (b): Electric
field per site Eαðβ; xÞ=g. Inset: 10-base logarithm of the
difference of Eαðβ; xÞ=g between simulations with ϵ ¼ 10−7,
dβ ¼ 0.01 and ϵ ¼ 10−6, dβ ¼ 0.05.
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FIG. 1. m=g ¼ 0.25, x ¼ 200, and α ¼ 0. (a) pmin and pmax for
ϵ ¼ 10−6 and ϵ ¼ 5 × 10−6. Inset: maximum bond dimension
over all the charge sectors. (b): Electric field per site E0ðβ; xÞ.
Because α ¼ 0, we should have E0ðβ; xÞ ¼ 0.
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gluons confine the quarks to baryons and mesons while in
the deconfined phase QCD should resemble a quark-gluon
plasma.
Here, we will consider the chiral condensate of the

Schwinger model to benchmark our method. In the one-
flavor massless Schwinger model, the nonzero chiral
condensate is a consequence of the chiral symmetry being
anomalous. The nonzero chiral condensate also determines
the confining behavior of external charges in mass pertur-
bation theory [82]. For m=g ¼ 0, the chiral condensate is
computed analytically by Sachs and Wipf [71]. Besides the
studies in the exactly solvable case (m=g ¼ 0) [71,83],
there are results available in mass perturbation theory
(m=g ≪ 1) [82,84]. Furthermore, in Ref. [84], an approach
using a generalized Hartree-Fock method beyond mass
perturbation theory was studied. Recently, MPO simula-
tions succeeded in recovering the analytical result of Sachs
and Wipf for m=g ¼ 0 [44,45] and also obtained the chiral
condensate in the nonperturbative regime [46,47].
On the lattice with spacing ga ¼ 1=

ffiffiffi
x

p
and 2N sites, the

chiral condensate ΣðβÞ ¼ hΨ̄ðzÞΨðzÞiβ equals

Σðβ; xÞ ¼ g
ffiffiffi
x

p
2N

X2N
n¼1

ð−1Þntr
�

Pe−βH

trðPe−βHÞ
σzðnÞ þ 1

2

�
ð3:1Þ

and can be computed directly in the thermodynamic limit
(N → þ∞) using the Ansatz (2.10); see Refs. [40,85,86]
for details. For m=g ¼ 0, we compare our simulations with
the analytical result in Sec. III A. In Sec. III B, we compute
a subtracted chiral condensate in the nonperturbative
regime: m=g ∼Oð1Þ. The results are compared with the
recent simulations of Bañuls et al. [47].

A. Chiral limit m=g= 0

As for m=g ¼ 0, the chiral condensate is known ana-
lytically, and we can check our method by comparing the
exact result with our simulations. Using path integral
methods, Sachs and Wipf [71] found that for m=g ¼ 0

ΣSWðβÞ ¼
g

2π3=2
eγe2Iðβg=

ffiffi
π

p Þ;

IðuÞ ¼
Z þ∞

0

dt

1 − eu coshðtÞ
; ð3:2Þ

with γ ≈ 0.57721… the Euler-Mascheroni constant. In this
subsection, we will explain in detail how we compute ΣðβÞ
from our simulations and assign an appropriate uncertainty
on this result by taking into account different sources of
errors. As we will see, our estimate for the error is larger
than the actual difference between our continuum estimate
and the exact result. Therefore, we can be confident that our
extrapolation method is reliable in the sense that the exact
results lies within the error bars. We refer to Appendix A 2
for even more details.

On the lattice, we computed the chiral condensate for
16 ≤ x ≤ 600 and βg ∈ ½0; 10� with steps dβ ¼ 0.05. Our
tolerance for discarding the Schmidt values was set to
ϵ ¼ 10−6; i.e., after applying a Trotter gate, we discarded
the Schmidt values smaller than ϵ2. As discussed in
Sec. II C, taking ðϵ; dβÞ ≠ 0 introduces an error which
includes the error originating from taking a finite bond
dimension in the MPS representation of jΨ½AðβÞ�i. As
explained in Appendix A 1, an estimate Δðϵ;dβÞΣðβ; xÞ of
this error is obtained by considering the difference of the
chiral condensate computed for ðϵ; dβÞ ¼ ð10−6; 0.05Þwith
the chiral condensate computed for ðϵ;dβÞ¼ð5×10−6;
0.05Þ and ðϵ; dβÞ ¼ ð10−6; 0.01Þ; see Eq. (A1). For our
simulations, we will only retain the x values for which
Δðϵ;dβÞΣðβ; xÞ=g ≤ 4 × 10−4. In practice, it turns out that
with this criterion for βg ≥ 2 we only include the x values
with 16 ≤ x ≤ 300–400. We refer to Appendix A 1 for
details.
Once we computed for a fixed value of βg the

chiral condensate Σðβ; xÞ and the corresponding errors
Δðϵ;dβÞΣðβ; xÞ for a range of x values, we can use them to
obtain a continuum estimate ΣðβÞ. We explain the pro-
cedure here briefly and refer to Appendix A 2 for details.
Similarly to Refs. [44–47], we fit Σðβ; xÞ to

f1ðxÞ ¼ A1 þ B1

logðxÞffiffiffi
x

p þ C1

1ffiffiffi
x

p ð3:3aÞ

f2ðxÞ ¼ A2 þ B2

logðxÞffiffiffi
x

p þ C2

1ffiffiffi
x

p þD2

1

x
ð3:3bÞ

and to

f3ðxÞ ¼ A3 þ B3

logðxÞffiffiffi
x

p þ C3

1ffiffiffi
x

p þD3

1

x
þ E3

1

x3=2
:

ð3:3cÞ

For all the fitting functions fn (n ¼ 1, 2, 3), we compute all
possible fits against at least nþ 5 data points Σðβ; xÞ of
consecutive x values with Δðϵ;dβÞΣðβ; xÞ=g ≤ 4 × 10−4. For
every such fit, the value of An is an estimate for ΣðnÞðβÞ.
We will only consider the significant fits, i.e., the fits that
have for all coefficients a p value smaller than 0.05. In
practice, this means that the error on each of the coefficients
should be smaller than approximately half the value of
the coefficient itself. Note that our approach is less
conservative than the one used in Ref. [47] where the
authors call a fit statistically significant if the error on
each of the coefficients is smaller than the value of the
coefficient. For each fit, we also compute its χ2 value [see
Eq. (A5)]. If for a fitting function fn we have more than ten
significant fits with χ2=Ndof ≤ 1, we take as the continuum
estimate ΣðnÞðβ; xÞ for the fitting function fn the median
of the distribution of all these estimates weighted by
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expð−χ2=NdofÞ, similarly as in Ref. [26]. Here Ndof is the
degrees of freedom,

Ndof ¼ #data points − #coefficients to fit|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼nþ2

:

The systematic error ΔðnÞΣðβÞ for the choice of fitting
interval comes from the 68,3% confidence interval. When
we have fewer than ten significant fits with χ2=Ndof ≤ 1,
we take for ΣðnÞðβ; xÞ the estimate from the data points with
χ2=Ndof ≤ 1 which has the least error in Δðϵ;dβÞΣðβ; xÞ.
Here, the systematic error ΔðnÞΣðβÞ is estimated by
comparing this with the most outlying estimate coming
from a statistically signicant fit with χ2=Ndof ≤ 1 from the
same fitting Ansatz fn.
So, we now have for each of the fitting functions

Eq. (3.3) an estimate ΣðnÞðβÞ and an error ΔðnÞΣðβÞ which
is the systematic error originating from the choice of x
interval. Of these three estimates, we take as our final
estimate the estimate corresponding to the fit which has the
most significant fits with χ2=Ndof ≤ 1. The error for the
choice of fitting functions is obtained by comparing this
value with the other ΣðnÞðβÞ.
In Fig. 3, we show our result for ΣðβÞ=g and compare it

with Eq. (3.2). The error bars are obtained as the maximum
of the errors discussed above, i.e., the errors originating
from taking a nonzero value for ðϵ; dβÞ, the choice of fitting
the x interval, and the choice of fitting function fn; see
Appendix A 2 for details. For convenience, we show in
Fig. 3 the error bars after every step dβ ¼ 0.2 only. We
indeed find very good agreement between our simulations
and the exact result. In particular, the exact result is always
within the shown error bars.
As is explained in Appendix A 2 (see, in particular,

Fig. 12), at higher temperatures, there are more significant
cutoff effects in x, which is reflected by relatively larger

error bars for βg≲ 1 in Fig. 3(a). We found indeed that at
smaller values of βg the reliable fits had higher-order
corrections in 1=

ffiffiffi
x

p
or were through data points with large

x values. At lower temperatures, i.e., larger values of βg,
we found that our continuum results were more robust
against the choice of fitting function and fitting interval.
In Fig. 3(b), we observe that the chiral condensate con-
verges to its result at βg ¼ ∞, ΣSWðþ∞Þ ¼ eγ=ð2π3=2Þ ≈
−0.1599288 although there are still thermal corrections at
βg≲ 10 of order 10−3 (see the inset). For large values of βg,
the difference between our result and the exact result is of
order 10−4, which is good enough but nevertheless 2 orders
of magnitude larger than the difference we found at zero
temperature for the chiral condensate Σ ¼ Σðþ∞Þ in
Ref. [32]. In that paper, we reproduced the exact result
up to 10−6. The accumulation of errors in ϵ and dβ during
the imaginary time evolution has thus lead to less accuracy
at smaller temperatures, which indeed reflects the fact that
direct optimization methods are better at determining the
ground state than thermal evolution.
As our continuum results are very close to the exact

result and our error bars are large enough such that they
always contain the exact result, we can be confident that the
simulations and the extrapolation procedure to obtain the
continuum limit are reliable. In particular, we observe from
Fig. 3 that our estimated errors in fact overestimate the
real error.

B. m=g ≠ 0∶ Renormalization of ΣðβÞ
At zero temperature, the chiral condensate diverges for

m=g ≠ 0 when we approach the continuum limit x → þ∞.
By subtracting the free chiral condensate (g ¼ 0), a UV-
finite quantity was obtained [27,32,47,87]. In Ref. [47], it
was pointed out that at finite temperature it is also sufficient
to remove the free chiral condensate at zero temperature to
obtain a UV-finite quantity. Hence, we consider the
subtracted chiral condensate

Σsubðβ; xÞ ¼ Σðβ; xÞ − ΣfreeðxÞ

with ΣfreeðxÞ the free chiral condensate at zero tempera-
ture [27],

ΣfreeðxÞ ¼
m
πg

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

g2x

q K

 
1

1þ m2

g2x

!
;

where K is the complete elliptic integral of the first kind.
The procedure to take the continuum limit is exactly the

same as for the massless case m=g ¼ 0, but now we have
to fit Σsubðβ; xÞ against fnðxÞ, Eq. (3.3). For a specific
example, we refer to Fig. 13 in Appendix A 2 where we
discuss the continuum extrapolation of the subtracted chiral
condensate for m=g ¼ 0.25. Similarly as for m=g ¼ 0,
cutoff effects in x are more severe at higher temperatures.
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FIG. 3. m=g ¼ 0. Our continuum result ΣðβÞ (blue) compared
with the analytical result ΣSWðβÞ (magenta). (a) Zooming in on
the interval βg ∈ ½0; 2�. (b) Results for βg ∈ ½0; 10� and con-
vergence toward the result at βg ¼ þ∞ (red). Inset: zooming in
on the interval βg ∈ ½7; 10�.
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In contrast, at larger values of βg, the results are more
robust against the choice of fitting interval and fitting
function fn. In Fig. 4, we show our results for
m=g ¼ 0.125, 0.25, 0.5, 1 (blue) and indeed find larger
error bars for small values of βg. The error is estimated in
the same way as for m=g ¼ 0; it is the maximum of the
error originating from taking nonzero values for ðϵ; dβÞ,
from the choice of fitting interval, and from the choice of
fitting function fn (see Appendix A 2 for details). We
computed ΣsubðβÞ with dβ ¼ 0.05 but show them here with
steps dβ ¼ 0.2 for convenience.
Our results are now compared with the simulations of

Bañuls et al. [47] (magenta). We find that at all temper-
atures the error bars overlap, meaning that the results are in
agreement with each other. This is a nontrivial check on
MPO methods for gauge theories because in both
approaches the optimization methods are different. In
Ref. [47], they perform their simulations on a finite lattice
and take the thermodynamic limit on the level of the
expectation values. Also, instead of purifying the Gibbs
state, they apply Pe−βH immediately to the MPO. After
every step, they project this MPO to an optimal MPO, in the
sense of least squares, with smaller bond dimension D
which has been fixed before. In contrast, we did our

simulations immediately in the thermodynamic limit and
adapted the bond dimension by investigating the Schmidt
spectrum of the purified state. One observes that the errors
in Ref. [47] are larger than ours, which is partially
explained by the fact that we use different extrapolation
methods. The main difference is that we consider more
possible fits through our data (i.e., more choices of the
fitting interval) but are less conservative in the fits we call
statistically significant (see also the previous subsection).
However, our smaller error bars are also explained by
the fact that we work immediately in the thermodynamic
limit (N → þ∞) which eliminates the uncertainty of the
N → þ∞ extrapolation.
Looking at the ΣsubðβÞ, it seems to diverge for β ¼ 0,

which is a consequence of our renormalization scheme.
Indeed, for β ¼ 0, we have that Σðβ; xÞ ¼ 0 while ΣfreeðxÞ
diverges logarithmically in the limit x → þ∞. For other
values of βg, the chiral condensate is UV finite and
decreases to its ground-state expectation value (red line)
as a function of βg; see the insets in Fig. 4. The chiral
condensate tends more quickly toward its ground-state
expectation value for larger values of m=g. For instance, in
Fig. 4, we observe that form=g ¼ 1 the chiral condensate is
already very close to its ground-state expectation value for
βg ≈ 2, while for m=g ¼ 0 even for βg ≈ 4, there is still a
significant difference with the ground-state expectation
value. This is explained by the fact that the mass gap of
H grows with m=g; see Refs. [22,25,26].

IV. ASYMPTOTIC CONFINEMENT

As mentioned in the previous section, QCD changes
from the confined to the deconfined phase around a
pseudocritical temperature Tc. For infinitely heavy quark
masses, this phase transition is detected by the spontaneous
breaking of the SUð3Þ-center symmetry or equivalently
by examining the free energy of an infinitely separated
probe quark-antiquark pair, which diverges in the confining
phase and is finite in the deconfining phase. In the case of
physical QCD, with finite quark masses, the notion of
confinement vs deconfinement is less clear [88]; the
infinitely separated probe pair will always be screened
by charge production out of the vacuum, leading to a finite
free energy, already at zero temperature.
For the Schwinger model, we have a similar situation:

for integer probe charges, the confining string will always
be broken at large separation of the probe pair, due to
screening by the dynamical fermions. However, this is not
the case if we introduce fractional probe charges. In that
case, at zero temperature, for m=g ≠ 0, a confining string
remains even at infinite separation [74]. So, by probing the
vacuum with fractional charge pairs at infinity, we can
examine the confining nature of the theory at finite
temperatures.
At zero temperature, we already elaborated on this in

Ref. [33] for finite and infinite distances Lg between the
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FIG. 4. Subtracted chiral condensate Σsubðm=gÞ for m=g ≠ 0
for different values of m=g. Our results (blue) are compared
with the simulations of Bañuls et al. [47] (magenta). The red
line shows the results at βg ¼ þ∞ obtained in Ref. [32]. In the
inset, we zoom in on the convergence toward this result for
larger values of βg. (a): m=g ¼ 0.125. (b) m=g ¼ 0.25.
(c) m=g ¼ 0.5. (d) m=g ¼ 1.
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quark and antiquark. Our simulations confirmed the known
results that for m=g ¼ 0 the quark-antiquark potential is
never confining for large Lg and that for m=g ≠ 0 it is only
confining if the charge of the heavy probe quarks is a
noninteger. A similar result has been shown when the
system is in thermal equilibrium with a heat bath for
m=g ¼ 0 [89] and m=g ≪ 1 [90–92]. But notice that a
critical temperature was found, above which the string
tension is exponentially suppressed with the temperature.
In the Sec. IVA, we will focus on this phenomenon in the
nonperturbative regime m=g ∼Oð1Þ. As we will discuss in
Sec. IV B, our simulations in this mass regime also allow us
to investigate the CT symmetry restoration in the α → 1=2
limit. But let us now first discuss the general setup of the
simulations.
Assuming that the quark has charge gα and the antiquark

has charge −gα, this setup can be translated to a uniform
background field gα in the Hamiltonian Hα; see Eq. (2.6)
[33,75]. Note that we denoted the α dependence ofH inHα.
The string tension at finite x, σαðβ; xÞ is obtained from the
partition function Zαðβ; xÞ ¼ trðe−βHαPÞ as

σαðβ; xÞ ¼ −
ffiffiffi
x

p
2N

1

β
log

�
Zαðβ; xÞ
Z0ðβ; xÞ

�

¼
ffiffiffi
x

p
2N

ðFαðβ; xÞ − F0ðβ; xÞÞ;

where Fαðβ; xÞ ¼ −ð1=βÞ logðZαðβ; xÞÞ is the free energy
for Lg ¼ þ∞. The MPO framework enables us to compute
the partition function Zαðβ; xÞ and thus the free energy per

unit of length F αðβ; xÞ ¼
ffiffi
x

p
2N Fαðβ; xÞ directly, also in the

thermodynamic limit (N → þ∞). This is in contrast to
Monte Carlo methods where the computation of the free
energy is a difficult task [6,93–95].
Other quantities that will be of interest here are the

electric field and the Gibbs free entropy. The electric field,

Eαðβ; xÞ ¼ lim
N→þ∞

g
2N

X2N
n¼1

tr

�
e−βHαP
Zαðβ; xÞ

ðLðnÞ þ αÞ
�
;

gives us more information about the α dependence of the
string tension because it equals Eαðβ; xÞ ¼ ∂ασαðβ; xÞ. The
(Gibbs) entropy per unit of length,

Sαðβ; xÞ ¼ −
ffiffiffi
x

p
2N

tr

�
e−βHαP
Zαðβ; xÞ

log

�
e−βHαP
Zαðβ; xÞ

��
;

is a measure for thermal fluctuations in the Gibbs state.
When the canonical ensemble behaves as the ground
state and corrections to ground-state expectation values
are negligible, i.e., when the system is effectively at zero
temperature, the entropy is very small and vice versa.
Sαðβ; xÞ is obtained from the average energy per unit of

length Eαðβ; xÞ ¼
ffiffi
x

p
2N

1
Zαðβ;xÞ trðHαe−βHαPÞ via the standard

relation Sαðβ; xÞ ¼ −βðF αðβ; xÞ − Eαðβ; xÞÞ for Gibbs
states. For every value of βg, we subtract its (α ¼ 0) value
from it, and we thus consider ΔSαðβ; xÞ ¼ Sαðβ; xÞ−
S0ðβ; xÞ. Because retaining only a finite range of eigen-
values of LðnÞ leads to the same errors in Sαðβ; xÞ and
S0ðβ; xÞ, the quantity ΔSαðβ; xÞ can be obtained accurately
at all temperatures. We will see later that ΔSαðβ; xÞ is
actually still a good measure for characterizing the tran-
sition from the effective zero temperature behavior at small
temperatures toward a thermal behavior at larger temper-
atures; see Sec. IVA and in particular Fig. 5(d).
One can also compute the chiral condensate Σαðβ; xÞ.

Contrary to the previous section, we will now renormalize
it by subtracting its (α ¼ 0) value and thus consider
ΔΣαðβ; xÞ ¼ Σαðβ; xÞ − Σ0ðβ; xÞ.
As in the previous section, we perform our simulations

for ðϵ; dβÞ ¼ ð10−6; 0.05Þ, and an error is estimated by
comparing this with results for ðϵ; dβÞ ¼ ð10−6; 0.01Þ and
ðϵ; dβÞ ¼ ð5 × 10−6; 0.05Þ; see Appendix B 1 and in par-
ticular Eq. (B1) for details. As is demonstrated there, for
βg≳ 0.5 and α ≤ 0.45, these errors are at most of order
10−4, which is sufficiently small for our purposes. When
βg ≤ 0.5, the values of the considered quantities are very
small, and we need to take smaller values for ϵ. As is
discussed in Sec. IVA, this can be traced back to the
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FIG. 5. x ¼ 100. α ¼ 0.05 (full line), α ¼ 0.1 (dashed line),
α ¼ 0.25 (dotted line), and α ¼ 0.4 (dashed dotted line).
(a) σαðβ; xÞ=g2α2. (b) Eαðβ; xÞ=gα. (c) ΔΣαðβ; xÞ=gα2.
(d) Sαðβ; xÞ=g2α2. The stars in (a) and (b) are the values at
βg ¼ þ∞ for α ¼ 0.25.
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deconfinement transition at T ¼ þ∞. In this regime, we
have set ðϵ; dβÞ ¼ ð10−9; 5 × 10−3Þ. For α > 0.45 and
m=g≳ 0.33, simulations are troubled by the spontaneous
breaking of the CT symmetry; see Sec. IV B. Therefore, we
will also need a smaller tolerance in this regime. More
specifically, we found that taking ϵ ≈ 5 × 10−7 produces
results with errors in ðϵ; dβÞ smaller than 10−3. We refer to
Appendix B 2 for more details.
In Appendix B 3, we show explicitly for m=g ¼

ð0.125; 0.25Þ and α ¼ ð0.1; 0.25; 0.45Þ that σαðβÞ, EαðβÞ,
ΔSαðβÞ, and ΔΣαðβÞ are UV finite quantities. This is done
by extrapolating our results for x ¼ 100; 125;…; 300 to the
continuum limit ðx → þ∞Þ for all values of βg, thereby
addressing all the systematic errors. In contrast to Sec. III,
the data now support a polynomial fit in 1=

ffiffiffi
x

p
instead of

the fits Eq. (3.3) (see, for instance, Figs. 18 and 19 in
Appendix B 3); i.e., we now plot our data against

f1ðxÞ ¼ A1 þ B1

1ffiffiffi
x

p ð4:1aÞ

f2ðxÞ ¼ A2 þ B2

1ffiffiffi
x

p þ C2

1

x
ð4:1bÞ

and to

f3ðxÞ ¼ A3 þ B3

1ffiffiffi
x

p þ C3

1

x
þD3

1

x3=2
: ð4:1cÞ

The continuum limit and an estimate of the error [which
includes the systematic errors originating from taking
nonzero ðϵ; dβÞ, from the choice of x interval and the
choice of fitting function] are found in the same way as for
the chiral condensate (see Sec. III A). In Appendix B 3,
one can find an extended discussion on that. The results
for m=g ¼ ð0.125; 0.25Þ and α ¼ ð0.1; 0.25; 0.45Þ are also
plotted there (Figs. 20 and 21), and we found that all errors
were under control (of order 10−4). As an extra check on
our results, we observed convergence to the results of
Ref. [33] at zero temperature for the string tension and the
electric field. At x ¼ 100, our results were found to be
already close to the continuum limit. When m=g≳ 0.5, the
variation for different values of x becomes even less; see
Fig. 22 in Appendix B 3. Hence, even though we will
restrict our analysis here to x ¼ 100, we can expect to be
close to the continuum limit.
Physics is periodic in α with period 1, and due to CT

symmetry, with C charge conjugation

EðnÞ → −EðnÞ; θðnÞ → −θðnÞ;
σzðnÞ → −σzðnÞ; σ�ðnÞ → σ∓ðnÞ

and T translation over one site, we have that

σαðβ; xÞ ¼ σ1−αðβ; xÞ; ΔΣαðβ; xÞ ¼ ΔΣ1−αðβ; xÞ
Eαðβ; xÞ ¼ −E1−αðβ; xÞ; Sαðβ; xÞ ¼ S1−αðβ; xÞ:

Therefore, we can restrict ourselves to α ∈ ½0; 1=2�. In
Sec. IVA, we will investigate the temperature dependence
of the string tension. In the high temperature regime,
we focus on the deconfinement of the heavy quarks when
the temperature T becomes infinite: T → þ∞. Then, in
Sec. IV B, we treat the case when α tends to 1=2. At zero
temperature, there is for this value of α and m=g ¼
ðm=gÞc ≈ 0.33 a phase transition [25,75] related to the
spontaneous breaking of the CT symmetry. Here, we will
investigate this spontaneous symmetry breaking at finite
temperature.

A. Deconfinement transition at large T

When α is small, one can expand the string tension into a
series of powers of α. Because σα is even in α, this yields an
expansion in α2:

σαðβÞ ≈ f2ðβ; mÞα2 þOðα4Þ: ð4:2aÞ

For the electric field expectation value, we then find

Eαðβ; xÞ ¼
∂

∂ðgαÞ ðσαðβ; xÞÞ ¼ 2α
f2ðβ; mÞ

g
þOðα3Þ;

ð4:2bÞ

and similarly for the entropy and chiral condensate,

ΔSαðβ; xÞ ¼ β2
∂
∂β ðf2ðβ; mÞÞα2 þOðα4Þ; ð4:2cÞ

ΔΣαðβ; xÞ ¼
∂f2
∂m ðβ; mÞα2 þOðα4Þ: ð4:2dÞ

We thus expect for α sufficiently small that the
quantities σαðβ; xÞ=g2α2, Eαðβ; xÞ=gα, ΔΣαðβ; xÞ=gα2,
and ΔSαðβ; xÞ=g2α2 are independent of α up to order α2.
This is precisely what we find in Fig. 5 for α ¼ 0.05 and
α ¼ 0.1. Note that as a consequence of (4.2) the curves of
the string tension and the electric field are similar; see
Figs. 5(a) and 5(b). For α≳ 0.25, the expansion (4.2) is not
in general valid anymore, and higher-order corrections can
become important.
When βg is large compared to the mass gap, we find that

all quantities have converged to their zero-temperature
value; i.e., the system is effectively at zero temperature.
The value of ðβgÞ0 above which all ensemble averages are
close to their ground-state expectation agrees with the value
of βg above which ΔSα ≈ 0. This justifies taking the UV-
finite renormalized entropy ΔSα as a measure to quantify
thermal fluctuations in the Gibbs state. We observe that
ðβgÞ0 is larger for smaller values of m=g. This is explained
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by the fact that for the values of α we considered here the
mass gap of Hα increases with m=g [75,96]. For α ¼ 0.25,
we observe in Figs. 5(a) and 5(b) that the string tension and
the electric field have converged to their ground-state
expectation values (stars) for βg ¼ 10. In particular, at
low temperatures, large βg, the heavy probe charges are
always confined when α is a noninteger.
For βg≲ 0.5, the string tension is very small, which

suggests a transition from the confined phase to a decon-
fined plasma phase. In fact, we expect the string tension
to decay exponentially with temperature at large values of
T ¼ 1=β and the transition to occur exactly at infinite
temperature T=g ¼ 1=βg ¼ þ∞. This is corroborated by
studies in the strong coupling limit [82,90] where it was
found that

σαðβÞ ∼ 2mT sinðπαÞ2e−π3=2T=g þOðm2Þ; ð4:3Þ

at high temperatures (T=g ¼ 1=βg ≫ 1). In Figs. 6(b), 6(c),
6(d), we indeed find that the logarithm of the string tension

is almost linear as a function of T for T=g ∈ ½1; 3� or
equivalently βg ∈ ½0.33; 1�. Note that, because for these
values of βg the string tension is very small, we needed very
small values of the tolerance ϵ and the step dβ ≤ 5 × 10−3

to investigate this regime; see Fig. 6(a). To obtain an idea of
the error in ϵ, we can compare our simulations for ϵ ¼ 10−9

with our simulations for ϵ ¼ 2 × 10−9. The errors are
sufficiently small for βg ∈ ½1; 2� (of order 0.1 or smaller).
For βg≳ 2, errors are larger and represented by the error
bars in Figs. 6(b), 6(c), and 6(d).
In Table I, we show the coefficients obtained by fitting

our results for logðσαðβ; xÞ=g2Þ against

fðT=gÞ ¼ logðAαα
2Þ þ Bα logðT=gÞ − CαT=g; ð4:4Þ

which is equivalent to

σαðβ; xÞ=g2 ≈ α2Aαe−CαT=gðT=gÞBαðT ¼ 1=βÞ:

More specifically, we used our data of logðσαðβ; xÞ=g2Þ for
ϵ ¼ 10−9 and βg ∈ ½1; 2.5� with step dβ ¼ 0.005=g and
considered all possible fits against at least ten consecutive β

values. Each fit θ gave us an estimate ðAðθÞ
α ; BðθÞ

α ; CðθÞ
α Þ. The

final estimates for these parameters are obtained similarly
as for the chiral condensate (Sec. III); we take the median of
all the estimates weighed by expð−χ2θ=Nθ

dofÞ. The latter is
now defined as

χ2θ ¼
X

βj∈fit θ

�
fθð1=βjÞ − logðσαðβj; xÞ=g2Þ

Δϵ logðσαðβj; xÞ=g2Þ
�

2

with

fθðT=gÞ ¼ logðAðθÞ
α α2Þ þ BðθÞ

α logðT=gÞ − CðθÞ
α T=g
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FIG. 6. x ¼ 100. Logarithm of the string tension at larger
temperatures T ¼ 1=βg as a function of T. (a) m=g ¼ 0.125, α ¼
0.05 (full line), and α ¼ 0.1 (dashed line). Convergence of our
results when improving the precision ϵ. (b) m=g ¼ 0.125. Log-
arithm of string tension for α ¼ 0.05 (full line), α ¼ 0.1 (dashed
line), α ¼ 0.25 (dotted line), and α ¼ 0.4 (dashed dotted line).
(c) Same as (b), now for m=g ¼ 0.25. (d) Same as (b), now for
m=g ¼ 1. The error bars in (b), (c), and (d) for βg ≥ 2 are
obtained by comparing the simulation for ϵ ¼ 10−9 with the
simulation for ϵ ¼ 2 × 10−9.

TABLE I. x ¼ 100. Coefficients of the fit, Eq. (4.4), to our data
for m=g ¼ 0.125, 0.5 and α ¼ 0.05, 0.1, 0.25.

m=g α logðAαÞ Bα Cα

0.125 0.05 2.5 (2) 1.8 (2) 6.4 (3)
0.1 2.5 (1) 1.9 (2) 6.5 (2)
0.25 2.3 (1) 1.9 (2) 6.4 (2)
0.4 1.9 (2) 1.8 (3) 6.6 (1)

0.5 0.05 4.05 (3) 2.15 (8) 6.6 (1)
0.1 4.02 (2) 2.13 (6) 6.6 (1)
0.25 3.81 (2) 2.05 (3) 6.55 (3)
0.4 3.4 (1) 1.9 (1) 6.5 (1)

1 0.05 5.1 (2) 2.3 (4) 6.7 (8)
0.1 4.9 (1) 1.8 (3) 6.4 (3)
0.25 4.8 (1) 2.1 (3) 6.6 (5)
0.4 4.57 (1) 2.34 (1) 6.74 (2)

HAMILTONIAN SIMULATION OF THE SCHWINGER MODEL … PHYSICAL REVIEW D 94, 085018 (2016)

085018-11



and Δϵ logðσαðβj; xÞ=g2Þ the difference in magnitude of
logðσαðβj;xÞ=g2Þ computed for ϵ¼10−9 and ϵ ¼ 2 × 10−9.
The error on our results shown in Table I comes from the
68.3% confidence interval.
For all values of m=g, we observe that A0.05 ≈ A0.01,

which is a consequence of (4.2). Furthermore, we also find
that Bα is within 10% of 2 for all values of m=g considered
here. The values of Cα obviously show that the string
tension is exponentially suppressed for T=g≳ 2. Note,
however, that already for m=g ¼ 0.125 the value of Cα

deviates from the C0
α ¼ π3=2 ≈ 5.56 in the strong coupling

limit (4.3).
We conclude that we have confinement for all finite

values of the temperature T=g, but for T=g≳ 2, or
equivalently βg≲ 0.5, the string tension is exponentially
suppressed with T=g. At high temperatures, the string
tension can thus only be observed if we would separate the
heavy charges by a distance which scales exponentially in
the temperature. In an experimental setting, this means that
the heavy charges are actually deconfined for βg≲ 0.5.

B. CT symmetry restoration at nonzero T

At zero temperature, there is a phase transition for α ¼
1=2 and m=g ¼ ðm=gÞc ≈ 0.33 [25]. For m=g ≤ ðm=gÞc,
the ground state is CT invariant, whereas for m=g≥
ðm=gÞc, the CT symmetry is spontaneously broken to
T2. The vacuum is still invariant under translation over
two sites and is two-fold degenerate. A detailed study of
this phase transition was performed by Byrnes et al. [25].
Their results for the critical indices, ν ¼ 0.99ð1Þ and
β=ν ¼ 0.125ð5Þ, gave strong evidence that the phase
transition lies in the universality class of the transverse
Ising model or equivalently of the 2D classical Ising model
[97]. For the transverse Ising model, the phase transition is
determined by the Z2 symmetry. When this symmetry is
spontaneously broken, the magnetization gains a nonzero
expectation value. Here, the CT symmetry of the
Schwinger model for α ¼ 1=2 plays the role of the Z2

symmetry, and the electric field plays the role of the
magnetization.
Besides this phase transition, the pattern of the eigen-

values of the Schwinger model at α ¼ 1=2 in the symmetry
broken regime bears a remarkable resemblance to the
transverse Ising model [25]. Because of the similarities
between both models, we might expect that also at finite
temperature there are some analogies. In particular,
because the spontaneous symmetry breaking in the trans-
verse Ising model occurs only at zero temperature, we
might expect this also to be the case for the Schwinger
model. Furthermore, general theorems like, for instance,
the Mermin-Wagner theorem [98] or Peierls argument [99]
suggest that at finite temperature no spontaneous symmetry
breaking occurs in one spatial dimension. However, the
former is not applicable as the CT transformation is

discrete, whereas the latter might not apply because the
local dimension of the Hilbert space is infinite. Therefore, it
is a priori not clear whether the CT symmetry is restored at
any finite temperature.
The spontaneous symmetry breaking of the CT sym-

metry is detected by investigating the left/right limits
(α ¼ 1=2� δ):

lim
δ→0þ

E1=2þδðβÞ and lim
δ→0þ

E1=2−δðβÞ: ð4:5Þ

When these limits are different, the symmetry is sponta-
neously broken. Because of CT symmetry, we thus need to
check whether

lim
δ→0

E1=2−δðβÞ ¼ 0:

Form=g ¼ 0.125 andm=g ¼ 0.25, we find for all values
of βg that E1=2þδðβÞ decreases to zero as jδj → 0; see
Figs. 7(a) and 7(b). This leads us to the conclusion that
limδ→0E1=2−δðβ; xÞ ¼ 0. We can actually perform direct
simulations for α ¼ 1=2 and find numerically that
jE1=2ðβ; xÞj≲ 5 × 10−5. This can be improved by requiring
better accuracy of our simulations; see Appendix B 2. So,
similarly as for zero temperature, we observe for m=g≲
ðm=gÞc that E1=2ðβ; xÞ ¼ 0, implying that there is no CT
symmetry breaking. Because Eαðβ; xÞ ¼ ∂σαðβ; xÞ=∂ðgαÞ,
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FIG. 7. x ¼ 100. α ¼ 1=2 − δ for different values of δ. Left:
m=g ¼ 0.125. (a) Electric field. (c) String tension. Right:
m=g ¼ 0.25. (b) Electric field. (d) String tension.
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the string tension reaches its maximum for α ¼ 1=2. This is
indeed what can be seen in Figs. 7(c) and 7(d); for all values
of βg, the string tension increases monotonically as a
function of α to its value at α ¼ 1=2 when δ tends to zero.
At large temperatures, the string tension shows, similarly as
in Sec. IVA, deconfinement for T → þ∞.
Contrary to the case α ¼ 0.1 and α ¼ 0.25, we find that

neither the free energy nor the electric field has entirely
converged to its ground-state expectation value at βg ¼ 10.
This is what we would expect from our numerical simu-
lations in Ref. [96]. There, we found that for m=g ¼ 0.125
and m=g ¼ 0.25 the mass gap decreases when α tends
to 1=2, consistent with the phase transition that occurs
at ðm=g; αÞ ¼ ððm=gÞc; 1=2Þ.
For m=g ≥ ðm=gÞc, at the exact value α ¼ 1=2, the

simulations are not reliable anymore. Because of sponta-
neous symmetry breaking, the ground state is now two-
fold degenerate, and for large values of βg, the iTEBD
algorithm pushes the Gibbs state during the evolution
either to the ground state jΨ1=2−i of H1=2−δ or to the
ground state jΨ1=2þi of H1=2þδ in the limit δ → 0þ; see
Appendix B 2.
To examine the CT symmetry breaking or restoration,

we need to consider nonzero δ > 0. For small values of βg,
we find that the electric field converges to zero when δ → 0;
see Figs. 8(a) and 8(b). This indicates that there is no
spontaneous symmetry breaking for small values of βg.

For large values of βg, however, we find that even for
δ ¼ 0.001 the electric field and string tension are still very
close to the values in the spontaneous broken ground state
jΨ1=2−i. But notice that the δ dependence of the observ-
ables in the intermediate temperature region suggests
that the δ → 0 limit has not been reached yet. This is
corroborated by a study in the weak coupling limit, see
Appendix C, where we argue that thermal corrections to
ground-state expectation values can only be relevant if

δ≲ Km
e−2βm

β
ð4:6Þ

with Km positive and independent of β. This implies that to
observe thermal corrections to ground-state expectation
values we should take δ exponentially small in βm.
From the numerical point of view, it is hard to simulate

such small values of δ. For instance, for ðm=g; δÞ ¼
ð1; 0.001Þ, we had to lower ϵ to 10−7, and during the
evolution, the bond dimension of our MPS representation
already reached 267. To examine the δ → 0 limit from
our simulated δ values, we investigate the scaling of β1=2,
the value of β where the electric field E1=2−δðβ1=2; xÞ
equals half of its ground-state expectation value
E1=2−δðβ ¼ þ∞; xÞ. Motivated by (4.6), we plot in
Fig. 9 expð−2β1=2mÞ as a function of δ. We seem to find
there that expð−2β1=2mÞ → 0 as δ → 0, or equivalently that
β1=2 → þ∞ for δ → 0. This indicates that the curve of the
electric field tends to a function which is zero for all finite
values of β as δ → 0. Hence, it seems, similarly to the
one-dimensional quantum transverse Ising model, that the
spontaneous symmetry breaking vanishes at all finite
inverse temperatures and a phase transition would occur
exactly at T ¼ 0.
Similarly as for m=g ¼ 0.125, 0.25, the string tension,

Figs. 8(c) and 8(d), converges nicely to its maximum for
δ → 0 for all values of βg. At high temperatures, we find
again deconfinement for T=g ¼ 1=βg → þ∞.
To conclude, in this subsection, we investigated the

Schwinger model with an electric background field α close
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FIG. 8. x ¼ 100. α ¼ 1=2 − δ for different values of δ. Left:
m=g ¼ 0.5. (a) Electric field. (c) String tension. Right: m=g ¼ 1.
(b) Electric field. (d) String tension.
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FIG. 9. x ¼ 100. expð−2β1=2mÞ as a function of δ.
(a) m=g ¼ 0.5. (b) m=g ¼ 1.

HAMILTONIAN SIMULATION OF THE SCHWINGER MODEL … PHYSICAL REVIEW D 94, 085018 (2016)

085018-13



to 1=2. We considered the values m=g ¼ 0.125, 0.25, 0.5,
and 1. For all these values, we find strong indications for
the existence of CT symmetry at any nonzero temperature.
In particular for m=g > ðm=gÞc ≈ 0.33, where the CT
symmetry is broken at zero temperature [25], our results
imply a restoration of the CT symmetry at any nonzero
temperature. This is similar to what happens with the Z2

symmetry of the transverse Ising model and thus lends
further support to the purported relationship between the
Schwinger model at α ¼ 1=2 and the transverse Ising
model, as suggested in Ref. [25].

V. CONCLUSION

In this paper, we investigated the Schwinger model in
thermal equilibrium within the framework of MPO. We
computed the chiral condensate and found agreement with
the analytical result for m=g ¼ 0 and agreement with
Ref. [47] in the nonperturbative regime. We also inves-
tigated the asymptotic aspects of confinement by consid-
ering a heavy quark-antiquark pair with fractional charge
gα, separated over an infinite distance. We find a nonzero
string tension and therefore confinement for all values of
m=g. However, at large temperatures T ≳ 2g, we find that
the string tension decays exponentially with the temper-
ature. We also considered the case when α tends to 1=2 and
investigated the spontaneous breaking of the CT symmetry
at finite temperature. Our results indicate that the sponta-
neous symmetry breaking vanishes at any nonzero temper-
ature, which implies that there is only a phase transition at
zero temperature. We thus found two phase transitions that
occur in limiting cases only: infinite temperature or zero
temperature.
Our simulations show that the MPO framework offers a

reliable approach to studying the nonperturbative regime
of one-dimensional gauge field theories. However, even
within the Schwinger model, there remain a lot of fasci-
nating things to explore. For instance, one can investigate
string breaking at finite temperature between the probe
charges when they are separated by a finite distance,
similarly to Ref. [33]. One can also explore confinement
in a dynamical setting [100]. Another interesting path is to
generalize this setup to non-Abelian gauge field theories.
From the theoretical point of view, our approach can be
generalized straightforwardly, but the implementation and
simulations are a bit more tedious.
More challenging is the step to higher dimensions. The

analog of the MPO goes by the name of projected entangled
pair states (PEPS) operators [101]. Like for MPO, it has
also been shown that PEPS give a faithful and efficient
representation of Gibbs states in two dimensions [43].
Progress in the last decade enabled the simulation of toy
models [102,103] at finite temperature. Given the potential
of the PEPS operators, it is certainly worthwhile to explore
this direction further in the future to simulate gauge field
theories at finite temperature.
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APPENDIX A: DETAILS ON THE CONTINUUM
EXTRAPOLATION OF THE CHIRAL

CONDENSATE FOR α= 0

In this section, we will explain the details of how to
obtain a reliable continuum estimate for the (subtracted)
chiral condensate from our results at finite x. In
Appendix A 1, we discuss the errors originating from
truncating the entanglement spectrum (ϵ > 0) and taking
finite steps for the imaginary time evolution (dβ > 0),
which includes the error of taking a finite bond dimension
in the MPS representation. In Appendix A 2, we go more
into detail on the continuum extrapolations and the uncer-
tainty originating from the choice of fitting interval and the
choice of fitting Ansatz.

1. Errors originating from taking finite
values for ϵ and dβ

In this subsection, we address the errors originating from
taking nonzero values for ϵ and dβ. Recall that after the
application of a Trotter gate we discard all the Schmidt
values of the purification jΨ½AðβÞ�i smaller than ϵ2. The
fourth-order Trotter decomposition also produces an error
ðdβÞ5 for each step dβ. In the limits dβ, ϵ → 0, the thermal
evolution should lead to the exact representation of the
thermal state (note that the error of truncating the spectrum
of the electric field is under control; see Sec. II C). In
Figs. 10(a) and 10(b), we observe indeed that the electric
field Eðβ; xÞ goes to zero when dβ → 0 and ϵ → 0, as it
should for α ¼ 0. Not surprisingly, we find that the
condition Eðβ; xÞ ≈ 0 is best fulfilled for the smallest
values of dβ and ϵ, in our case ϵ ¼ 10−6 and dβ ¼ 0.01.
Note also that for fixed values of dβ and ϵ we have better
approximations for smaller values of x; indeed for x ¼ 600,
the errors are larger than for x ¼ 100.
In our simulations, we will use the Gibbs state obtained

from the simulations with ϵ ¼ 10−6 and dβ ¼ 0.05. The
value Σðβ; xÞ is computed with respect to this state.
To estimate an error originating from taking a nonzero
value for ϵ and dβ, we also compute Σðβ; xÞ for ðϵ; dβÞ ¼
ð5 × 10−6; 0.05Þ and ðϵ; dβÞ ¼ ð10−6; 0.01Þ. The error
Δðϵ;dβÞΣðβ; xÞ is then estimated as twice the sum of the
differences in magnitude of Σðβ; xÞ for ðϵ; dβÞ ¼ ð10−6;
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0.05Þ with the values of Σðβ; xÞ for ðϵ; dβÞ ¼ ð10−6; 0.01Þ
and (5 × 10−6, 0.05):

Δðϵ;dβÞΣðβ; xÞ
¼ 2jðΣðβ; xÞjϵ¼10−6;dβ¼0.05 − Σðβ; xÞjϵ¼10−6;dβ¼0.01Þj
þ 2jðΣðβ; xÞjϵ¼10−6;dβ¼0.05 − Σðβ; xÞjϵ¼5×10−6;dβ¼0.05Þj:

ðA1Þ

In Figs. 10(c) and 10(d), we show the chiral condensate
with respect to the chiral condensate obtained for ϵ ¼ 10−6

and dβ ¼ 0.05, i.e.,

ΔΣðβ; xÞ ¼ Σðβ; xÞ − Σðβ; xÞjϵ¼10−6;dβ¼0.05:

From this figure, the error Δðϵ;dβÞΣðβ; xÞ is then estimated
as twice the sum of the difference of the dashed blue line
with the full blue line and the difference of the full green
line with the full blue line.
As is obvious from Figs. 11(a) and 11(b), taking a

nonzero value for ϵ corresponds to taking finite values for
the virtual dimensions Dq of the MPS representation. As
one should expect, taking smaller values of ϵ implies that
we need to take larger values of the virtual dimensions (and
thus longer computation time). In contrast, taking a smaller
value of the step dβ leads to the need for less variational
freedom for a fixed value of ϵ. This is explained by the fact
that for a fixed interval Δβ more Trotter gates are applied
when dβ is smaller and hence more Schmidt values are
discarded when dβ is smaller. Hence, the price we need to
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FIG. 10. m=g ¼ 0.25. Simulations for different values of ðϵ; dβÞ. (a–b) Electric field which should be zero for α ¼ 0. (a) x ¼ 100.
(b) x ¼ 600. (c–d) Chiral condensate Σðβ; xÞ with respect to its value for ðϵ; dβÞ ¼ ð10−6; 0.05Þ. (c) x ¼ 100. (d) x ¼ 600.
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pay to take larger steps is that we need to take into account
more variational freedom and thus longer computation time
for each step dβ. Although the fact that we need to take
fewer steps for dβ ¼ 0.05 implied that in practice compu-
tations with dβ ¼ 0.05 are still faster than for simulations
with dβ ¼ 0.01.

2. Continuum extrapolation for the chiral
condensate for α= 0

Assume we computed the chiral condensate Σðβ; xÞ
for the x values x ¼ x1;…; xM and we want to obtain a
continuum value ΣðβÞ ¼ limx→þ∞Σðβ; xÞ. When β → þ∞,
the chiral condensate diverges logarithmically in x for
m=g ≠ 0. Perturbative computations and numerical simu-
lations pointed out [27,32,47,87] that this can be traced
back to the free theory (g ¼ 0). By subtracting the free
chiral condensate [27]

ΣfreeðxÞ ¼ −
m
πg

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

g2x

q K

 
1

1þ m2

g2x

!
; ðA2Þ

where K is the complete elliptic integral of the first kind,
the logarithmic divergence is removed. At finite temper-
ature, for a fixed value of x, we subtract this contribution;
i.e., we consider

Σsubðβ; xÞ ¼ Σðβ; xÞ − ΣfreeðxÞ: ðA3Þ

Note that in Ref. [32] we already obtained Σsub to sufficient
precision.
As in Refs. [45,47], for a fixed value of β, we fit

Σsubðβ; xÞ against the following functions:

f1ðxÞ ¼ A1 þ B1

logðxÞffiffiffi
x

p þ C1

1ffiffiffi
x

p ðA4aÞ

f2ðxÞ ¼ A2 þ B2

logðxÞffiffiffi
x

p þ C2

1ffiffiffi
x

p þD2

1

x
ðA4bÞ

and

f3ðxÞ ¼ A3 þ B3

logðxÞffiffiffi
x

p þ C3

1ffiffiffi
x

p þD3

1

x
þ E3

1

x3=2
:

Let us discuss in more detail how we obtain (i) a
continuum estimate for each of the fitting Ansätze fn
and (ii) a final continuum estimate.

a. Obtaining a continuum estimate
for the fitting Ansatz f n

For every type of fitting Ansatz, i.e., a particular fn
(n ¼ 1, 2, 3), Eq. (A4), we will determine an estimate

ΣðnÞ
subðβÞ for the continuum value and an error ΔðnÞΣsubðβÞ

which originates from the choice of fitting interval.
Given our data set fðxj;Σsubðβ; xjÞÞ∶j ¼ 1;…;Mg ofM

points with xj ∈ ½9; 800�, we perform all possible fits of fn
against at least nþ 5 consecutive data points where:
(a) we discard the data points where the errorΔðϵ;dβÞΣðβ; xÞ

originating from taking finite values for ϵ and dβ, see
Appendix A 1, is larger than 4 × 10−4;

(b) the coefficients An, Bn, Cn, Dn, En (Dn ¼ 0 if n < 2,
En ¼ 0 if n < 3) are estimated using an iterative
generalized least-squares algorithm.

By taking at least nþ 5 consecutive data points, we
reduce the problem of overfitting; the fitted function fn fits
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FIG. 11. m=g ¼ 0.25; α ¼ 0. Evolution of the maximum bond dimensionDmax ¼ maxqDq over the charge sectors for different values
of ðϵ; dβÞ. Colors correspond to the legend of Fig. 10; dashed line: dβ ¼ 0.01, full line: dβ ¼ 0.05; red: ϵ ¼ 10−5, green: ϵ ¼ 5 × 10−6,
blue: ϵ ¼ 10−6. (a) x ¼ 100. (b) x ¼ 600.
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the considered points extremely well but fails to fit the
overall data. Furthermore, we also discard the fits that give
statistically insignificant coefficients (p value ≥ 0.05). In
practice, this means that we discard the fits fn where the
error on one of its coefficients ðAn; Bn; Cn;…Þ is larger
than approximately half of its value. This is in contrast with
Ref. [47] where a more conservative criterion is used and
the authors only discard a fit in which for at least one of the
coefficients its error is larger than the coefficient itself.
Note, however, that in Ref. [47] they fix the maximum x
that enters a fit whereas we allow all possible intervals of
nþ 5 consecutive x values.
For every fit θ of fn against a subset of at least nþ 5

consecutive x values, say fxjgj∈fitθ, which produces sta-
tistically significant coefficients, we obtain values

AðθÞ
n ; BðθÞ

n ; CðθÞ
n ;DðθÞ

n ; EðθÞ
n

ðDðθÞ
n ¼ 0 for n < 2; EðθÞ

n ¼ 0 for n < 3Þ

and a corresponding fitting function gθðxÞ,

gθðxÞ ¼ AðθÞ
n þ BðθÞ

n
logðxÞffiffiffi

x
p þ CðθÞ

n
1ffiffiffi
x

p þDðθÞ
n

1

x
þ EðθÞ

n
1

x3=2
:

All the values AðθÞ
n we obtain are an estimate for the

continuum value of the chiral condensate for the fitting

Ansatz fn. Let us denote with fAðθÞ
n gθ¼1…Rn

all the An’s
obtained from a fit θ against fn which produces significant
coefficients with

Að1Þ
n ≤ Að2Þ

n ≤ � � � ≤ AðRnÞ
n :

For each fit θ, we also compute its χ2 value:

χ2θ ¼
X
j∈fitθ

�
gθðxjÞ − Σsubðβ; xjÞ
Δðϵ;dβÞΣsubðβ; xjÞ

�
2

: ðA5Þ

When our data set is large enough, the quantity χ2θ=N
θ
dof,

with Nθ
dof the number of degrees of freedom of the fit

(here, the number of data points used in the fit minus
nþ 2), gives an indication whether gθ fits the data set well
(χ2θ=N

θ
dof ≪ 1) or not (χ2θ=N

θ
dof ≫ 1).

If we have at least ten fits θ with χ2θ=N
θ
dof ≤ 1, we can

obtain a reliable continuum estimate by taking the median

of fAð1Þ
n ;…; AðRnÞ

n g weighted by expð−χ2θ=Nθ
dofÞ; see also

Ref. [26]. More specifically, we build the cumulative
distribution Xθ,

Xθ ¼
P

θ
κ¼1 expð−χ2κ=Nκ

dofÞPRn
κ¼1 expð−χ2κ=Nκ

dofÞ
;

and take as our continuum estimate ΣðnÞðβÞ for the fitting

Ansatz fn: ΣðnÞðβÞ ¼ Aðθ0Þ
n where θ0 corresponds to the

value for which Xθ0 is the closest to 1=2, i.e.,

θ0 ¼ argmin
θ
jXθ − 1=2j:

The systematic error ΔðnÞΣðβ; xÞ from the choice of x
interval comes from the 68%, 3-confidence interval, and it
is computed as

ΔðnÞΣðβ; xÞ ¼ 1

2
ðAðθ2Þ

n − Aðθ1Þ
n Þ

with

θ1 ¼ argmin
θ
jXθ − 0.85j;

θ2 ¼ argmin
θ
jXθ − 0.15j:

If we have fewer than ten fits θ with χ2θ=N
θ
dof ≤ 1, only a

few fits will dominate the histogram of the χ2 distribution.
Therefore, we will adopt the more conservative approach
from Ref. [47]. We only consider the fits with statistically
significant coefficients and with χ2θ=N

θ
dof ≤ 1; the corre-

sponding continuum estimates are

Að1Þ
n ≤ Að2Þ

n ≤ � � � ≤ AðR0
nÞ

n ; with R0
n ≤ Rn:

Of these estimates, we take the Aθ0
n which corresponds to

the θ for which the mean squared of the error in ðdβ; ϵÞ is
minimal, i.e.,

θ0 ¼ argmin
θ

1

jfitθj

0
B@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j∈fitθ
ðΔðϵ;dβÞΣsubðβ; xjÞÞ2

s 1
CA:

For the systematic error originating from the choice of
fitting range, we take the difference in magnitude of this

estimate with the most outlying AðθÞ
n (for the same type of

fitting Ansatz):

ΔðnÞΣsubðβÞ ¼ max
1≤θ≤R0

n

���Aðθ0Þ
n − AðθÞ

n

���:
b. Final continuum estimate and uncertainty

Using the method discussed in the previous subsection,
we now have three estimates for ΣsubðβÞ,

Σð1Þ
subðβÞ; Σð2Þ

subðβÞ; Σð3Þ
subðβÞ;

which correspond to the fitting functions f1, f2, and f3. For
our final estimate, we take the estimate from the fitting
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function fn0 which had the most statistically significant fits
with χ2θ=N

θ
dof ≤ 1. The error originating from the choice of

fitting function is then computed as the maximum of the
difference with the continuum estimates from the other
fitting functions. For our final result, we thus report

ΣsubðβÞ ¼ Σðn0Þ
sub ðβÞ, and the error ΔΣsubðβÞ is the maximum

of:
i. the error originating from taking nonzero dβ and ϵ:

max ðmax
j
ðΔðϵ;dβÞΣsubðβ; xjÞÞ; 4 × 10−4Þ;

ii. the error originating from the choice of x range:
Δðn0ÞΣðβÞ;

iii. the error originating from the choice of fitting

Ansatz: maxn¼1;2;3jΣsubðβÞ − ΣðnÞ
subðβÞj.

Example A1: Let us now illustrate this for m=g ¼ 0.
When m=g ¼ 0, we have that Σsubðβ; xÞ ¼ Σðβ; xÞ. We did
simulations for βg ∈ ½0; 10� with steps dβ ¼ 0.05 for

x ¼ 9; 16; 25; 47; 64; 81; 100; 125; 150; 175; 200; 225;

250; 275; 300; 400; 500; 600: ðA6Þ

Let us discuss the case βg ¼ 0.2, Fig. 12(a). For all the x
values, the errors originating from taking a nonzero value ϵ
and dβ were smaller than 5 × 10−5, so we could include all
the data points. For all the three fitting functions fn, we
found enough fits with statistically significant coefficients
that satisfy χ2θ=N

θ
dof ≤ 1. By weighing the fits with

expð−χ2θ=NdofÞ as discussed in the previous subsection,
we found:

i. Σð1Þð0.2=gÞ=g ¼ −1ð4Þ × 10−4 (22 fits with sta-
tistically significant coefficients and χ2θ=N

θ
dof ≤ 1),

ii. Σð2Þð0.2=gÞ=g ¼ 9ð1Þ × 10−4 (51 fits with sta-
tistically significant coefficients and χ2θ=N

θ
dof ≤ 1),

iii. Σð3Þð0.2=gÞ=g ¼ 1.3ð3Þ × 10−3 (33 fits with sta-
tistically significant coefficients and χ2θ=N

θ
dof ≤ 1),

where the number between brackets is the error originating
from the choice of fitting interval [as discussed in the
previous subsection]. Because we found the most fits
with statistically significant coefficients and χ2θ=N

θ
dof ≤ 1

for n ¼ 2, we take Σð0.2=gÞ=g ¼ Σð2Þð0.2=gÞ=g ¼
9ð1Þ × 10−4 as our estimate. To estimate an error originat-
ing from the choice of fitting function, we take the
maximum of the difference with Σð1Þ and Σð3Þ:

ΔΣð0.2=gÞ=g ¼ maxðjΣð2Þð0.2=gÞ=g − Σð1Þð0.2=gÞ=gj;
× jΣð2Þð0.2=gÞ=g − Σð3Þð0.2=gÞ=gjÞ

≈ 1 × 10−3:

As this error is larger than the error originating from the
choice of fitting interval, we report

Σð0.2=gÞ=g ¼ 9ð10Þ × 10−4;

which is consistent with the analytical result ΣSWðβgÞ=g ¼
−8 × 10−12. In Fig. 12(a), we show Σð0.2=g; xÞ=g for
the values of x displayed in Eq. (A6), and the error
bars represent the error Δðϵ;dβÞΣð0.2=g; xÞ=g (see
Appendix A 1). The black line shows the quadratic fit
through the points which determined our continuum
estimate Σð0.2=gÞ ¼ Σð2Þð0.2=gÞ. The coefficients were
found by fitting f2 against the data for
x ¼ 125; 150;…; 300; 400. The red line shows the “best”
cubic fit (as discussed above) which is obtained by fitting
f3 against the data for x ¼ 47; 64; 81; 100; 125;…; 200.
This fit gives us the estimate Σð3Þð0.2=gÞ=g. Finally, the
blue dashed line shows the best linear fit which is
obtained by fitting f1 against the data points for
x ¼ 125; 150;…; 300; 400. Note that when comparing this
fit with the best f2 fit (which turns out to fit the same data
points) this fit performs poorly for the lower x values.
However, when comparing Σð1Þð0.2=gÞ=g, Σð2Þð0.2=gÞ=g
and Σð3Þð0.2=gÞ=g with the exact result of Sachs and Wipf
[71](magenta star), Σð1Þð0.2=gÞ=g actually seems to give
the best result. This indicates that there are significant
cutoff effects in x: for a reliable continuum estimate, we
need to perform the continuum extrapolation with relatively
large x values (x≳ 100), or we need to fit a higher-order
function in 1=

ffiffiffi
x

p
(in this case, a quadratic or cubic one).

This explains the relatively large error bar at high temper-
atures (small values of βg).
Also for βg ¼ 0.4, see Fig. 12(b), there are still relatively

large cutoff effects in x. Now, we found for the continuum
estimates corresponding to the fitting functions f1, f2,
and f3:

i. Σð1Þð0.4=gÞ=g ¼ 4ð1Þ × 10−4 (55 fits with sta-
tistically significant coefficients and χ2θ=N

θ
dof ≤ 1),

ii. Σð2Þð0.4=gÞ=g ¼ 8ð4Þ × 10−4 (18 fits with sta-
tistically significant coefficients and χ2θ=N

θ
dof ≤ 1),

iii. Σð3Þð0.4=gÞ=g ¼ −3ð1Þ × 10−4 (16 fits with sta-
tistically significant coefficients and χ2θ=N

θ
dof ≤ 1).

Because we found the most fits with statistically significant
coefficients and χ2θ=N

θ
dof ≤1 for n ¼ 1, we take Σð0.2=gÞ ¼

Σð1Þð0.2=gÞ=g ¼ 4ð1Þ × 10−4 as our estimate. To estimate
an error originating from the choice of fitting function, we
take the maximum of the difference with Σð2Þ and Σð3Þ:

ΔΣð0.4=gÞ=g ¼ maxðjΣð2Þð0.4=gÞ=g − Σð1Þð0.4=gÞ=gj;
× jΣð2Þð0.4=gÞ=g − Σð3Þð0.4=gÞ=gjÞ

≈ 7 × 10−4:

As this error is larger than the error originating from the
choice of fitting interval, we report

Σð0.2=gÞ=g ¼ 4ð7Þ × 10−4;
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which can be compared with the exact value
ΣSWðβgÞ=g ¼ −4.5 × 10−6.
When going to lower temperatures, larger values of βg,

we find that cutoff effects in x are less apparent. Indeed, in
Figs. 12(c) and 12(d), we find that the best fits f1, f2, and
f3 lie almost on top of each other, although they are
obtained by fitting a different x range. Also, the error of the
choice of fitting interval is much smaller; for instance, for
βg ¼ 2, we have:

i. Σð1Þð2=gÞ=g ¼ −0.0629ð1Þ (66 fits with statistically
significant coefficients and χ2θ=N

θ
dof ≤ 1),

ii. Σð2Þð2=gÞ=g ¼ −0.0632ð1Þ (50 fits with statistically
significant coefficients and χ2θ=N

θ
dof ≤ 1),

iii. Σð3Þð2=gÞ=g ¼ −0.0630ð0Þ (1 fit with statistically
significant coefficients and χ2θ=N

θ
dof ≤ 1).

Note that for the fitting Ansatz f3, we only found one
statistically significant fit with χ2θ=N

θ
dof ≤ 1. This suggests

that the coefficient E3 of 1=x3=2 is indeed irrelevant and that
a quadratic fit (f2) is sufficient. Because there is only one
“good: fit of f3, there is of course no estimate for the error
on Σð3Þð2=gÞ originating from the choice of fitting interval.
As the most fits with statistically significant coefficients
and χ2θ=N

θ
dof ≤ 1 are found for f1, we report

Σð2=gÞ=g ¼ −0.0629ð3Þ;
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FIG. 12. m=g ¼ 0. Continuum extrapolation of Σðβ; xÞ for different values of βg. The black line is the fit which determines the
continuum estimate. The red line and dashed blue lines are the best fits for the other fitting functions fn. The error bars on our data
(1=

ffiffiffi
x

p
≠ 0) represent the errors Δðϵ;dβÞΣðβ; xÞ originating from taking nonzero ϵ and dβ, as explained in Appendix A 1. The blue error

bar at 1=
ffiffiffi
x

p ¼ 0 represents the error on our continuum estimate. The magenta star is the analytical result of Sachs and Wipf [71].
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where the error is obtained as

ΔΣð2=gÞ=g ¼ maxðjΣð2Þð2=gÞ=g − Σð1Þð2=gÞ=gj;
× jΣð2Þð2=gÞ=g − Σð3Þð2=gÞ=gjÞ

≈ 3 × 10−4:

For the analytical result, we have ΣSWð2=gÞ ¼ −0.0630,
which is again in agreement with our result.
For βg ¼ 6, we find more or less the same behavior.

Now, the error Δðϵ;dβÞΣðβ; xÞ originating from taking non-
zero values of (ϵ; dβ) is larger than 4 × 10−4 for x ¼ 500
and x ¼ 600. Therefore, these x values are excluded from
our data for βg ¼ 6. Now, we find for all the fitting
functions:

i. Σð1Þð6=gÞ=g ¼ −0.1528ð2Þ (66 fits with statistically
significant coefficients and χ2θ=N

θ
dof ≤ 1),

ii. Σð2Þð6=gÞ=g ¼ −0.1531ð1Þ (32 fits with statistically
significant coefficients and χ2θ=N

θ
dof ≤ 1),

iii. Σð3Þð6=gÞ=g ¼ −0.1533ð0Þ (11 fits with statistically
significant coefficients and χ2θ=N

θ
dof ≤ 1),

which lead to our final estimate Σð6=gÞ ¼ −0.1528ð4Þ.
This is again in agreement with the analytical result
ΣSWð6=gÞ ¼ −0.15277.
Example A2: For another example, we consider the case

m=g ¼ 0.25. We performed simulations for

x ¼ 9; 16; 25; 47; 64; 81; 100; 125; 150; 175; 200; 225;

250; 275; 300; 400; 500; 600; 700; 800:

The procedure is exactly the same but now applied to
Σsubðβ; xÞ ¼ Σðβ; xÞ − ΣfreeðxÞ. As can be observed from
Figs. 13(a) and 13(b) cutoff effects in x are even more
obvious for small values of βg. Again, we find that reliable
fits need to be fitted against large x values or need to
include higher-order terms in 1=

ffiffiffi
x

p
. In contrast, for larger

values of βg, see Figs. 13(c) and 13(d), we find relatively
small cutoff effects: the fits are lying almost on top of
each other, independent of the chosen x range and fitting
function fn. The details can be found in Table II where we
show for βg ¼ 0.2, 0.4, 2, 6:

i. the range of x values we considered [recall that x
values for which Δðϵ;dβÞΣðβ; xÞ ≥ 4 × 10−4 were
discarded],

ii. the estimates ΣðnÞ
subðβÞ obtained for each of the fitting

functions fn with between brackets ð…Þ the error
ΔðnÞΣsubðβÞ originating from the choice of fitting
interval (in curly brackets f…g, we denoted the
number of significant fits we had with χ2θ=N

θ
dof ≤ 1);

iii. the final estimate for ΣsubðβÞ (with its error in
brackets),

iv. the result of Bañuls et al. [47] for comparison.

APPENDIX B: ASYMPTOTIC
CONFINEMENT: α ≠ 0

In this Appendix, we explain how to obtain reliable
continuum estimates for the quantities discussed in Sec. IV
from our simulations at finite x. First, in Appendix B 1, we
discuss the errors originating from truncating the entangle-
ment spectrum (ϵ > 0) and taking finite steps for the
imaginary time evolution (dβ > 0). In Sec. IV B, we
consider the case when α ≈ 1=2 because simulations are
more difficult in this regime. Afterward, in Appendix B 3,
we discuss the continuum extrapolation.

1. Errors originating from taking finite values
for ϵ and dβ

Here, we address the errors originating from taking
nonzero values for ϵ and dβ. Similarly as in Appendix A 1,
we will use the Gibbs state obtained from the simulations
with ϵ ¼ 10−6 and dβ ¼ 0.05. The expectation value
Qðβ; xÞ of a given observable is computed with respect
to this state. Again, the error originating from taking a
nonzero value for ϵ and dβ is estimated as follows: we
computeQðβ;xÞ for ðϵ;dβÞ¼ð5×10−6;0.05Þ and ðϵ;dβÞ¼
ð10−6;0.01Þ. The error Δðϵ;dβÞQðβ; xÞ is then estimated as
twice the sum of the differences in magnitude of Qðβ; xÞ
for ðϵ; dβÞ ¼ ð10−6; 0.05Þ with the values of Qðβ; xÞ for
ðϵ; dβÞ ¼ ð10−6; 0.01Þ and ð5 × 10−6; 0.05Þ:

Δðϵ;dβÞQðβ; xÞ
¼ 2jðQðβ; xÞjϵ¼10−6;dβ¼0.05 −Qðβ; xÞjϵ¼10−6;dβ¼0.01Þj
þ 2jðQðβ; xÞjϵ¼10−6;dβ¼0.05 −Qðβ; xÞjϵ¼5×10−6;dβ¼0.05Þj:

ðB1Þ

An example for m=g ¼ 0.25 and α ¼ 0.25 is shown in
Figs. 14(a) and 14(b) where we plot the electric field
obtained for different values of ðϵ; dβÞ with respect to the
electric field for ϵ ¼ 10−6 and dβ ¼ 0.05, i.e.,

ΔEαðβ; xÞ ¼ Eαðβ; xÞ − Eαðβ; xÞjϵ¼10−6;dβ¼0.05:

The error Δðϵ;dβÞEαðβ; xÞ is then estimated as twice the
sum of the difference of the dashed blue line with the full
blue line and the difference of the full green line with the
full blue line. We also show the free energy for ϵ ¼ 10−6

and dβ ¼ 0.05 with respect to the free energy obtained for
ϵ ¼ 10−6 and dβ ¼ 0.05,

Δσαðβ; xÞ ¼ σαðβ; xÞ − σαðβ; xÞjϵ¼10−6;dβ¼0.05;

see Figs. 14(c) and 14(d). The error Δðϵ;dβÞσαðβ; xÞ is then
computed in a similar manner. We find that the errors in
ðϵ; dβÞ are of order 10−4 and 10−5 and are under control for
the values of βg computed here. This holds for all simulated
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TABLE II. m=g ¼ 0.25. Details on the continuum extrapolation of the subtracted chiral condensate ΣsubðβÞ.
βg x range Σð1Þ

subðβÞ=gf# fitsg Σð2Þ
subðβÞ=gf# fitsg Σð3Þ

subðβÞ=gf# fitsg ΣsubðβÞ=g ΣsubðβÞ=g [47]

0.2 [9, 800] 0.26ð1Þf17g 0.230ð6Þf34g 0.299ð4Þf42g 0.30(3) 0.298(7)
0.4 [9, 800] 0.2243ð3Þf38g 0.228ð4Þf42g 0.221ð8Þf32g 0.228(7) 0.23(1)
2 [9, 700] 0.00598ð8Þf67g 0.0056ð1Þf63g 0.0059ð4Þf14g 0.0060(4) 0.0078(38)
6 [9, 500] −0.0661ð1Þf67g −0.06631ð9Þf39g −0.0664ð1Þf16g −0.0661ð4Þ −0.0657ð43Þ
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FIG. 13. m=g ¼ 0.25. Continuum extrapolation of Σsubðβ; xÞ for different values of βg. The black line is the fit which determines
the continuum estimate. The red line and dashed blue lines are the best fits for the other fitting functions fn. The error bars on our
data (1=

ffiffiffi
x

p
≠ 0) represent the errorsΔðϵ;dβÞΣðβ; xÞ originating from taking nonzero ϵ and dβ, as explained in Appendix A 1. The blue

error bar at 1=
ffiffiffi
x

p ¼ 0 represents the error on our continuum estimate. The magenta star represents the result of Bañuls et al. and the
magenta error bar represents the error that Bañuls et al. estimated on their result.
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values of m=g and α≲ 0.45. When α becomes close
to 1=2, we need to be more careful; this will be
discussed in Appendix B 2. Note that, not surprisingly,
errors increase when approaching the continuum limit
(x → þ∞).

2. Simulations for α ≈ 1=2

As discussed in Sec. IV B, for m=g≲ ðm=gÞc ≈ 0.33, we

already saw convergence of E1=2−δðβ; xÞ to zero for δ→
>
0

for all values of βg ∈ ½0; 10�. When performing simulations
for α ¼ 1=2, we indeed observe that E1=2ðβ; xÞ ¼ 0; see
Figs. 15(a) and 15(b). When imposing higher accuracy,
which is obtained by lowering the tolerance ϵ (see

Sec. II C), we find that E1=2ðβ; xÞ becomes smaller in
magnitude. However, even for ϵ ¼ 10−6, we already have
that jE1=2ðβ; xÞj≲ 5 × 10−5. This was expected because the
Hamiltonian has for these values of m=g a unique CT-
invariant ground state which has a zero expectation value
for the electric field.
In contrast, for m=g≳ ðm=gÞc, the electric field is not

stable under variation of ϵ see Figs. 15(c) and 15(d).
Because the ground state is two-fold degenerate for
α ¼ 1=2 and m=g≳ 0.33 for a certain value of βg, the
evolution “picks" out the ground-state jΨ1=2−i correspond-
ing to α ¼ 1=2 − δ in the limit δ → 0. The Gibbs states
have evolved then to
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FIG. 14. m=g ¼ 0.25; α ¼ 0.25. Simulations for different values of ðϵ; dβÞ. (a–b) Electric field with respect to its value for
ðϵ; dβÞ ¼ ð10−6; 0.05Þ. (a) x ¼ 125. (b) x ¼ 250. (c–d) Free energy with respect to its value for ðϵ; dβÞ ¼ ð10−6; 0.05Þ.
(c) x ¼ 125. (d) x ¼ 250.

BUYENS, VERSTRAETE, and VAN ACOLEYEN PHYSICAL REVIEW D 94, 085018 (2016)

085018-22



ρ1=2−ðβÞ ∝ jΨ1=2−ihΨ1=2−j þOðe−βΔÞ

for βg large where Δ is the mass gap of the Hamiltonian
H1=2−δ in the limit δ → 0. This artifact originates mainly
from the fact that the iTEBD follows a path with minimal
entanglement. Clearly, the state ρ1=2−ðβÞ has less entangle-
ment than the exact state ρ. One can also observe this by
investigating the maximum bond dimension Dmax over the
charge sectors; see insets in Figs. 15(a)–15(d). We expect
that D increases with βg and saturates when the system is
effectively at zero temperature. For m=g ¼ 1, we observe
for βg≳ 6 that Dmax decreases with βg. This indicates that
the iTEBD algorithm converges to a state with less
entanglement. It is clear that this leads to huge errors in

the expectation values. Only for CT-invariant observables,
e.g., the free energy, the average energy, and the chiral
condensate, can we still find accurate results. In Figs. 16(c)
and 16(d), we observe that, for instance, the free energy is
stable under variation of ϵ.
When α ≠ 1=2 but is close to α ¼ 1=2, the electric

field is also less stable under variation of ϵ. Therefore,
when α > 0.45, we also perform simulations for ðϵ; dβÞ ¼
ð5 × 10−7; 0.05Þ and take this state as our reference state.
In Fig. 17, we show the electric field for α ¼ 0.495 for
different values of ðϵ; dβÞ where we subtract the value
obtained for ðϵ; dβÞ ¼ ð5 × 10−7; 0.05Þ:

ΔEαðβ; xÞ ¼ Eαðβ; xÞ − Eαðβ; xÞjϵ¼5×10−7;dβ¼0.05:
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FIG. 15. x ¼ 100, α ¼ 0.5. Electric field E1=2ðβ; xÞ for different values of the tolerance ϵ. Inset: the maximum bond dimension over all
charge sectors as a function of βg. (a): m=g ¼ 0.125. (b): m=g ¼ 0.25. (c) m=g ¼ 0.5. (d) m=g ¼ 1.

HAMILTONIAN SIMULATION OF THE SCHWINGER MODEL … PHYSICAL REVIEW D 94, 085018 (2016)

085018-23



By comparing the difference between the simulations for
i. ðϵ;dβÞ¼ð10−6;0.05Þ (red line) and ðϵ; dβÞ ¼ ð10−6;

0.01Þ (blue line) (call this difference Δ0Eαðβ; xÞ),
ii. ðϵ;dβÞ¼ð5×10−7;0.05Þ (orange line) and ðϵ; dβÞ ¼

ð10−6; 0.05Þ (red line) (call this difference
Δ00Eαðβ; xÞ),

we estimate the error introduced by taking a nonzero ϵ and
dβ as

2ðjΔ0Eαðβ; xÞj þ jΔ00Eαðβ; xÞjÞ:
As one can estimate from Fig. 17, we then find this error to
be no larger than of order 10−3, which is still reasonable,
although this is at least 1 order of magnitude worse than the
error we found for α ¼ 0.25.

3. Continuum extrapolation

In this subsection, we discuss the continuum extrapo-
lation of several quantities for the case α ≠ 0. For a
quantity Qα, we will subtract its (α ¼ 0) value at finite
temperature and thus consider ΔQαðβ; xÞ≡Qαðβ; xÞ−
Qα¼0ðβ; xÞ. The quantities we will consider here are the
chiral condensate, the average energy, and the free energy
(see Sec. IV). For these quantities, we find that they scale
almost linearly in 1=

ffiffiffi
x

p
as we approach the continuum

limit x → þ∞. For the average energy and the free
energy, this is supported by their scaling at βg ¼ ∞,
which was also found to be polynomial in 1=

ffiffiffi
x

p
[33].

Therefore, instead of the fitting functions in Eq. (A4), we
will now fit ΔQαðβ; xÞ against
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FIG. 16. x ¼ 100, α ¼ 0.5. String tension σ1=2ðβ; xÞ for different values of the tolerance ϵ. Inset: zooming in on the interval
βg ∈ ½9; 10�. (a) m=g ¼ 0.125. (b) m=g ¼ 0.25. (c) m=g ¼ 0.5. (d) m=g ¼ 1.
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f1ðxÞ ¼ A1 þ B1

1ffiffiffi
x

p ðB2aÞ

f2ðxÞ ¼ A2 þ B2

1ffiffiffi
x

p þ C2

1

x
ðB2bÞ

f3ðxÞ ¼ A3 þ B3

1ffiffiffi
x

p þ C3

1

x
þD3

1

x3=2
ðB2cÞ

to obtain a continuum estimate (x → þ∞). Now, we
perform simulations for

x ¼ 100; 125; 150;…; 300: ðB3Þ

To obtain the continuum limit and an error on this result
which includes the uncertainty in dϵ; dβ, the uncertainty for
the choice of fitting interval and the uncertainty for the
choice of fitting function, we use the same method as for
the subtracted chiral condensate α ¼ 0. However, now we
will consider the fitting functions Eq. (B2) instead of the
fitting functions Eq. (A4), see appendix A 2 for the details.
Example B1: Let us explain this by discussing a specific

example from our simulations: the continuum extrapolation
of ΔΣαðβÞ=g for m=g ¼ 0.25,α ¼ 0.25, and βg ¼ 0.5, 1.5,
2.5, 7; see Table III and Fig. 18.
Consider first the case when βg ¼ 0.5, Fig. 18(a). For all

values of x in Eq. (B3), the estimated error Δðϵ;dβÞΣαðβ; xÞ
(see Appendix B 1) was smaller than 4 × 10−4 as can be
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FIG. 17. x ¼ 100, α ¼ 0.495. Electric field E0.495ðβ; xÞ for different values of the tolerance ϵ and step dβ with respect to the simulation
for ðϵ; dβÞ ¼ ð5 × 10−7; 0.05Þ. (a) m=g ¼ 0.125. (b) m=g ¼ 0.25. (c) m=g ¼ 0.5. (d) m=g ¼ 1.
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observed from the error bars in Fig. 18(a). Therefore, we
included all these values in our analysis. Similarly as for
the subtracted chiral condensate in Appendix A 2, given the
fitting function fn, Eq. (B2), we perform all possible fits of
against at least nþ 4 consecutive x values (we take at least
nþ 4 data points such that the number of degrees of
freedom Ndof is larger than or equal to 3, which lowers the
risk of overfitting the data). For each of fit θ, we get an
estimate for the coefficients An, Bn, Cn, Dn (with Cn ¼ 0

for n ¼ 1 and Dn ¼ 0 for n ¼ 1, 2): AðθÞ
n , BðθÞ

n , CðθÞ
n , DðθÞ

n .
Here, also we discard the fits that give statistically

insignificant coefficients (p value ≥ 0.05). In practice, this
means that we discard the fits fn where the error on one of

its coefficients ðAðθÞ
n ; BðθÞ

n ; CðθÞ
n ;…Þ is larger than approx-

imately half of its value,

gθðxÞ ¼ AðθÞ
n þ BðθÞ

n
1ffiffiffi
x

p þ CðθÞ
n

1

x
þDðθÞ

n
1

x3=2

(with CðθÞ
n ¼ 0 for n ¼ 1 and DðθÞ

n ¼ 0 for n ¼ 1, 2).

All the values AðθÞ
n we obtain are an estimate for the

continuum value of ΔΣðnÞ
α ðβÞ for the fitting Ansatz fn. Let

us denote with fAðθÞ
n gθ¼1…Rn

all the An’s obtained from a fit
θ against fn, which produces significant coefficients with
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FIG. 18. m=g ¼ 0.25, α ¼ 0.25. Continuum extrapolation of ΔΣαðβ; xÞ for different values of βg. The black line is the fit which
determines the continuum estimate. The red line and blue line are the most appropriate fits through the data for the other fitting functions.
The error bars on our data for 1=

ffiffiffi
x

p
≠ 0 represent the errors Δðϵ;dβÞΣαðβ; xÞ originating from taking nonzero ϵ and dβ, as explained in

Appendix B 1. The error bar at 1=
ffiffiffi
x

p ¼ 0 is the estimated error on the continuum result.
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Að1Þ
n ≤ Að2Þ

n ≤ � � � ≤ AðRnÞ
n :

For each fit θ, we also compute its χ2 value [see Eq. (A4)]:

χ2θ ¼
X
j∈fitθ

�
gθðxjÞ − ΔΣαðβ; xjÞ
Δðϵ;dβÞðΔΣαðβ; xjÞÞ

�
2

:

When our data set is large enough, the quantity χ2θ=N
θ
dof,

with Nθ
dof the number of degrees of freedom of the fit

(here, the number of data points used in the fit minus
nþ 1), gives an indication of whether gθ fits the data set
well (χ2θ=N

θ
dof ≪ 1) or not (χ2θ=N

θ
dof ≫ 1).

As can be found in Table III (curly brackets f…g), for
βg ¼ 0.5, we found 15 significant fits with χ2θ=N

θ
dof ≤ 1 for

f1, while for f2 and f3, there were no statistically
significant fits with χ2θ=N

θ
dof ≤ 1. As explained in

Appendix A 2, because there are more than ten statistically
significant fits with χ2θ=N

θ
dof ≤ 1, we deduce the continuum

estimate for the fitting function by taking the median of

the distribution of these AðθÞ
1 weighted by expð−χ2θ=NdofÞ.

The systematic error of the choice of x interval comes
from the 68.3% confidence interval. As can be read from

Table III, we have ΔΣð1Þ
α ðβÞ=g ¼ 7.1ð2Þ × 10−5. The fit

which corresponds to this estimate for ΔΣð1Þ
α ðβÞ=g is shown

in Fig. 18(a) by the black line and corresponds to a fit
through all the data points.
Although there are no statistically significant fits with

χ2θ=N
θ
dof ≤ 1 for f2 and f3, we still want to have a rough

idea of the error originating from the choice of fitting
function. Therefore, we perform a fit of f2 against all data

points, red line in Fig. 18(a), and take the AðθÞ
2 that comes

out of that as the estimate forΔΣð2Þ
α ðβÞ=g ≈ 7.8 × 10−5. The

error for the choice of fitting function is now the difference

jΔΣð1Þ
α ðβÞ=g − ΔΣð2Þ

α ðβÞ=gj ≈ 7 × 10−6. Note, however,
that both this error and the error originating from the
choice of fitting interval are smaller than the error origi-
nating from taking nonzero ðϵ; dβÞ, which equals

max
xj

ðΔðϵ;dβÞΣsubðβ; xjÞÞ ≈ 1 × 10−5

[it comes from the relatively large error bar for x ¼ 150,
i.e., 1=

ffiffiffi
x

p
≈ 0.08, in Fig. 18(a)]. The relatively large error

is due to the fact that ΔΣαðβ; xÞ is very small here (only of

order 1 × 10−4) and hence errors of order 10−5 lead to
relatively large errors. This problem is resolved by decreas-
ing ϵ (and dβ) as has been done in Sec. IVA for x ¼ 100.
There, it is found that for βg≲ 0.5 the expectation
values are exponentially suppressed with temperature
T=g ¼ 1=βg.
Consider now the case βg ¼ 1.5, Fig. 18(b). Again,

we find for f1 15 significant fits with χ2θ=N
θ
dof ≤ 1.

By weighing the distribution of the estimates with
expð−χ2θ=Nθ

dofÞ and taking the mean, we obtain the estimate

ΔΣð1Þ
α ðβÞ=g ¼ 0.02946ð1Þ. The corresponding fit which

gives the estimate ΔΣð1Þ
α ðβÞ=g is shown in Fig. 18(b) (black

line). For f2 and f3, we have fewer than ten significant fits
with χ2θ=N

θ
dof ≤ 1, and the histogram of expð−χ2θ=Nθ

dofÞ
might be dominated by only a few fits. Therefore, we use a
more conservative approach: we consider all the significant

fits θ with χ2θ=N
θ
dof ≤ 1 and take the AðθÞ

n coming from the
fit which has the least error in ðϵ; dβÞ, i.e., the fit θ for
which

1

jfitθj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j∈fitθ

ðΔðϵ;dβÞ½ΔΣαðβ; xjÞ�Þ2
s

is minimal. These fits are also displayed in Fig. 18(b) (red
line for f2 and dashed blue line for f3). The error on the

estimates is obtained by comparing ΔΣðnÞ
α ðβ; xÞ with the

most outlying AðθÞ
n obtained from a statistically significant

fit against fn with χ2θ=N
θ
dof ≤ 1. This lead to the estimates

ΔΣð2Þ
α ðβÞ=g ¼ 0.02937ð2Þ andΔΣð3Þ

α ðβÞ=g ¼ 0.02961ð17Þ.
Finally, the error for the choice of fitting Ansatz is

maxðjΔΣð2Þ
α ð1.5=gÞ=g − ΔΣð1Þ

α ð1.5=gÞ=gj;
jΔΣð3Þ

α ð1.5=gÞ=g − ΔΣð1Þ
α ð1.5=gÞ=gjÞ

≈ 1.5 × 10−4:

Therefore, our final result is ΔΣαð1.5=gÞ=g ¼ 0.0295ð1Þ.
Finally, let us also briefly discuss the cases βg ¼ 2.5

and βg ¼ 7; see Figs. 18(c) and 18(d). In both cases, the
continuum estimate for the fit f1 is obtained as before.
Because there are only three statistically significant fits
with χ2θ=N

θ
dof ≤ 1, we have to use the more conservative

approach to obtain the estimate ΔΣð2Þ
α ðβÞ [i.e., taking the fit

TABLE III. m=g ¼ 0.25, α ¼ 0.25. Details on the continuum extrapolation of ΔΣαðβÞ.
βg x range ΔΣð1Þ

α ðβÞ=gf# fitsg ΔΣð2Þ
α ðβÞ=gf# fitsg ΔΣð3Þ

α ðβÞ=gf# fitsg ΔΣαðβÞ=g
0.5 [100, 300] 7.1ð2Þ × 10−5f15g 7.8 × 10−5f0g f0g 7ð1Þ × 10−5

1.5 [100, 300] 0.02946ð1Þf15g 0.02937ð2Þf7g 0.02961ð17Þf2g 0.0295(1)
2.5 [100, 300] 0.047673ð5Þf15g 0.04770ð2Þf3g f0g 0.04767(4)
7 [100, 300] 0.03847ð3Þf15g 0.03863ð3Þf3g f0g 0.0385(2)
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which has the least error in ðϵ; dβÞ and comparing this
with the most outlying other estimate]. For the cubic
fitting Ansatz f3, there are statistically significant fits with
χ2θ=N

θ
dof ≤ 1. Hence, to obtain an error for the choice of

fitting Ansatz, we can only compare ΔΣð1Þ
α ðβÞ and

ΔΣð2Þ
α ðβÞ, and the error is then estimated as

jΔΣð1Þ
α ðβÞ − ΔΣð2Þ

α ðβÞj:

The values can be found in Table III.
To conclude this example, we note that in Fig. 18 one

observes that for βg ¼ 2 and βg ¼ 7 the results are quite
robust against the choice of fitting function and the choice

of fitting interval. In contrast, for smaller values of βg,
cutoff effects in x are larger. We also observe that for
βg ¼ 7 the error in ðϵ; dβÞ is larger than for βg ¼ 2.5,
which is a consequence of the accumulation of errors in dβ
and ϵ during the evolution.
Example B2: Let us now examine the continuum

extrapolation of the string tension σα for the same values
of βg as in Example B1: βg ¼ 0.5, 1.5, 2.5, 7. The details
can be found in Table IV and Fig. 19.
In Sec. IVA, we argue that for high temperatures

and small values of βg the string tension decays exponen-
tially with the temperature. Hence, for small values of βg,
the string tension is very small. This in turn leads to
relatively large systematic errors in ϵ and dβ for βg ¼ 0.5;
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FIG. 19. m=g ¼ 0.25, α ¼ 0.25. Continuum extrapolation of σαðβ; xÞ for different values of βg. The black line is the fit which
determines the continuum estimate. The red line and blue line are the most appropriate fits through the data for the other fitting functions.
The error bars on our data for 1=

ffiffiffi
x

p
≠ 0 represent the errors Δðϵ;dβÞσαðβ; xÞ originating from taking nonzero ϵ and dβ, as explained in

Appendix B 1. The error bar at 1=
ffiffiffi
x

p ¼ 0 is the estimated error on the continuum result.
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see Fig. 19(a). Given this fact, it should not come as a
surprise that only a few of the fits are statistically significant
and have χ2θ=N

θ
dof ≤ 1. More specifically, we could only use

two fits of our data against f1 and f3 and only four fits of
our data against f2. As for ΔΣαðβÞ, because there were
fewer than ten good fits, we chose the fit through the data

points with the least error in ðϵ; dβÞ. They are shown
in Fig. 19(a). The most good fits were found for f2, and
therefore we took as our continuum estimate σαðβÞ=g ¼
σ2αðβÞ=g. Here, the error is obtained by taking the difference
with the estimate σð3Þα ðβÞ corresponding to f3. Not quite
unexpectedly, this error is relatively large.

TABLE IV. m=g ¼ 0.25, α ¼ 0.25. Details on the continuum extrapolation of σαðβÞ.
βg x range σð1Þα ðβÞ=g2f# fitsg σð2Þα ðβÞ=g2f# fitsg σð3Þα ðβÞ=g2f# fitsg σαðβÞ=g2

0.5 [100, 300] 2.3ð2Þ × 10−5f2g 7ð6Þ × 10−5f4g −2.5ð5Þ × 10−4f2g 2ð31Þ × 10−5

1.5 [100, 300] 0.007816ð3Þf15g 0.007801f0g f0g 0.0078(1)
2.5 [100, 300] 0.017105ð1Þf15g 0.017105f0g f0g 0.01710(8)
7 [100, 300] 0.021619ð8Þf15g 0.02166 (2)f8g f0g 0.02162(5)

0 1 2 3 4 5 6 7 8 9 10

0

0.01

0.02

0.03

0.04

7 8 9 10
0.036

0.0365

0.037

0.0375

(a)

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

8 9 10
0.066

0.068

0.07

0.072

(b)

0 1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(c)

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

7 8 9 10
0.266

0.268

0.27

0.272

0.274

0.276

(d)

FIG. 20. m=g ¼ 0.125. Continuum results with error bars for α ¼ 0.1 (red), α ¼ 0.25 (green), and α ¼ 0.45 (blue). (a) String tension.
The dashed lines are the results for βg ¼ þ∞ obtained in Ref. [33]. (b) Electric field. (c) Renormalized entropy. (d) ΔΣαðβÞ.
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For the other values of βg, the errors in ðϵ; dβÞ are better
under control, and the data show almost exactly linear
scaling in 1=

ffiffiffi
x

p
; see Figs. 19(b)–19(d). This is also

confirmed by the fact that only the fits f1 have statistically
significant coefficients and χ2θ=N

θ
dof ≤ 1 for βg ¼ 1.5 and

βg ¼ 2.5; see Table IV. In this case, to still have an idea
of the error of the fitting Ansatz, we compare the result
obtained from the linear fit f1 to the continuum result we
would obtain by a quadratic fit through all our data [red line
in Figs. 19(b) and 19(c)]. Note, however, that this does not
increase the errors on our result; the largest uncertainty
seems to originate from taking nonzero ðϵ; dβÞ. For βg ¼ 7,
a similar picture holds, but now there are also quadratic fits
with statistically significant fits with χ2θ=N

θ
dof . From the two

sets of estimates for σαðβÞ (each of the sets corresponding
to fn; n ¼ 1, 2), we estimate the σαðβÞ and the error as

before. In Figs. 20 and 21, we show the results for m=g ¼
0.125 (Fig. 20), 0.25 (Fig. 21), and α ¼ 0.1, 0.25, 0.45 in
the continuum limit. We plot the string tension (a), the
electric field (b), the renormalized entropy per unit of
length (c), and the renormalized chiral condensate (d). The
entropy Sα is obtained from the free energy per unit of
length F αðβÞ and the average energy per unit of length
EαðβÞ via the relation

SαðβÞ ¼ −β
�
σαðβÞ − EαðβÞ

�
:

We computed the quantities for βg ∈ ½0; 10� with steps
dβ ¼ 0.05. For convenience, we only show the error
bars with steps dβ ¼ 0.2. One observes that the errors
on the continuum extrapolation are small enough. Only for
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FIG. 21. m=g ¼ 0.25. Continuum results with error bars for α ¼ 0.1 (red), α ¼ 0.25 (green), and α ¼ 0.45 (blue). (a) String tension.
The dashed lines are the results for βg ¼ þ∞ obtained in Ref. [33]. (b) Electric field. (c) Renormalized entropy. (d) ΔΣαðβÞ.
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very small values of βg, the deconfinement at T → þ∞
(Sec. IVA) cannot precisely be described for the simulated
values; this suggests that the quantities are zero for
βg≲ 0.5, rather than displaying exponential decay with
temperature as T → þ∞.
The dashed lines in Figs. 20(c), 20(d), 21(c), and 20(d)

are the values at βg ¼ þ∞ computed in Ref. [33]. For
α ¼ 0.1 and α ¼ 0.25, we are at βg ¼ 10 effectively at zero
temperature, while for α ¼ 0.45, there are still thermal
fluctuations left. This correlates with the renormalized
entropy ΔSα which is obviously nonzero for βg ≈ 10
and α ¼ 0.45 and which is very close to zero for
βg≳ 10 and α ¼ 0.1, 0.25; see Figs. 20(c) and 21(c).
This shows that the renormalized entropy is a good quantity
to measure thermal fluctuations in a Gibbs state.

Note also that already at x ¼ 100 our results differ by
10% or less from their continuum value. For m=g≳ 0.5,
the results for different x values are even closer to each
other; see Fig. 22. This suggests that, although we limit our
analysis in Sec. IV to x ¼ 100, we can be confident that we
are close to the continuum limit.

APPENDIX C: THERMAL CORRECTIONS
IN THE WEAK COUPLING LIMIT

The Lagrangian for the Schwinger model is

L ¼ ψ̄ðγμði∂μ þ gAμÞ −mÞψ −
1

4
FμνFμν:
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FIG. 22. α ¼ 0.25. m=g ¼ 0.25 (full line) and m=g ¼ 0.5 (dashed line). Quantities for x ¼ 100; 125; 150;…; 300. (a) String tension.
(b) Electric field. (c) Renormalized chiral condensate. (d) Entropy.
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In the weak coupling limit (m=g ≫ 1) with an electric
background field gα, Coleman [75] considered the
Hamiltonian for this Lagrangian in the semiclassical
approximation where he restricted to the two-particle
subspace:

Hα ≈
Z þ∞

−∞
dp2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
þ
Z þ∞

−∞
dx

g2

2
ðjxj − 2αxÞ

þO
�
ℏ;

g
m

�
; ½x; p� ¼ i:

The first term is the total energy of a fermion-antifermion
pair. The second term gives the energy due to the separation
of the fermion and the antifermion and yields an infinite
number of bound states. Within this semiclassical approxi-
mation, Coleman then argued that the number of two-
particle states with energy smaller than energy E is [75]

NðEÞ ≈ E2

g2πð1 − 4α2ÞΘðE − 2mÞ þO
�
g
m

�
;

where Θ is the Heaviside-function: ΘðxÞ ¼ 1 if x > 0 and
ΘðxÞ ¼ 0 if x < 0. Therefore, thermal fluctuations to the
ground state are only relevant if

Z þ∞

2m
dE

dN
dE

ðEÞe−βE ∼ Cm

for some constant Cm of order 1 depending on m but not
on β. Hence, for a large fixed value of βg, we will only
observe significant thermal fluctuations to ground-state
expectation values if δ≲ Kme−2βm=β, with Km some
positive constant which depends on m but is independent
of β.

[1] G. Sterman, J. Smith, J. C. Collins, J. Whitmore, R. Brock,
J. Huston, J. Pumplin, W.-K. Tung, H. Weerts, C.-P. Yuan,
S. Kuhlmann, S. Mishra, J. G. Morfín, F. Olness, J. Owens,
J. Qiu, and D. E. Soper, Rev. Mod. Phys. 67, 157 (1995).

[2] G. S. Bali, Fiz. B 8, 229 (1999).
[3] O. Philipsen, Eur. Phys. J. Spec. Top. 152, 29 (2007).
[4] K. Fukushima and T. Hatsuda, Rep. Prog. Phys. 74,

014001 (2011).
[5] S. Sharma, Adv. High Energy Phys. 2013, 452978 (2013).
[6] O. Philipsen, Prog. Part. Nucl. Phys. 70, 55 (2013).
[7] O. Philipsen, in 8th Conference Quark Connement and the

Hadron Spectrum, September, Mainz, Germany, Vol. 2009
(International school for advanced studies, 2012).

[8] R. Orús, Ann. Phys. (Amsterdam) 349, 117 (2014).
[9] J. I. Cirac and F. Verstraete, J. Phys. A 42, 504004 (2009).

[10] M. B. Hastings, J. Stat. Mech. 2007, P08024 (2007).
[11] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys.

82, 277 (2010).
[12] L. Masanes, Phys. Rev. A 80, 052104 (2009).
[13] C. V. Kraus, N. Schuch, F. Verstraete, and J. I. Cirac, Phys.

Rev. A 81, 052338 (2010).
[14] P. Corboz, R. Orús, B. Bauer, and G. Vidal, Phys. Rev. B

81, 165104 (2010).
[15] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
[16] M. C. Bañuls, M. B. Hastings, F. Verstraete, and J. I. Cirac,

Phys. Rev. Lett. 102, 240603 (2009).
[17] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken,

and F. Verstraete, arXiv:1408.5056.
[18] V. Murg, F. Verstraete, and J. I. Cirac, Phys. Rev. A 75,

033605 (2007).
[19] M. Fannes, B. Nachtergaele, and R. Werner, Commun.

Math. Phys. 144, 443 (1992).
[20] U. Schollwöck, Ann. Phys. (Amsterdam) 326, 96 (2011).
[21] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

[22] B. Buyens, J. Haegeman, K. Van Acoleyen, H. Verschelde,
and F. Verstraete, Phys. Rev. Lett. 113, 091601 (2014).

[23] T. Pichler, M. Dalmonte, E. Rico, P. Zoller, and S.
Montangero, arXiv:1505.04440.

[24] S. Kühn, E. Zohar, J. I. Cirac, and M. C. Bañuls, J. High
Energy Phys. 07 (2015) 130.

[25] T. M. Byrnes, P. Sriganesh, R. J. Bursill, and C. J. Hamer,
Phys. Rev. D 66, 013002 (2002).

[26] M. C. Bañuls, K. Cichy, J. I. Cirac, and K. Jansen, J. High
Energy Phys. 11 (2013) 158.

[27] M. C. Banuls, K. Cichy, J. I. Cirac, K. Jansen, and H. Saito,
Proc. Sci. LATTICE 2013 (2013) 332.

[28] T. Sugihara, AIP Conf. Proc. 756, 305 (2005).
[29] E. Rico, T. Pichler, M. Dalmonte, P. Zoller, and S.

Montangero, Phys. Rev. Lett. 112, 201601 (2014).
[30] S. Kühn, J. I. Cirac, and M.-C. Bañuls, Phys. Rev. A 90,

042305 (2014).
[31] P. Silvi, E. Rico, T. Calarco, and S. Montangero, New J.

Phys. 16, 103015 (2014).
[32] B. Buyens, K. Van Acoleyen, J. Haegeman, and F.

Verstraete, Proc. Sci., LATTICE2014 (2014) 308.
[33] B. Buyens, J. Haegeman, H. Verschelde, F. Verstraete, and

K. Van Acoleyen, arXiv:1509.00246.
[34] A. Milsted, arXiv:1507.06624.
[35] L. Tagliacozzo andG.Vidal, Phys.Rev. B 83, 115127 (2011).
[36] L. Tagliacozzo, A. Celi, and M. Lewenstein, Phys. Rev. X

4, 041024 (2014).
[37] A. Milsted and T. Osborne, https://github.com/

tobiasosborne/Lattice‑gauge‑theory‑and‑tensor‑networks
(2014).

[38] J. Haegeman, K. Van Acoleyen, N. Schuch, J. I. Cirac, and
F. Verstraete, Phys. Rev. X 5, 011024 (2015).

[39] E. Zohar, M. Burrello, T. Wahl, and J. I. Cirac, Ann. Phys.
(Amsterdam) 363, 385 (2015).

BUYENS, VERSTRAETE, and VAN ACOLEYEN PHYSICAL REVIEW D 94, 085018 (2016)

085018-32

http://dx.doi.org/10.1103/RevModPhys.67.157
http://dx.doi.org/10.1140/epjst/e2007-00376-3
http://dx.doi.org/10.1088/0034-4885/74/1/014001
http://dx.doi.org/10.1088/0034-4885/74/1/014001
http://dx.doi.org/10.1155/2013/452978
http://dx.doi.org/10.1016/j.ppnp.2012.09.003
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1088/1751-8113/42/50/504004
http://dx.doi.org/10.1088/1742-5468/2007/08/P08024
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/PhysRevA.80.052104
http://dx.doi.org/10.1103/PhysRevA.81.052338
http://dx.doi.org/10.1103/PhysRevA.81.052338
http://dx.doi.org/10.1103/PhysRevB.81.165104
http://dx.doi.org/10.1103/PhysRevB.81.165104
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.102.240603
http://arXiv.org/abs/1408.5056
http://dx.doi.org/10.1103/PhysRevA.75.033605
http://dx.doi.org/10.1103/PhysRevA.75.033605
http://dx.doi.org/10.1007/BF02099178
http://dx.doi.org/10.1007/BF02099178
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.113.091601
http://arXiv.org/abs/1505.04440
http://dx.doi.org/10.1007/JHEP07(2015)130
http://dx.doi.org/10.1007/JHEP07(2015)130
http://dx.doi.org/10.1103/PhysRevD.66.013002
http://dx.doi.org/10.1007/JHEP11(2013)158
http://dx.doi.org/10.1007/JHEP11(2013)158
http://dx.doi.org/10.1063/1.1920975
http://dx.doi.org/10.1103/PhysRevLett.112.201601
http://dx.doi.org/10.1103/PhysRevA.90.042305
http://dx.doi.org/10.1103/PhysRevA.90.042305
http://dx.doi.org/10.1088/1367-2630/16/10/103015
http://dx.doi.org/10.1088/1367-2630/16/10/103015
http://arXiv.org/abs/1509.00246
http://arXiv.org/abs/1507.06624
http://dx.doi.org/10.1103/PhysRevB.83.115127
http://dx.doi.org/10.1103/PhysRevX.4.041024
http://dx.doi.org/10.1103/PhysRevX.4.041024
https://github.com/tobiasosborne/Lattice-gauge-theory-and-tensor-networks
https://github.com/tobiasosborne/Lattice-gauge-theory-and-tensor-networks
https://github.com/tobiasosborne/Lattice-gauge-theory-and-tensor-networks
http://dx.doi.org/10.1103/PhysRevX.5.011024
http://dx.doi.org/10.1016/j.aop.2015.10.009
http://dx.doi.org/10.1016/j.aop.2015.10.009


[40] F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Phys. Rev.
Lett. 93, 207204 (2004).

[41] M. Zwolak and G. Vidal, Phys. Rev. Lett. 93, 207205
(2004).

[42] M. B. Hastings, Phys. Rev. B 73, 085115 (2006).
[43] A. Molnar, N. Schuch, F. Verstraete, and J. I. Cirac, Phys.

Rev. B 91, 045138 (2015).
[44] H. Saito, M. C. Bañuls, K. Cichy, J. I. Cirac, and K. Jansen,

Proc. Sci., LATTICE2014 (2014) 302.
[45] M. C. Bañuls, K. Cichy, J. I. Cirac, K. Jansen, and H. Saito,

Phys. Rev. D 92, 034519 (2015).
[46] H. Saito, M. C. Bañuls, K. Cichy, J. I. Cirac, and K. Jansen,

Proc. Sci., LATTICE2015 (2016) 283.
[47] M. C. Bañuls, K. Cichy, K. Jansen, and H. Saito, arXiv:

1603.05002.
[48] J. Schwinger, Phys. Rev. 128, 2425 (1962).
[49] J. Schwinger, Phys. Rev. 125, 397 (1962).
[50] P. W. Anderson, Phys. Rev. 130, 439 (1963).
[51] J. I. Cirac, P. Maraner, and J. K. Pachos, Phys. Rev. Lett.

105, 190403 (2010).
[52] E. Zohar and B. Reznik, Phys. Rev. Lett. 107, 275301

(2011).
[53] E. Zohar, J. I. Cirac, and B. Reznik, Phys. Rev. Lett. 109,

125302 (2012).
[54] D. Banerjee, M. Dalmonte, M. Müller, E. Rico, P. Stebler,

U.-J. Wiese, and P. Zoller, Phys. Rev. Lett. 109, 175302
(2012).

[55] D. Banerjee, M. Dalmonte, M. Müller, E. Rico, P. Stebler,
U.-J. Wiese, and P. Zoller, Phys. Rev. Lett. 109, 175302
(2012).

[56] P. Hauke, D. Marcos, M. Dalmonte, and P. Zoller, Phys.
Rev. X 3, 041018 (2013).

[57] K. Stannigel, P. Hauke, D. Marcos, M. Hafezi, S. Diehl,
M. Dalmonte, and P. Zoller, Phys. Rev. Lett. 112, 120406
(2014).

[58] L. Tagliacozzo, A. Celi, P. Orland, M.W. Mitchell, and M.
Lewenstein, Nat. Commun. 4, 2615 (2013).

[59] U.-J. Wiese, Ann. Phys. (Berlin) 525, 777 (2013).
[60] E. Zohar, J. I. Cirac, and B. Reznik, Phys. Rev. A 88,

023617 (2013).
[61] E. Zohar, J. I. Cirac, and B. Reznik, Phys. Rev. Lett. 110,

125304 (2013).
[62] E. Zohar and B. Reznik, New J. Phys. 15, 043041 (2013).
[63] E. Zohar, J. I. Cirac, and B. Reznik, Phys. Rev. Lett. 110,

055302 (2013).
[64] A. Kosior and K. Sacha, Europhys. Lett. 107, 26006 (2014).
[65] D. Marcos, P. Widmer, E. Rico, M. Hafezi, P. Rabl, U.-J.

Wiese, and P. Zoller, Ann. Phys. (Amsterdam) 351, 634
(2014).

[66] U.-J. Wiese, Nucl. Phys. A931, 246 (2014).
[67] A. Mezzacapo, E. Rico, C. Sabín, I. L. Egusquiza, L.

Lamata, and E. Solano, arXiv:1505.04720.
[68] S. Notarnicola, E. Ercolessi, P. Facchi, G. Marmo, S.

Pascazio, and F. V. Pepe, J. Phys. A 48, 30FT01 (2015).
[69] E. Zohar, J. I. Cirac, and B. Reznik, Rep. Prog. Phys. 79,

014401 (2016).
[70] E. A. Martinez, C. A. Muschik, P. Schindler, D. Nigg,

A. Erhard, M. Heyl, P. Hauke, M. Dalmonte, T. Monz,

P. Zoller, and R. Blatt, Nature (London) 534, 516
(2016).

[71] I. Sachs and A. Wipf, Helv. Phys. Acta 65, 652 (1992).
[72] J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
[73] T. Banks, L. Susskind, and J. Kogut, Phys. Rev. D 13, 1043

(1976).
[74] S. Coleman, R. Jackiw, and L. Susskind, Ann. Phys. (N.Y.)

93, 267 (1975).
[75] S. Coleman, Ann. Phys. (N.Y.) 101, 239 (1976).
[76] B. E. Baaquie, Phys. Rev. D 33, 2367 (1986).
[77] N. Hatano and M. Suzuki, Quantum Annealing and Other

Optimization Methods (Springer, Berlin, 2005), p. 37.
[78] Y. Nambu, Rev. Mod. Phys. 81, 1015 (2009).
[79] N. Kawamoto and J. Smit, Nucl. Phys. B192, 100 (1981).
[80] L. Y. Glozman, Acta Phys. Pol. B Proc. Suppl. 6, 245

(2013).
[81] P. O. Bowman, K. Langfeld, D. B. Leinweber, A. Sternbeck,

L. von Smekal, and A. G. Williams, Phys. Rev. D 84,
034501 (2011).

[82] R. Rodriguez and Y. Hosotani, Phys. Lett. B 375, 273
(1996).

[83] J. V. Steele, A. Subramanian, and I. Zahed, Nucl. Phys.
B452, 545 (1995).

[84] Y. Hosotani and R. Rodriguez, J. Phys. A 31, 9925 (1998).
[85] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H.

Verschelde, and F. Verstraete, Phys. Rev. Lett. 107,
070601 (2011).

[86] J. Haegeman, T. J. Osborne, and F. Verstraete, Phys. Rev. B
88, 075133 (2013).

[87] C. Adam, Phys. Lett. B 440, 117 (1998).
[88] J. Greensite, Prog. Part. Nucl. Phys. 51, 1 (2003).
[89] Y. Hosotani and R. Rodriguez, Phys. Lett. B 389, 121

(1996).
[90] W. Fischler, J. Kogut, and L. Susskind, Phys. Rev. D 19,

1188 (1979).
[91] J. E. Hetrick and Y. Hosotani, Phys. Rev. D 38, 2621

(1988).
[92] G. Grignani, P. Sodano, G. Semenoff, and O. Tirkkonen,

Int. J. Mod. Phys. A 11, 4103 (1996).
[93] C. Huscroft, R. Gass, and M. Jarrell, Phys. Rev. B 61, 9300

(2000).
[94] M. Troyer, S. Wessel, and F. Alet, Phys. Rev. Lett. 90,

120201 (2003).
[95] S. Bi and N.-H. Tong, Phys. Rev. E 92, 013310 (2015).
[96] B. Buyens, J. Haegeman, F. Verstraete, and K. Van

Acoleyen, Proc. Sci., LATTICE2015 (2016) 280.
[97] L. Onsager, Phys. Rev. 65, 117 (1944).
[98] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133

(1966).
[99] R. Peierls and M. Born, Proc. Cambridge Philos. Soc. 32,

477 (1936).
[100] T. Prosen and M. Nidari, J. Stat. Mech. 2009, P02035

(2009).
[101] R. Orús, Phys. Rev. B 85, 205117 (2012).
[102] P. Czarnik, L. Cincio, and J. Dziarmaga, Phys. Rev. B 86,

245101 (2012).
[103] P. Czarnik and J. Dziarmaga, Phys. Rev. B 92, 035152

(2015).

HAMILTONIAN SIMULATION OF THE SCHWINGER MODEL … PHYSICAL REVIEW D 94, 085018 (2016)

085018-33

http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevLett.93.207205
http://dx.doi.org/10.1103/PhysRevLett.93.207205
http://dx.doi.org/10.1103/PhysRevB.73.085115
http://dx.doi.org/10.1103/PhysRevB.91.045138
http://dx.doi.org/10.1103/PhysRevB.91.045138
http://dx.doi.org/10.1103/PhysRevD.92.034519
http://arXiv.org/abs/1603.05002
http://arXiv.org/abs/1603.05002
http://dx.doi.org/10.1103/PhysRev.128.2425
http://dx.doi.org/10.1103/PhysRev.125.397
http://dx.doi.org/10.1103/PhysRev.130.439
http://dx.doi.org/10.1103/PhysRevLett.105.190403
http://dx.doi.org/10.1103/PhysRevLett.105.190403
http://dx.doi.org/10.1103/PhysRevLett.107.275301
http://dx.doi.org/10.1103/PhysRevLett.107.275301
http://dx.doi.org/10.1103/PhysRevLett.109.125302
http://dx.doi.org/10.1103/PhysRevLett.109.125302
http://dx.doi.org/10.1103/PhysRevLett.109.175302
http://dx.doi.org/10.1103/PhysRevLett.109.175302
http://dx.doi.org/10.1103/PhysRevLett.109.175302
http://dx.doi.org/10.1103/PhysRevLett.109.175302
http://dx.doi.org/10.1103/PhysRevX.3.041018
http://dx.doi.org/10.1103/PhysRevX.3.041018
http://dx.doi.org/10.1103/PhysRevLett.112.120406
http://dx.doi.org/10.1103/PhysRevLett.112.120406
http://dx.doi.org/10.1038/ncomms3615
http://dx.doi.org/10.1002/andp.201300104
http://dx.doi.org/10.1103/PhysRevA.88.023617
http://dx.doi.org/10.1103/PhysRevA.88.023617
http://dx.doi.org/10.1103/PhysRevLett.110.125304
http://dx.doi.org/10.1103/PhysRevLett.110.125304
http://dx.doi.org/10.1088/1367-2630/15/4/043041
http://dx.doi.org/10.1103/PhysRevLett.110.055302
http://dx.doi.org/10.1103/PhysRevLett.110.055302
http://dx.doi.org/10.1209/0295-5075/107/26006
http://dx.doi.org/10.1016/j.aop.2014.09.011
http://dx.doi.org/10.1016/j.aop.2014.09.011
http://dx.doi.org/10.1016/j.nuclphysa.2014.09.102
http://arXiv.org/abs/1505.04720
http://dx.doi.org/10.1088/1751-8113/48/30/30FT01
http://dx.doi.org/10.1088/0034-4885/79/1/014401
http://dx.doi.org/10.1088/0034-4885/79/1/014401
http://dx.doi.org/10.1038/nature18318
http://dx.doi.org/10.1038/nature18318
http://dx.doi.org/10.1103/PhysRevD.11.395
http://dx.doi.org/10.1103/PhysRevD.13.1043
http://dx.doi.org/10.1103/PhysRevD.13.1043
http://dx.doi.org/10.1016/0003-4916(75)90212-2
http://dx.doi.org/10.1016/0003-4916(75)90212-2
http://dx.doi.org/10.1016/0003-4916(76)90280-3
http://dx.doi.org/10.1103/PhysRevD.33.2367
http://dx.doi.org/10.1103/RevModPhys.81.1015
http://dx.doi.org/10.1016/0550-3213(81)90196-6
http://dx.doi.org/10.5506/APhysPolBSupp.6.245
http://dx.doi.org/10.5506/APhysPolBSupp.6.245
http://dx.doi.org/10.1103/PhysRevD.84.034501
http://dx.doi.org/10.1103/PhysRevD.84.034501
http://dx.doi.org/10.1016/0370-2693(96)00240-7
http://dx.doi.org/10.1016/0370-2693(96)00240-7
http://dx.doi.org/10.1016/0550-3213(95)00418-R
http://dx.doi.org/10.1016/0550-3213(95)00418-R
http://dx.doi.org/10.1088/0305-4470/31/49/013
http://dx.doi.org/10.1103/PhysRevLett.107.070601
http://dx.doi.org/10.1103/PhysRevLett.107.070601
http://dx.doi.org/10.1103/PhysRevB.88.075133
http://dx.doi.org/10.1103/PhysRevB.88.075133
http://dx.doi.org/10.1016/S0370-2693(98)01070-3
http://dx.doi.org/10.1016/S0146-6410(03)90012-3
http://dx.doi.org/10.1016/S0370-2693(96)01252-X
http://dx.doi.org/10.1016/S0370-2693(96)01252-X
http://dx.doi.org/10.1103/PhysRevD.19.1188
http://dx.doi.org/10.1103/PhysRevD.19.1188
http://dx.doi.org/10.1103/PhysRevD.38.2621
http://dx.doi.org/10.1103/PhysRevD.38.2621
http://dx.doi.org/10.1142/S0217751X96001930
http://dx.doi.org/10.1103/PhysRevB.61.9300
http://dx.doi.org/10.1103/PhysRevB.61.9300
http://dx.doi.org/10.1103/PhysRevLett.90.120201
http://dx.doi.org/10.1103/PhysRevLett.90.120201
http://dx.doi.org/10.1103/PhysRevE.92.013310
http://dx.doi.org/10.1103/PhysRev.65.117
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1017/S0305004100019174
http://dx.doi.org/10.1017/S0305004100019174
http://dx.doi.org/10.1088/1742-5468/2009/02/P02035
http://dx.doi.org/10.1088/1742-5468/2009/02/P02035
http://dx.doi.org/10.1103/PhysRevB.85.205117
http://dx.doi.org/10.1103/PhysRevB.86.245101
http://dx.doi.org/10.1103/PhysRevB.86.245101
http://dx.doi.org/10.1103/PhysRevB.92.035152
http://dx.doi.org/10.1103/PhysRevB.92.035152

