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We compare numerical solutions to the full field equations to simplified approaches based on
implementing three collective coordinates for kink-antikink interactions within the φ4 and ϕ6 models
in one time and one space dimensions. We particularly pursue the question whether the collective
coordinate approximation substantiates the conjecture that vibrational modes are important for resonance
structures to occur in kink-antikink scattering.
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I. INTRODUCTION

The φ4 model is a nonlinear prototype extension of the
Klein-Gordon theory in one time and one space dimensions
which contains soliton solutions (more precisely solitary
waves) [1] that possess localized energy densities.
Nonlinearity gives rise to distinct vacuum solutions and
the solitons connect different vacua at negative and positive
spatial infinity. These solitons are called kinks and have a
particlelike behavior when subjected to external forces.
Configurations obtained by spatial reflection are antikinks.
Similar soliton solutions are found in the sine-Gordon and
ϕ6 models. Nonintegrability of the φ4 and ϕ6 models makes
them more interesting because of the enriched structure of
solutions that correspond to kink-antikink interactions.
Localized soliton-type solutions are not limited to these
models. For example, lumplike configurations were
obtained in modified φ4 models [2] and kink-kink solutions
in models with nonpolynomial potentials [3]. Solitons in
the ϕ8 model have been recently constructed in Ref. [4].
There is a wide range of applications for (anti)kink

solutions in physics: In cosmology [5,6] the kink solutions
describe the fractal structure of domain walls [7]; in
condensed matter physics they mimic domain walls in
ferromagnets [8] and ferroelectrics [9]. A remarkable
feature of solitons is that their (classical) energy is inversely
proportional to the coupling constant. Considering the
number of colors in quantum chromodynamics as a hidden
coupling constant [10] thus motivates us to regard baryons
as solitons in an effective meson theory [11]. This picture of
baryons has proven quite successful in describing many
baryon properties [12]. This approach has even been
generalized to nuclei [13]. A general discussion of (topo-
logical) solitons can be obtained from Ref. [14].
Besides the zero mode associated with spontaneous

breaking of translational invariance, the fluctuation spec-
trum about the φ4 kink contains a further bound state, the
so-called shape mode. This shape mode possesses a
number of interesting features. For example, it can be
indirectly excited by external forces [15] and the frequency
of wobbling kinks is correlated with the bound state energy

of the shape mode [16]. On the other hand the numerically
observed frequencies of oscillons (long-living oscillations
generated from an initial bump) are lower than the
eigenfrequency of the shape mode [17]. This mode is a
bound state in the background of the (anti)kink and thus
represents an essential vibrational excitation of the (anti)
kink. In kink-antikink scattering this mode might tempo-
rarily store energy and release it at a later time [18]. This
process has been considered to be responsible for reso-
nance phenomena in this scattering reaction: with energy
stored in the shape mode, kinks and antikinks do not have
enough energy to fully separate. Remarkably, such reso-
nance solutions have also been observed in the ϕ6 model
[19]. However, this model does not contain the shape mode.
Of course, the interplay of translational and vibrational
modes during the kink-antikink interaction is an interesting
subject on its own that has been generalized to multiple
kink interactions recently [20].
The above survey is certainly incomplete but sufficient to

demonstrate that there is a rich structure1 of solitons in
nonlinear low-dimensional models that can be identified by
numerical simulations which are not too laborious. It is
interesting and challenging to identify the dynamics behind
these structures. A technique that has been frequently
employed for this purpose is the introduction of time
dependent collective coordinates. They reduce the full field
equations to (coupled) ordinary differential equations.
Though being an approximation relying on good guesses
for appropriate collective coordinates, it assists to identify
the relevant modes in case agreement between the solutions
of the full and the reduced equations is obtained. Collective
coordinates for the φ4 model were suggested in Ref. [22]
already some time ago. Numerical calculations were only
performed later on [7,23,24] and yielded remarkable agree-
ment with the solutions to the full field equations, thereby
stressing the relevance of the shape mode for resonance
formation. Unfortunately, a typographical error in a for-
mula from Ref. [22] propagated into those numerical

1See Ref. [21] for an early review.
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studies [25]. Hence a second look at those studies is
inevitable. Also, those studies included a subset of collec-
tive coordinates that is only appropriate for certain initial
conditions. In addition a comprehensive collective coor-
dinate study in the ϕ6 model is important to illuminate the
origin of the resonance solutions within kink-antikink
scattering. These issues will be the objectives of the present
paper.
In Sec. II we introduce the models that we consider.

The collective coordinates are defined in Sec. III. In
Sec. IV we present our numerical results. We summarize
with a short conclusion in Sec. V. An appendix details
the calculation of coefficient functions in the collective
coordinate approach.

II. MODELS

The models that we consider are defined in one space
and one time dimensions. From the onset, we use
dimensionless variables (corresponding to m ¼ ffiffiffi

2
p

and
λ ¼ 2 in Ref. [22]) so that the Lagrange densities are

L4 ¼
1

2
∂μφ∂μφ −

1

2
ðφ2 − 1Þ2 and

L6 ¼
1

2
∂μϕ∂μϕ −

1

2
ϕ2ðϕ2 − 1Þ2: ð1Þ

The respective field equations are partial differential
equations (PDE),

φ̈ − φ00 ¼ 2φð1 − φ2Þ and

ϕ̈ − ϕ00 ¼ −ϕð3ϕ4 − 4ϕ2 þ 1Þ; ð2Þ

that are straightforwardly obtained from the respective
Lagrangians. In the above, dots and primes denote time
and coordinate derivatives, respectively. There are two
vacuum solutions in the φ4 model, φ0 ¼ �1 but three in
the ϕ6 model, ϕ0 ¼ �1 and ϕ0 ¼ 0. The PDE allow for
static soliton solutions that connect different vacuum
solutions at spatial infinity. In the φ4 model these are
the kink and antikink solutions,

φK;K̄ðxÞ ¼ � tanhðxÞ; ð3Þ

that are related by spatial reflection x ↔ −x. In the ϕ6

model the soliton configurations that solve the field
equations and connect the vacuum at ϕ0 ¼ 0 with the
vacua ϕ0 ¼ þ1 are

ϕK;K̄ðxÞ ¼ ½1þ expð�2xÞ�−1
2: ð4Þ

Again these solutions are related by spatial reflection. In
addition, the overall sign of ϕK;K̄ may be changed so
that there are four different static solutions in the ϕ6

model. Time dependent solutions are straightforwardly

constructed by a Lorentz boost: x → x−vtffiffiffiffiffiffiffiffi
1−v2

p , with constant

velocity v.
There is an important difference between the two

models that concerns the small amplitude fluctuations
about the soliton solutions. While there are zero modes
in both models that emerge because the static solutions
break translational invariance spontaneously, the φ4

model has an additional bound state solution, the so-
called shape or breather mode [1]. Parametrizing the
field φðx; tÞ ¼ tanhðxÞ þ ηðx; tÞ and linearizing the PDE
in η, this shape mode solution is found to be2

ηðx; tÞ ¼ e−i
ffiffi
3

p
tχðxÞ with

χðxÞ ¼ sinhðxÞ
cosh2ðxÞ : ð5Þ

The static solutions serve as initial conditions to
investigate the kink-antikink system as a raw model for
particle-antiparticle interactions. Initially a kink and
antikink are widely separated while moving towards each
other. To be precise, in the φ4 model the initial conditions
read

φðx;0Þ ¼ φK̄

�
xffiffiffiffiffiffiffiffiffiffiffiffi

1− v2
p −X0

�
þφK

�
xffiffiffiffiffiffiffiffiffiffiffiffi

1− v2
p þX0

�
− 1;

_φðx;0Þ ¼ vffiffiffiffiffiffiffiffiffiffiffiffi
1− v2

p
�
φ0̄
K

�
xffiffiffiffiffiffiffiffiffiffiffiffi

1− v2
p −X0

�

−φ0
K

�
xffiffiffiffiffiffiffiffiffiffiffiffi

1− v2
p þX0

��
; ð6Þ

where the primes denote the derivative with respect to
the argument. Here X0 is a measure for the initial
separation and v is the relative kink and antikink
velocity.
The situation is slightly more complicated in the ϕ6

model because two different scenarios can be built up. First
there is the kink-antikink configuration

ϕKK̄ðx; 0Þ ¼ ϕK̄

�
xffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p þ X0

�

þ ϕK

�
xffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p − X0

�
− 1;

_ϕKK̄ðx; 0Þ ¼
−vffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
�
ϕ0̄
K

�
xffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p þ X0

�

− ϕ0
K

�
xffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p − X0

��
; ð7Þ

and second the antikink-kink scenario

2The threshold is at ω ¼ 2 for the dimensionless variables
adopted here.
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ϕK̄Kðx; 0Þ ¼ ϕK̄

�
xffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p − X0

�
þ ϕK

�
xffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p þ X0

�
;

_ϕK̄Kðx; 0Þ ¼
vffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p

�
ϕ0̄
K

�
xffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p − X0

�

− ϕ0
K

�
xffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p þ X0

��
: ð8Þ

Using the above initial conditions with large X0, the
numerical solutions of the PDE (2) have been extensively
discussed in the literature, both for the φ4 [7,18,23,24,26]
and ϕ6 [19] models. Especially in the φ4 model the
multifaceted structures that emerge as the relative velocity
v is changed have been widely explored. We elaborate on
these structures in Sec. IV. See also Ref. [25] for a
comparative discussion for both models and a collection
of further references.

III. COLLECTIVE COORDINATES

Time dependent collective coordinates have mainly
been considered for the φ4 model. Initially [22] they
were introduced to simplify the PDE to ordinary differ-
ential equations (ODE). Later, see e.g., [24] and refer-
ences therein; they were utilized to explain the multiple
bounce solutions within the kink-antikink collision that
were earlier observed in the solutions to the PDE. In this
context the shape mode, Eq. (5), plays a decisive role. It
has been conjectured that this mode is excited during
the collision and that this excitation absorbs too much
energy from the kink-antikink system to fully separate.
Only when the shape mode releases this energy in phase
with the dissociation of kink and antikink do they
possess enough energy to depart to spatial infinity.
Hence the amplitude of the shape mode and the
kink-antikink separation are important characteristics
of the system and thus motivate us to introduce
corresponding collective coordinates via

φcðx; tÞ ¼ φKðξþÞ þ φK̄ðξ−Þ − 1

þ
ffiffiffi
3

2

r
½AðtÞχðξ−Þ þ BðtÞχðξþÞ� where

ξ� ¼ ξ�ðx; tÞ ¼
xffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p � XðtÞ: ð9Þ

Obviously, XðtÞ is the collective coordinate for the
separation while AðtÞ and BðtÞ are the amplitudes of the
shape modes in the background of the antikink and
kink, respectively. This Ansatz is substituted into the
Lagrange density and, by spatial integration, a Lagrange
function for the collective coordinates is obtained.
Generically it takes the form

L4ðA; _A; B; _B;X; _XÞ ¼ a1ðXÞ _X2 − a2ðXÞ þ a3ðXÞ _A2

− a4ðXÞA2 þ a5ðXÞAþ � � �
þ b3ðXÞ _B2 − b4ðXÞB2 þ b5ðXÞB
þ � � � − d10ðXÞAB3: ð10Þ

The ellipsis refer to terms that involve other powers
and products of the amplitudes A and B as derived
from the Lagrangian, Eq. (1). Unless otherwise noted,
they are included in our calculation though omitted
above for brevity only. The coefficient functions,
a1ðXÞ;…; d10ðXÞ, are obtained as spatial integrals of
the kink and/or antikink profile functions. For example
(see also the Appendix),

a1ðXÞ ¼
1

2

Z
∞

−∞
dx½ϕ0

KðξþÞ − ϕ0̄
Kðξ−Þ�2

¼ 4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p �
1þ 6X cothð2XÞ − 3

sinh2ð2XÞ
�
:

Here we refrain from further listing those integrals in
detail since they are documented in the appendixes of
Ref. [27]. As indicated analytic expressions (as func-
tions of X) can be obtained using analytic function
theory [18,22,28]. Since we anyhow intend to perform
numerical simulations, the numerical representation suits
us well. From the above Lagrange function a set of
coupled second order ODE is derived that governs the
time evolution of the collective coordinates.
Schematically they are cast into the form

0
B@

a11 a12 a13
a21 a22 a23
a31 a32 a33

1
CA
0
B@

Ẍ

Ä

B̈

1
CA ¼

0
B@

f1
f2
f3

1
CA

⇔

0
B@

Ẍ

Ä

B̈

1
CA ¼

0
B@

a11 a12 a13
a21 a22 a23
a31 a32 a33

1
CA

−1
0
B@

f1
f2
f3

1
CA:

ð11Þ

The matrix elements amn and the right-hand sides fn
contain the coefficient functions aiðXÞ etc. as well as
factors of the collective coordinates themselves. For
example,

a11 ¼ 2½a1ðXÞ þ a6ðXÞAþ a8ðXÞA2 þ b6ðXÞB
þ b8ðXÞB2 þ d2ðXÞAB�:

The remaining lengthy formulas are reported in detail in
Ref. [27]. The ODE, Eq. (11), are to be solved for initial
conditions resembling those for the PDE from Sec. II,
i.e., Xð0Þ ¼ X0 and _Xð0Þ ¼ −vffiffiffiffiffiffiffiffi

1−v2
p . The amplitudes of the
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shape modes and their time derivatives all vanish
initially.
The Ansatz, Eq. (9), was already proposed in Ref. [22].

However, numerical calculations have only been performed
for reduced sets. For example, the reduced system with
AðtÞ≡ 0 and BðtÞ≡ 0 was solved in Ref. [18], while the
subsystem3 AðtÞ≡ −BðtÞ was comprehensively investi-
gated in Ref. [24]. The latter restriction suffers from the
obvious problem that χðξ−Þ ∼ χðξþÞ at zero separation
XðtÞ ∼ 0 so that the amplitude AðtÞ turns ill defined.
This is known as the null-vector problem [29]. This
problem has been restated recently [30] in a different
context but no rigorous soliton has been established so
far. Furthermore, a typographical error in the formula for
a5ðXÞ from Ref. [22] has propagated through the literature
making most of the numerical simulations obsolete. We
give details in Sec. IVA. Hence a reanalysis of these
numerical approaches is essential.
The situation is slightly different in the ϕ6 model because

there is no shape mode in the fluctuation spectrum. Similar
to the φ4 model, however, multiple bounce solutions have
also been observed from the PDE for the kink-antikink
interaction in the ϕ6 model [19,25]. As mentioned, the
excitation of the shape mode during the kink-antikink
interaction has been conjectured to cause the multiple
bounce solutions in the φ4 model. As a working hypothesis
it thus seems very suggestive to include this degree of
freedom as a representative of vibrational excitations in
the collective coordinate Ansatz also for the ϕ6 model. We
therefore write

ϕ̄ccðx; tÞ ¼ ϕKðξ−Þ þ ϕK̄ðξþÞ − 1

þ
ffiffiffi
3

2

r
½AðtÞχðξ−Þ þ BðtÞχðξþÞ�; ð12Þ

ϕccðx; tÞ ¼ ϕKðξþÞ þ ϕK̄ðξ−Þ

þ
ffiffiffi
3

2

r
½AðtÞχðξ−Þ þ BðtÞχðξþÞ�; ð13Þ

for the kink-antikink and antikink-kink systems, respec-
tively. Again Lagrange functions are computed for the
two Ansätze and second order ODE are obtained for the
collective coordinates4 XðtÞ, AðtÞ and BðtÞ. These equa-
tions are straightforwardly obtained but lengthy. The
interested reader may extract them from Ref. [27]. In
Refs. [31,32] the calculation with AðtÞ≡ 0 and BðtÞ≡ 0
was performed. If that indeed was a sensible approxima-
tion, we should find that our extended parametrization in

Eqs. (12) and (13) always yields negligible amplitudes of
the vibrational shape mode.

IV. NUMERICAL RESULTS

In this section we report the results from the numerical
simulations of the differential equations discussed above.
We solve the PDE equations, ∂2

tϕðx; tÞ ¼ ∂2
xϕðx; tÞ−

V 0ðϕðx; tÞÞ, as an initial value problem with the right-hand
side computed on a grid with typically 12001 equidistant
points for x ∈ ½−2X0; 2X0�. The second spatial derivatives
are obtained from a five point formula that employs the
actual position (coordinate argument on the left-hand side
of the PDE) and its two neighbors to the left and right. The
PDE is then propagated in time with the help of an adaptive
step size control. The initial configurations are taken from
Eqs. (6)–(8). Though time consuming when so many points
are implemented, this is a standard technique. In contrast to
earlier studies of the ODE for the collective coordinates we
use the numerical representation for the coefficient func-
tions, a1ðXÞ, etc. that depend on the separation parameter
X. Hence we do not have available these coefficients for
arbitrary values of X needed in the numerical simulation.
We therefore compute these coefficients for a large amount
of values X ∈ ½−1.2X0; 1.2X0� before attempting to solve
the ODE. When integrating the ODE we then utilize a
Laguerre interpolation to access the coefficients for the
required X as the ODE is propagated in time by an adaptive
step size algorithm. To monitor the accuracy of numerically
integrating the differential equations we verify that the total
energy as obtained from the respective model Lagrangian is
indeed time independent.
We want to compare solutions for the full field equa-

tions (2) to the results from the collective coordinate
approximation (11) with identical initial conditions. This
amounts to comparing XðtÞ to twice the distance between
the kink and the antikink in the PDE calculation. We extract
this from the expectation value

hxit ¼
R
∞
0 dxxϵðt; xÞR∞
0 dxϵðt; xÞ ; ð14Þ

where

ϵðt; xÞ ¼ 1

2
½φ̈þ φ00 þ ðφ2 − 1Þ2� or

ϵðt; xÞ ¼ 1

2
½ϕ̈þ ϕ00 þ ðϕ2 − 1Þ2ϕ2� ð15Þ

are the energy densities of the respective models. This
procedure is based on the observation that the energy
density [ϵðt;−xÞ ¼ ϵðt; xÞ, when the initial field configu-
ration is reflection symmetric] is characterized by two
peaks that move in time. One peak signals the position of
the kink on the negative half line, the other moves with
the antikink on the positive half line. By restricting the

3For initial conditions that comply with this restriction it
remains a solution at all times.

4Of course, we are treating three distinct models defined by
Eqs. (9), (12) and (13). It is a matter of convenience that no
distinguishing symbols for the collective coordinates are
introduced.
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integration interval to x ≥ 0 in Eq. (14), the position of the
antikink is identified.

A. φ4 model

In a first step we explore the consequences of correcting
the source term for the amplitude of the shape mode, the
coefficients a5ðXÞ and b5ðXÞ, in the numerical simulation
of the φ4 model. Because of a typographical error in
Ref. [22] the expression (here we list the formulas with
v ¼ 0, for simplicity)

FðXÞ ¼ −3π
ffiffiffi
3

2

r
tanh2ð2XÞ½1 − tanh2ð2XÞ� ð16Þ

that entered previous simulations must be corrected to

a5ðXÞ ¼ −3π
ffiffiffi
3

2

r �
2 − 2tanh3ðXÞ − 3

cosh2ðXÞ þ
1

cosh4ðXÞ
�
:

ð17Þ
We derive this corrected equation in the Appendix.
However, it is intuitively clear that Eq. (16) cannot be
correct: the coefficient a5 is the amplitude of the modifi-
cation of a background configuration. If that configuration
is a solution to the field equations, the coefficient must
vanish. It is easy to see that for x ¼ 0 the background
φKðXÞ − φK̄ðXÞ − 1 ¼ 2 tanhðXÞ − 1 is not a vacuum con-

figuration when X → −∞. Hence limX→−∞a5ðXÞ≠
!

0.
Obviously the expression in Eq. (16) violates this
condition.5 Note that reasonable approximations to the full

solutions were previously achieved by using FðXÞ for the
linear coupling [7,24]. Additional simplifications were
assumed in those simulations: (i) direct couplings between
the shape modes at �X and (ii) interactions involving
higher than quadratic powers of the shape were omitted. We
reproduce the result of such a calculation in the left panel
of Fig. 1. There is indeed a similarity to the exact solution
from the PDE. Once the correction for the linear coupling is
implemented this similarity is completely lost. For the
particular case of v ¼ 0.251 the kink-antikink system is
trapped for an arbitrary long time during which it fluctuates
around a negative value. In Ref. [25] similar fluctuations
were reported for v ¼ 0.2, where, however, the system
separated after a long time.
The other approximations that were made previously are

obviously possible explanations for this mismatch between
the ODE and PDE results. Omitting the higher order
couplings is also questionable in view of the results from
Ref. [33]. A PDE calculation was performed for a wave
packet moving towards a single φ4 kink. Initially the wave
packet and the kink were well separated and after the
interaction the phase shift was extracted from the wave
packet. Agreement with the phase shift from the harmonic
approximation required the amplitude of the fluctuations
about it not to exceed 0.01, which is a small value in the
present context. (This does not invalidate formal results
based on the harmonic approximation, like quantum
corrections to kink properties that originate from the
semiclassical ℏ expansion.) So it is suggestive to omit
such approximations in the next step. However, then we
face the problem that the matrix in Eq. (11) may become
singular. Indeed this is the case. As illuminated in the
Appendix, symmetry relations among the coefficient func-
tions like, for example, a5ðXÞ ¼ −b5ðXÞ, unfold that
AðtÞ ¼ −BðtÞ is a possible solution to the ODE. Hence,
configurations that initially obey this relation do so for all t.
But then AðtÞ and BðtÞ are ill defined when XðtÞ ¼ 0. This

FIG. 1. Effect of correcting the linear coupling. The full lines show the time dependence of the collective coordinate XðtÞ and the
dashed lines picture the position of the antikink as extracted from the PDE according to Eq. (14). Left panel: calculation using FðXÞ from
Eq. (16); right panel: corrected coupling from Eq. (17). Either case has v ¼ 0.251.

5Besides the convention regarding the arguments of the
hyperbolic functions the essential typo from Ref. [22] is the
power of the tanhðXÞ term in Eq. (17). If that is decreased to 2,
the expression in square brackets indeed simplifies to
tanh2ðXÞ½tanh2ðXÞ − 1�.
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is the null-vector problem that causes the matrix from
Eq. (11) to be singular. Of course, no such singularity is
seen in the PDE. Furthermore in the PDE there is no
(obvious) obstacle that prevents the kink and antikink
from penetrating. However, the collective coordinate
parametrization is a not a solution to field equations for
X → −∞ and AðtÞ ¼ BðtÞ ¼ 0. These mismatches can be
circumvented by a small modification of the collective
coordinate parametrization. For the φ4 model

φcðx; tÞ ¼ φKðξþÞ þ φK̄ðξ−Þ − tanhðqXÞ

þ
ffiffiffi
3

2

r
½AðtÞχðξ−Þ þ BðtÞχðξþÞ� ð18Þ

is a possibility that introduces the new parameter q > 0.
This is an attempt to improve the collective coordinate
Ansatz and establish better agreement with the PDE results.
Eventually it can also bypass the null-vector problem.
Results for this parametrization are shown in Fig. 2.
Obviously we observe only X > 0 and see that the PDE
results are better approximated as q increases. Even though

q > 0 was introduced to allow X → −∞ its introduction
has the opposite effect. A large q, which corresponds to not
modifying the parametrization as long as X > 0, is needed
to resemble the PDE results. This, however, induces large
derivatives when X → 0þ that absorb energy and in turn
prevent the configuration from assuming X ¼ 0.
In Fig. 3 we compare the results for two different initial

velocities of the ODE to the corresponding solutions of the
PDE with particular emphasis on the amplitude of the
shape mode. In each case the collective coordinate XðtÞ has
some qualitative similarity with the center of the energy
density hxit. More importantly we observe that the
amplitude of the shape mode is strongly enhanced as the
kink-antikink system shrinks. This suggests that indeed a
significant amount of energy is stored in that mode during
the collision. Once the kink and antikink have separated
this amplitude is essentially 0.

B. ϕ6 model

As in the φ4 model the original collective coordinate
parametrizations, Eqs. (12) and (13), describe vacuum

FIG. 2. Solutions to the ODE with v ¼ 0.251 and two different values q ¼ 5 (left panel) and q ¼ 10 (right panel) for the new
parameter in Eq. (18).

FIG. 3. Effect of shape mode in the φ4 model. ODE calculations with q ¼ 10 in Eq. (18). Left panel: v ¼ 0.201; right panel:
v ¼ 0.251.
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configurations only for X ⋙ x but not for X ⋘ x. We
therefore modify those parametrizations to

ϕ̄ccðx; tÞ ¼ ϕKðξ−Þ þ ϕK̄ðξþÞ −
1

2
½tanhðqXÞ þ 1�

þ
ffiffiffi
3

2

r
½AðtÞχðξ−Þ þ BðtÞχðξþÞ�; ð19Þ

and

ϕccðx; tÞ ¼ ϕKðξþÞ þ ϕK̄ðξ−Þ þ
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2qX
p

þ
ffiffiffi
3

2

r
½AðtÞχðξ−Þ þ BðtÞχðξþÞ�: ð20Þ

We have adjusted the additional constant q ≈ 10 from
numerical experiments on the qualitative agreement with
the PDE results.
In Fig. 4 we show the results for the kink-antikink

interaction. We observe that the collective coordinate
approximation reproduces the first resonance. However,
at later times we observe significant deviations from the
exact PDE results. In particular, the collective coordinate
approximation does not reproduce the pronounced

oscillations on top of the kink-antikink pair drifting apart
with constant velocity.
We show the results for the antikink-kink interaction

arising from the initial condition of Eq. (20) in Fig. 5. In the
two displayed cases the adopted initial velocity exceeds the
critical velocity for bounces to occur in the PDE. In

FIG. 4. Effect of shape mode in the ϕ6 model. ODE calculations with q ¼ 10 in Eq. (19). Left panel: v ¼ 0.100; right panel:
v ¼ 0.221.

FIG. 5. Effect of shape mode in the ϕ6 model. ODE calculations with q ¼ 10 in Eq. (20). Left panel: v ¼ 0.103; right panel:
v ¼ 0.111.

FIG. 6. Effect of shape mode in the ϕ6 model. ODE calcu-
lations with q ¼ 10 in Eq. (20) for v ¼ 0.040.
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contrast, the ODE produces bounces and for v ¼ 0.111
there are many of them and the solution to the ODE is
confined for a very long time.
As in the φ4 model we see that indeed the shape mode

gets excited as the kink and antikink get very close.
However the corresponding amplitude AðtÞ is not quite
as pronounced in the ϕ6 model. This suggests that other
modes are also relevant for energy storage and resonance
formation in the kink-antikink interaction of the ϕ6 model.
In Fig. 6 we finally consider the scenario for the

antikink-kink interaction where the PDE produces bounces.
The collective coordinate approximation does so too, but
the number of bounces differs in the two calculations. Even
more interestingly, their results from the PDE and ODE
calculations are similar for moderate times. But at even
larger times the antikink-kink pair stays very close together
with the energy dwelling in the amplitude of the shape
mode within the ODE solution.
In Table I we list the predictions for the critical velocities

above which resonances cease to exist. We recognize that
the collective coordinate approximation reproduces the
pattern but overestimates the exact results from the PDE.

V. CONCLUSION

We have revisited the collective coordinate approxima-
tions to the field equations of the φ4 and ϕ6 models in one
time and one space dimensions. Various arguments have
motivated this investigation. First, there has been an
inconsistency in the literature about the source term of
the vibrational mode (represented by the shape mode) in the
φ4 model. Second, in that model this vibrational excitation
has previously been considered as the driving force for
resonance solutions in the kink-antikink interaction.
However, that mode is not part of the small amplitude
spectrum in the ϕ6 model which nevertheless contains
resonance solutions. Third, identifying the amplitude of the
shape modes for the kink and antikink leads to a singularity
of the collective coordinate approximation when kink and
antikink get arbitrarily close. To circumvent this so-called
null-vector problem we have abandoned that identification.
The structure of the equations of motion, however, revealed
that this procedure does not fully resolve this singularity for
initial conditions that parametrize a pure kink-antikink
system at large separation. Additional modifications of the
collective coordinate parametrization were necessary to
achieve a nonsingular description. These modifications

were motivated by the search for a better approximation
to the exact PDE solutions and introduced a novel para-
metrization of the fields in terms of the collective coor-
dinates. With this new parametrization, the singular point
was not part of the solution to the ODE and the null-vector
problem did not occur. Fourth, many of the literature
studies adopted the harmonic approximation for this
amplitude (and other simplifications to avoid the null-
vector problem). Since nonlinearity is an essential feature
of these models, it was inevitable to go beyond this
approximation.
We have seen that the collective coordinate approxima-

tions resemble the solutions to the full field equations
only moderately well. Some of the resonances of the
kink-antikink interactions are reproduced by solving the
ODE of the collective coordinate approximations, but these
solutions typically produce too many bounces. Also the
ODE approach overestimates the relative initial velocities
between the kink and antikink above which no bounces
occur in all scenarios. On the other hand we have seen that
the amplitudes of fluctuations (modeled by the shape mode)
about the kink-antikink system are strongly enhanced
during bounces, though it is significantly more pronounced
in the φ4 model than in the ϕ6 model. This indeed suggests
that energy is stored in these modes during the interaction.
Unfortunately, the resemblance between the collective
coordinate and the exact solutions is not good enough to
turn that into the statement that the existence of a shape
mode in the fluctuation spectrum is causal for the occur-
rence of multiple bounce solutions in kink-antikink scatter-
ing. Previous calculations with the distance between kink
and antikink as the only collective coordinate (e.g.,
Ref. [18] for φ4 and Ref. [32] for ϕ6 models, respectively)
found acceptable agreement with the exact field equations.
However, if that had been an appropriate approximation our
generalization should not have yielded sizable amplitudes
for the additional variables.
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APPENDIX: DERIVATION OF EQ. (17)

In this appendix we outline the derivation of the
corrected source term for the shape mode. There are linear
coupling terms in the derivative term ∂μφ∂μφ and in the
potential VðφÞ ¼ 1

2
ðφ2 − 1Þ2. We use the equation of

motion for φK;K̄ and integrate by parts to write,
with V 0ðϕÞ ¼ 2ϕðϕ2 − 1Þ,

TABLE I. Predictions for the critical velocities.

System PDE ODE

φ4 0.26 0.4245
ϕ6, KK̄ 0.289 0.4424
ϕ6, K̄K 0.0457 0.1119

I. TAKYI and H. WEIGEL PHYSICAL REVIEW D 94, 085008 (2016)

085008-8



FðXÞ ¼
Z

∞

−∞
dxfV 0ðφKðxþÞÞ þ V 0ðφK̄ðx − XÞÞ − V 0ðφKðxþ XÞ þ φK̄ðx − XÞ − 1Þg sinhðxþ XÞ

cosh2ðxþ XÞ
¼ 2

Z
∞

−∞
dxftanhðxþ XÞ½tanh2ðxþ XÞ − 1� − tanhðx − XÞ½tanh2ðx − XÞ − 1�

− ðtanhðxþ XÞ − tanhðx − XÞ − 1Þ½ðtanhðxþ XÞ − tanhðx − XÞ − 1Þ2 − 1�g sinhðxþ XÞ
cosh2ðxþ XÞ : ðA1Þ

The boost factor 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is straightforwardly included

by rescaling the integration variable. The interesting terms
are those in which X appears with both signs. As an
example we work out

IðXÞ ¼
Z

∞

−∞
dx tanh3ðx − XÞ sinhðxþ XÞ

cosh2ðxþ XÞ ðA2Þ

in detail. As suggested in Ref. [18] we first define the
Fourier integral

IkðXÞ ¼
Z

∞

−∞
dxeikxtanh3ðx − XÞ sinhðxþ XÞ

cosh2ðxþ XÞ

¼
Z

∞

−∞
dzeikz

sinh3ðz − XÞ
cosh3ðz − XÞ

sinhðzþ XÞ
cosh2ðzþ XÞ ðA3Þ

and take the limit IðXÞ ¼ limk→0IkðXÞ. This Fourier
integral can be evaluated by analytic integration methods
and noting that there are two set of poles,

ð1Þ second order poles at z ¼ iyn − X

ð2Þ third order poles at z ¼ iyn þ X;

with yn ¼ ð2nþ 1Þ π
2
. We close the contour in the upper

half plane so that n ¼ 0; 1;… is relevant. To extract the
residues for the first set of poles we write z ¼ iyn − X þ ϵ
and expand all functions under the integral to linear order in
the small parameter ϵ,

coshðzþ XÞ ∼ ið−1Þnϵ
coshðz − XÞ ∼ −ið−1Þn½s2 − ϵc2�
sinhðzþ XÞ ∼ ið−1Þn
sinhðz − XÞ ∼ −ið−1Þn½c2 − ϵs2�

eikz ∼ e−iXke−ð2nþ1Þπk=2½1þ ikϵ�; ðA4Þ

where we have abbreviated c2 ¼ coshð2XÞ and
s2 ¼ sinhð2XÞ. Then the integrand in Eq. (A3) expands as

eikz
sinh3ðz − XÞ
cosh3ðz − XÞ

sinhðzþ XÞ
cosh2ðzþ XÞ

¼ ið−1Þne−iXke−ð2nþ1Þπk=2½1þ ikϵ� c
3
2 − 3ϵc22s2
s32 − 3ϵs22c2

1

ϵ2

þOðϵ0Þ: ðA5Þ

The relevant term involves 1
ϵ and produces the residue

Rð1Þ
n ¼ ð−1Þne−iXke−ð2nþ1Þπk=2

�
3i
c22
s42

− k
c32
s32

�
: ðA6Þ

Summing the geometric series
P∞

n¼0ð−1Þne−nπk ¼
ð1þ e−πkÞ−1 yields

X∞
n¼0

Rð1Þ
n ¼ e−iXk

2 coshðπk=2Þ
�
3i
c22
s42

− k
c32
s32

�

→
3i
2

c22
s42

as k → 0: ðA7Þ

Since the geometric series resulted in an expression that is
finite as k → 0, the OðkÞ parts in the expansion did not
contribute to the final result. We now turn to the residues of
type (2) which are more cumbersome to evaluate because
the singularity is third order. Hence we must expand all
functions under the integral to one higher power when
writing z ¼ iyn þ X þ ϵ,

coshðzþ XÞ ∼ ið−1Þn
�
s2 þ ϵc2 þ

1

2
ϵ2s2

�

coshðz − XÞ ∼ −ið−1Þnϵ
�
1þ 1

6
ϵ2
�

sinhðzþ XÞ ∼ ið−1Þn
�
c2 þ ϵs2 þ

1

2
ϵ2c2

�

sinhðz − XÞ ∼ −ið−1Þn
�
1þ 1

2
ϵ2
�

eikz ∼ eiXke−ð2nþ1Þπk=2
�
1þ ikϵ −

1

2
k2ϵ2

�
: ðA8Þ

We recognize that the n dependence is the same as for the
type (1) singularities so that it will be sufficient to only keep
terms that do not vanish in the limit k → 0 when expanding
the function under the integral in Eq. (A3),
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eikz
sinh3ðz − XÞ
cosh3ðz − XÞ

sinhðzþ XÞ
cosh2ðzþ XÞ

¼ −ið−1ÞneiXke−ð2nþ1Þπk=2

×

�ð1þ ϵ2

2
Þ3

ð1þ ϵ2

6
Þ3

c2 þ ϵs2 þ ϵ2

2
c2

½s2 þ ϵc2 þ ϵ2

2
s2�2

1

ϵ3
þOðkÞ

�
þOðϵ0Þ:

ðA9Þ

We read off the residue from the term with 1
ϵ,

Rð2Þ
n ¼ −ið−1ÞneiXke−ð2nþ1Þπk=2

×

�
1

s42

�
−
1

2
c2s22 þ 3c32 − css22

�
þOðkÞ

�

¼ −ið−1ÞneiXke−ð2nþ1Þπk=2
�
3

2

c2
s4s

½c22 þ 1� þOðkÞ
�
:

ðA10Þ

We can now sum the residues and take the limit k → 0,

X∞
n¼0

Rð2Þ
n ¼ −i

e−iXk

2 coshðπk=2Þ
�
3

2

c2
s42

½c22 þ 1� þOðkÞ
�

→ −
3i
4

c2
s42

½c22 þ 1�: ðA11Þ

Finally we multiply the sum of Eqs. (A7) and (A11) by 2πi
and obtain

IðXÞ ¼ 3π

2

1

s42
½c32 þ c2 − 2c22�: ðA12Þ

Using the addition theorems s2 ¼ 2 sinhðaÞ coshðaÞ and
c2 ¼ 2 cosh2ðaÞ − 1 ¼ 2 sinh2ðaÞ þ 1 gives a further
simplification that we list below together with other
relevant integrals that are obtained by the same
techniques,

Z
∞

−∞
dxtanh3ðx − XÞ sinhðxþ XÞ

cosh2ðxþ XÞ ¼
3π

8

2cosh2X − 1

cosh4XZ
∞

−∞
dxtanh2ðx − XÞ tanhðxþ XÞ sinhðxþ XÞ

cosh2ðxþ XÞ ¼
π

8

4cosh4X − 4cosh2X þ 3

cosh4XZ
∞

−∞
dx tanhðx − XÞtanh2ðxþ XÞ sinhðxþ XÞ

cosh2ðxþ XÞ ¼
π

8

4cosh2X − 1

cosh4XZ
∞

−∞
dx tanhðx − XÞ tanhðxþ XÞ sinhðxþ XÞ

cosh2ðxþ XÞ ¼
π

4

tanhX
cosh2X

½1 − 2cosh2X�
Z

∞

−∞
dx tanhðx − XÞ2 sinhðxþ XÞ

cosh2ðxþ XÞ ¼ −
π

2

tanhX
cosh2XZ

∞

−∞
dx tanhðx − XÞ sinhðxþ XÞ

cosh2ðxþ XÞ ¼
π

2

1

cosh2X
: ðA13Þ

We have verified these integrals by numerical simulation.
Some of the integrals are even in X while others are odd.
Hence

FðXÞ ¼ −3π
�
2 − 2tanh3X − 3

1

cosh2X
þ 1

cosh4X

�
ðA14Þ

does not have a specified transformation property
under X ↔ −X, in contrast to the erroneous literature
formula quoted in Eq. (16). Terms under the integral in
Eq. (A1) that only have xþ X as arguments of the
hyperbolic functions were obtained from the above list
by setting X ¼ 0. Multiplying with the normalization

of the shape mode (
ffiffi
3
2

q
) gives the coefficient a5 provided

in Eq. (17).

To compute the coefficient b5 we need to replace

sinhðxþ XÞ
cosh2ðxþ XÞ →

sinhðx − XÞ
cosh2ðx − XÞ

¼ −
sinhð−xþ XÞ
cosh2ð−xþ XÞ ðA15Þ

in Eq. (A1). Then b5 ¼ −a5 because the term in curly
brackets is invariant under x → −x. This is one example
for a general property of the collective coordinate
Lagrangians, Eq. (10) and its ϕ6 pendant; they are invariant
under A ↔ −B.
For completeness we also outline the result for a1 listed

in Sec. III. It is interesting because the limit k → 0 works
differently from the above. Since d

dx tanhðxÞ ¼ 1=cosh2ðxÞ
the separation dependent part of a1 requires the k → 0
limit of
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Z
∞

−∞
dz

eikz

cosh2ðx − XÞcosh2ðxþ XÞ : ðA16Þ

The singularities along the lines ReðzÞ ¼ �X are second
order and it suffices to consider Eqs. (A4) and (A8) to
linear order in ϵ. The residues are

e�iXke−ð2nþ1Þπk=2 1

s22

�
ik ∓ 2

c2
s2

�
for z ¼ iyn � X: ðA17Þ

Summing all contributions yields

1

2 sinhðπkÞ
�
2
c2
s2

ðe−iXk − eþiXkÞ þ ikðe−iXk þ eþiXkÞ
�

→
−i
πs22

�
2X

c2
s2

− 1

�
as k → 0: ðA18Þ

This is the separation dependent part of a1.
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