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We consider a compact Abelian Higgs model in 3þ 1 dimensions with a topological axion term and
construct its dual theories for both bulk and boundary at strong coupling. The model may be viewed as
describing a superconductor with magnetic monopoles, which can also be interpreted as a field theory of a
topological Mott insulator. We show that this model is dual to a noncompact topological field theory of
particles and vortices. It has exactly the same form as a model for superconducting cosmic strings with an
axion term. We consider the duality of the boundary field theory at strong coupling and show that in this
case θ is quantized as −8πn=m, where n and m are the quantum numbers associated with electric and
magnetic charges. These topological states lack a noninteracting equivalent.
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I. INTRODUCTION

A plethora of topological states of matter have been
identified and classified during the past decade [1–3].
These include material realizations such as strong topo-
logical insulators (STI). Interestingly, the microscopic
electronic structure of these materials can be very different.
However, some properties of an STI, set by topology, are
universal. A celebrated example is the bulk-boundary
correspondence guaranteeing the presence of surface states
that are protected by the bulk topology. Another incarnation
of this universality arises in the field-theoretical description
of the electromagnetic response of STIs: it is governed
by the canonical Maxwell Lagrangian supplemented by a
topological term—the axion or θ term, ∼θE · B, which
quantizes the electromagnetic response [4].
Instead of an STI, we consider a compact Abelian Higgs

model in 3þ 1 dimensions with a θ term [5–8], which may
be interpreted as an effective field theory for a topological
Mott insulator, and show that it is dual to an axionic
superconductor model [5–8] where both particle and
vortex degrees of freedom appear in the Lagrangian. The
Lagrangian of the dual theory is similar to that of a model
for superconducting vortex strings [9], except that it also
features a θ term, which causes a topologically induced
charge coupling for the vortex lines. Such an interacting
field theory can be physically understood in terms of an
experimental setup consisting of a superconducting slab
sandwiched between two semi-infinite STIs (see Fig. 1).
The θ term of the STI couples to the electrodynamics of
vortex lines in the superconductor. This can be shown to
lead to a charge fractionalization mechanism at the

interfaces similar to theWitten effect, although no magnetic
monopoles are present in this setting (see Sec. II). Thus, the
Witten effect with charge fractionalization due to magnetic
monopoles in the compact Abelian Higgs model with an
axion term maps via duality into a Witten effect associated
with vortex lines.
It is well known that without the topological axion term,

the compact Maxwell theory in 3þ 1 dimensions exhibits a
confinement-deconfinement transition [10]. This transition
can be understood by exploiting the duality of the compact
Maxwell theory to the noncompact Abelian Higgs model
[11]. In the dual Higgs model, vortex lines correspond to
worldlines of magnetic monopoles in the original model.
Hence, the phase transition in the dual Higgs model
corresponds to the confinement-deconfinement transition
in the original compact Uð1Þ Maxwell electrodynamics.
The situation in 3þ 1 dimensions is quite different from
the one in 2þ 1 dimensions, where test charges are
permanently confined [12], with the Wilson loop satisfying
the area law. Indeed, it is well known that compact Maxwell
theory in 2þ 1 dimensions is dual to a Coulomb gas of
magnetic monopoles (actually, in this case it is more
technically correct to speak of instantons). The sine-
Gordon Lagrangian yields an exact field-theory represen-
tation of a Coulomb gas in any dimensions [13]. In 2þ 1
dimensions, the sine-Gordon theory is always gapped, so
no phase transition occurs in this case [12,14].
The duality transformation can also be carried out for the

case of a compact Abelian Higgs model. The exact result
has been obtained for a model defined on a d-dimensional
lattice a long time ago [15]. Generally, when Higgs fields
are included, the dual model is given by a vector or tensor
Coulomb gas, depending on the dimensionality. In this
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paper we will find it useful to consider, besides the
complete duality transformation leading to a Coulomb
gas, a partial duality transformation as well, where the
Higgs field is still present, while the magnetic monopole
degrees of freedom are mapped on a dual Higgs sector
representing the ensemble of worldlines of magnetic
monopoles as vortex lines. The resulting model in 3þ 1
dimensions corresponds to one of superconducting vortex
strings mentioned above. If the original Higgs and gauge
fields are also integrated out, the field theory corresponding
to the duality discussed on the lattice by Cardy [16] and
Cardy and Rabinovici [17] is obtained.
There is a question as to what happens with the duality at

the boundary, which is important for topological states of
matter. The compact Maxwell theory in 3þ 1 dimensions
has a (2þ 1)-dimensional boundary. Thus, naively, we may
think that the boundary theory is just compact Maxwell
electrodynamics in 2þ 1 dimensions. In such a case, the
theory at the boundary will not exhibit a phase transition,
while the theory in the bulk will. However, this naive
expectation clearly fails for the corresponding dual theory,
since using the same logic would lead us to expect that
the dual model at the boundary is just the dimensionally
reduced theory, i.e., the Abelian Higgs model in 2þ 1
dimensions. This is obviously not the case, since the dual of
compact Maxwell theory in 2þ 1 dimensions is a sine-
Gordon theory. Thus, the correct prescription to find the
boundary dual theory is to dualize the dimensionally
reduced model at the boundary. For the case of the axionic
Higgs model we consider, the θ term generates a Chern-
Simons term at the boundary. We will show that in this case
θ becomes fractionally quantized in the infinitely coupled
regime.
The plan of the paper is as follows: In Sec. II, we discuss

the Witten effect and derive a variant of it that also works
with vortex lines. This result will serve to relate our duality
to a physical problem of topological insulators coupled to

type-II superconductors [18]. In Sec. III, we introduce the
compact axionic Abelian Higgs model and show that it is
equivalent to a noncompact model for superconducting
vortex strings, thus establishing an exact mapping between
a Higgs model containing monopoles and a model con-
taining vortices and two Higgs fields. In Sec. IV, we discuss
the duality transformation, building on the results obtained
in Sec. III. Section V discusses the boundary dual theory
at strong coupling in the lattice. In Sec. VI, we briefly
comment on possible generalizations in the framework of
quantum critical phenomena associated with the nonlinear
σ model. Section VII concludes the paper, and in the
Appendix we give further details on the calculations
presented in the main text.

II. WITTEN EFFECT IN ELECTRODYNAMICS

A. Electromagnetic variant of the Witten effect
with monopoles and vortex lines

The Lagrangian for electrodynamics with an axion term
is given by

L ¼ 1

8π
ðE2 −B2Þ þ e2θ

4π2
E ·B − ρϕ − j ·A: ð1Þ

The standard Maxwell equations are modified by the
presence of the θ term. The new relations are easily
obtained by computing the electric displacement vector
D and the magnetizing field H via

D ¼ ∂L
∂E ; H ¼ −

∂L
∂B ð2Þ

and inserting these results in the standard Maxwell equa-
tions. The important equation for the Witten effect is the
Gauss law,

∇ ·E ¼ 4πρ −
e2

π
∇ · ðθBÞ: ð3Þ

Thus, unless magnetic monopoles are present, the Gauss
law does not change if θ is uniform. Since ∇ ·B ¼ ρm,
where ρm is the magnetic monopole density, the integral
form of the Gauss law reads

Q ¼ q −
e2θ
4π2

qm −
e2

4π2

Z
V
d3r∇θ · B: ð4Þ

Here, qm is the magnetic charge, which fulfills the Dirac
condition, qqm ¼ 2π. If θ is uniform and q ¼ ne (with
integer n), Eq. (4) yields the charge fractionalization by
monopoles of the Witten effect [19],

Q ¼ e

�
n −

θ

2π

�
: ð5Þ

FIG. 1. Schematic view of a type-II superconductor sand-
wiched between two STIs in the presence of a magnetic field
~B. Due to the topological magnetoelectric effect, the vortex lines,
represented by straight flux tubes, acquire an electric polarization.
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In a condensed matter system, we generally do not have
intrinsic magnetic monopoles, but surface states provide yet
another form of the Witten effect, due to the last term of
Eq. (4). Indeed, although in STIs θ is uniform, the presence
of a surface leads to a nonzero value for the integral in
Eq. (4). Thus, if θ has a uniform value for surfaces at z ¼ 0
and z ¼ L, and B ¼ BðrÞẑ depends only on the radial
coordinate r, we will obtain after setting qm ¼ 0

Q ¼ q −
e2

4π2

Z
L

0

dz
dθ
dz

Z
d2rBðrÞ

¼ q −
e2

4π2
½θðLÞ − θð0Þ�ΦB: ð6Þ

The above constitutes a variant of the Witten effect when
the magnetic flux ΦB is nonzero. Figure 1 illustrates a
physical situation where Eq. (6) is realized, with a type-II
superconductor sandwiched between two STIs (see also
Ref. [18] for another, closely related, example). If an
external magnetic field is applied perpendicular to the
interfaces, a flux line vortex lattice will arise, and the
magnetic flux will be nonzero. For STIs we generally have
θðLÞ ¼ −θð0Þ ¼ θ, with θ ¼ π for time-reversal (TR)-
invariant systems. Using q ¼ nð2eÞ [with ð2eÞ being the
Cooper pair charge] and considering a total flux ΦB due to
Nv straight vortex lines, we obtain the total charge,

Q ¼ e

�
2n −

θNv

2π

�
: ð7Þ

B. The Hall conductivity and the Witten effect

If there are no magnetic monopoles, we can derive the
Hall conductivity from the current density obtained from
Eq. (1), by assuming that there is an interface separating a
topologically trivial insulator (θ ¼ 0) from a topologically
nontrivial one (θ ≠ 0). We then find a dissipationless Hall
current [18], given by

jH ¼ −
e2

4π2
ð∇θ ×EÞ: ð8Þ

If we consider an electric field applied at the surface z ¼ 0,
e.g., E ¼ Ex̂, we obtain the transverse surface current

iy ¼ −
e2E
4π2

Z
∞

0

dz
dθ
dz

¼ σxyE; ð9Þ

where the Hall conductivity [20] is

σxy ¼
e2

2π

�
n −

θ

2π

�
: ð10Þ

We note the similarity between the expression for the
charge [Eq. (5)] and the one for the Hall conductivity

[Eq. (10)]. In the following, we will show that for the case
of topological superconductors this is not a mere accident
(note, however, that a superconductor has elementary
charge 2e rather than e).
The result of Eq. (10) can be understood by considering

the very simple problem of a charged particle of mass M
constrained to move on a ring of radius r and in the
presence of a magnetic flux, Φ. In this exactly solvable
example, it is easy to see that the current is given by

jn ¼ −e
dEn

dΦ
¼ e3

2πMr2

�
n −

eΦ
2π

�
; ð11Þ

where

EnðΦÞ ¼
1

2Mr2

�
n −

eΦ
2π

�
2

; n ∈ Z ð12Þ

are the exact energy eigenvalues.

III. COMPACT ABELIAN HIGGS MODEL
WITH AXION TERM

Since theWitten effect in axion electrodynamics arises in
the presence of either magnetic monopoles or vortices, a
general Abelian Higgs model accounting for both topo-
logical defects is given by the Lagrangian written in
imaginary time:

L ¼ 1

4
F 2

μν þ
ie2θ
16π2

F μν
~F μν þ

ρ2

2
ð∂μφþ 2eAμÞ2 þ

1

2ρ2V
m2

μ:

ð13Þ

Here, the field strength and its dual are given by [21]

F μν ¼ Fμν þ
π

e
~Mμν ð14Þ

and

~F μν ¼ ~Fμν þ
π

e
Mμν; ð15Þ

with Fμν ¼ ∂μAν − ∂νAμ and ~Fμν ¼ ð1=2ÞϵμνλρFμν. We
also have that Mμν ¼ ∂μMν − ∂νMμ and ~Mμν ¼
ð1=2ÞϵμνλρMμν, where

MμðxÞ ¼
Z

d4x0Gðx − x0Þmμðx0Þ; ð16Þ

with the Coulomb Green function GðxÞ ¼ 1=ð4π2x2Þ. The
fieldmμðxÞ is conserved and has the meaning of a magnetic
monopole current. Thus,MμðxÞ is a monopole gauge field.
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We automatically have that ∂μMμ ¼ 0 in view of the
conservation of the monopole current; it follows that
∂μ

~F μν ¼ ðπ=eÞmν, as expected. We will later see that
the parameter ρV emulates vortex stiffness. The way in
which it appears in Eq. (13), ρ−1V , represents the chemical
potential of monopoles. As discussed in Ref. [21], the field
strength F μν is a four-dimensional generalization of the
superfluid velocity of two-dimensional superfluids [22].
The magnetic monopole contribution accounts for the
compactness of the local Uð1Þ gauge group in the same
way that point vortices in two-dimensional superfluids
account for the periodicity of the phase of the superfluid
wave function [21]. This procedure allows one to incor-
porate the periodicity of lattice fields in a continuum field-
theory approach where the fields become multivalued [23].
In the absence of magnetic monopoles (mμ ¼ 0),

Eq. (13) describes a three-dimensional superconductor
with a θ term, which can be realized via a heterostructure
like the one shown in Fig. 1. For θ ¼ 0 and in the presence
of monopoles, the phase structure of Eq. (13) has been
discussed in the past using a lattice gauge theory formu-
lation [24], where it has been pointed out that the model
with two units of charge features three phases rather than
two. Indeed, for the case of one unit of charge, the Higgs
and confinement phases cannot be distinguished, in con-
trast with the case of two units of charge. The third phase in
the problem is the Coulomb phase. There is a first-order
phase transition between the Higgs and the confined phases
[25]. For θ ≠ 0, a first-order transition between the Higgs
and the confinement phases is still expected, but there are
several such transitions, which are labeled by the integer
monopole charge m [16].
Further insight into the theory (13) can be obtained by

introducing an auxiliary field hμ to rewrite it (see the
Appendix) as

L0 ¼ 1

4
ðF2

μν þ f2μνÞ þ i
e2θ
16π2

Fμν
~Fμν þ imμ

�
π

e
hμ þ

eθ
4π

Aμ

�

þ ρ2

2
ð∂μφþ 2eAμÞ2 þ

1

2ρ2V
m2

μ; ð17Þ

where fμν ¼ ∂μhν − ∂νhμ. Physically, the gauge field hμ
accounts for the magnetic flux inside the vortex lines, akin
to the London theory. Now, in order to integrate out the
monopole gauge field subject to the constraint ∂μmμ ¼ 0,
we introduce a Lagrange multiplier φV enforcing the
constraint and perform the Gaussian integration over mμ

to obtain

L ¼ 1

4
ðF2

μν þ f2μνÞ þ i
e2θ
16π2

Fμν
~Fμν þ

ρ2

2
ð∂μφþ 2eAμÞ2

þ ρ2V
2

�
∂μφV þ π

e
hμ þ

eθ
4π

Aμ

�
2

: ð18Þ

The above Lagrangian indicates that φV physically
represents the phase of a vortex disorder field and that
ρV can be indeed be interpreted as a vortex stiffness.
Due to the magnetoelectric (axionic) coupling, the vortex
current couples directly to the vector potential with
charge eθ=ð4πÞ.
Despite similarities with the Ginzburg-Landau theory of

three-dimensional topological superconductors discussed
in Ref. [6], Eq. (18) has a very different physical content.
The theory of Ref. [6] features two superconducting order
parameters coupled to the vector potential with charge 2e,
and θ is the phase difference between the phases of each
order parameter. Furthermore, the gauge field hμ is absent.
The Lagrangian (18) for θ ¼ 0 is a model for super-

conducting cosmic strings introduced by Witten quite some
time ago [9]. Note that the presence of the θ term leads to a
fractionalization of the vortex string charge. Indeed, the
vortex string charge is given by

QV ¼ S
Z
L
ds

�
2eρ2ð∂tφþ 2eA0Þ

þ eθ
4π

ρ2V

�
∂tφV þ π

e
h0 þ

eθ
4π

A0

��
; ð19Þ

where S corresponds to a cross-sectional area of the string,
and the integral is along a path L defined by the vortex line,
which can also form closed loops in general. For θ ¼ 0, the
above equation reduces to the standard formula for the
vortex charge.

IV. ELECTROMAGNETIC DUALITY

A. Dual model

In the absence of matter fields (i.e., ρ ¼ 0), the
Lagrangian (13) reduces to a compact Maxwell theory
with an axion term. Note that for θ ¼ 0, the two Higgs
sectors in Eq. (18) decouple. The corresponding Higgs
electrodynamics of vortices that is obtained in this way
corresponds precisely to the model dual to the compact
Maxwell theory in 3þ 1 dimensions [11]. For θ ≠ 0,
the gauge field Aμ remains coupled to the vortex Higgs
model when ρ ¼ 0. The compact Maxwell theory with an
axion term has the same form as the Lagrangian for the
electrodynamics of a topological insulator [4], except that
the latter case does not include magnetic monopoles. We
may interpret the compact version of the axion electrody-
namics of topological insulators as a model for topological
interacting systems, like topological Mott insulators [26].
Up to the surface term, the Lagrangian (18) has an

electromagnetic self-duality made transparent by a shift
hμ → hμ − e2θ

4π2
Aμ, followed by the rescalings hμ → 2ehμ,

Aμ → ðπ=eÞAμ. Following these, the Lagrangian reads
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L¼ 1

4

h
Fμν fμν

i� π2

e2 þ e2θ2

16π2
− e2θ

2π

− e2θ
2π 4e2

��
Fμν

fμν

�
þ i

θ

16
Fμν

~Fμν

þ ρ2

2
ð∂μφþ 2πAμÞ2 þ

ρ2V
2
ð∂μφV þ 2πhμÞ2: ð20Þ

From the above representation, a duality first discussed in
Ref. [16] in the context of a Uð1Þ lattice gauge theory is
obtained. It is given by the transformations

e0 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2

e2
þ e2θ2

16π2

s
; θ0 ¼ −

4θe2

π2

e2 þ e2θ2

16π2

; ð21Þ

with the field transformations Aμ → hμ; hμ → −Aμ;
fφ → φV; ρ → ρVg, and fφV → −φ; ρV → ρg, such that
the Lagrangian is invariant up to the surface (θ) term,
meaning that the Lagrangian is self-dual in the bulk. From
Eq. (20), we realize that Eq. (21) implies that the Dirac
duality e2e02 ¼ π2=4 of the θ ¼ 0 case is replaced by a
matrix relationMM0 ¼ ðπ2=4ÞI when θ ≠ 0. Here,M is the
matrix appearing in Eq. (20), and I is a 2 × 2 identity matrix
[27]. This electromagnetic duality emulates a symmetry,
since broadly, dualities are unitary transformations that
become symmetries at self-dual points [28]. In the context
of topological states, symmetry-related aspects of duality
have been recently studied in terms of interacting Dirac
fermions [29–33].
We can integrate out φ in Eq. (17) by introducing a

conserved charge current jμ to obtain

L0 ¼ 1

4
ðF2

μν þ f2μνÞ þ i
e2θ
16π2

Fμν
~Fμν þ i

π

e
mμhμ

þ ie

�
2jμ þ

θ

4π
mμ

�
Aμ þ

1

2ρ2
j2μ þ

1

2ρ2V
m2

μ: ð22Þ

Due to the θ term, the gauge field Aμ couples to both
charge and monopole currents, implying that the physical
current is

eJμ ¼ 2ejμ þ
eθ
4π

mμ: ð23Þ

Thus, integrating eJ0 over the volume yields

Q ¼ e

�
2nþm

θ

4π

�
; ð24Þ

where n;m ∈ Z, and we have assumed the normalizationsZ
d3xj0ðxÞ ¼ n;

Z
d3xm0ðxÞ ¼ m; ð25Þ

which shows that Eq. (24) is yet another incarnation of
the Witten effect. From Eq. (24) we note the invariance

θ → θ þ 8π, n → n −m as a consequence of the periodic-
ity of θ [16]. Setting jμ ¼ 0 and mμ ¼ 0 reduces to the
situation of a noninteracting topological insulator [4].
We further distinguish here the following relevant special
cases: When jμ ¼ 0 and mμ ≠ 0, the theory describes an
interacting topological insulator, since no charge is flowing
and the gauge field is compact. If both jμ and mμ are
nonzero, a polarized state of dipoles made of one electric
and one magnetic charge, the so-called dyon [34], may
form. If such a polarized dyonic system is overall charge
neutral, we obtain a diamagnetoelectric rather than a
dielectric type of insulator.
If we integrate out Aμ and hμ in Eq. (22), we obtain the

continuum version of the lattice dual model obtained by
Cardy [16] and Cardy and Rabinovici [17],

~S ¼ 1

2

�
π2

e2
þ e2θ2

16π2

�Z
d4x

Z
d4x0Gðx − x0ÞmμðxÞmμðx0Þ

þ ð2eÞ2
2

Z
d4x

Z
d4x0Gðx − x0ÞjμðxÞjμðx0Þ

þ e2θ
2π

Z
d4x

Z
d4x0Gðx − x0ÞjμðxÞmμðx0Þ

þ
Z

d4x

�
1

2ρ2
j2μ þ

1

2ρ2V
m2

μ

�
; ð26Þ

apart from the local quadratic terms j2μ and m2
μ. The

electromagnetic duality (21) holds once more, provided
that the replacements mμ → jμ and jμ → −mμ are made.
Vortices and (superfluid) particles have large stiffnesses

in the lattice formulation of Ref. [16] or, equivalently, no
chemical potentials for charge and magnetic currents.
However, such local quadratic terms should be generated
by short-distance fluctuations.
Note that when ρ → 0, corresponding to the regime of a

compact Maxwell theory with an axion term, the currents jμ
are frozen to zero, and the dual action (26) becomes a
vector Coulomb gas of magnetic monopole currents.

B. Renormalization aspects

From the electromagnetic self-duality (21), we see that
e02θ0 ¼ −e2θ and that

e0e ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 þ e4θ2

16π2

s
ð27Þ

must be invariant by renormalization, i.e., e0rer ¼ e0e,
where the subindex r denotes renormalized counterparts.
If ZA is the wave function renormalization for the field
Aμ, we obtain from the Ward identities the usual result,
e2r ¼ ZAe2, following from gauge invariance. Thus, if Zh
denotes the wave function renormalization for the field hμ,
duality invariance immediately implies that ZAZh ¼ 1.
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Therefore, if we use the Ward identities once more, we
obtain

θr ¼
ffiffiffiffiffiffiffiffiffiffiffi
ZAZh

p
θ ¼ θ; ð28Þ

implying that θ does not renormalize. Thus, we have

e2rθrFr;μν
~Fr;μν ¼ e2θFμν

~Fμν; ð29Þ

implying that the axion term is renormalization invariant.
This is consistent with the topological character of the
axion term. Indeed, since it does not depend on the metric,
we expect it to be insensitive to scale transformations, and
therefore it must not change under renormalization.

V. BOUNDARY THEORY AND DUALITY
AT STRONG COUPLING

Since Fμν
~Fμν ¼ 2ϵμνλρ∂μðAν∂λAρÞ, the θ term yields a

Chern-Simons (CS) term at the boundary. Thus, if we
consider a system defined with a boundary at z ¼ 0, the
actual physics of the problem is described by a dimen-
sionally reduced system in the strong-coupling limit. To see
this, we first write

1

4
F2
μν ¼

1

2
ðϵμνλ∂νAλÞ2 þ

1

2
ð∂zAμ − ∂μAzÞ2; ð30Þ

where now it is understood that the Greek indices on the rhs
of the above equation refer to three-dimensional spacetime,
x∥ ¼ ðτ; x; yÞ, with a similar expression holding for fμν.
Thus, upon integrating out both Az and hz, we obtain that
the action associated with the Lagrangian (22) can be
written in the form

S0 ¼ 1

2

Z
d4x

�
ðϵμνλ∂νAλÞ2 þ ðϵμνλ∂νhλÞ2 þ ð∂zAμÞ2 þ ð∂zhμÞ2 þ ieJμAμ þ i

π

e
mμhμ þ

1

2ρ2
j2μ þ

1

2ρ2V
m2

μ

�

þ i
e2θ
8π2

Z
d3x∥ϵμνλAμ∂νAλ þ

ð2eÞ2
2

Z
d3x∥

Z
d3x0∥G3Dðx∥ − x0∥Þjzðx∥Þjzðx0∥Þ

þ 1

2

�
π2

e2
þ e2θ2

16π2

�Z
d3x∥

Z
d3x0∥G3Dðx∥ − x0∥Þmzðx∥Þmzðx0∥Þ þ

e2θ
2π

Z
d3x∥

Z
d3x0∥G3Dðx∥ − x0∥Þjzðx∥Þmzðx0∥Þ;

ð31Þ

where G3Dðx∥ − x0∥Þ ¼ 1=ð4πjx∥ − x0∥jÞ, and

jzðx∥Þ ¼
Z

∞

−∞
dzjzðx∥; zÞ;

mzðx∥Þ ¼
Z

∞

−∞
dzmzðx∥; zÞ; ð32Þ

and we have used that θðzÞ ¼ θ for z ≥ 0, vanishing
otherwise. The second and third lines of Eq. (31) contain
only surface modes, while the bulk still contributes in the
first line.
An interesting limiting case where the boundary theory

decouples from the bulk is obtained by letting e2 → ∞.
By rescaling Aμ → e−1Aμ and hμ → e−1hμ in Eq. (22), the
action for e2 → ∞ becomes

S∞¼ i
θ

8π2

Z
d3x∥ϵμνλAμ∂νAλþ

Z
d4x

�
i

�
2jμþ

θ

4π
mμ

�
Aμ

þ 1

2ρ2
j2μþ

1

2ρ2V
m2

μ

�
: ð33Þ

Because there is no Maxwell term in S∞, we have
that Jμ ¼ 0 in the bulk and the currents exist only on

the surface—i.e., we have an insulating bulk. From
Eq. (31), we also see that both jz and mz are constrained
to vanish in the limit e2 → ∞. Since Jμ vanishes in the
bulk, Eq. (24) implies that θ=ð8πÞ ¼ −n=m, m ≠ 0. This
result is consistent with Cardy’s discussion [16] of the
phase structure of the lattice model, although the boundary
theory has not been considered in Ref. [16]. There the
critical point is attained at the values θ=ð2πÞ ¼ −n=m (note
the factor 2π instead of 8π, which arises in our case because
the charge of our bosons is 2e), when the bare coupling
becomes infinitely large.
Note that locking θ to −8πn=m in the strong-coupling

regime implies that θ cannot be smoothly connected to
zero, corresponding to a situation similar to the one
encountered recently [8] in the renormalization group
analysis of a three-dimensional topological superconductor
of the type studied in Ref. [6]. In the following, we will
elaborate further on this regime by means of the duality
transformation.
A subtle aspect of the boundary theory following from

Eq. (33) is uncovered when performing the Gaussian
integral over Aμ. Integrating out Aμ at the boundary leads
to the effective Lagrangian at strong coupling (Jμ ≠ 0 at the
boundary)
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~L∞ ¼ i
2π2

θ
ϵμνλJμ

∂ν

∂2
Jλ þ

1

2ρ2
j2μ þ

1

2ρ2V
m2

μ: ð34Þ

Solving the current conservation constraints yields jμ ¼
ϵμνλ∂νaλ and mμ ¼ ϵμνλ∂νbλ. Therefore,

~L∞¼ 1

2ρ2
ðϵμνλ∂νaλÞ2þ

1

2ρ2V
ðϵμνλ∂νbλÞ2

þ i
2π2

θ
ϵμνλ

�
2aμþ

θ

4π
bμ

�
∂ν

�
2aλþ

θ

4π
bλ

�
: ð35Þ

If we define a two-component gauge field ðhIμÞ ¼ ðaμ; bμÞ,
we can rewrite the above Lagrangian in the form

~L∞ ¼ 1

2

X
I

1

ρI
ðϵμνλ∂νhIλÞ2 þ iπϵμνλ

X
I;J

KIJhIμ∂νhJλ;

ð36Þ

where ρ1 ¼ ρ and ρ2 ¼ ρV , and KIJ are the elements of the
matrix

K ¼
�−m=n 1

1 −n=m

�
; ð37Þ

The result of a matrix CS term is reminiscent of effective
theories for the fractional quantum Hall state [35]. Actually,
our system is rather an anyon superfluid, as detK ¼ 0,
implying the existence of a gapless mode. Note, however,
that the entries of the matrix K are not necessarily integers
in this case.
The Lagrangian (35) describes a free theory, leading

us to conclude that the strongly coupled theory at the
boundary is noninteracting. However, this is an example
where standard continuum manipulations yield an incorrect
result. The Lagrangian (35) is actually incomplete, as an
analysis made in the lattice will now demonstrate. The
difficulty lies in the fact that solving the current conserva-
tion constraint in the continuum formulation misses in
some cases the periodic character of phase variables that
underlie the current conservation itself. There is, in fact, a
discrete periodicity in the current that cannot always be
properly captured with a field-theoretical analysis per-
formed directly in the continuum.
The lattice boundary theory associated with the bulk

action (33) is

Sb∞ ¼
X
l

�
i
θ

8π2
ϵμνλAlμΔνAlλ þ i

�
2jlμ þ

θ

4π
mlμ

�
Alμ

þ 1

2ρ2
j2lμ þ

1

2ρ2V
m2

lμ

�
; ð38Þ

where the lattice derivative is defined in a standard way as
Δμfl ¼ flþ1 − fl (with unit lattice spacing). The currents

jlμ andmlμ are now integer-valued lattice fields, making the
normalization superfluous. Thus, the partition function

Zb
∞ ¼

X
fjlμg

X
fmlμg

δΔμjlμ;0δΔμmlμ;0

Z
∞

−∞

�Y
j

dAjμ

�
e−S

b
∞ ; ð39Þ

with the current conservation constraints being enforced by
Kronecker deltas. Using the integral representation of the
Kronecker deltas

δΔμnlμ;0 ¼
Z

2π

0

dφl

2π
eiφlΔμnlμ ; ð40Þ

δΔμslμ;0 ¼
Z

2π

0

dφVl

2π
eiφVlΔμslμ ð41Þ

in Eq. (39), and applying once more the Poisson for-
mula [36],

Sb∞ ¼
X
l

�
i
θ

8π2
ϵμνλAlμΔνAlλ þ

ρ2

2
ðΔμφl − 2πplμ − 2AlμÞ2

þ ρ2V
2

�
ΔμφVl − 2πqlμ −

θ

4π
Alμ

�
2
�
; ð42Þ

with another set of integer fields, plμ and qlμ.
Integrating over Alμ yields a lattice version of Eq. (34)

where the currents are integer fields. Solving the current
conservation constraints yields integer-valued gauge fields,
jlμ ¼ ϵμνλΔνNlλ andmlμ ¼ ϵμνλΔνMlλ. This point is the key
to understanding why Eq. (35) is not quite correct. The
corresponding lattice action has the same form as Eq. (35),
but with integer-valued gauge fields. Introducing real-
valued lattice gauge fields via the Poisson formula [37],
we obtain

~Sb∞ ¼
X
l

�
1

2ρ2
ðϵμνλΔνalλÞ2 þ

1

2ρ2V
ðϵμνλΔνblλÞ2

þ i
2π2

θ
ϵμνλ

�
2alμ þ

θ

4π
blμ

�
Δν

�
2alλ þ

θ

4π
blλ

�

− 2πinlμalμ − 2πislμblμ

�
; ð43Þ

where nlμ and slμ are integer fields representing conserved
currents, which in this case is a consequence of gauge
invariance. In contrast to Eq. (35), due to the coupling of
the gauge fields to the currents, Eq. (43) does not yield a
free quadratic theory.
The action ~Sb∞ corresponds to the boundary dual of the

action Sb∞. Besides realizing that the theory given by
Eq. (34) is actually not free, the dual transformation above
shows that ρ and ρV of the action Sb∞ become the dielectric
constants (or gauge couplings) in the dual action ~Sb∞. While
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Sb∞ is strongly coupled, ~Sb∞ is not. This allows us to find a
regime where the boundary theory becomes self-dual. The
self-dual regime is expediently explored using the actions
of Eqs. (38) and (43). In Eq. (38), mlμ vanishes when
ρV → 0. Similarly, in Eq. (43), blμ can be gauged away in
this limit. Thus, by assuming the limit ρV → 0 and
rescaling Alμ → πAlμ, we obtain the self-duality of the
actions (38) and (43) at ρ → ∞, provided θ=ð8πÞ ¼ �1, in
which case the actions become precisely equivalent.

VI. POSSIBLE GENERALIZATIONS

It is in principle possible to connect the compact
Maxwell theory discussed in this paper to quantum spin
models exhibiting an emergent Uð1Þ symmetry—like,
for example, those models described by the theory of
deconfined quantum critical points [38]. In order to put in
perspective the types of bosonic topological states we are
looking for in terms of spin models, we start by recalling
some properties of deconfined critical points in 2þ 1
dimensions that are useful in this paper. We first consider
a version of the Faddeev-Skyrme model [39,40] as dis-
cussed similarly in Ref. [41]:

L ¼ 1

2g
ð∂μnÞ2 þ

1

2e2
½ϵμνλ∂νcλ þ ϵμνλn · ð∂νn × ∂λnÞ�2;

ð44Þ

where n2 ¼ 1, and cμ is a noncompact Uð1Þ gauge field.
The strongly coupled regime g → ∞ describes a nontrivial
paramagnetic phase where the Lagrangian (44) becomes
a compact Maxwell theory. This can be shown by
using ’t Hooft’s construction [42] of an Abelian gauge
field from a non-Abelian one. Indeed, we can write
Fμν ¼ n · Fμν ¼ ∂μcν − ∂νcμ þ n · ð∂μn × ∂νnÞ, where
Fμν ¼ ∂μJν − ∂νJμ − Jμ × Jν is a non-Abelian field
strength associated with the Oð3Þ gauge field, Jμ ¼
ncμ þ n × ∂μn. Since

Q ¼ 1

8π

I
S
dSμϵμνλn · ð∂νn × ∂λnÞ; ð45Þ

where Q ∈ Z, the g → ∞ limit of the theory dualizes to a
sine-Gordon theory with π=2 periodicity, rather than the
usual 2π one of Polyakov’s compact Maxwell theory in
2þ 1 dimensions [12]. Physically, the π=2 periodicity
represents the π=2 rotations mapping a VBS state into
another one [38]. Since the sine-Gordon model in 2þ 1
dimensions is always gapped, there is no phase transition
occurring in the system. This gap leads to a finite string
tension between spinons and antispinons in the original
model, which impedes deconfinement from occurring.
Since ½ϵμνλn · ð∂νn × ∂λnÞ�2 ¼ ð∂μn × ∂νnÞ2, and n is
the direction of the spin, a lattice model associated with
the compact Maxwell term would automatically include

four-spin interactions between singlet bonds, similarly
to the so called J −Q model [43]. The limit g → ∞
corresponds to the case where the four-spin singlet bond
interaction dominates the physics.
A topologically nontrivial theory in 2þ 1 dimensions

can be obtained by taking ’t Hooft’s construction one step
further to add into the Lagrangian (44) the (non-Abelian)
CS term

LCS ¼ i
θ

16π2
ϵμνλ

�
Jμ · ∂νJλ þ

1

3
Jμ · ðJν × JλÞ

�

¼ i
θ

16π2

�
ϵμνλcμ∂νcλ −

2

3
cμϵμνλn · ð∂νn × ∂λnÞ

�
:

ð46Þ

One way to realize the above CS contribution in models of
quantum criticality in 2þ 1 dimensions is to assume a
physical situation where the quantum phase transition
occurs on the surface of a (3þ 1)-dimensional system.
In this case, the CS term arises from a so called θ term in the
action of a (3þ 1)-dimensional theory, which has the
well-known form

Sθ ¼ i
θ

32π2

Z
d4xϵμνλρFμν · Fλρ ¼ i

θ

32π2

Z
d4x∂μKμ;

ð47Þ

where Kμ ¼ 2ϵμνλρ½Jν · ∂λJρ þ ð1=3ÞJν · ðJλ × JρÞ� is the
CS current. Again, it is possible to define a compact
Abelian θ term from the non-Abelian one. Within this
point of view, a topological interacting state of matter in
three dimensions mimics the electrodynamics of topologi-
cal band insulators [4], where a fluctuating field associated
with topological defects leads to an emergent compact
Uð1Þ symmetry.

VII. CONCLUSIONS

We have constructed and exploited the dualities of a
compact Abelian Higgs model with a topological axion
term and shown that it is equivalent to a topological,
noncompact Abelian Higgs model having two Higgs and
two gauge fields, akin to the model for superconducting
vortex strings, but with a topological term. In other words,
we have established the equivalence between a topological
theory having bosonic particles coupled to monopoles in a
gauge invariant way and a topological theory having
bosonic particles and vortices. This equivalence allows
us to better understand how the Witten effect also applies to
a system having vortex lines and no monopoles: the two
versions of the Witten effect are simply dual to each other.
The duality is particularly interesting when the topo-

logical field theory system has a boundary, like the cases
that typically arise in topological condensed states of matter
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[1,2]. In particular, we have shown that in the strongly
interacting regime, θ ¼ −8πn=m, with n and m being
integers (m ≠ 0). The same quantization appears at the
infinite coupling critical point of the bulk lattice theory, as
previously demonstrated via symmetry arguments involv-
ing modular transformations [16]. The strong-coupling
boundary theory features two gauge fields and a mutual
CS term. We have shown that its dual exactly corresponds
to a two-scalar-field Higgs model coupled to a single
gauge field whose dynamics is governed by the CS term,
with no Maxwell term in the Lagrangian. Interestingly,
the scalar field associated with the vortices provides a
charge that is topologically induced, being given by
just θ=ð4πÞ ¼ −2n=m.
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APPENDIX: DERIVATION OF
EQ. (8) FROM EQ. (7)

We have

F 2
μν ¼ F2

μν þ
2π

e
ϵμναβFμν∂α

Z
d4x0Gðx − x0Þmβðx0Þ

þ
�
π

e

�
2

ϵμνλρϵμναβ

Z
d4x0

Z
d4x00∂λGðx − x0Þ

× ∂αGðx − x00Þmβðx0Þmρðx00Þ: ðA1Þ

It turns out that the second term in the above equation
vanishes, while for the last term we use

ϵμνλρϵμναβ ¼ 2ðδλαδρβ − δλβδραÞ: ðA2Þ

Thus, in the action we obtain a contribution

2

Z
d4x

Z
d4x0

×
Z

d4x00Gðx − x0Þ½−∂2Gðx − x00Þ�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼δ4ðx00−xÞ

mρðxÞmρðx00Þ;

ðA3Þ

where we have used integration by parts along with
∂λGðx − x0Þ ¼ −∂ 0

λGðx − x0Þ, for the term proportional
to δλβδρα, and ∂ 0

λmλðx0Þ ¼ 0. Therefore, the Maxwell term
in the action reads

SMaxwell ¼
1

4

Z
d4xF2

μν þ
π2

2e2

Z
d4x

×
Z

d4x0Gðx − x0ÞmρðxÞmρðx0Þ: ðA4Þ

In view of the constraint ∂μmμ ¼ 0, we can introduce an
auxiliary field to rewrite the above equation in the form

SMaxwell ¼
1

4

Z
d4x

h
ðF2

μν þ f2μνÞ þ i
π

e
hμmμ

i
; ðA5Þ

where fμν ¼ ∂μhν − ∂νhμ.
For the θ term, we have

ϵμνλρF μνF λρ

¼ ϵμνλρFμνFλρþ
2π

e
ϵμνλρϵλραβFμν∂α

Z
d4x0Gðx−x0Þmβðx0Þ

þ
�
π

e

�
2

ϵμνλρϵμναβϵλργδ

Z
d4x0

Z
d4x00∂αGðx−x0Þ

×∂γGðx−x00Þmβðx0Þmδðx00Þ: ðA6Þ

Now, we have to use

ϵμνλρϵλραβ ¼ 2ðδμαδνβ − δμβδναÞ; ðA7Þ

and, similarly,

ϵμνλρϵλργδ ¼ 2ðδμγδνδ − δμδδνγÞ: ðA8Þ

Thus,

Saxion¼ i
e2θ
32π2

ϵμνλρ

Z
d4xF μνF λρ¼ i

e2θ
32π2

�Z
d4xϵμνλρFμνFλρþ

4π

e
ðδμαδνβ−δμβδναÞ

Z
d4x

Z
d4x0FμνðxÞ∂αGðx−x0Þmβðx0Þ

þ2

�
π

e

�
2

ðδμγδνδ−δμδδνγÞϵμναβ
Z

d4x
Z

d4x0
Z

d4x00∂αGðx−x0Þ∂γGðx−x00Þmβðx0Þmδðx00Þ
�
: ðA9Þ
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Integration by parts producesZ
d4x

Z
d4x0∂μAνðxÞ∂μGðx − x0Þmνðx0Þ ¼

Z
d4xAνðxÞmνðxÞ; ðA10Þ

such that

Saxion ¼ i
e2θ
32π2

ϵμνλρ

Z
d4xF μνF λρ ¼ i

e2θ
32π2

�Z
d4xϵμνλρFμνFλρ þ

8π

e

Z
d4xAνðxÞmνðxÞ

−
8π

e

Z
d4x

Z
d4x0∂μAμðxÞ∂νGðx − x0Þmμðx0Þ þ

2π2

e2
ϵμναβ

Z
d4x

Z
d4x0

×
Z

d4x00½∂αGðx − x0Þ∂μGðx − x00Þmβðx0Þmνðx00Þ − ∂αGðx − x0Þ∂νGðx − x00Þmβðx0Þmμðx00Þ�
	

¼ i
e2θ
32π2

�Z
d4xϵμνλρFμνFλρ þ

8π

e

Z
d4xAνðxÞmνðxÞ þ

8π

e

Z
d4x

Z
d4x0AνðxÞ∂ν∂μGðx − x0Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼−∂ 0μGðx−x0Þ
mμðx0Þ

þ 4π2

e2
ϵμναβ

Z
d4x

Z
d4x0

Z
d4x00∂αGðx − x0Þ∂μGðx − x00Þmβðx0Þmνðx00Þ

�
: ðA11Þ

Therefore, after some final algebraic manipulations, we obtain that the sum of the Maxwell and axion actions yields

SMaxwell þ Saxion ¼
Z

d4x

�
1

4
ðF2

μν þ f2μνÞ þ i
e2θ
32

ϵμνλρFμνFλρ þ
�
eθ
4π

Aμ þ
π

e
hμ

�
mμ

�
: ðA12Þ
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